
Decidability of the initial-state opacity of
real-time automata

Lingtai Wang1,2 and Naijun Zhan1,2

1 State Key Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences,
Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. In this paper, we investigate the initial-state opacity of real-
time automata. A system is called initial-state opaque if an intruder with
partial observability is unable to determine whether or not the execution
starts from a secret state. In order to prove that the initial-state opacity
problem is decidable, we first calculate the lapse of time between each
pair of observable events. Two real-time automata are constructed which
accept the projection of languages from secret initial states and non-
secret ones, respectively. Then, the two real-time automata are further
transformed into trace-equivalent finite-state automata. Subsequently,
we adapt complement and product on the finite-state automata, and
check accepting language of the finally-obtained automaton. The system
is initial-state opaque if it accepts nothing or only empty trace, and not
initial-state opaque otherwise.

Keywords: Real-time automata, initial-state opacity, decidability, trace-equivalence

1 Introduction

In the wake of development of network communications and online services,
security and privacy have become more significant and thus received more and
more attention. Opacity is an information flow property aiming at keeping the
“secret” of a system opaque to its outsider (called the intruder). There are two
types of “secrets”: subsets of traces and subsets of states. This divides opacity
properties into language-based opacity and state-based opacity. The intruder is
believed to know the structure of the system, but only has partial observability
over it. Once the intruder has observed the execution, he can get an estimation
whether the execution belongs to the secret. This paper focuses on initial-state
opacity, which is state-based, that is, the secret S is a set of states. The system is
initial-state opaque if the intruder can never determine whether it starts from a
secret state or a non-secret one no matter what he has observed. Examples from
tracking problems in sensor networks have been used to motivate initial-state
opacity in [1], where the sensor network only has partial observation.

Systems being investigated are often modelled as discrete event systems
(DES), for example, Petri nets [2, 3], labeled transition systems (LTS) [4] and

finite-state automata (FSA) [1,5–7]. Probabilistic models are also taken into con-
sideration, such as [8–11]. However, in [12], the notion of opacity was extended to
dense-time systems, with the result that the (language-based) opacity problem
is already undecidable for a very restrictive class of event-recording automata
(ERA).

As time is an important attack vector against secure systems, we extend the
notion of initial-state opacity to real-time automata [13]. Real-time automata is a
class of timed automata with a single clock which is reset at each transition, also
regarded as finite automata with time information for each transition. Classical
results for finite automata can thus be extended to real-time automata such as
Kleene’s theorem, Pumping Lemma and the closure under complementation [13].
Besides, as pointed out in [13], RTA is not comparable with ERA.

Our analysis mainly focuses on calculating time taken by unobservable tran-
sitions and then constructing two real-time automata accepting the projection
of languages from secret initial states and non-secret ones respectively. A rela-
tionship between languages of real-time automata and their corresponding finite-
state automata, called trace-equivalence, is introduced, so that the initial-opacity
problem is transformed into the problem of language inclusion of finite-state au-
tomata. Thus, the initial-state opacity problem is proved to be decidable.

The remainder of this paper is organized as follows. In Section 2, we recall pre-
liminaries for finite-state automata, regular expressions, real-time automata, and
the initial-state opacity problem of real-time automata. The correspondence of
real-time automata and finite-state automata is introduced in Section 3. Section
4 provides a procedure to determine whether a real-time automaton is initial-
state opaque w.r.t. a given set of secret states and an observable alphabet, and
Section 5 concludes this paper.

2 Preliminaries

We use R≥0, Q≥0, and N to denote the set of nonnegative real numbers, non-
negative rational numbers, and natural numbers, respectively.

Let E, a set of events, be the alphabet. A word or string over E is a finite
sequence w = a1a2 . . . an, where ai ∈ E for i = 1, 2, . . . , n. |w| = n is the length
of w. ε is the empty word, whose length |ε| = 0. E∗ is the set of all the finite
words over E including ε. L is a language over E if L ⊆ E∗.

Commonly used operations on languages include union, intersection, and
difference as in set theory, as well as concatenation, Kleene closure and projection
which are defined below:

Concatenation: Let L1, L2 ⊆ E∗, the concatenation L1L2 = {s1s2 | s1 ∈
L1 ∧ s2 ∈ L2}.

Kleene closure: Let L ⊆ E∗, and L0 = {ε}, L1 = L, Lk = (Lk−1)L for k > 1,
then the Kleene closure of L is L∗ =

∪
k∈N Lk = {ε} ∪ L ∪ LL ∪ · · · .

Projection: Given E and a subset Eo ⊆ E, we can define a projection PEo :
E∗ → E∗

o , where

PEo(ε) = ε

PEo(as) =

{
aPEo(s), if a ∈ Eo

PEo(s), otherwise
, for a ∈ E and s ∈ E∗.

Given any B ⊆ E∗ and C ⊆ E∗
o , the image of B under PEo is PEo(B) = {PEo(s) |

s ∈ B} ⊆ E∗
o and the inverse image of C under PEo is P−1

Eo
(C) = {s ∈ E∗ |

PEo(s) ∈ C} ⊆ E∗.
Consider the alphabet Σ × R≥0. A timed word over Σ is a finite word over

the alphabet Σ × R≥0 with the form of wt = (a1, t1)(a2, t2) . . . (an, tn), where
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, meaning that ai occurs at ti successively for 1 ≤ i ≤ n.
TW∗(Σ) denotes the set of all timed words overΣ. A subset of TW∗(Σ) is a timed
language. IfΣo ⊆ Σ is the observable alphabet, PΣo,t denotes the projection from
TW∗(Σ) into TW∗(Σo). For example, if wt = (a, 2)(b, 3)(a, 5)(b, 8), P{b},t(wt) =
(b, 3)(b, 8) and P{a},t(wt) = (a, 2)(a, 5).

2.1 Finite-state automata and regular expressions

Automata are a kind of well-known model to study discrete transition systems
and their behaviours. Finite-state automata (FAs) are automata with finitely
many states. They can be deterministic or non-deterministic.

Definition 1. – A deterministic finite-state automaton (DFA) is a 5-tuple
Ad = (S,Σ, δ, s0, F), where
• S is a finite set of states;
• Σ is a finite alphabet;
• δ : S ×Σ → S is the transition relation, a partial function on S ×Σ;
• s0 ∈ S is the initial state; and
• F ⊆ S is the set of accepting states.

– A non-deterministic finite-state automaton (NFA) is a 5-tuple An = (S,Σ∪
{ε}, δ, Init, F), where
• S is a finite set of states;
• Σ is a finite alphabet;
• δ : S × (Σ ∪ {ε}) → 2S is the transition function;
• Init ⊆ S is the set of initial states; and
• F ⊆ S is the set of accepting states.

Obviously, a DFA can be viewed as a special kind of NFA, where there is
only one initial state, one or zero state in each δ(s, a), and no ε-transition.

For an NFA A, if s2 ∈ δ(s1, σ), (s1, σ, s2) is called a σ-transition, written as

s1
σ−→ s2. A run of A is either a single state s0, where s0 ∈ Init, or a sequence

s0
σ1−→ s1

σ2−→ · · · sn−1
σn−−→ sn, where n > 0, s0 ∈ Init, σi ∈ Σ ∪ {ε} and

si ∈ δ(si−1, σi−1) for 1 ≤ i ≤ n. The trace of the run s0 is ε, and the trace of the
sequence from s0 to sn is the finite word obtained by projecting σ1σ2 . . . σn onto

Σ∗, that is, the string a1a2 . . . am obtained by removing each ε from σ1σ2 . . . σn;
hence the length of the trace is m, less than or equal to n. An accepting run is
a run ending in a state sn ∈ F . The language generated by A, denoted by L(A)
is the set of traces of runs of A; the language accepted by A, denoted by Lf (A)
is the set of traces of accepting runs. A language is said to be regular if it can
be accepted by a finite-state automaton.

Two automata are called language-equivalent, or equivalent for short, if they
generate and accept the same languages. An NFA An = (S,Σ, δ, Init, F) can
be transformed into an equivalent DFA Ad = (S′, Σ, δ′, Init′, F ′) defined below.
Let εR(s, ε) denote the set of states which are reachable from state s via no
transitions or only ε-transitions, and εR(s, a) the set of states which are reachable
from state s via one a-transition together with ε-transitions before and after it.
Then in Ad, S

′ = 2S ; δ′(S1, a) =
∪

s1∈S1
εR(s1, a); Init

′ = εR(s0, ε); F
′ = {S1 |

S1 ∩ F ̸= ∅}.
Regular expressions are another way to describe regular languages.

Definition 2. Regular expressions over alphabet Σ can be defined recursively as
follows:

1. (Base Clause): ∅, ε, a ∈ Σ are regular expressions, where ∅ denotes the
empty set, ε denotes the set {ε}, and a denotes the set {a} for a ∈ E.

2. (Inductive Clause): If r, r1, r2 are regular expressions, then r1 ·r2, r1+r2, r
∗

are regular expressions. r1 ·r2 denotes the concatenation of language denoted
by r1 and r2, r1+ r2 denotes the union of the two languages, and r∗ denotes
the Kleene closure of the language denotes by r.

3. (External Clause): Regular expressions can only be constructed by applying
1 and 2.

Theorem 1 (Kleene’s Theorem). Any regular language is accepted by a finite
automaton; any language accepted by a finite automaton is regular.

Complement and product operations on DFAs Consider a DFA A =
(S,Σ, δ, s0, F). The complement automaton Acomp which accepts Lf (A)c = Σ∗\
Lf (A) can be constructed as follows:

1. Augment S with a new state snew /∈ S;
2. Augment δ such that it becomes a total function, denoted as δcomp. For all

(s, a) ∈ S × Σ, if δ(s, a) is defined, let δcomp(s, a) = δ(s, a); if δ(s, a) is not
defined, let δcomp(s, a) = snew. Also δ(snew, a) = snew for each a ∈ Σ. After
that Σ∗ becomes the language generated, while the language accepted keeps
unchanged;

3. Let the accepting set of states be (S \ F) ∪ {snew}.

To sum up, Acomp = (S ∪ {snew}, Σ, δcomp, s0, S \ F ∪ {snew}).
Given two DFAs A1 = (S1, Σ1, δ1, s0,1, F1) and A2 = (S2, Σ2, δ2, s0,2, F2)

with S1∩S2 = ∅, the product ofA1 andA2 isAp = A1×A2 = (Sp, Σp, δp, sp0, F
p),

defined as follows: Sp = S1 × S2; Σ
p = Σ1 ∩ Σ2; δ

p((s1, s2), a) = (s′1, s
′
2) if

δ(s1, a) = s′1 and δ(s2, a) = s′2, and is not defined otherwise; sp0 = (s0,1, s0,2);
F p = F1 × F2.

Then Lf (A1 ×A2) = Lf (A1) ∩ Lf (A2).

2.2 Real-time automata

Real-time automata are very similar to classical automata despite their taking
time into account as well. We can easily get a real-time automaton by attaching
time information to each transition of a given automaton.

Definition 3. A real-time automaton is a 6-tuple A = (S,Σ,∆, Init, F, µ),
where

- S is a finite set of states;
- Σ is a finite alphabet;
- ∆ ⊆ S ×Σ × S is the transition relation;
- Init ⊆ S is the set of initial states;
- F ⊆ S is the set of accepting states; and
- µ : ∆ → 2R≥0 \ {∅} is the time labelling function, whose range, µ(∆), is
usually a set of intervals whose endpoints are in N∪{+∞} or Q≥0∪{+∞}.

A transition (s1, a, s2) ∈ ∆ starts in s1, ends in s2 and is labelled by a.
Transitions of the form (s1, a, s2) are called a-transitions. ∆a denotes the set
of all a-transitions. Prea and Posta denotes the set of states from which and
to which are a-transitions respectively, i.e., Prea = {s1 | ∃(s1, a, s2) ∈ ∆} and
Posta = {s2 | ∃(s1, a, s2) ∈ ∆}. A run of A is either a single initial state s0 from

Init or a finite sequence ρ = s0
a1−→
λ1

s1
a2−→
λ2

· · · sn−1
an−−→
λn

sn, where n > 0, s0 ∈ Init,

(si−1, ai, si) ∈ ∆, and λi ∈ µ(si−1, ai, si) for i ≥ 1. The trace of a run ρ, denoted
by trace(ρ), is defined as follows: if ρ = s0, trace(ρ) = εt, where subscript “t” is

used to emphasize the time factor; if ρ is of the form s0
a1−→
λ1

s1
a2−→
λ2

. . . sn−1
an−−→
λn

sn, trace(ρ) is the timed word (a1, t1)(a2, t2) . . . (an, tn) where ti =
∑i

j=1 λj , for
i = 1, . . . , n. Let Tr(s0) be the set of traces of runs from state s0, and Tr(S0)
be the set of traces of runs from any state s0 ∈ S0, i.e., Tr(S0) =

∪
s0∈S0

Tr(s0).
L(A) = Tr(Init) =

∪
s0∈Init Tr(s0), is called the timed language generated by A,

and Lf (A) = {trace(ρ) | ρ starts from s0 ∈ S0 and ends in sn ∈ F} is the set of
traces accepted by A.

Example 1. In Fig.1, transitions are depicted as arrows, with their labels from
the alphabet {a, b} above and time-labels below. For the real-time automaton
A1, Tr(s0) = {εt} ∪ {(a, ta) | ta ∈ [1, 2]} ∪ {(a, ta)(b, tb) | ta ∈ [1, 2], tb ∈ [2, 3]},
and Tr(s3) = {εt} ∪ {(b, tb) | tb ∈ [3, 4]}.

A1 generates L(A1) = {εt} ∪ {(a, ta) | ta ∈ [1, 2]} ∪ {(a, ta)(b, tb) | ta ∈
[1, 2], tb ∈ [2, 3]} ∪ {(b, tb) | tb ∈ [3, 4]} and accepts Lf (A1) = {(a, ta)(b, tb) | ta ∈
[1, 2], tb ∈ [2, 3]} ∪ {(b, tb) | tb ∈ [3, 4]}. ⊓⊔

..s0.. s1.

s2

.

s3

.. a.
[1, 2]

.

b

.

[2, 3]

.

b

.

[3, 4]

Fig. 1: A real-time automaton A1

2.3 Initial-state opacity of real-time automata

Given a real-time automaton A with an alphabet Σ and an observable alphabet
Σo ⊆ Σ, intruders can only observe timed words in PΣo,t(L(A)). Suppose we
have a set of secret states Ssecret. In this case, can intruders detect whether the
current run of the system starts from the secret set Ssecret according to what they
have observed? This is considered in the initial-state opacity problem. Formally,

Definition 4. Given a real-time automaton A = (S,Σ,∆, Init, F, µ), an observ-
able alphabet Σo ⊆ Σ and a secret set of states Ssecret ⊆ S, A is initial-state
opaque w.r.t. Ssecret and Σo iff for all s0 ∈ Init ∩ Ssecret and all w ∈ Tr(s0),
∃s′0 ∈ Init \ Ssecret, ∃w′ ∈ Tr(s′0) s.t.

PΣo,t(w) = PΣo,t(w
′),

or equivalently,

PΣo,t(Tr(Init ∩ Ssecret))) ⊆ PΣo,t(Tr(Init \ Ssecret)).

The initial-state opacity problem of real-time automata is thus expressed as
follows: Is a real-time automaton A = (S,Σ,∆, Init, F, µ) initial-state opaque
w.r.t. some given secret set Ssecret ⊆ S and Σo ⊆ Σ?

In the following, we would like to use Ls and Lns instead of PΣo,t(Tr(Init ∩
Ssecret))) and PΣo,t(Tr(Init \ Ssecret)) respectively for sake of convenience.

Note that in the initial-state opacity problem, the set of accepting states of
the real-time automaton A does not play any role. Therefore, without loss of
generality, each state of the real-time automaton under study can be regarded
as an accepting state such that Lf (A) = L(A).

Example 2 (Ctd.). We still consider the automata A1 shown in Fig.1. Let Σo =

{b} and Ssecret = {s0}. If PΣo,t(wt) = (b, 3.5), possible runs include ρ1 = s0
a−→
1

s1
b−−→
2.5

s2 and ρ2 = s3
b−−→
3.5

s2. In this case the intruders are incapable of

ascertaining the secret. If PΣo,t(wt) = (b, 5), we can easily know that wt =

(a, 2)(b, 5) and the unique run is ρ = s0
a−→
2

s1
b−→
3

s2. Thus, the secret is exposed

in this case. From the above, A1 is not initial-state opaque w.r.t. {s0} and {b}.

However, A1 is initial-state opaque w.r.t. {s3} and {b}. This is because there
always exists a run s0

a−→
1

s1
b−−→

t−1
s2 with the same projection as s3

b−→
t

s2 with

3 ≤ t ≤ 4.
From the perspective of set theory, P{b},t(Tr(s3)) = {(b, t) | t ∈ [3, 4]} $

P{b},t(Tr(s0)) = {(b, t) | t ∈ [3, 5]}, so A1 is not initial-state opaque w.r.t. {s0}
and {b}, and is initial-state opaque w.r.t. {s3} and {b}. ⊓⊔

If there exist two real-time automata which accept the two languages Ls and
Lns, respectively, then we can solve the initial-state opacity problem by checking
whether the accepting language of the former is included in that of the latter.
This checking can be achieved by utilizing trace-equivalence relation given in
the next section. The basic idea is to translate the two real-time automata into
their trace-equivalent finite-state automata, and construct another finite-state
automaton Ap

dfa according to the two resulting finite-state automata. The fact

that Ap
dfa accepts nothing or ε implies that Ls ⊆ Lns, i.e., the original real-time

automaton is initial-state opaque.

3 Correspondence between NFAs and real-time automata

As real-time automata and non-deterministic automata have very similar struc-
tures, a real-time automaton with alphabet Σ can be translated into an NFA
with alphabet Σ × (2R≥0 \ {∅}).

Given a real-time automaton A = (S,Σ,∆, Init, F, µ), let µa denote the set of
time information of all a-transitions, that is, µa = {µ(s1, a, s2) | (s1, a, s2) ∈ ∆},
which is finite since ∆ is finite. Each element of µa is a non-empty subset Λa

of R≥0, such as a point, an interval, or a more complicated set. For each µa,
a partition of R≥0 (i.e., a set of R≥0’s non-empty subsets satisfying each real
number x ≥ 0 is in one and only one of those subsets) should be constructed
such that any Λa ∈ µa is the union of some elements from the partition. Here
we define a function I to compute a partition of R≥0 based on a finite C ∈
2R≥0 \ {∅}. I is defined by induction: if |C| = 1, say µa = {Λ}, the partition is
I(C) = {Λ,R≥0 \ Λ} \ {∅}; if |C| = k with I(C) = {I1, . . . , ImC

} and Λ /∈ C,
I(C ∪ {Λ}) = {I1 ∩ Λ, I1 \ Λ, . . . , ImC

∩ Λ, ImC
\ Λ, } \ {∅}. Additionally, it can

be easily proved from the definition that |I(C)| is no more than 2|C|. So we can
obtain the partition I(µa) satisfying the aforementioned constraint. For instance,
if µa = {[2, 5], [3, 6]}, we can construct {[3, 5], [2, 3), (5, 6], [0, 2)∪ [6,+∞)} as one
partition based on Λa. Then a non-deterministic finite-state automaton Anfa =
(Snfa, Σnfa, δnfa, Initnfa, Fnfa) can be constructed.

Definition 5. Given A = (S,Σ,∆, Init, F, µ), the corresponding NFA Anfa =
(Snfa, Σnfa, δnfa, Initnfa, Fnfa) can be constructed as follows.

- Snfa = S;
- Σnfa =

∪
a∈Σ

(
{a} × I(µa)

)
;

- δnfa(s1, (a, I)) = {s2 | (s1, a, s2) ∈ ∆ ∧ I ⊆ I ′, for some I ′ ∈ µ(s1, a, s2)};

- Initnfa = Init;

- Fnfa = F .

Example 3. The real-time automaton in Fig.1 can be translated into the finite-
state automaton in Fig.2. Note that I(µa) = {[1, 2], [0, 1)∪(2,+∞)} and I(µb) =
{[3, 3], [2, 3), (3, 4], [0, 2) ∪ (4,+∞)} and that the alphabet of the finite-state au-
tomaton is {a} × I(µa) ∪ {b} × I(µb). ⊓⊔

..s0.. s1.

s2

.

s3

..
(a, [1, 2])

. (b, [2, 3)).

(b, [3, 3])

.

(b, (3, 4])

.

(b, [3, 3])

Fig. 2: A2, the corresponding FA of A1

Nevertheless, what needs special attention is that languages generated from
the two kinds of automata are different. Obviously, the language generated by
a real-time automaton A is a subset of TW∗(Σ). By contrast, the language
generated by the corresponding finite-state automaton Anfa is a subset of (Σ ×
(2R≥0 \ {∅}))∗. The relationship between L(A) and L(Anfa) can be described
using the trace-equivalence relation defined below.

Definition 6. Given L1 a timed language over Σ and L2 a language over Σ ×
(2R≥0 \ {∅}), L2 is said to be trace-equivalent to L1, denoted by L2 ≈tr L1, if

0. εt ∈ L1 iff ε ∈ L2;

1. If any timed word wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ L1, then there exists
some w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ L2 such that t1 ∈ Λ1 and (ti −
ti−1) ∈ Λi for 1 < i ≤ n;

2. If w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ L2, then all timed words of the form
wt = (a1, t1)(a2, t2) . . . (an, tn) with t1 ∈ Λ1 and (ti−ti−1) ∈ Λi for 1 < i ≤ n
are in L1.

Lemma 1. For a given real-time automaton A = (S,Σ,∆, Init, F, µ) and its
corresponding NFA Anfa = (Snfa, Σnfa, δnfa, Initnfa, Fnfa) as defined in Def.5,
Lf (Anfa) ≈tr Lf (A).

Proof. Lf (A) = ∅ iff Lf (Anfa) = ∅. This is because Lf (A) = ∅ iff no accept-
ing states are reachable in A, iff no accepting states are reachable in Anfa, iff
Lf (Anfa) = ∅. So, in this case, trivially Lf (Anfa) ≈tr Lf (A).

If εt ∈ Lf (A), a possible run is s0, where s0 ∈ Init∩F . Thus, s0 ∈ Initnfa∩Fnfa

according to Def.5. Hence, Anfa has a run s0 whose trace is ε, i.e., ε ∈ Lf (Anfa).
On the contrary, suppose ε ∈ Lf (Anfa), which implies there exists an initial
state s0 ∈ Initnfa ∩Fnfa. It follows that s0 ∈ Init∩F according to Def.5. Hence,
εt ∈ Lf (A).

Suppose wt = (a1, t1) . . . (an, tn) ∈ Lf (A), where n ≥ 1, then there exist-

s a run of A, say ρ = s0
a1−→
λ1

s1
a2−→
λ2

· · · sn−1
an−−→
λn

sn such that s0 ∈ Init,

sn ∈ F , (si−1, ai, si) ∈ ∆, and λi ∈ µ(si−1, ai, si) for i ≥ 1. So there ex-

ists a run of Anfa, that is, ρ′ = s0
(a1,Λ1)−−−−−→ s1

(a2,Λ2)−−−−−→ · · · sn−1
(an,Λn)−−−−−→ sn,

where s0 ∈ Initnfa and sn ∈ Fnfa, according to Def.5. Thus, there exists a w =
(a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ Lf (Anfa) such that t1 ∈ Λ1 and (ti − ti−1) ∈ Λi

for 1 < i ≤ n, where Λi ⊆ Ii, for some Ii ∈ µ(si−1, ai, si) and 1 ≤ i ≤ n.
Given a word w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ Lf (Anfa), there must be a

run of the form s0
(a1,Λ1)−−−−−→ s1

(a2,Λ2)−−−−−→ · · · sn−1
(an,Λn)−−−−−→ sn, according to Def.5.

Hence (si−1, ai, si) ∈ ∆ with Λi ⊆ Ii, for some Ii ∈ µ(si−1, ai, si) and 1 ≤ i ≤ n.

It follows that there exists a run s0
a1−→
λ1

s1
a2−→
λ2

· · · sn−1
an−−→
λn

sn and a timed word

wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ Lf (A) such that t1 ∈ I1 and (ti − ti−1) ∈ Ii for
1 < i ≤ n. ⊓⊔

In order to consider complement and intersection over trace-equivalent lan-
guages, we should put some restrictions over these languages overΣ×(2R≥0\{∅}),
for example, the partitioned language defined below.

Definition 7. A language L over an alphabet E ⊆ Σ × (2R≥0 \ {∅}), where Σ
is finite, is called to be partitioned, if for any a ∈ Σ, Pa = {Ia : (a, Ia) ∈ E} is
a partition of R≥0.

The accepting language of the NFA defined in Def.5 is partitioned, since
I(µa) is a partition of R≥0 for each a ∈ Σ.

Lemma 2. If L1 is a timed language over Σ, L2 is a partitioned language over
E =

∪
a∈Σ

(
{a} × Pa

)
where each Pa is a partition of R≥0, and L2 ≈tr L1 as

defined in Def.6, then it also holds that (E∗ \ L2) ≈tr (TW
∗(Σ) \ L1).

Proof. εt ∈ Σ \ L1 ⇔ εt /∈ L1 ⇔ ε /∈ L2 ⇔ ε ∈ E∗ \ L2.
Suppose wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ TW∗(Σ) \ L1, then there must be

Iai ∋ ti − ti−1 for each i (t0 is set to 0 here). Thus, it follows (a1, Ia1) (a2, Ia2)
. . . (an, Ian) ∈ E∗. (a1, Ia1)(a2, Ia2) . . . (an, Ian) is not in L2, otherwise wt would
be in L1. So (a1, Ia1)(a2, Ia2) . . . (an, Ian) is in E∗ \ L2.

Suppose w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ E∗ \ L2, let wt = (a1, t1) (a2, t2)
. . . (an, tn) be any timed word with t1 ∈ Λ1 and ti − ti−1 ∈ Λi for i = 2, . . . , n.
It holds that wt /∈ L1, otherwise there would exist some w′ = (a1, Λ

′
1) (a2, Λ

′
2)

. . . (an, Λ
′
n) such that t1 ∈ Λ′

1 and ti − ti−1 ∈ Λ′
i for 1 < i ≤ n, and therefore

Λi = Λ′
i and w = w′, which is a contradiction. So wt is in TW∗(Σ) \ L1. ⊓⊔

Lemma 3. If L1, L3 are timed languages over Σ, L2, L4 are partitioned lan-
guages over the same alphabet E =

∪
a∈Σ

(
{a} × Pa) where Pa is a partition

of R≥0, and L2 ≈tr L1 and L4 ≈tr L3 as defined in Def.6, it also holds that
(L2 ∩ L4) ≈tr (L1 ∩ L3).

Proof. εt ∈ L1 ∩ L3 ⇔ εt ∈ L1 ∧ εt ∈ L3 ⇔ ε ∈ L2 ∧ ε ∈ L4 ⇔ ε ∈ L2 ∩ L4.
If wt = (a1, t1)(a2, t2) . . . (an, tn) ∈ L1 ∩ L3, then wt ∈ L1 ∧ wt ∈ L3. There

exists a w2 = (a1, Λ
2
1)(a2, Λ

2
2) . . . (an, Λ

2
n) ∈ L2 such that ti−ti−1 ∈ Λ2

i for each i
(here t0 = 0), and there exists a w4 = (a1, Λ

4
1)(a2, Λ

4
2) . . . (an, Λ

4
n) ∈ L4 such that

ti − ti−1 ∈ Λ4
i for each i (also t0 = 0). Since L2 and L4 are partitioned language

over a common alphabet E, Λ2
i and Λ4

i are both in the partition Pai . Λ
2
i ∩Λ4

i ̸= ∅
means that Λ2

i = Λ4
i for i = 1, . . . , n and w2 = w4. So w2 ∈ L2 ∧w2 ∈ L4. Then

w2 ∈ L2 ∩ L4.
If w = (a1, Λ1)(a2, Λ2) . . . (an, Λn) ∈ L2 ∩ L4, w ∈ L2 and w ∈ L4. For

any wt = (a1, t1)(a2, t2) . . . (an, tn) where ti − ti−1 ∈ Λi (t0 = 0), wt ∈ L1 and
wt ∈ L3, so wt ∈ L1 ∩ L3. ⊓⊔

4 Decidability

Time plays an important role in real-time automata, since all transitions take
some time to execute no matter whether their labels are observable. When un-
observable labels are deleted from a trace, their elapsed time cannot vanish. In
an observed timed word vt = (a1, t1)(a2, t2) . . . (an, tn), each ai-transition takes
some time less or equal to ti − ti−1 (t0 = 0) due to possible unobservable transi-
tions. For example, in Fig.1, if P{b},t(wt) = (b, 4.5), there must be an a occurring
before b in wt, that is, wt = (a, ta)(b, 4.5) with 1.5 ≤ ta ≤ 2.

If there exists a real-time automaton accepting the observable language gen-
erated by the original one, then we can translate this real-time automaton into
its trace-equivalent finite-state automata and then into an equivalent determinis-
tic automaton. Thus, two DFAs can be constructed As

dfa and Ans
dfa, which accept

languages that are trace-equivalent to Ls and Lns respectively as defined in Sect.
2.3.

We will describe the constructions in details in the following, with A =
(S,Σ,∆, Init, F, µ) being the original real-time automaton, Ssecret ⊆ S being
the secret, and Σo ⊆ Σ being the observable alphabet. τ is used to denote all
the unobservable events in the set Σ \Σo.

4.1 Calculating time between observable events

Unobservable transitions are similar to ε-transitions of non-deterministic au-
tomata. The only difference is that unobservable transitions still take some time.

Consider a run of A: s0
τ−→
λ1

s1
τ−→
λ2

· · · τ−−−→
λn−1

sn−1
an−−→
λn

sn, which consists of

n− 1 unobservable transitions and one observable transition in sequence. Then
an occurs at

∑n
i=1 λi. Similarly, if we consider a segment of a run: s′0 · · ·

a0−→
λ0

s0
τ−→
λ1

s1
τ−→
λ2

· · · τ−−−→
λn−1

sn−1
an−−→
λn

sn, the time difference between an and a0 is

also
∑n

i=1 λi. It includes two parts: the sum of time taken by unobservable ones,
and the time taken by the final observable one.

Based on the analysis above, there are two things to be done for each pair
of states (s, s′), where s is an initial state or the post-state of an observable
transition, and s′ is the pre-state of an observable one. The first is to calculate
how much time it can probably take to transit from s to s′ via unobservable
transitions, and the result is denoted by Λuo(s, s

′), which is a subset of R≥0.
The second is to sum up Λuo(s, s

′) with the time taken by each observable
transition from s′, say (s′, a, s′′), thus we can obtain new transitions of the form
(s, a, s′′) whose corresponding time is the sum of Λuo(s, s

′) and µ(s′, a, s′′). And
therefore we can build a new real-time automaton whose alphabet is Σo alone.

In order to calculate Λuo(s, s
′) for each pair (s, s′), we construct the timing

automaton At, a finite-state automaton with the alphabet
∪

τ∈Σ\Σo
µτ , where

µτ = {µ(s1, τ, s2) | (s1, τ, s2) ∈ ∆}. Only unobservable transitions of A and time
taken by them are considered in At. Each event in the alphabet of At is actually
a non-empty subset of R≥0. Formally,

Definition 8. The timing automaton of a real-time automaton A is a finite-
state automaton At = (St, Σt, δt, Initt, Ft), where

- St = A.S;
- Σt is

∪
τ∈Σ\Σo

µτ =
∪

τ∈Σ\Σo
{µ(s1, τ, s2) | (s1, τ, s2) ∈ ∆};

- δt(s1, Λ) = {s2 | ∃τ ∈ Σuo

(
(s1, τ, s2) ∈ A.∆ ∧ A.µ(s1, τ, s2) = Λ

)
};

- Initt = A.Init ∪
∪

a∈Σo
Posta, and

- Ft =
∪

a∈Σo
Prea.

Based on At, we can calculate Λuo(s, s
′) using regular expressions by follow-

ing the proof methods for Kleene’s theorem.
Suppose the set of states is {si}i∈{1,...,n}. Let R(si1 , si2 , k) be the regular

expression denoting all the traces of runs from si1 to si2 where there are no
states in between for k = 0, and no states with subscripts larger than k in
between, for 1 ≤ k ≤ n.

For any (si1 , si2), the set {Λ | si2 ∈ δt(si1 , Λ)} is the events of all transitions
from si1 to si2 . Let R0(si1 , si2) be the regular expression which is the sum of all
events in {Λ | si2 ∈ δt(si1 , Λ)}. If there is no such Λ, R0(si1 , si2) is set to ∅.

Then R(si1 , si2 , k) is computed inductively: R(si1 , si1 , 0) = ε + R0(si1 , si1),
and R(si1 , si2 , 0) = R0(si1 , si2) if i1 ̸= i2. And R(si1 , si2 , k+1) = R(si1 , si2 , k)+
R(si1 , sk+1, k) ·R(sk+1, sk+1, k)

∗ ·R(sk+1, si2 , k).
So we can finally obtain R(si1 , si2 , n) for each pair of states (si1 , si2) ∈ Initt×

Ft, which denotes the traces of runs from si1 to si2 .
After regular expressions have been obtained, the next step is to translate

them into subsets of R≥0. Here ∅ means an empty set, ε means the set {0}, and
Λ means the set Λ. And if r, r1, r2 are regular expressions and Λ, Λ1, Λ2 are
their corresponding sets, we can translate r1 · r2 into Λ1 + Λ2 := {λ1 + λ2 |
λ1 ∈ Λ1, λ2 ∈ Λ2}, r1 + r2 into Λ1 ∪ Λ2 := {λ | λ ∈ Λ1 ∨ λ ∈ Λ2}, and r∗ into
Λ∗ :=

∪
k∈N kΛ, where 0Λ = {0} and (k + 1)Λ = kΛ+ Λ for k ≥ 0.

Following these steps, we can obtain Λuo(si1 , si2) from R(si1 , si2 , n) for each
pair of states (si1 , si2) ∈ Initt × Ft.

..s1.. s2..

s2

..

τ

.

[0, 3]

.

b

.
[2, 4]

.

a

.

[1, 2]

.

τ

.

[2, 3]

.

τ

.

[0, 1]

.

b

.

[3, 4]

.

a

.

[3, 4]

Fig. 3: Example: A, the original real-time automaton under study

Example 4. In the real-time automaton A in Fig.3, Σ is divided into two sets,
the observable {a, b} and the unobservable {τ}. The states s1, s2, s3 are all
initial and accepting. Transitions are arrows from one state to another with a
label a, b, or τ , and timing information of each transition is the interval written
near its label.

Its timing automaton, denoted as At, is depicted in Fig.4.

R(si1 , si2 , k) not equal to ∅ are listed below:

k = 0: R(s1, s1, 0) = ε+[0, 3], R(s2, s2, 0) = ε, R(s2, s3, 0) = [2, 3], R(s3, s2, 0) =
[0, 1], R(s3, s3, 0) = ε;

k = 1: R(s1, s1, 1) = (ε + [0, 3]) + (ε + [0, 3])(ε + [0, 3])∗(ε + [0, 3]) = [0, 3]∗,
R(s2, s2, 1) = ε, R(s2, s3, 1) = [2, 3], R(s3, s2, 1) = [0, 1], R(s3, s3, 1) = ε;

k = 2: R(s1, s1, 2) = [0, 3]∗, R(s2, s2, 2) = ε, R(s2, s3, 2) = [2, 3] + εε∗[2, 3] =
[2, 3], R(s3, s2, 2) = [0, 1] + [0, 1]ε∗ε = [0, 1], R(s3, s3, 2) = ε+ [0, 1]ε∗[2, 3) =
ε+ [0, 1] · [2, 3];

k = 3: R(s1, s1, 3) = [0, 3]∗, R(s2, s2, 3) = ε + [2, 3](ε + [0, 1] · [2, 3])∗[0, 1] =
([2, 3] · [0, 1])∗, R(s2, s3, 3) = [2, 3]+ [2, 3](ε+ [0, 1] · [2, 3])∗(ε+ [0, 1] · [2, 3]) =
[2, 3]([0, 1]·[2, 3]))∗,R(s3, s2, 3) = [0, 1]+(ε+[0, 1]·[2, 3])(ε+[0, 1]·[2, 3])∗[0, 1] =
[0, 1]([2, 3] · [0, 1])∗, R(s3, s3, 3) = (ε + [0, 1] · [2, 3]) + (ε + [0, 1] · [2, 3])(ε +
[0, 1] · [2, 3])∗(ε+ [0, 1] · [2, 3]) = ([0, 1] · [2, 3])∗.

Finally, Λuo(si1 , si2) can be obtained from R(si1 , si2 , 3): Λuo(s1, s1) = [0,+∞),
Λuo(s2, s2) = Λuo(s3, s3) = {0} ∪ [2,+∞), Λuo(s3, s2) = [0, 1]∪ [2,+∞), Λuo(s2,
s3) = [2,+∞), and Λuo(s1, s2) = Λuo(s1, s3) = Λuo(s2, s1) = Λuo(s3, s1) = ∅.

⊓⊔

..s1.. s2..

s3

..

[0, 3]

.

[2, 3]

.

[0, 1]

Fig. 4: Example: At

4.2 Constructing real-time automata Aobs, Aobs,s and Aobs,ns

After that, we can define a real-time automaton Aobs. Its alphabet is Σo, and
each of its transition starts from an initial state or a post-state of an observable
transition and ends in a post-state of an observable transition of A. Formally,

Definition 9. Aobs = (Sobs, Σobs,∆obs, Initobs, Fobs, µobs) can be constructed as
follows:

- Sobs = A.Init ∪
∪

a∈Σo
Posta,

- Σobs = Σo,
- ∆obs = {(s1, a, s2) | ∃s3 ∈ A.S

(
Λuo(s1, s3) ̸= ∅ ∧ (s3, a, s2) ∈ A.∆

)
},

- Initobs = A.Init,
- Fobs =

∪
a∈Σo

Posta, and

- µobs(s1, a, s2) =
∪
{Λuo(s1, s3) + A.µ(s3, a, s2) | ∃s3 ∈ A.S

(
Λuo(s1, s3) ̸=

∅ ∧ (s3, a, s2) ∈ A.∆
)
}.

Example 5 (Ctd.). Now we build Aobs = (Sobs, Σobs,∆obs, Initobs, Fobs, µobs)
shown in Fig.5. Sobs = Initobs = Fobs = {s1, s2, s3}. Σobs = {a, b}. Transi-
tions and their corresponding time labels are listed below:
(s1, b, s2): µ(s1, b, s2) = [2,+∞);
(s2, a, s2): µ(s2, a, s2) = [1, 2] ∪ [3,+∞);
(s3, a, s2): µ(s3, a, s2) = [1,+∞);
(s2, b, s3): µ(s2, b, s3) = [5,+∞];
(s3, b, s3): µ(s3, b, s3) = [3, 4] ∪ [5,+∞);
(s2, a, s1): µ(s2, a, s1) = [5,+∞);
(s3, a, s1): µ(s3, a, s1) = [3, 4] ∪ [5,+∞).
The time information is neglected in the figure for the sake of simplicity. ⊓⊔

Lemma 4. Given wt in Tr(s0) of A, PΣ,t(wt) is in Tr(s0) of Aobs if PΣ,t(wt) ̸=
εt.

..s1.. s2..

s2

..

b

.
a

. a.

b

.

a

.

a

.

b

Fig. 5: Example: Aobs

Proof. PΣ,t(wt) ̸= εt means that there is at least one observable label in wt.
Suppose observable labels occurring in wt are a1, a2, ..., and an at t1, t2, ..., and
tn respectively, then PΣ,t(wt) = (a1, t1)(a2, t2) . . . (an, tn). Let ρ be a run of A
from s0 whose trace is wt. There must be transitions (s1, a1, s

′
1), (s2, a2, s

′
2), ...,

and (sn, an, s
′
n) in ρ, and si+1 is reachable from s′i for 0 ≤ i < n. (Let s′0 = s0

and t0 = 0 here.) Each tk − tk−1 is the sum of two parts: one is time taken
by unobservable transition(s) from s′k−1 to sk, and the other is time taken by
transition (sk, ak, s

′
k). In other words, there exists some λuo,k ∈ Λuo(s

′
k−1, sk)

and λo,k ∈ A.µ(sk, ak, s
′
k) such that tk − tk−1 = λuo,k + λo,k. Based on the

constructing steps of Aobs, there exists transitions (s′k−1, ak, s
′
k) in Aobs whose

time labels include tk− tk−1 respectively, so that there exists a run ρobs = s0
a1−→
t1

s′1
a2−−−→

t2−t1
s′2 · · · s′n−1

an−−−−−→
tn−tn−1

s′n, whose trace is PΣ,t(wt). ⊓⊔

Lemma 5. Given vt ̸= εt in Tr(s0) of Aobs, there exists some wt in Tr(s0) of
A such that PΣ,t(wt) = vt.

Proof. Suppose there exists a run of Aobs, say ρobs = s0
a1−→
t1

s′1
a2−−−→

t2−t1
s′2 · · ·

s′n−1
an−−−−−→

tn−tn−1

s′n, whose trace is vt = (a1, t1)(a2, t2) . . . (an, tn). There must be

transitions (s1, a1, s
′
1), (s2, a2, s

′
2), ..., and (sn, an, s

′
n) in A, and si+1 is reachable

from s′i via only unobservable transitions for 0 ≤ i < n (s′0 = s0 here). Each
tk − tk−1 is the sum of some λuo,k ∈ Λuo(s

′
k−1, sk) and λo,k ∈ A.µ(sk, ak, s

′
k)

(t0 = 0 here). Hence, there is a run of A, ρ = s0 · · · s1
a1−−→
λo,1

s′1 · · · s2
a2−−→
λo,2

s′2 · · · sn
an−−−→
λo,n

s′n with PΣo,t(trace(ρ)) = (a1, t1)(a2, t2) . . . (an, tn) = vt. ⊓⊔

Based on the above discussion, two real-time automata, Aobs,s and Aobs,ns,
can be constructed according to the given Ssecret as follows:

– If (Aobs.Init ∩Aobs.F) ∩ Ssecret is not empty, let Aobs,s be the same as Aobs

except that its initial states are Aobs.Init ∩ Ssecret. Otherwise, we introduce
a new state sε, having no transition starts from or ends in it, to ensure εt is

also accepted. Here Aobs,s is the same as Aobs except that its initial states
are {sε}∪Aobs.Init∩Ssecret, and that its accepting states are {sε}∪Aobs.F .

– If (Aobs.Init∩Aobs.F) \Ssecret is not empty, let Aobs,ns be the same as Aobs

except that its initial states are Aobs.Init \ Ssecret. Otherwise, we introduce
sε, then Aobs,s is the same as Aobs except that its initial and accepting states
are {sε} ∪ Aobs.Init \ Ssecret and {sε} ∪ Aobs.F respectively.

Theorem 2. Aobs,s accepts language Ls = PΣo,t(Tr(A.Init ∩ Ssecret))), and
Aobs,ns accepts language Lns = PΣo,t(Tr(A.Init \ Ssecret))).

Proof. This is straightforward from Lemma 4 and Lemma 5 and the construc-
tions of Aobs,s and Aobs,ns. ⊓⊔

Example 6 (Ctd.). Let Ssecret = {s1}. Then Aobs,s and Aobs,ns are depicted in
Fig.6. Their time information is also neglected in this figure, the same as the
previous example’s. ⊓⊔

..s1.. s2.

s3

.

b

.
a

. a.

b

.

a

.

a

.

b

(a) Aobs,s

..s1. s2..

s3

..

b

.
a

. a.

b

.

a

.

a

.

b

(b) Aobs,ns

Fig. 6: Example: Aobs,s and Aobs,ns

4.3 Building trace-equivalent NFAs

Since Aobs,s and Aobs,ns are built, they can be transformed into their corre-
sponding NFAs Anfa,s and Anfa,ns, which are trace-equivalent to them respec-
tively. Thus can be built DFAs Adfa,s and Adfa,ns further, which are equivalent
to Anfa,s and Anfa,ns respectively. By exploiting complement and product op-
erations over DFAs, Ap

dfa = Acomp
dfa,ns × Adfa,s can be obtained. Ap

dfa accepts the
language trace-equivalent to the intersection of Ls = Lf (Aobs,s) and complement
of Lns = Lf (Aobs,ns), based on Sect.3.

Theorem 3. The initial-state opacity problem of real-time automata is decid-
able.

Proof. Given a real-time automaton A, Σo and Ssecret, an automaton Ap
dfa can

be constructed by following the steps discussed above. Ap
dfa accepts the language

Lf (Adfa,ns)
c ∩Lf (Adfa,s), which is trace-equivalent to the timed language Lc

ns ∩
Ls.

The problem is to check whether Ap
dfa accepts any word w ̸= ε. A word

w = (a1, Λ1) . . . (an, Λn) being accepted means that any timed word wt =
(a1, t1) . . . (an, tn) with ti − ti−1 ∈ Λi (t0 = 0) is in the set Lc

ns ∩ Ls, that
is, A is not initial-state opaque w.r.t Ssecret and Σo. Otherwise, A is opaque
w.r.t Ssecret and Σo. ⊓⊔

5 Conclusion

In this paper, we investigated the initial-state opacity problem of real-time au-
tomata. The original real-time automaton is first translated into a new one
whose alphabet is the observable alphabet, and then into two real-time au-
tomata accepting the projection of secret and non-secret languages respectively.
We introduce a relation between timed words over Σ and untimed words over
Σ× (2R≥0 \{∅}) called trace-equivalence, and transform real-time automata into
finite-state automata. We also introduce the notion of partitioned languages, to
guarantee the closure under complementation and product. Therefore results of
finite-state automata can be applied. Finally, we come up with the conclusion
that the initial-state opacity problem of real-time automata is decidable.

A system is called language-opaque if an intruder with partial observability
can never determine whether a trace of the system is secret no matter what
he has observed. As an on-going and future work, it deserves to investigate the
language opacity problem of RTA, which will be reported in another paper. In
addition, it is quite interesting how to apply RTA to model security properties
of communication protocols with time in the real-world.

References

1. Saboori, A., Hadjicostis, C.N.: Verification of initial-state opacity in security ap-
plications of discrete event systems. Information Sciences 246 (2013) 115 – 132

2. Bryans, J.W., Kounty, M., Ryan, P.Y.: Modelling opacity using petri nets. Elec-
tronic Notes in Theoretical Computer Science 121 (2005) 101 – 115 Proceedings
of the 2nd International Workshop on Security Issues with Petri Nets and other
Computational Models (WISP 2004).

3. Tong, Y., Li, Z., Seatzu, C., Giua, A.: Verification of state-based opacity using
Petri nets. IEEE Transactions on Automatic Control 62(6) (2017) 2823–2837

4. Bryans, J.W., Kounty, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to tran-
sition systems. International Journal of Information Security 7(6) (Nov 2008)
421–435

5. Saboori, A., Hadjicostis, C.N.: Verification of k-step opacity and analysis of its
complexity. In: Proceedings of the 48h IEEE Conference on Decision and Control
(CDC) held jointly with 2009 28th Chinese Control Conference. (2009) 205–210

6. Saboori, A., Hadjicostis, C.N.: Opacity-enforcing supervisory strategies via state
estimator constructions. IEEE Transactions on Automatic Control 57(5) (2012)
1155–1165

7. Saboori, A., Hadjicostis, C.N.: Verification of infinite-step opacity and complexity
considerations. IEEE Transactions on Automatic Control 57(5) (2012) 1265–1269

8. Keroglou, C., Hadjicostis, C.N.: Initial state opacity in stochastic des. 2013 IEEE
18th Conference on Emerging Technologies & Factory Automation (ETFA) (2013)
1–8

9. Bérard, B., Chatterjee, K., Sznajder, N.: Probabilistic opacity for Markov decision
processes. Information Processing Letters 115(1) (2015) 52 – 59

10. Bérard, B., Mullins, J., Sassolas, M.: Quantifying opacity. 2010 Seventh Interna-
tional Conference on the Quantitative Evaluation of Systems (2010) 263–272

11. Ibrahim, M., Chen, J., Kumar, R.: Secrecy in stochastic discrete event systems.
In: Proceedings of the 11th IEEE International Conference on Networking, Sensing
and Control. (2014) 48–53

12. Cassez, F.: The dark side of timed opacity. In Park, J.H., Chen, H.H., Atiquzzaman,
M., Lee, C., Kim, T.h., Yeo, S.S., eds.: Advances in Information Security and
Assurance. (2009)

13. Dima, C.: Real-time automata. Journal of Automata, Languages and Combina-
torics 6(1) (2001) 3–24

