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Abstract. Hybrid Communicating Sequential Processes (HCSP) is an
extension of CSP allowing continuous dynamics. We are interested in
applying HCSP to model and verify hybrid systems. This paper is to
present a calculus for a subset of HCSP as a part of our efforts in mod-
elling and verifying hybrid systems. The calculus consists of two parts.
To deal with continuous dynamics, the calculus adopts differential invari-
ants. A brief introduction to a complete algorithm for generating poly-
nomial differential invariants is presented, which applies DISCOVERER,
a symbolic computation tool for semi-algebraic systems. The other part
of the calculus is a logic to reason about HCSP process, which involves
communication, parallelism, real-time as well as continuous dynamics.
This logic is named as Hybrid Hoare Logic. Its assertions consist of tra-
ditional pre- and post-conditions, and also Duration Calculus formulas
to record execution history of HCSP process.
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1 Introduction

We are interested in modelling and verifying hybrid systems, and take the Level
3 of Chinese Train Control System (CTCS-3) [17] as a case study, which is an
informal specification of Chinese high speed train control system that ensures
safety and high throughput of trains. There are many reasons to guarantee the
high throughput. But our case study only focuses on the analysis and verification
of the safety of CTCS-3.

In CTCS-3, there are specifications of 14 scenarios. For example, one of the
14 scenarios specifies that trains are only allowed to move within their current
movement authorities (MAs) which are determined and updated by Radio Block
Center (RBC). Hence, the train controller should restrict the movement of the
train to ensure that it always runs within its MA with a speed in the scope
predefined by the MA. In this scenario, there are continuous dynamics of trains
that are described by differential equations, communications between train and
RBC, real-time aspects of the movement, etc.
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In order to verify the safety of scenarios, we have to first give a formal model
of the scenarios. CSP is a good candidate for modelling communication and par-
allelism among trains and RBCs. However CSP lacks of mechanisms to describe
continuous dynamics of train. In [4, 16], a Hybrid CSP (HCSP) is proposed to
model hybrid systems. HCSP introduces into CSP continuous variables, differ-
ential equations, and interruptions by events including timeout, communicating,
boundary reaching etc. Our experience in using HCSP to model CTCS-3 is quite
satisfactory, and the details will be reported in another paper.

This paper is to present a calculus to verify the safety of HCSP process.
The calculus consists of two parts. One is to reason about differential equa-
tions. We adopt differential invariants [10, 12, 11, 3]. In their papers, the authors
respectively demonstrate different sufficient conditions to generate/check a dif-
ferential invariant with respect to a given differential equation. These conditions
are useful, but too restrictive to generate some of invariants for our verification
of CTCS-3. In [5], we develop an algorithm, which is complete in the sense that, if
the differential equation is given in polynomials and it has a polynomial inequal-
ity (equality) as its invariant, then this algorithm can guarantee the generation
of this polynomial invariant. The generation of polynomial differential invariant
by this algorithm is supported by a symbolic computation tool for semi-algebraic
systems, DISCOVERER [13–15]. This paper gives a brief introduction to this
algorithm. Details of the algorithm can be referred to [5].

Another part of the calculus to verify an HCSP process is a logic to deal
with communications, parallelism, differential equations, interruptions, timing,
etc. In the literature, the Differential Algebraic Dynamic Logic [8] can deal with
differential equations through differential invariants. However it does not take
into account communication, parallelism, interruption, etc. In this paper we
propose a logic which can handle all these issues. Its sequential part is similar to
Hoare Logic. For parallel part, since HCSP (like CSP) does not allow memory
sharing, we follow the interleaving model for concurrency except communicating.
Therefore comparison between sequential processes of a parallel system does
not make sense unless synchronization (i.e. communication) happens. Hence,
we separate pre- and post-condition for each sequential subsystem of a parallel
system, although literally mixing them up is not difficult. A similar idea can
be found in [1]. When communication happens, the logic must consider the
timing issue of two involved parties. So, in addition to pre- and post-condition,
we introduce into Hoare Logic a history formula, which is a Duration Calculus
formula1. It can treat timing issue and record changes of variable values. The
history formula can also help in dealing with interruptions. By interruption we
mean a sudden stopping of a process followed by a transition to another one.
Reasoning about interruption is really difficult. The paper demonstrates our first
attempt to tackle this problem. This logic is based on Hoare Logic, Duration
Calculus and Differential Invariants. Thus, we call it Hybrid Hoare Logic.

1 In [7], Duration Calculus is also used to prove safety critical property for European
railways.



2 Hybrid CSP

Hybrid CSP is a modelling language for hybrid systems [4, 16]. HCSP is an exten-
sion of CSP, which introduces into CSP differential equations, time constructs,
interruptions, etc. It can be used for describing continuous, communicating and
real-time behaviour of hybrid systems.

The vocabulary of HCSP includes:

– Var is a countable set of discrete variables.
– Continuous is a countable set of continuous variables, which are interpreted

as continuous functions from time (non-negative reals) to reals. We use VC
to stand for Var ∪Continuous.

– Chan is a countable set of channels. We use ch1, ch2, . . . to range over chan-
nels, and ch? to stand for input, while ch! for output.

Thus, a process of HCSP is defined according to the following grammar:2

P ::= stop | skip | v := e | ch?x | ch!e | 〈F (ṡ, s) = 0 ∧B〉 |
P ;Q | B → P | P ¥d Q | P ¥ []i∈I(ioi → Qi) | P ∗

S ::= P | P ‖ S

where B is a first order formula over VC, and d > 0. Intuitively, the above
constructs can be understood as follows:

– stop does nothing but keeps idle for ever.
– skip terminates immediately and does nothing.
– v := e is to assign the value of the expression e to v and then terminates.
– ch?x receives a value to x through the channel ch.
– ch!e sends the value of e to the channel ch, and e is an arithmetic expression

of VC.
– 〈F (ṡ, s) = 0 ∧ B〉3 is a continuous statement. It defines an evolution by

a differential equation over s. In fact, s could be a vector of continuous
variables, and F be a group of differential equations. B is a first order formula
of s, which defines a domain of s in the sense that, if the evolution of s is
beyond B, the statement terminates. Otherwise it goes forward.4

– P ;Q behaves like P first and then behaves like Q after P terminates.
– B → P behaves like P if B is true. Otherwise it terminates.
– P ¥d Q behaves like P if P can terminate within d time units. Otherwise,

after d time units, it will behave like Q. Here we assume that both P and Q
do not contain communications. A wait statement, which postpones process
behaviour for d time units, can be defined as

wait d =̂ stop ¥d skip

2 This is only a subset of HCSP in [4, 16].
3 This notation is from [9], but here it is interpreted a little differently.
4 This is written as 〈F (ṡ, s) = 0〉 → ¬B in [4, 16].



– P ¥ []i∈I(ioi → Qi) behaves like P until a communication in the following
context appears. Then it behaves like Qi immediately after communication
ioi occurs. Here I is a non-empty finite set of indices, and {ioi | i ∈ I} are
input and output statements. We also assume that P does not contain any
communications. Furthermore, the external choice of CSP can be defined as

[]i∈I(ioi → Qi) =̂ stop ¥ []i∈I(ioi → Qi).

– P ∗ means the execution of P can be repeated arbitrarily finitely many times.
– P ‖ Q behaves as if P and Q are executed independently except that all

communications along the common channels between P and Q are to be
synchronized. In order to guarantee P and Q having no shared continuous
nor discrete variables, and neither shared input nor output channels, we give
the following syntactical constraints:

(VC(P ) ∩VC(Q)) = ∅
(InChan(P ) ∩ InChan(Q)) = ∅

(OutChan(P ) ∩OutChan(Q)) = ∅,
where VC(P ) stands for the set of discrete and continuous variables that
indeed appear in P , InChan(P ) (OutChan(P ) for input (output) channels
of P .

Examples:

1. Plant Controller: A plant is sensed by a computer periodically (say every
d time units), and receives a control (u) from the computer soon after the
sensing.

((〈F (u, s, ṡ) = 0〉¥ (cp2c!s → skip)); cc2p?u)∗ ‖ (wait d; cp2c?x; cc2p!e(x))∗

where 〈F (u, s, ṡ) = 0〉 (i.e. 〈F (u, s, ṡ) = 0〉 ∧ true describes the behaviour of
the plant. We refer this HCSP process as PLC in the rest of the paper.

2. Emergency Brake: A train is moving at an acceleration a until the train
reaches an Emergency Brake Intervention speed. Then, it will take an emer-
gency deceleration (a = −lb) to return to safe velocity (vs). During its mov-
ing, the train always listens to RBC, if it receives from RBC a message of
emergency brake, it decelerates with −lb until it stops. This only shows what
a piece of HCSP process joining in the models of CTCS-3 scenarios looks
like.

(〈(ṡ = v, v̇ = a) ∧ (v < vebi)〉; 〈(ṡ = v, v̇ = −lb) ∧ (v ≥ vs)〉; ...)
¥cr2t?x → (x = EB → 〈(ṡ = v, v̇ = −lb) ∧ (v > 0)〉); ...
‖ wait d; (cr2t!EB → ...[]...)

3 Differential Invariants

Verification of HCSP process consists of two parts: an algorithm to generate or
check differential invariants and a logic to reason about assertions of the process.



A differential invariant of a differential equation

〈F (s, ṡ) = 0 ∧B〉

for given initial values of s is a first order formula of s, which is satisfied by
the initial values and also by all the values within the area defined by B and
reachable by the trajectory of s defined by the differential equation.

In [10], Platzer and Clarke proposed a sufficient condition to check a differ-
ential invariant. For differential equation and its domain written as

〈(ṡ1 = f1, ..., ṡn = fn) ∧B〉.

e ≤ g is a differential invariant of the above differential equations with given
initial values of s1, ..., sn, if the initial values satisfy e ≤ g, and the first order
Lie derivative of e is less than g’s, i.e.

n∑

i=1

∂e

∂si
fi ≤

n∑

i=1

∂g

∂si
fi

This condition is useful, but quite rough in checking a differential invariant.
For example, v ≤ vebi is a differential invariant of

〈(ṡ = v, v̇ = a) ∧ v < vebi〉.

But it cannot be proved through this sufficient condition unless a ≤ 0.
When fjs are polynomials in si (i = 1, ..., n), and B is a conjunction of

polynomial equations and inequalities, the above differential equation is called
semi-algebraic differential equation. In fact, suppose s(t) is the trajectory of the
above semi-algebraic differential equation starting from a point on the boundary
of e ≤ g, i.e. e = g, then the first non-zero higher order Lie derivative of e(s(t))−
g(s(t)) with respect to t at t = 0 provides full information about the evolution
tendency of s(t) with respect to e ≤ g. If it is less than 0, s(t) will meet e ≤ g
as t increases, i.e. e ≤ g is an invariant; otherwise, e ≤ g will be violated.

Using the above observation, in [5], we proposed a sound and complete
method on generating polynomial differential invariants for the semi-algebraic
differential equations. The basic idea is to suppose a template of differential in-
variant p(s1, · · · , sn, u1, · · · , um) ∼ 0 first, where p is a polynomial in continuous
variables s1, · · · , sn and parameters u1, · · · , um, and ∼∈ {≥, >,≤, <, =, 6=}; and
then repeatedly compute p’s Lie derivative of different order and derive con-
straints on the parameters according to the signs of the computed derivatives.
The hardest part of our method is how to guarantee the termination of the
above procedure. By applying some fundamental theories in algebraic geome-
try, we show that the above procedure of computing derivatives will never be
endless. Thus, it is proved that the existence of differential invariants of the
predefined template is equivalent to the existence of the solutions of the resulted
constraints. Furthermore, the solutions of the constraints construct coefficients
of the differential invariant.



Using our method to check the differential invariant of the above example, it
amounts to check the validity of

∀v.

(
(v = vebi ∧ a ≤ 0) ⇒ a ≤ 0 ∧
(v = vebi ∧ v < vebi) ⇒ a ≤ 0)

)
,

which is obvious.
In order to generate and solve constraints on the parameters of a template of

a differential invariant, we can apply DISCOVERER [13–15], a tool for symbolic
computation of semi-algebraic systems, as well as for quantifier elimination [2].

Compared with the existing work on this topic [10, 12, 11, 3], our method is
the first sound and complete one to generate polynomial differential invariants
for semi-algebraic differential equations. Details are referred to [5].

4 Hybrid Hoare Logic

HCSP adopts message passing communications but rejects memory sharing para-
digm. Comparison between variables of different sequential processes of a parallel
program makes sense only if they are synchronized. We therefore restrict asser-
tions to formulas of VC of each sequential process, although it is not difficult to
literally mix them up.

HCSP employs sequential composition of statements, and we follow the tra-
ditional pre- and post- conditions of Hoare Logic to deal with sequential com-
position. A pre-condition specifies the VC values right before an execution of
a statement, while a post-condition specifies the values immediately after the
execution of the statement if it terminates. We use first order formulas of VC
to express pre- and post- conditions.

However HCSP also includes interruptions by reaching a boundary, by time-
out or by a communication. Hence, we need a record of the history of process
execution, so that we can retreat to the place where the interruption happens.
We take a subset of Duration Calculus (DC) formulas [19, 18] to record an exe-
cution history of a process. That is a sequence of DC states over intervals linked
together by the modality (_). It must be very tedious to remember all details of
a history, and we need abstraction to develop a simple logic. Computer compu-
tation and continuous evolution of plant have different time granularity, and we
adopt super dense computation [6] to assume computer computation consuming
zero time. This agrees with the abstraction of DC: a state being present over an
interval means that the state holds almost everywhere in the interval. This ab-
straction has many advantages. But in some cases it may damage the connection
after an interruption. So, through DC events [18], history can still remember the
points where value changes do happen, although it may neglect the particular
values at those points.

4.1 Subset of DC Formulas

As indicated before, we will use a subset of DC formulas to record execution
history of HCSP process. The formula in this subset is denoted as HF (history



formula) and given as follows.

HF ::= l < T | l = T | l > T |↑X | dSe
| HF_HF | HF ∧HF | HF ∨HF

where l stands for interval length, X is a subset of VC, S is a first order formula
of VC, and T ≥ 0.

↑X is an event to mean changes of variables in X taking place at a time
point. The axioms and rules can be copied from the event calculus in [18]. But
in order to maintain this information unaltered during deductions, we only list
two of them as axioms. The others can be used as antecedence when needed.
These two axioms are

↑∅ ⇔ (l = 0)
↑X

_ ↑Y ⇔ ↑X∪Y

dSe means S true almost everywhere over an interval. It follows all the the-
orems of dSe in [18], such as

dSe_dSe ⇔ dSe,
dSe_(l = 0) ⇔ dSe,
etc.

All proofs for HF are given in DC (plus the above two axioms for ↑X), and
will not be explicitly indicated. For example, we can prove in DC:

false ⇔ (l < 0)
true ⇔ (l = 0) ∨ (l > 0)

Since an interruption may occur at any time during process execution, to
locate it we define prefix closure of HF and denote it as HF<.

(l < T )< =df (l < T )
(l = T )< =df (l ≤ T )
(l > T )< =df true
(↑X)< =df ↑X

dSe< =df (l = 0) ∨ dSe
(HF_

1 HF2)< =df

{
false if HF2 ⇒ false
(HF1)< ∨HF_

1 (HF2)< otherwise

(HF1 ∧HF2)< =df

{
false if HF1 ∧HF2 ⇒ false
(HF1)< ∧ (HF2)< otherwise

(HF1 ∨HF2)< =df (HF1)< ∨ (HF2)<

It is obvious that the prefix closure of any formula of the subset still belongs to
it. From the above definition, we can prove

true< ⇔ true
false< ⇔ false



4.2 Assertions

An assertion of Hybrid Hoare Logic consists of four parts: precondition, process,
postcondition and history, written as

{Pre}P{Post;HF}
where Pre specifies values of VC(P ) before an execution of P , Post specifies
VC(P ) values when it terminates, and HF is a formula of VC(P ) from the
DC subset to describe the execution history of P , which includes differential
invariants of P . In Hoare Logic, a loop invariant joins in postcondition of the
loop, so does in this Hybrid Hoare Logic. HCSP has three kinds of interruptions:
boundary interruption, e.g. 〈F (ṡ, s) = 0∧B〉, timeout interruption, e.g. P ¥d Q
and communication interruption, e.g. P ¥[]i∈I(ioi → Qi). For these three kinds of
interruptions, HF has to join in reasoning. In HF, ↑X indicates that the changes
of variables in X may take place at this point, and reasoning about assertions
at this point should not rely on these variables.

For a parallel process, say P1 ‖ ... ‖ Pn, the assertion becomes

{Pre1, ...,Pren}P1 ‖ ... ‖ Pn{Post1, ...,Postn;HF1, ...,HFn}
where Prei,Posti,HFi are (first order or DC) formulas of VC(Pi) (i = 1, ..., n).

Another role of HF is to specify real-time (continuous) property of an HCSP
process, while Pre and Post can only describe its discrete behaviour. HF therefore
bridges up the gap between discrete and continuous behaviour of the process. For
example, we may want the plant controller example (PLC) in Section 2 stable
after T time units, i.e. after T time units the distance between the trajectory of
s and its target starg must be small. This can be specified through the following
assertion.

{s = s0 ∧ u = u0 ∧ Ctrl(u0, s0),Pre2}PLC
{Post1,Post2; (l = T )_d| s− starg |≤ εe,HF2}

where Ctrl(u, s) may express a controllable property, and the other formulas are
not elaborated here.

4.3 Axioms and Rules

We do not list all axioms and rules for all HCSP processes, but explain our idea
how to establish this logic. Say, in this subsection we only use a parallel process
consisting of two sequential ones to demonstrate the logic.

1. Monotonicity

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
and Pre′i ⇒ Prei,Posti ⇒ Post′i,HFi ⇒ HF′i(i = 1, 2),
then {Pre′1,Pre′2}P1 ‖ P2{Post′1,Post′2;HF′1,HF′2}

where we use first order logic to reason Pre′i ⇒ Prei and Posti ⇒ Post′i, but
use DC (plus the two axioms for ↑X) to reason HFi ⇒ HF′i. From now on
we will not repeatedly mention this.



2. Case Analysis

If {Pre1i,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2} (i = 1, 2),
then {Pre11 ∨ Pre12,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}

Symmetrically,

If {Pre1,Pre2i}P1 ‖ P2{Post1,Post2;HF1,HF2} (i = 1, 2),
then {Pre1,Pre21 ∨ Pre22}P1 ‖ P2{Post1,Post2;HF1,HF2}

3. Parallel vs Sequential
These two rules show a simple relation between assertions of a parallel pro-
cess and its sequential components that can ease a proof.

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}
then {Prei}Pi{Posti;HFi} (i = 1, 2)

and
If {Prei}Pi{Posti;HFi} (i = 1, 2),
and Pi (i = 1, 2) do not contain communication,

then {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}
4. Stop

stop does nothing, and never terminates. So, stop will keep any precondition
true for ever. Hence, for any r ≥ 0,

{Pre}stop{Pre; dPree ∧ (l > r)}

5. Skip
{Pre}skip{Pre; l = 0},

where by l = 0 we assume that, in comparison with physical device, compu-
tation takes no time (i.e. supper dense computation [6])

6. Assignment
{Pre[e/x]}x := e{Pre, ↑x}

The precondition and postcondition are copied from Hoare Logic. Here we
use ↑x as its history to indicate that, a change of x takes place at this time
point, although the history does not record the values of x before and after
the change.

7. Communication
Since HCSP rejects variable sharing, a communication looks like the output
party (P1; ch!e) assigning to variable x of the input one (P2; ch?x) a value
(e). Besides, in order to synchronize both parties, one may have to wait
for another. During the waiting of Pi, Posti must stay true (i = 1 or 2).



Furthermore, when we conclude range of the waiting time, we need to reduce
↑X to (l = 0).

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
Post1 ⇒ G(e),

and 2(
∧

X⊆VC ↑X⇒ (l = 0)) ∧ (((HF_
1 (dPost1e)<) ∧HF2)∨

(HF1 ∧ (HF_
2 (dPost2e)<))) ⇒ Rg(l)

where Rg(l) is an arithmetic formula of l to define its range
then {Pre1,Pre2}(P1; ch!e) ‖ (P2; ch?x)

{Post1, G(x) ∧ ∃xPost2;HF_
1 (dPost1e)< ∧Rg(l),

(HF_
2 (dPost2e)< ∧Rg(l))_ ↑x}

Example:
If

{Pre1,Pre2}P1 ‖ P2

{y = 3, x = 1; (dy = 0e ∧ (l = 3))_ ↑y, dx = 0e ∧ (l = 5)_ ↑x},
we want to deduce through this rule

{Pre1,Pre2}P1; ch!y ‖ P2; ch?x{Post3,Post4;HF3,HF4}.

Since (y = 3) ⇒ (3 = 3) and

2
∧

X⊆{x,y}(↑X⇒ (l = 0)) ∧
((dy = 0e ∧ (l = 3))_ ↑_

y ((l = 0) ∨ dy = 3e)) ∧ ((dx = 0e ∧ (l = 5))_ ↑x)
⇒ (l = 5),

we can conclude that Post3 is y = 3, Post4 is x = 3,
HF3 is

((dy = 0e ∧ (l = 3))_ ↑_
y dy = 3e) ∧ (l = 5),

and HF4 is
(l = 5)_ ↑_

x ↑x

which is equivalent to
(l = 5)_ ↑x

by the axioms of ↑X .
8. Continuous

This is about 〈F (ṡ, s) = 0 ∧ B〉, where s can be a vector and F be a group
of differential equations, such as

〈(ṡ1 = f1, ..., ṡn = fn) ∧B〉.

As indicated in Section 3, in this paper we only deal with semi-algebraic
differential equations and polynomial differential invariants. That is, fjs are
polynomials in si (i = 1, ..., n), B is a conjunction of polynomial equations



and inequalities of si (i = 1, ..., n), and differential invariants are also re-
stricted to polynomial equations and inequalities.
We have two rules for semi-algebraic differential equations. The first one is
about differential invariant. Given a polynomial differential invariant Inv of
〈F (ṡ, s) = 0 ∧B〉 with initial values satisfying Init

If Init ⇒ Inv,
then {Init ∧ Pre}〈F (ṡ, s) = 0 ∧B〉{Pre ∧Close(Inv) ∧Close(¬B);

(l = 0) ∨ dInv ∧ Pre ∧Be}
where Pre does not contain s, Close(G) stands for the closure of G, 5 and
(l = 0) in the history is to record the behaviour when the initial values
satisfy ¬B at very beginning.
The second rule is about explicit time.

If {Pre}〈F (ṡ, s) = 0 ∧B〉{Post;HF}
and {Pre ∧ t = 0}〈(F (ṡ, s) = 0, ṫ = 1) ∧B〉{Rg(t);HF′},
then {Pre}〈F (ṡ, s) = 0 ∧B〉{Post;HF ∧Rg(l)}

where t is a clock to count the time, and Rg(t) is an arithmetic formula as
explained in the rule for communication.

Example:
We know from Section 3 that v ≤ vebi is an invariant of

〈(ṡ = v, v̇ = a) ∧ v < vebi〉.
Thus, by the first rule

{(v = v0 ≤ vebi)}〈(ṡ = v, v̇ = a) ∧ v < vebi〉
{(v ≤ vebi) ∧ (v ≥ vebi); (l = 0) ∨ d(v ≤ vebi) ∧ (v < vebi)e}

In addition, we can prove that, if the initial values are v = v0 and t = 0, and
we assume p ≥ a ≥ w, then

((v0 + wt) ≤ v ≤ (v0 + pt)) ∧ (v ≤ vebi)

is an invariant of 〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉. So under the assumption
(p ≥ a ≥ w)

{(v = v0 ≤ vebi) ∧ (t = 0)}〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉
{(v = vebi) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt));

(l = 0) ∨ d(v < vebi) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt))e}
{(v = v0 ≤ vebi) ∧ (t = 0)}〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉
{ vebi−v0

w ≥ t ≥ vebi−v0
p ; true}

Therefore assuming (p ≥ a ≥ w) we can have
{(v = v0 ≤ vebi)}〈(ṡ = v, v̇ = a) ∧ v < vebi〉
{(v = vebi); d(v < vebi)e ∧ (vebi−v0

w ≥ l ≥ vebi−v0
p )}

5 When G is constructed by polynomial inequalities through ∧ and ∨, Close(G) can
be obtained from G by replacing < (and >) with ≤ (and ≥) in G.



9. Sequential

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
{Posti}Pi+2{Posti+2;HFi+2} (i = 1, 2),

and both P3 and P4 do not contain communication,
then {Pre1,Pre2}P1;P3 ‖ P2;P4{Post3,Post4;HF_

1 HF3,HF_
2 HF4}.

10. Timeout
We have two rules for P1 ¥d P2. One is for the case when P1 terminates
before d time units. Another is for the timeout. The first one is

If {Pre}P1{Post;HF}
and (2(

∧
X⊆VC ↑X⇒ (l = 0)) ∧HF) ⇒ (l < d)

then {Pre}P1 ¥d P2{Post;HF}
The second one is more complicated. The execution of P1 is interrupted after
d time units, and then P2 starts its execution. Therefore the postcondition
of P1 cannot be used for this transition, and we have to use its history at
time d.

If {Pre1}P1{Post1;HF1},
{Pre2}P2{Post2;HF2},
(2(∧X⊆VC ↑X⇒ (l = 0)) ∧HF1) ⇒ (l ≥ d)

and G ⇒ Pre2

then {Pre1}P1 ¥d P2{Post2;HF∗_HF2}
where G and HF∗ are constructed as follows. Choose an HF∗ in the form of

n∨

i=1

HF∗i
_(dGi ∧ Fie ∧Rgi(l))_ ↑Xi

according to the following two criteria. If no variable of Gi is included in Xi

(i = 1, ..., n), then we let G be
∨n

i=1 Gi.
The first criterion to choose HF∗ is to guarantee that HF∗ does not lose any
↑X in HF1. That is, we have to prove

HF∗ ⇒ HF<
1 , and

2(
∧

((X 6=Y )∧X,Y⊆VC) ¬(↑X ∧ ↑Y ))
⇒ ∧n

i=1 ¬((HF∗i
_(dGi ∧ Fie ∧Rgi(l))_ ↑Yi) ∧HF<

1 )

for any Yi ⊃ Xi.
The second criterion is about the length of HF∗ and another direction of the
implication between HF1 and HF∗. That is

2(
∧

X⊆VC ↑X⇒ (l = 0)) ∧HF∗ ⇒ (l = d), and
2(

∧
X⊆VC ↑X⇒ (l = 0)) ∧HF<

1 ∧ (l = d) ⇒ HF∗

In summary, HF∗ is a part of (HF<
1 ∧ (l = d)) that includes all information

about variable changes at time points until d (inclusive), and G therefore



catches the last states of (HF<
1 ∧ (l = d)), which do not change at time d.

Examples:
(a) wait d (d > 0)

{Pre}wait d{Pre; dPree ∧ (l = d)}
where wait d is defined as stop¥dskip. Its proof can be given as follows.
Since

{Pre}stop{Pre; dPree ∧ (l > d)},
{Pre}skip{Pre; (l = 0)},
(l > d) ⇒ (l ≥ d),
and we can choose HF∗ as (dPree ∧ (l = d)), and hence, G as Pre,

we can conclude

{Pre}stop ¥d skip{Pre; (dPree ∧ (l = d))_(l = 0)}.
That is

{Pre}wait d{Pre; dPree ∧ (l = d)}.
(b) Let P be

z := 0;wait 3; y := 3;wait 2

and we can prove

{y = 1, z = 2}P{(z = 0) ∧ (y = 3);
↑_

z (d(y = 1) ∧ (z = 0)e ∧ (l = 3))_ ↑y
_(d(z = 0) ∧ (y = 3)e ∧ (l = 2))}

and denote the history formula of P as HF(P ). For P ¥3 Q, P is inter-
rupted after being executed 3 time unit. Let HF∗ be

↑_
z (d(y = 1) ∧ (z = 0)e ∧ (l = 3))_ ↑y

We can prove

HF∗ ⇒ HF(P )<,
2

∧
(x6=y) ¬(↑{x,y} ∧ ↑y)

⇒ ¬((↑_
z (d(y = 1) ∧ (z = 0)e ∧ (l = 3))_ ↑{x,y}) ∧HF(P )<),

2(((↑y ∨ ↑z) ⇒ (l = 0)) ∧HF∗) ⇒ (l = 3), and
2((↑y ∨ ↑z) ⇒ (l = 0)) ∧HF(P )< ∧ (l = 3) ⇒ HF∗.

So, G is (z = 0) (and (y = 1) is not involved), and (z = 0) can therefore
be used as a precondition of Q.

11. Choice
This is about inference rule for (P ¥ []i∈I(ioi → Qi)). It involves communi-
cation interruption which happens randomly, and must be difficult to deal
with. If we assume that from one party of the communication we can derive
a range of the interruption time, then we can use the history to support the
reasoning. Of course we also have to take into account the waiting time of
two parties. But all those ideas have been explained before. Thus we omit
them here.



12. Repetition
We can pick up rules from the literature for the repetition. Here we only
show a rule which ends off an assertion reasoning.

If {Pre1,Pre2}P1 ‖ P2{Pre1,Pre2;HF1,HF2},
((2

∧
X⊆VC(↑X⇒ (l = 0))) ∧HFi) ⇒ (Di ∧ (l = T )) (i = 1, 2, T > 0),

and D_
i Di ⇒ Di,

then {Pre1,Pre2}P ∗1 ‖ P ∗2 {Pre1,Pre2;D1, D2}

where T is the time consumed by both P1 and P2 that can guarantee the
synchronisation of the starting point of each repetition.

5 Conclusion

This paper sketches part of our on-going efforts in formally modelling and ver-
ifying hybrid systems. We choose a subset of HCSP for modelling, and explain
our idea to develop a calculus for this subset, including an improvement of gen-
erating and checking differential invariants. So far we are not sure whether this
subset is good enough to model interesting hybrid systems, say CTCS-3, and
neither the calculus is powerful enough in verifying its safety. Although this is
a subset of HCSP, it is quite complicated already in terms of verification. In
particular, it includes random interruptions which are hard to handle. Our idea
is to use history of execution which records the continuous evolution of process
as well as the discrete change of its variables. The calculus tries to leave details
as far as we can. Its soundness is not trivial. For this, we need formal semantics
of HCSP. A DC-based denotational semantics for HCSP has been established in
[16]. Recently, we defined an operational semantics for HCSP, and will check the
soundness of the logic against the semantics formally as a future work.
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