
Formal Analysis of 5G AKMA

Tengshun Yang1,2, Shuling Wang1,2, Bohua Zhan1,2(B), Naijun Zhan1,2,
Jinghui Li3, Shuangqing Xiang3, Zhan Xiang3, and Bifei Mao3

1 SKLCS, Institute of Software, CAS, Beijing, China
{yangts,wangsl,bzhan,znj}@ios.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 Trustworthiness Theory Research Center, Huawei Technologies Co., Ltd.,

Shenzhen, China
{jinghui.li,xiangshuangqing,xiangzhan1,maobifei}@huawei.com

Abstract. Security and privacy of users’ information in mobile commu-
nication networks have drawn increasing attention. The development of
5G system has demanded new protocols to realize authentication and key
management service. AKMA (Authentication and Key Management for
Application) service aims at establishing authenticated communication
between users and application functions. For this purpose, the 3GPP
group has standardized 5G AKMA service in Technical Specifications
defining the 5G AKMA security architecture and procedures. To ensure
security of communication between users and applications, AKMA ser-
vice should meet strong security properties. In this paper, we apply for-
mal methods to model and analyze the AKMA service. We construct
a formal model of AKMA in the Tamarin verification tool, and spec-
ify the security properties extracted from informal descriptions given in
the Technical Specifications. We identify the security assumptions for
each security property during the modeling process. We prove that some
properties are not satisfied, and by analyzing the counterexamples con-
structed by Tamarin, put forward some potential attacks. Moreover, we
propose some suggestions and fixes for the 5G AKMA service.

1 Introduction

With mobile communication networks widely used across the world, more and
more people subscribe to their home networks and communicate with each other
or use online services, such as phone calls, emails, and entertainment applica-
tions. Much of these communications occur through public channels, which can
be intercepted or suffer from other kinds of attacks. In order to ensure secu-
rity and privacy of subscribers and application providers communicating along
insecure channels, 3GPP (3rd Generation Partnership Project) has been speci-
fying the security architecture, i.e. security features and mechanisms, for the 5G
System and the 5G Core, and the security procedures performed within the 5G
System including 5G Core and 5G New Radio in the Technical Specification (TS)
[7]. One of the main mechanisms is to support authentication and key manage-
ment aspects for applications, that is mutual authentication between users and
c© Springer Nature Switzerland AG 2021
S. Qin et al. (Eds.): SETTA 2021, LNCS 13071, pp. 102–121, 2021.
https://doi.org/10.1007/978-3-030-91265-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91265-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-91265-9_6

Formal Analysis of 5G AKMA 103

application providers. Specifically, a major aim of this service is to allow applica-
tion providers to authenticate users without knowing the users’ identifier, with
the home network of the user as an intermediary.

5G AKMA (Authentication and Key Management for Application) is a novel
cellular-network-based delegated authentication service. This service, specified
in 3GPP TS 33.535 [8], aims to provide a protocol to support authentication
and key management aspects for applications based on subscription credentials.
In AKMA, application provider, denoted by AKMA Application Function (AF),
delegates the authentication of application user (UE) to the corresponding home
network (HN) where the user subscribes. In this way, application provider could
verify the identity of the user through home network without having chance to
acquire knowledge and information of the user, especially, the real identifier of
the user. The standardization of 5G AKMA service started with Release 16 in
2019 and the latest version was specified in Release 17. In this paper, according
to the version 17.1.0 of Release 17 of the Technical Specification (TS) [8], we
will provide the first formal model of 5G AKMA and also verify formally the
security requirements using Tamarin.

Formal Methods. In this paper, we apply formal methods to analyze the
AKMA service, using the Tamarin verification tool [31]. Tamarin specifies pro-
tocols as a set of rewrite rules acting on a multiset of facts, and properties as
two-sorted first-order logic assertions. By writing appropriate actions in the rules
and in the trace, it is possible to formulate various threat models, such as Dolev-
Yao [20] and eCK [27], as well as various authentication specifications [29]. Using
a backward-search style algorithm [33], Tamarin attempts to prove the proper-
ties or find a counterexample. The counterexamples help users find potential
attacks of protocols.

Contribution. In this work, we formally specify the standard’s security
assumptions and requirements of 5G AKMA, and build the first formal model
of 5G AKMA for a precise security analysis. First, we construct a formal model
of 5G AKMA, as specified in TS 33.535 [8], as a set of rewrite rules in Tamarin.
As we describe in Sect. 4, the model contains main features and functions in
the protocol. During the modeling process, we identity the security assumptions
about the protocol for guaranteeing the security properties, which are implicitly
stated in the standard documents. Next, we model the classical properties (e.g.
secrecy, weak agreement, non-injective agreement) and check them in Tamarin.
During the verification, for some of these security properties, Tamarin returns a
counterexample showing that the model does not satisfy the given property. We
then analyze the attacks according to the counterexamples and put forward the
potential security and privacy problems about AKMA protocol. Also, we give
suggestions to fix these problems.

104 T. Yang et al.

Related Work. In the earlier generations of mobile network, the correspond-
ing services were also specified by 3GPP. GBA (Generic Bootstrapping Architec-
ture) [5] and BEST (Battery Efficient Security for very low Throughput Machine
Type Communication (MTC) devices) [4], served use cases similar to that of
AKMA in the 3rd and 4th generation respectively. 5G AKMA inherits and
evolves features of GBA and BEST, performs better in all kinds of requirements
(refering to 3GPP TR33.835 [1]). In [23], Khan et al. analyzed potential AKMA
requirements and compared AKMA with GBA and BEST. Beyond that, they
put forward two new privacy requirements arose from AKMA applications, devel-
oped a privacy mode for fulfilling them and analyzed the security and privacy
of their solution informally. In another work [24], they introduced designated
authentication system and summarized recent work about AKMA.

There are lots of work on formal modeling and verification of security sys-
tems. For adversaries, the most important models are Dolev-Yao model [20],
eCK model [27], and its extension SeCK model [32]. The adversaries are given
different powers for each of them. Especially, the eCK model inherits the spirit
of Bellare and Rogaway [14] and Canetti and Krawczyk [17,25] by an experi-
ment in which the adversary is given many corruption powers for various key
exchange sessions and must solve a challenge on a test session. Formal modeling
languages and logics are used for modeling security protocols, and for capturing
security properties, facilitating verification and debugging. These work include
the process algebra CSP [21,29,34,35], BAN logic [16], applied π-calculus [9],
Horn clauses [15], TLA [10,28], rewriting system [31] and so on. Some secu-
rity protocol verification tools are developed based on these theories, such as
Tamarin [31], Maude-NPA [18], ProVerif [15], and so on. Tamarin will be intro-
duced in Sect. 3. The Maude-NPA tool [18] supports protocols specified as linear
role-scripts and properties specified as symbolic states [22]. ProVerif [15] models
a protocol as a set of Horn clauses, analyzes them using a two-phase resolution
algorithm, and uses abstractions to obtain an efficient analysis method.

There are lots of work on verification of security protocols. Protocols with
loops and non-monotonic mutable global states such as TESLA protocols,
YubiKey and YubiHSM protocols were considered in [26,30]. In [11], ARPKI
protocol with many messages and multiple parties was modeled and analyzed.
The group protocols STR and GDH based on Diffie-Hellman were verified on
security and privacy. TLS 1.3 and 5G AKA protocol were analyzed in [12,19],
which are important for Internet security and also widely used to establish secure
channels in a variety of contexts. Significantly, 3GPP [2] formally analyzes the
3G AKA protocol using TLA [28] on the absence of failure scenarios and uses
BAN logic [16] on proving security goals respectively.

2 AKMA in 5G System

In this section, we give an informal introduction to the 5G AKMA service. We
first describe the main entities of the service, and then present the steps of the
protocol in detail. See the Technical Specification [8] for further information.

Formal Analysis of 5G AKMA 105

2.1 General Architecture

There are three main entities (roles) in the 5G AKMA service, as shown in Fig. 1.
We explain them below.

Fig. 1. AKMA architecture

1. User Equipment (UE): represents user of the service, consisting of two parts:
Mobile Equipment (ME) and Universal Integrated Circuit Card (UICC).

2. Home Network (HN): represents the mobile network provider. HN has all of
the information about its subscribers, and is always considered to be credible.
Home network plays the role of authenticating users and helps application
providers to reach an agreement with the users on session keys in the AKMA
service. There are several functions located within the HN, as follows:

– UDM (Unified Data Management): stores information about all sub-
scribers of the home network.

– AAnF (AKMA Anchor Function): manages temporary information about
subscribers, and generates temporary session keys KAF for the application
functions.

– AUSF (Authentication Server Function): connection between UDM and
AAnF, obtains the 5G authentication vector from UDM and generates
relative AKMA materials.

– NEF (Network Exposure Function): when the target AF is located outside
the HN, establishes connection between AAnF and AF.

In general, there is also a Serving Network (SN) which the user connects to
when roaming. In this paper, we consider only the case when the user is not
roaming, that is, SN is part of the HN, so we do not consider SN separately.

3. Application Function (AF or AApF): also called application provider or ser-
vice provider, represents the online services that the user may wish to use.
The goal of AKMA is to help to establish a secure channel (exchange a secret
key) between AF and UE, with authentication of UE delegated to its corre-
sponding HN.

106 T. Yang et al.

Every user in the cellular network subscribes to a home network and has
a unique long-term identifier SUPI (Subscription Permanent Identifier) and a
long-term key K. These are stored at both UE and HN.

It is worth noting that the mutual authentication between HN and AF is not
part of the AKMA service. That is, it should be prepared before the execution
of the protocol. According to TS 33.501 [7], mutual authentication based on
client and server certificates shall be performed between the HN and AF using
TLS protocol. In our modeling of the protocol in Sect. 4, we will model their
communication in a private channel.

2.2 5G AKMA Protocol

5G AKMA protocol specifies the functions and behaviors of the AKMA service.
We will begin by introducing the primary authentication step, which is a prereq-
uisite but not a key part of the protocol. Next, we will present the interactions
between UE, HN and AF step by step.

Primary Authentication. Before AKMA service can start, UE and HN must
execute mutual authentication. This primary authentication step is known as 5G
Authentication and Key Agreement (5G AKA [7]). Prior generations of cellular
networks have different AKA protocols: 3G has UMTS AKA protocol [3]; 4G has
LTE AKA protocol [6]; in 5G, besides AKA protocol, there exists EAP-AKA′ [7].
Whether to use 5G AKA or EAP-AKA′ is decided by HN.

As mentioned above, UE has its unique and permanent identifier SUPI and
secret key K, which are also stored in HN. Roughly speaking, when 5G AKA
protocol runs, HN sends a random number to UE. With the random number and
information of the UE, both UE and AUSF in HN side would generate KAUSF,
which will be used for generating subsequent keys during AKMA.

Deriving AKMA Materials. The steps for deriving AKMA materials are
shown in Fig. 2. After UE finishes primary authentication with HN, and before it
initiates communication with an AKMA Application Function (AF), it generates
the AKMA Anchor Key KAKMA and A-KID from KAUSF (Steps 3, 4). The A-KID
(AKMA Key Identifier) consists of A-TID (AKMA Temporary UE Identifier)
and HN-ID (identity of home network).

After receiving KAUSF from UDM, AUSF stores this key and generates the
AKMA Anchor Key KAKMA and A-KID from KAUSF (Steps 3, 4). Then AUSF
sends the AKMA key materials (KAKMA, A-KID) together with the SUPI of UE
to AAnF (Step 5). AUSF does not need to store any AKMA key materials after
sending them to AAnF.

When AAnF receives the AKMA key materials from AUSF, it first deletes
the old materials with the same SUPI (if there exists any). This means, if re-
authentication runs, AAnF only stores the latest materials from AUSF, and each
UE only has one AKMA key material at any time in AAnF. Then AAnF would
give a response back to AUSF (Step 6).

Formal Analysis of 5G AKMA 107

Fig. 2. Deriving AKMA materials (taken from [8])

Deriving AKMA Application Key for a Specific AF. The steps for deriv-
ing AKMA application key are shown in Fig. 3. If UE attempts to connect to AF
without initiating AKMA protocol, AF would reject the request with an AKMA
initiation message. Then UE would re-send the request in accordance to AKMA.

Fig. 3. Deriving AKMA application key for a specific AF (taken from [8])

108 T. Yang et al.

UE initiates the AKMA protocol by sending the A-KID to AF (Step 7).
Since the A-KID contains identity of HN, AF would attempt to establish con-
nection with the HN. The following steps are divided into two cases, depending
on whether AF is located inside HN or not.

If AF is located within HN, it connects with AAnF directly. AF forwards the
A-KID together with its own identity (AF-ID) to the AAnF in the HN (Step 8).
Then AAnF checks the presence of the UE specific KAKMA key corresponding to
the received A-KID. If the material does not exist, AAnF returns an error mes-
sage. Otherwise, according to the AF-ID received and the AKMA key material,
AAnF generates KAF (Step 9). Moreover, AAnF decides an expiration time for
the key. It then sends the key KAF with its expiration time as a response back
to AF (Step 10). If any step in the procedure fails, UE would receive a reject
response and need to re-request with the latest A-KID.

If AF is located outside HN, it connects to NEF rather than AAnF, which
enables and authorizes external AF accessing AKMA service and forwards the
request to AAnF. NEF plays a role of intermediary between AF and AAnF.
Most of the procedure is the same as above.

When AF receives the session key KAF and KAF expiration time, it responds
to UE (Step 11). Since UE has all AKMA key materials, i.e. the latest KAKMA,
it can also generate KAF by itself. Significantly, when the session key expires,
AF ends the session with UE, but UE has a chance to refresh KAF, depending
on the protocol at the interface between AF and UE, i.e. the Ua∗ protocol. If
this protocol supports refresh of KAF, AF may refresh KAF at any time using
the Ua∗ protocol.

There are several Key Derivation Functions (KDFs) involved in the AKMA
protocol. Each KDF accepts a number of input arguments. For generating each
kind of key, some of the arguments are constant, while others depend on identi-
fiers and existing keys. The key KAKMA is derived from SUPI and KAUSF. The
temporary identifier A-TID is also derived from SUPI and KAUSF, but with dif-
ferent settings of constants. The key KAF is derived from identifiers for AF and
KAKMA. See [8] for more details.

3 Tamarin Prover

In this section, we give a brief introduction to the Tamarin verification tool [36].
Tamarin is a powerful tool for symbolic modeling and analysis of security pro-
tocols. It takes as input a security protocol model, specifying the actions taken
by agents running the protocol in different roles (e.g., the protocol initiator,
the responder, and the trusted server), a specification of the adversary, and a
specification of the protocol’s desired properties [36]. With the above inputs,
Tamarin verifies whether the protocol satisfies the properties. Tamarin supports
verification when there are an arbitrary number of sessions. This is reflected in
modeling the state as a multiset of facts, where each new session is modeled by
applying the corresponding initialization rule and adding new (linear) facts to
the state. Hence, the state space is potentially infinite. Tamarin deals with the

Formal Analysis of 5G AKMA 109

infinite state space using a backward-search style algorithm, starting from the
violation of the property to be verified, and checking how the violation can result
from applying the rules. The search does not always terminate as the verifica-
tion problem can be shown to be undecidable. If the search terminates, Tamarin
either proves that the property is satisfied, or finds a trace as counterexample
against the property. The user interface shows the trace as a visual chart, which
can be examined, to analyze for possible mistakes in the constructed model, the
statement of properties, or the protocol itself. Since the verification problem is
undecidable, to partially remedy the situation that does not terminate, Tamarin
also provides an interactive mode where the user can guide the tool through the
verification. We now introduce the usage of Tamarin from two aspects: modeling
and property specification.

3.1 Modeling

In Tamarin, messages are described using terms, which are formed from variables,
constants, and functions. For example, the theory of symmetric encryption is
given by two functions dec and enc. The term enc(m, k) denotes encryption of
message m with key k, and the term dec(m, k) denotes decryption. Moreover, a
set of identities specify the equational theory. For example, symmetric encryption
has the equation dec(enc(m, k), k) = m.

The protocol is specified using an expressive language based on multiset
rewriting rules. These rules construct a labeled transition system whose states
are multisets of facts, which give a symbolic representation of the current state of
the protocol, messages on the network, and adversary knowledge. In Tamarin, the
sort of a variable is expressed using the following prefixes: ~ for fresh variables,
$ for public variables, # for temporal variables, indicating the order of actions.
There are three types of builtin fact symbols: Fr for generating a fresh value, In
for receiving a message from the untrusted network, Out for sending a message to
the untrusted network. As Tamarin assumes Dolev-Yao style attackers [20], the
adversary can intercept any message that is output through Out, and insert any
message as In. The adversary can construct new terms from existing knowledge
(modulo rewriting rules), but cannot break the cryptography. For example, in
the symmetric encryption theory above, the adversary cannot derive m if he
knows only enc(m, k), but will be able to do so if he additionally knows k, by
constructing dec(enc(m, k), k) and rewriting to m. In addition to the three builtin
fact symbols, Tamarin allows defining any number of custom fact symbols. By
default, a fact symbol is linear, meaning each fact with that symbol can be
used only once. A fact symbol can be declared as permanent by prepending an
exclamation sign (!).

Each rule consists of a list of premises, a list of conclusions, and a list of
actions. A rule can be executed if each premise in the rule is present in the
current multiset. The transition corresponding to executing this rule removes all
premises from the multiset (except the permanent facts), and inserts conclusions
into the multiset. The actions of the rule are appended together to form the trace
of execution.

110 T. Yang et al.

We illustrate these concepts with an example, in which agents A and B share
a long-term key k, and A uses this key to send an encrypted message to B.

Example 1. In the protocol, A encrypts m with k and sends it to B.

rule Initial: [Fr(k)] --> [!Ltk($A, k), !Ltk($B, k)]

rule Send_A: [!Ltk($A, k), Fr(m)] --[Send_mes(A, m)]-> [Out(enc(m, k))]

rule Recv_B: [!Ltk($B, k), In(enc(m, k))] --[Recv_mes(B, m)]-> []

In the above code, each line specifies a rule of the protocol. If there are no
actions in the rule, the premises and conclusions are joined by -->. Otherwise,
the list of actions is written in the middle of the arrow. Terms preceded by the
symbol $ are public terms (known to everyone including the adversary).

3.2 Property Specification

Security properties are defined over traces, formulated in terms of many-sorted
first-order logic formulas over messages and timepoints, and checked against
traces of the transition system. Using this logic, we can specify various secrecy
and authentication properties.

Continuing Example 1, we show how to describe various levels of authentica-
tion specifications according to [29]. The following lemma specifies non-injective
agreement between two agents A and B, meaning whenever B completes a run
of the protocol, apparently with A, then A has been previously running the
protocol, apparently with B, and they agree on the message m:
lemma Non_injective_agreement:

"All m #i. Recv_mes(B, m) @ i ==> (EX #j. Send_mes(A, m) @ j & j < i)"

This property holds for the above example. The only way Recv mes(B,m)
can appear in the trace is for rule Recv B to be executed. This can occur only if
a term enc(m,k) is input. Since the adversary does not know k, there is no way
for him to construct the message enc(m,k). So the input can only come from
rule Send A, which creates the action Send mes(A,m) at an earlier timepoint.

However, the following stronger property, injective agreement, does not hold:

lemma Injective_agreement:
"All m #i. Recv_mes(B, m) @ i

==> (Ex #j. Send_mes(A, m) @ j & j < i
& not (Ex #i2. Recv_mes(B, m) @ i2 & not (#i2 = #i)))

This is because the adversary can intercept the message enc(m,k) and resend
it, resulting in another execution of the rule Recv B. Clearly this protocol is too
weak to guard against replay attacks.

4 Modeling and Specifying Properties of AKMA

In this section, we describe the detailed model of AKMA protocol and specify
its properties of interest in Tamarin.

Formal Analysis of 5G AKMA 111

4.1 Threat Model

As we mentioned above, Tamarin assumes Dolev-Yao model for attackers. Adver-
sary obeys the assumption of encryption, i.e., they can decrypt the secret mes-
sages only when having the corresponding key. In addition, we consider more
advanced security properties corresponding to more powerful adversaries or
compromised parties, following the eCK model [27]. In particular, we take into
account the possibility of key reveal and the possibility that some of the entities
have been compromised. In our protocol, the SUPI and K of a compromised UE
could be revealed and the adversary would impersonate its identity to communi-
cate with HN and AF. If HN is compromised, the information in UDM would be
revealed and all information of the subscribers would be leaked, together with
their asymmetric encryption key pairs, which play an important role in other
protocols such as 5G AKA. Following [27], we define the concept of clean session
as follows:

Definition 1 (Clean session). We say a session is clean if neither of the
following conditions holds:

1. One of the parties is an adversary-controlled party. This means in particular
that adversary could reveal all private information known to the party, and
perform all communications and computations on behalf of the compromised
party;

2. Any of the long-term, temporary and session keys is revealed by adversary.

Considering the following lemma:

All x #i. Secret(X) @i ==> not (Ex #j. K(x) @j)

it would be unsatisfiable when the agent is compromised. We call an agent is
Honest(written as Honest(X)) if and only if the agent is not compromised. We
indicate assumptions on honest agents by labeling the corresponding rule that
the required action fact appears in with an Honest(A) action fact, where we
assume A is honest. Intuitively, we explain the meaning of Honest by comparing
the case where Honest is present in the properties and actions, and the case
where it is not. If Honest is not present, then the meaning is that secrecy (or
some other desired property) can be violated when any agent is compromised,
whereas if Honest is present, then the meaning is that the desired property can
be violated only when an agent participating in the protocol is compromised.

Therefore, following standard techniques of modeling using Tamarin [12,33],
we model Honest participants and key reveals as follows. For each long-term,
temporary, and session key that could be revealed, we add a rule which outputs
the key (so it becomes known to the adversary), with an action of the form
Reveal(X,type), where X is the participant who owns the key, and type specifies
the type of the key. Moreover, at steps of the protocol where Running, Commit
and Confirmation actions are inserted (see the protocol rules in Sect. 4.2), we
also insert actions of the form Honest(X), which indicates that X should be

112 T. Yang et al.

an honest participant of the protocol, i.e., should not be compromised. Hence,
Ex X m #r. Reveal(X, m) @ r & Honest(X) @ i means some participant of
the protocol who is running (or finished) at time i has its secret key revealed
(the session is not clean) at some time r. With this proposition, the considered
lemma would be modified:

All x #i. Secret(X) @i ==> not (Ex #j. K(x) @j)

| (Ex X m #r. Reveal(X, m) @r & Honest(X)@i)

Propositions of this form will appear frequently in the properties stated
below, which are usually of the form either security conditions are satisfied,
or the session is not clean.

4.2 Modeling the AKMA Service in Tamarin

In this part, we analyze the functions and behaviors of AKMA service, including
some of the underlying assumptions, then describe the model of the protocol in
Tamarin.

Assumptions. As mentioned in Sect. 2, we make several reasonable assump-
tions about AKMA service:

1. Communication between UE and AF occurs along public channels. Hence it
is subject to eavesdropping, interception and injection by the adversary. The
protocol should remain secure under such attacks.

2. We assume that the communication inside HN is always clean and credible,
as detailed in Sect. 4.1.

3. We only consider the case where AF can communicate directly with AAnF,
without NEF as an intermediary. Hence, we do not include NEF in our model.
Relaxing this assumption requires only changing the communication between
AF and AAnF to taking two steps instead of only one step, which should not
affect the security arguments about the protocol.

4. Mutual authentication between AAnF and AF occurs before running AKMA
using the TLS protocol [7], which provides integrity, replay, and confidential-
ity protection of communication along a private channel. Following previous
work [12,13], we abstract this to a secure channel between HN and AF. In
Tamarin, the channel is modeled with four rules, representing four behaviors
respectively: sending messages into the channels, receiving messages from the
channel, eavesdropping messages from the channel, injecting messages into
the channel (the latter two describe the behavior of the adversary).

5. Primary authentication using AKA is a prerequisite but not a proper part of
AKMA service, and there are already a lot of work analyzing the 5G AKA
protocol. Therefore, we assume the communication between HN and UE to
be secure and private.

Formal Analysis of 5G AKMA 113

Significantly, we make some assumptions about permanent information: the
subscriber credentials, i.e. SUPI, K of the UE, which are shared between UE
and HN, should initially be secret, provided they are not compromised.

We also make some assumptions about compromised entities. In our model,
there are no private and permanent information related to AFs. Therefore, we
only need to consider compromised UE and HN. As we show in Sect. 5.1, the
failure of non-injective agreement property is due to compromised HN. For com-
promised UEs, adversaries would know all secret information like SUPI and K.
Likewise, adversaries could access SUPI and K of all subscribers from compro-
mised HNs.

KDFs in the Protocol. Parameters of each key derivation function have been
specified by 3GPP. These are abstracted for convenience of modeling. We define
the KDF of KAUSF with three parameters: identity of HN, K of UE and the
random number HN sent to UE, while actually the parameters of KAUSF deriva-
tive function contains 〈CK, IK〉 generated from K of UE, identity of HN and
the random number; The A-KID and KAKMA are generated from the same key
KAUSF, and the only difference is the setting of constants, so the parameters are
SUPI of UE, KAUSF and C1 (or C2); The parameters of the KDF of KAF contain
KAKMA and identity of the AF.

Protocol Rules. We list some rules in the protocol and the corresponding
Tamarin code below, in order to illustrate the modeling process.

– We model the process of redoing primary authentication. When AAnF
receives a new AKMA key via fact AUSF KEY, it deletes the old AKMA key
materials by removing AAnF1 and only stores the latest message from AUSF
by adding AAnF. The restriction in the action indicates that the rule would
only trigger when K AKMA new does not equal K AKMA and A TID new does
not equal A TID.

rule Re_pri_auth:

[AAnF1(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA),

AUSF_KEY(~SUPI, K_AUSF, ~id_HN, K_AKMA_new, <A_TID_new, ~id_HN>)]

--[_restrict(NotEqual(K_AKMA_new, K_AKMA)),

_restrict(NotEqual(A_TID_new, A_TID)),

K_AKMA_Re_Register(~id_HN)]->

[AAnF(~id_HN, ~SUPI, <A_TID_new, ~id_HN>, K_AKMA_new)]

– Application Session Establishment Request: After UE and HN generated
AKMA key materials, UE starts a session request to AF with its A-KID (con-
taining the AKMA Temporary UE Identifier A-TID and HN-ID according to
the TS [8]). Fact UE KEY indicates that UE possesses all the information
defined by the parameters. Fact UE KEY1 is produced to indicate that these
information does not disappear after this transition.
For two-party protocols, to analyze the desired authentication properties,
we label the appropriate rules in the responder party B with an action fact

114 T. Yang et al.

Commit(b, a, <‘A’, ‘B’, t>) and in the initiator party A with the corresponding
action fact Running(a, b, <‘A’, ‘B’, t>). Likewise, Confirmation(a, b, <‘A’, ‘B’,
t>) is added into the action fact in appropriate rules. We show the complete
rule UE send request constructed in Tamarin as follows, but due to limited
space, we will not list these actions in the remaining rules of this section.
rule UE_send_request:

[UE_KEY(~SUPI, K_AUSF, K_AKMA, <A_TID, ~id_HN>, K_AF, ~id_AF),

!Sub(~SUPI, ~id_HN),

!AF(~id_AF)]

--[UE_send_request(~SUPI),

Secret(<’A_KID’, <A_TID, ~id_HN>>, ~SUPI),

Running(<A_TID, ~id_HN>, ~id_AF, <’UE’, ’AF’, <’A_KID’, <A_TID, ~id_HN>>>),

Running(~SUPI, ~id_HN, <’UE’, ’HN’, <’A_KID’, <A_TID, ~id_HN>>>),

Running(<A_TID, ~id_HN>, ~id_AF, <’UE’, ’AF’, <’K_AF’, K_AF>>),

Honest(<A_TID, ~id_HN>),

Honest(~id_AF),

Honest(~id_HN)]->

[Out(<A_TID, ~id_HN>),

UE_KEY1(~SUPI, K_AUSF, K_AKMA, <A_TID, ~id_HN>, K_AF, ~id_AF)]

– Naanf AKMA ApplicationKey Get Request: AF forwards the request of UE
with the identity of AF to HN, indicated by msg, via a secure channel cid.

– Naanf AKMA ApplicationKey Get Response: HN generates the session key
KAF and sends it through a message (indicated by session msg) back to AF
as a response.

rule AAnF_Send_K_AF:

[Fr(~exptime),

AAnF_KEY(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA, K_AF, ~id_AF),

!AF(~id_AF),

RcvS(~cid, ~id_AF, ~id_HN, < <A_TID, ~id_HN>, ~id_AF >)]

--[HN_Response(~id_HN, K_AF)]->

[SndS(~cid, ~id_HN, ~id_AF, < K_AF, ~exptime >)]

– Application Session Establishment Response: After receiving the session key
together with other information, AF would start an implicit authentication.
In the specification [8], when AF receives a request from UE with its A-KID,
AF would return a response without any parameters to UE. In order to let UE
and AF confirm the session key, we add a key-confirmation round trip. When
AF obtains the session key and the expiration time from AAnF, it would hash
the session key with “AF” and send the hash value to UE. UE would confirm
the hash value, then hash the session key with “UE” and send the hash value
to AF. The implicit authentication is finished when UE and AF have both
confirmed the hash values. We list the case for UE key confirmation.

rule UE_Key_Confirmation:

[In(f(K_AF, ’AF’)),

UE_KEY1(~SUPI, K_AUSF, K_AKMA, <A_TID, ~id_HN>, K_AF, ~id_AF),

!AF(~id_AF)]

--[UE_Key_Confirmation(~SUPI, K_AF)]->

[Out(f(K_AF, ’UE’))]

Formal Analysis of 5G AKMA 115

4.3 Specifying Properties

Now we introduce the properties of interest and describe them in the Tamarin
prover. First, we introduce Lowe’s taxonomy of authentication properties [29],
which consists of four authentication levels from one party’s view and many
security properties are extended from these four basic properties. Considering
the authentication of the given two parties A and B, from party A’s point of
view, the authentication levels are defined as follows:

1. Aliveness: Whenever A completes a run of the protocol, apparently with B,
then B has previously been running the protocol (not necessarily with A);

2. Weak agreement: Whenever A completes a run of the protocol, apparently
with B, then B has previously been running the protocol, apparently with A
(but not necessary agreeing on the same messages);

3. Non-injective agreement: In addition to the condition for weak agreement,
the parties A and B also agree on the same message;

4. Injective agreement: In addition to the conditions for non-injective agree-
ment, there is a unique matching partner instance for each completed run of
an agent, which effectively prevents replay attacks.

In Technical Specifications and Technical Requirements by 3GPP [1,7,8], we
find that many security requirements are based on these four authentication
properties, as well as confidentiality of some messages. Therefore, we will mainly
characterize security of AKMA service in terms of these properties.

– Weak agreement between UE and AF is defined by the following lemma.

lemma weakagreement_UE_AF:
all-traces

"All A B t #i. Commit(A, B, <’UE’, ’AF’, t>) @i
==> (Ex t2 #j. Running(B, A, t2) @j)

| (Ex X m #r. Reveal(X, m) @r & Honest(X) @i)"

The weak agreement between AF and HN, HN and AF, UE and HN can be
defined similarly.

– Non-injective agreement between UE and AF (agreeing on the target session
key KAF):

lemma Non_injective_agreement:

all-traces

"All A B t #i.

Confirmation(<’AF’, A>, <’UE’, B>, <’UE’, ’AF’, <’K_AF’, t>>) @i

==> (Ex #j. Running(B, A, <’UE’, ’AF’, <’K_AF’, t>>) @j & j < i)

| (Ex D m #l. Reveal(D, m) @l & Honest(D) @i)"

– Confidentiality of A-KID and KAF. We find the leakage of A-KID will result in
lots of security problems and we check its security. Meanwhile, The protocol
must prevent the session key KAF from being revealed, i.e., adversaries will
never know the session key. We list the latter case.

116 T. Yang et al.

lemma secure_K_AF:
all-traces

"All n A #i. Secret(<’K_AF’, n>, A) @i
==> (not (Ex #j. K(n) @j))

| (Ex X data #r. Reveal(X, data) @r & Honest(X) @i)"

Moreover, we describe the executability of the AKMA protocol, i.e., it is
possible to complete the protocol and agree on a session key for the first time
and more than once.

We specified our model and properties through Tamarin1. The total number
of lines of code is approximately 500.

5 Results and Analysis

We verify the properties listed in Sect. 4.3 using Tamarin. Except that the ver-
ification time of non-injective agreement between UE and AF is close to 30 s
and the verification time of confidentiality of KAF is about 15 s, the verification
time of resting properties is less than 6 s. We present the verification results,
and for the properties that fail to hold, analyze the counterexamples returned
by Tamarin. For each counterexample, we put forward some potential attacks
and propose suggestions.

5.1 Verification Results and Analysis

First of all, the executability of the protocol, the weak agreement between AF
and HN, HN and AF, UE and HN, and confidentiality of KAF turn out to be
correct. The protocol does protect the secrecy of the session key. The confiden-
tiality of A-KID turns out to be incorrect, which is obvious because A-KID is
transferred along public channels. Next we mainly discuss the main properties
that do not hold for the service.

Weak Agreement Between UE and AF. For weak agreement between UE and
AF, we construct two lemmas, one with implicit authentication, and one without.
The first one turns out to be correct, but the second fails. For the second case,
Tamarin returns the following counterexample: (1) UE starts a session request
to an AF (denoted by AF1) with A-KID of UE; (2) the leakage of A-KID occurs,
then adversary M connects another AF (denoted by AF2) with this A-KID; (3)
AF2 thinks that UE should have connected AF2 before and asks HN for the
session key KAF, while UE only connects to AF1 and generates KAF1. Therefore
M would not communicate with AF2 and could not complete the protocol. In
conclusion, if there is no implicit authentication to confirm the session key, weak
agreement between UE and AF would not be satisfied, although nothing harmful
would actually happen.

1 The code is publicly available at https://github.com/TengshunYang/5G-AKMA.

https://github.com/TengshunYang/5G-AKMA

Formal Analysis of 5G AKMA 117

We find that the main problem is the leakage of A-KID. In real life, adver-
saries would eavesdrop the A-KID, or a malicious AF would play the role of
adversary and forward the received A-KID to another AF, i.e. linkability between
AFs, which is mentioned as a privacy violation in [23,24]. Adversary could imper-
sonate UE’s identity and start a session with AF. Although the adversary has
no way to obtain the session key except by stealing from the UE, it would result
in waste of trust and materials. Here we describe the situation of linkability
between AFs as follows: (1) UE starts a session with an AF (denoted by AF1),
and completes AKMA service with AF1 successfully; (2) With the possession
of A-KID, AF1 would forward it to another AF (denoted by AF2). Knowing
the A-KID helps AF2 distinguish the UEs, even without knowing the user’s true
identity. AFs in the collusion group would share all the information of users with
the same A-KID with each other, which would result in leakage of users such as
history, hobbies and habits, etc. After combining all the information, the user’s
true identity could be revealed.

Non-injective Agreement. Non-injective agreement property between UE and
AF turns out to be incorrect, indicating that either weak-agreement between
UE and AF does not hold, or UE and AF could not agree on the session key
KAF. Tamarin returns a counterexample: (1) UE starts a session request to the
AF with A-KID1; (2) AF forwards this message to HN and expects a session
key as a response; (3) The interchange between HN and AF occurs. HN sends
back to AF another A-KID2 (actually consisting of A-TID and identifier of
AF) together with identifier of HN. As a result, this A-KID2 plays the role of
KAF, which could be computed by adversaries as a hash value for confirmation.
Therefore, the confirmation in the protocol would execute successfully.

The reason for the above situation comes from the interchange between AF
and HN and the leakage of A-KID. Considering the practical situation, the prob-
ability of HN being compromised is small and the AKMA service is assumed to
trust HNs. Therefore, the interchange between HN and AF is not likely to hap-
pen. We conclude that the counterexample is unreasonable. However, to elimi-
nate the counterexample, we make a simple fix to the rule AAnF send K AF as
follows: when AAnF sends the session key together with expiration time, AAnF
also adds A-KID into the message.

rule AAnF_Send_K_AF:

let

session_msg = < K_AF, ~exptime, <A_TID, ~id_HN> >

msg_In = < <A_TID, ~id_HN>, ~id_AF >

in

[Fr(~exptime),

AAnF_KEY(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA, K_AF, ~id_AF),

!AF(~id_AF),

RcvS(~cid, ~id_AF, ~id_HN, msg_In)]

--[_restrict(Equal(fst(msg_In), <A_TID, ~id_HN>)),

HN_Response(~id_HN, K_AF)]->

[SndS(~cid, ~id_HN, ~id_AF, session_msg)]

118 T. Yang et al.

With this fix, the property is satisfied. Significantly, this fix helps AF distin-
guish between KAF for different users. Actually in the execution of the protocol,
the message would contain the session id, which is a default setting in mobile
network. In a word, we prove the importance and value of the session id.

5.2 Suggestions

According to the results of verification using Tamarin, several of the security
properties that we expect to hold actually fail for the initial model we con-
structed for AKMA. We find that leakage of A-KID plays an important role
in disturbing the protocol, such as, waste of materials and causing linkability
between AFs, which is harmful to users’ privacy. So we suggest adding protec-
tion for the communication of A-KID. For example, pre-construct a channel for
UE and AF with asymmetric encryption, or use TLS protocol. Aiming at resolv-
ing the collusion among AFs, dynamic A-KID or increasing the frequency of
primary authentication are worth considering.

Moreover, in the technical specification [8], the session key KAF could still be
used while UE restarts a primary authentication. We find that the leakage of KAF

would result in the situation where more than one dishonest UEs (impersonating
the original UE) connect to one AF with the leaked KAF, which would use the
service from AF or even steal properties and private information, even though
these dishonest UEs have never started primary authentication. We suggest that
HN could inform the AF when the session key KAF expires ahead of the time
when UE starts a primary authentication. It would reduce the risk of leakage,
at the price of only one message.

6 Conclusion

We have formalized for the first time the 5G AKMA service specified in TS
33.535 [8], using Tamarin verification tool. The formalization includes the for-
mal model of the AKMA service, the security properties that are expected to
hold, the verification, the potential attacks of the AKMA service and some sug-
gestions for fixing the problems. During the modeling, we identify formally the
assumptions for the security properties to hold. For the security properties that
do not hold, we analyze the corresponding counterexamples and construct the
potential attacks, and at the end, suggest some fixes for the model to resolve the
attacks and weaknesses. For future work, we will follow the future development of
the AKMA standard and update the formalization. We will also consider the pri-
vacy requirements of 5G AKMA and their formalization, e.g. the privacy caused
by the linkability between AFs mentioned in this paper deserving consideration.

Acknowledgements. This work is supported in part by the NSFC under grants No.
61625206, 61972385, 62002351 and 61732001, and by the CAS Pioneer Hundred Talents
Program under grant No. Y9RC585036.

Formal Analysis of 5G AKMA 119

References

1. 3GPP: TR33.835 v16.1.0 Study on authentication and key management for appli-
cations based on 3GPP credential in 5G. https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3483

2. 3GPP: TR33.902 v4.0.0 3g Security; Formal Analysis of the 3G Authentica-
tion Protocol. https://portal.3gpp.org/desktopmodules/Specifications/Specificat
ionDetails.aspx?specificationId=2337

3. 3GPP: TS33.102 v16.0.0 3G Security; Security architecture. https://portal.3g
pp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=
2262

4. 3GPP: TS33.163 v16.2.0 Battery Efficient Security for very low throughput
Machine Type Communication (MTC) devices (BEST). https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3128

5. 3GPP: TS33.220 v17.1.0 Generic Authentication Architecture (GAA); Generic
Bootstrapping Architecture (GBA). https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=2280

6. 3GPP: TS33.401 v16.3.0 3GPP System Architecture Evolution (SAE); Security
architecture. https://portal.3gpp.org/desktopmodules/Specifications/Specificatio
nDetails.aspx?specificationId=2296

7. 3GPP: TS33.501 v17.1.0 Security architecture and procedures for 5G system
(Release 17). https://portal.3gpp.org/desktopmodules/Specifications/Specificatio
nDetails.aspx?specificationId=3169

8. 3GPP: TS33.535 v17.1.0 Authentication and Key Management for Applica-
tions (AKMA) based on 3GPP credentials in the 5G System (5GS). https://port
al.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specification
Id=3690

9. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new
names, and secure communication. J. ACM 65(1), 1:1–1:41 (2018)

10. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

11. Basin, D.A., Cremers, C., Kim, T.H., Perrig, A., Sasse, R., Szalachowski, P.:
Design, analysis, and implementation of ARPKI: an attack-resilient public-key
infrastructure. IEEE Trans. Dependable Secur. Comput. 15(3), 393–408 (2018)

12. Basin, D.A., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: A
formal analysis of 5G authentication. In: Lie, D., Mannan, M., Backes, M., Wang,
X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018,
pp. 1383–1396. ACM (2018)

13. Basin, D.A., Radomirovic, S., Schmid, L.: Modeling human errors in security pro-
tocols. In: IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lis-
bon, Portugal, 27 June–1 July 2016, pp. 325–340. IEEE Computer Society (2016)

14. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

15. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001), Cape
Breton, Nova Scotia, Canada, 11–13 June 2001, pp. 82–96. IEEE Computer Society
(2001)

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3483
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3483
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2337
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2337
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2262
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3128
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3128
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2280
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2280
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2296
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2296
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3690
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3690
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3690
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/3-540-48329-2_21

120 T. Yang et al.

16. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

17. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

18. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

19. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November
2017, pp. 1773–1788. ACM (2017)

20. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983)

21. Donovan, B., Norris, P., Lowe, G.: Analyzing a library of security protocols using
Casper and FDR. In: In Workshop on Formal Methods and Security Protocols
(1999)

22. Escobar, S., Meadows, C.A., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theor. Comput. Sci.
367(1–2), 162–202 (2006)

23. Khan, M., Ginzboorg, P., Niemi, V.: Privacy preserving AKMA in 5G. In:
Mehrnezhad, M., van der Merwe, T., Hao, F. (eds.) Proceedings of the 5th
ACM Workshop on Security Standardisation Research Workshop, London, UK,
11 November 2019, pp. 45–56. ACM (2019)

24. Khan, M., Ginzboorg, P., Niemi, V.: AKMA: Delegated Authentication System of
5G (2021). https://doi.org/10.13140/RG.2.2.28186.36804

25. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

26. Künnemann, R., Steel, G.: YubiSecure? Formal security analysis results for the
Yubikey and YubiHSM. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM
2012. LNCS, vol. 7783, pp. 257–272. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38004-4 17

27. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

28. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994)

29. Lowe, G.: A hierarchy of authentication specification. In: 10th Computer Security
Foundations Workshop (CSFW 1997), Rockport, Massachusetts, USA, 10–12 June
1997, pp. 31–44 (1997)

30. Meier, S.: Advancing automated security protocol verification. Ph.D. thesis, ETH
(2013)

31. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.13140/RG.2.2.28186.36804
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Formal Analysis of 5G AKMA 121

32. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authen-
ticated key agreement. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS,
vol. 6280, pp. 219–234. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15317-4 15

33. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: 25th IEEE Computer
Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, 25–27 June
2012, pp. 78–94 (2012)

34. Schneider, S., Holloway, R.: Using CSP for protocol analysis: the Needham-
Schroeder public-key protocol. Technical report (1996)

35. Schneider, S.A.: Security properties and CSP. In: 1996 IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, USA, 6–8 May 1996, pp. 174–187. IEEE Computer
Society (1996)

36. Tamarin Team: Tamarin-Prover Manual: Security Protocol Analysis in the Sym-
bolic Model. https://tamarin-prover.github.io/manual/. Accessed 7 Jan 2021

https://doi.org/10.1007/978-3-642-15317-4_15
https://doi.org/10.1007/978-3-642-15317-4_15
https://tamarin-prover.github.io/manual/

	Formal Analysis of 5G AKMA
	1 Introduction
	2 AKMA in 5G System
	2.1 General Architecture
	2.2 5G AKMA Protocol

	3 Tamarin Prover
	3.1 Modeling
	3.2 Property Specification

	4 Modeling and Specifying Properties of AKMA
	4.1 Threat Model
	4.2 Modeling the AKMA Service in Tamarin
	4.3 Specifying Properties

	5 Results and Analysis
	5.1 Verification Results and Analysis
	5.2 Suggestions

	6 Conclusion
	References

