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Abstract. Quantitative loop invariants are an essential element in the
verification of probabilistic programs. Recently, multivariate Lagrange
interpolation has been applied to synthesizing polynomial invariants. In
this paper, we propose an alternative approach. First, we fix a polyno-
mial template as a candidate of a loop invariant. Using Stengle’s Po-
sitivstellensatz and a transformation to a sum-of-squares problem, we
find sufficient conditions on the coefficients. Then, we solve a semidefi-
nite programming feasibility problem to synthesize the loop invariants. If
the semidefinite program is unfeasible, we backtrack after increasing the
degree of the template. Our approach is semi-complete in the sense that it
will always lead us to a feasible solution if one exists and numerical errors
are small. Experimental results show the efficiency of our approach.

1 Introduction

Probabilistic programs extend standard programs with probabilistic choices and
are widely used in protocols, randomized algorithms, stochastic games, etc. In
such situations, the program may report incorrect results with a certain proba-
bility, rendering classical program specification methods [10,18] inadequate. As a
result, formal reasoning about the correctness needs to be based on quantitative
specifications. Typically, a probabilistic program consists of steps that choose
probabilistically between several states, and the specification of a probabilistic
program contains constraints on the probability distribution of final states, e.g.
through the expected value of a random variable. Therefore the expected value
is often the object of correctness verification [14,21,23].

To reason about correctness for probabilistic programs, quantitative annota-
tions are needed. Most importantly, correctness of while loops can be proved by
inferring special bounds on expectations, usually called quantitative loop invari-
ants [23]. As in the classical setting, finding such invariants is the bottleneck
of proving program correctness. For some restricted classes, such as linear loop
invariants, some techniques have been established [4,21,24]. To use them to
synthesize polynomial loop invariants, so-called linearization can be used [1],
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a technique widely applied in linear algebra. It views higher-degree monomi-
als as new variables, establishes their relation with existing variables, and then
exploits linear loop invariant generation techniques. However, the number of
monomials is exponential in the degree. Rodŕıguez-Carbonell and Kapur [28]
introduce solvable mappings, which are a generalization of affine mappings, to
avoid non-polynomial effects generated by polynomial programs. Recently, Chen
et al. [7] applied multivariate Lagrange interpolation to synthesize polynomial
loop invariants directly.

Another important problem for probabilistic programs is the almost-sure
termination problem, answering whether the program terminates almost surely.
Fioriti and Hermanns [13] argued that Lyapunov ranking functions, used in non-
probabilistic termination analysis, cannot be extended to probabilistic programs.
Instead, they extended ranking supermartingales [3] to the bounded probabilistic
case and provided a compositional and sound proof method for the almost-sure
termination problem. Kaminski and Katoen [20] investigated the computational
complexity of computing expected outcomes (including lower bounds, upper
bounds and exact expected outcomes) and of deciding almost-sure termination
of probabilistic programs. Further, Chatterjee et al. [6] investigated termina-
tion problems for affine probabilistic programs. Recently, they also presented a
method [5] to efficiently synthesize ranking supermartingales by Putinar’s Posi-
tivstellensatz [27] and used it to prove the termination of probabilistic programs.
Their method is sound and semi-complete over a large class of programs.

In this paper, we develop a technique exploiting semidefinite programming
through another Positivstellensatz to synthesize the quantitative loop invariants.
Positivstellensätze are essential theorems in real algebra to describe the structure
of polynomials that are positive (or non-negative) on a semialgebraic set. While
our approach shares some similarities with the one in [5], the difference to the
termination problem requires a variation of the theorem. In detail, Putinar’s Pos-
itivstellensatz deals with the situation when the polynomial is strictly positive on
a quadratic module, which is not enough for quantitative loop invariants. In the
program correctness problem, equality constraints are taken into consideration
as well as inequalities. Therefore in our method, Stengle’s Positivstellensatz [29]
dealing with general real semi-algebraic sets is being used.

As previous results [7,15,21], our approach is constraint-based [8]. We fix
a polynomial template for the invariants with a fixed degree and generate con-
straints from the program. The constraints can be transformed into an emptiness
problem of a semialgebraic set. By Stengle’s Positivstellensatz [29], it suffices to
solve a semidefinite programming feasibility problem, for which efficient solvers
exist. From a feasible solution (which need not be tight) we can then obtain
the corresponding template coefficients. If the solver does not provide a feasible
solution or a verification shows that the coefficients are not correct, we refine the
analysis by adding constraints to block the undesired solutions or by increasing
the template degree, which will always lead us to a feasible solution if one exists.

The method is applied to several case studies taken from [7]. Our technique
usually solves the problem within one second, which is about one tenth of the
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time taken by the tool of [7]. Our tool supports real variables rather than dis-
crete ones and can generate polynomial invariants. We illustrate these features
by analyzing a non-linear perceptron program and a model for airplane delay
with continuous distributions. Moreover, we conduct a sequence of trials on para-
meterized probabilistic programs to show that the main influence factor on the
running time of our method is the degree of the invariant template. We compare
our results on these examples with the Lagrange Interpolation Prototype (LIP)
in [7], Prinsys [15] and the tool for super-martingales (TM) [3].

2 Preliminaries

In this section we introduce some notations. We use Xn to denote an n-tuple
of variables (X1, . . . , Xn). For a vector α = (α1, . . . , αn) ∈ N

n, Xα
n denotes the

monomial Xα1
1 · · · Xαn

n , and d =
∑

i αi is its degree.

Definition 1. A polynomial f in variables X1, . . . , Xn is a finite linear combi-
nation of monomials: f =

∑
α cαXα

n where finitely many cα ∈ R are non-zero.

The degree of a polynomial is the highest degree of its component monomials.
Extending the notation, for a sequence of polynomials F = (f1, . . . , fs) and a
vector α = (α1, . . . , αs) ∈ R

s, we let Fα denote
∏s

i=1 fαi
i . The polynomial ring

with n variables is denoted with R[Xn], and the set of polynomials of degree at
most d is denoted with R

≤d[Xn]. For f ∈ R[Xn] and zn = (z1, . . . , zn) ∈ R
n,

f(zn) ∈ R is the value of f at zn.
A constraint is a quantifier-free formula constructed from (in)equalities of

polynomials. It is linear if it contains only linear expressions. A semialgebraic
set is a set described by a constraint:

Definition 2. A semialgebraic set in R
k is a finite union of sets of the form

{x ∈ R
k|f(x) = 0 ∧ ∧

g∈G g > 0}, where f is a polynomial and G is a finite set
of polynomials.

A polynomial p(Xn) ∈ R[Xn] is a sum of squares (or SOS, for short), if there
exist polynomials f1(x), . . . , fm(x) ∈ R[Xn] such that p(Xn) =

∑m
i=1 f2

i (Xn).
Chapters 2 and 3 of [2] introduce a way to transform the problem whether a given
polynomial is an SOS into a semidefinite programming problem (or SDP, for
short), which is a generalization of linear programming problem. We introduce
the transformation and SDP problems briefly in our technical report [12].

2.1 Probabilistic Programs

We use a simple probabilistic guarded-command language to construct probabilis-
tic programs with the grammar:

P :: = skip | abort | x := E | P ;P | P [p] P | if (G) then {P} else {P} | while(G){P}
where E is a real-valued expression and G is a Boolean guard defined by the
grammar:
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E :: = c | xn | r | constant/variable/random variable
E + E | E · E | arithmetic

G :: = E < E | G ∧ G | ¬G guards

Random variable r follows a given probability distribution, discrete or continu-
ous. For p ∈ [0, 1], the probabilistic choice command P0 [p] P1 executes P0 with
probability p and P1 with probability 1 − p.

Example 3. The following probabilistic program P describes a simple game:

z := 0; while(0 < x < y) {x := x + 1[0.5]x := x − 1; z := z + 1}.

The program models a game where a player has x dollars at the beginning and
keeps tossing a coin with probability 0.5. The player wins one dollar if he tosses
a head and loses one dollar for a tail. The game ends when the player loses all
his money, or he wins y−x dollars for a predetermined y. The variable z records
the number of tosses made by the player during this game.

We assume that the reader is familiar with the basic concepts of probability
theory and in particular expectations, see e.g. [11] for details. Expectations are
typically functions from program states (i.e. the real-valued program variables)
to R. An expectation is called a post-expectation when it is to be evaluated on the
final distribution, and it is called a pre-expectation when it is to be evaluated on
the initial distribution. Let preE , postE be expectations and prog a probabilistic
program. We say that the sentence 〈preE 〉 prog 〈postE 〉 holds if the expected
value of postE after executing prog is equal to or greater than the expected
value of preE . When postE and preE are functions, the comparison is executed
pointwise.

Classical programs can be viewed as special probabilistic programs in the
following sense. For classical precondition pre and postcondition post , let the
characteristic function χpre equal 1 if the precondition is true and 0 otherwise,
and define χpost similarly. If one considers a Hoare triple {pre} prog {post} where
prog is a classical program, then it holds if and only if 〈χpre〉 prog 〈χpost〉 holds
in the probabilistic sense.

2.2 Probabilistic Predicate Transformers

Let P0, P1 be probabilistic programs, E an expression, post a post-expectation,
pre a pre-expectation, G a Boolean expression, and p ∈ (0, 1). The probabilistic
predicate transformer wp can be defined as follows [16]:

wp(skip, post) = post
wp(abort, post) = 0
wp(x := E, post) = post [x/ES(E)]
wp(P ; Q, post) = wp(P,wp(Q, post))
wp(if(G) then(P ) else(Q), post) = χG · wp(P, post) + (1 − χG) · wp(Q, post)
wp(P [p] Q, post) = p · wp(P, post) + (1 − p) · wp(Q, post)
wp(while(G) {P}, post) = μX.(χG · wp(P,X) + (1 − χG) · post)
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Here post [x/ES(E)] denotes the formula obtained by replacing free occurrences
of x in post by the expectation of E over state space S. The least fixed point
operator μ is defined over the domain of expectations [23,24], and it can be shown
that 〈pre〉 P 〈post〉 holds if and only if pre ≤ wp(P, post). Thus, wp(P, post) is
the greatest lower bound of precondition expectation of P with respect to post ,
and we say wp(P, post) is the weakest pre-expectation of P w.r.t. post.

2.3 Positivstellensatz

Hilbert’s Nullstellensatz is very important in algebra, and its real version, known
as Positivstellensatz, is crucial to our method. First, some concepts are needed
to introduce the theorem.

– The set P ⊆ R[Xn] is a positive cone if it satisfies: (i) If a ∈ R[Xn], then
a2 ∈ P , and (ii) P is closed under addition and multiplication.

– The set M ⊆ R[Xn] is a multiplicative monoid with 0 if it satisfies: (i) 0, 1 ∈
M , and (ii) M is closed under multiplication.

– The set I ⊆ R[Xn] is an ideal if it satisfies: (i) 0 ∈ I, (ii) I is closed under
addition, and (iii) If a ∈ I and b ∈ R[Xn], then a · b ∈ I.

We are interested in finitely generated positive cones, multiplicative monoids
with 0, and ideals. Let F = {f1, . . . , fs} be a finite set of polynomials. We recall
that

– Any element in the positive cone generated by F (i. e., the smallest positive
cone containing F) is of the form

∑

α∈{0,1}s

kαFα where kα is a sum of squares for all α ∈ {0, 1}s

In the sum, α denotes an s-length vector with each element 0 or 1.
– Any nonzero element in the multiplicative monoid with 0 generated by F is

of the form Fα, where α = (α1, . . . , αs) ∈ N
s.

– Any element in the ideal generated by F is of the form k1f1+k2f2+· · ·+ksfs,
where k1, . . . , ks ∈ R[Xn].

The Positivstellensatz due to Stengle states that for a system of real polyno-
mial equalities and inequalities, either there exists a solution, or there exists a
certain polynomial which guarantees that no solution exists.

Theorem 4 (Stengle’s Positivstellensatz [29]). Let (fj)s
j=1, (gk)t

k=1, (hl)w
l=1

be finite families of polynomials in R[Xn]. Denote by P the positive cone gen-
erated by (fj)s

j=1, by M the multiplicative monoid with 0 generated by (gk)t
k=1,

and by I the ideal generated by (hl)w
l=1. Then the following are equivalent:

1. The set ⎧
⎨

⎩
zn ∈ R

n

∣
∣
∣
∣
∣

fj(zn) ≥ 0, j = 1, . . . , s
gk(zn) 	= 0, k = 1, . . . , t
hl(zn) = 0, l = 1, . . . , w

⎫
⎬

⎭
(1)

is empty.
2. There exist f ∈ P, g ∈ M,h ∈ I such that f + g2 + h = 0.
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3 Problem Formulation

The question that concerns us here is to verify whether the loop sentence

〈preE 〉 while(G) {body} 〈postE 〉
holds, when given the pre-expectation preE , post-expectation postE , a Boolean
expression G, and a loop-free probabilistic program body . One way to solve
this problem is to calculate the weakest pre-expectation wp(while(G, {body}),
postE ) and to check whether it is not smaller than preE . However, the weakest
pre-expectation of a while statement requires a fixed-point computation, which
is not trivial. To avoid the fixed point, the problem can be solved through a
quantitative loop invariant.

Theorem 5 [15]. Let preE be a pre-expectation, postE a post-expectation, G a
Boolean expression, and body a loop-free probabilistic program. To show

〈preE 〉 while(G) {body} 〈postE 〉,
it suffices to find a loop invariant I which is an expectation such that

1. (boundary) preE ≤ I and I · (1 − χG) ≤ postE;
2. (invariant) I · χG ≤ wp(body , I);
3. (soundness) the loop terminates with probability 1 from any state that satisfies

G, and
(a) the number of iterations is finite, or
(b) I is bounded from above by some fixed constant, or
(c) the expected value of I ·χG tends to zero as the number of iterations tends

to infinity.

Since soundness of a loop invariant is not related to pre- and postconditions and
can be verified from its type before any specific invariants are found, we focus on
the boundary and invariant conditions in Theorem 5. The soundness property
is left to be verified manually in case studies.

For pre-expectation preE and post-expectation postE , the boundary and
invariant conditions in Theorem 5 provide the following requirements for a loop
invariant I:

preE ≤ I

I · (1 − χG) ≤ postE
I · χG ≤ wp(body , I). (2)

The inequalities induced by the boundary and invariant conditions contain
indicator functions, which may be difficult to analyze if they appear multiple
times. So we rewrite them to a standard form. For a Boolean expression F , we
use [F ] to represent its integer value, i.e. [F ] = 1 if F is true, and [F ] = 0
otherwise. An expectation is in disjoint normal form (DNF) if it is of the form

f = [F1] · f1 + · · · + [Fk] · fk
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where the Fi are disjoint expressions, which means any two of the expressions
cannot be true simultaneously, and the fi are polynomials.

Lemma 6 [21]. Suppose f = [F1]·f1+· · ·+[Fk]·fk and g = [G1]·g1+· · ·+[Gl]·gl

are expectations over Xn in DNF. Then, f ≤ g if and only if (pointwise)

k∧

i=1

l∧

j=1

[

Fi ∧ Gj ⇒ fi ≤ gj

]

∧
k∧

i=1

[

Fi ∧
( l∧

j=1

¬Gj

)

⇒ fi ≤ 0

]

∧
l∧

j=1

[( k∧

i=1

¬Fi

)

∧ Gj ⇒ 0 ≤ gj

]

. (3)

Example 7. Consider the following loop sentence for our running example:

〈xy − x2〉 z := 0; while(0 < x < y){x := x + 1 [0.5] x := x − 1; z := z + 1; } 〈z〉

For this case, the following must hold for any loop invariant I.

xy − x2 ≤ I

I · [x ≤ 0 ∨ y ≤ x] ≤ z

I · [0 < x < y] ≤ 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1)

By Lemma 6, these requirements can be written as

xy − x2 ≤ I ∧ (4)

x ≤ 0 ∨ y ≤ x ⇒ I ≤ z ∧ (5)

0 < x < y ⇒ 0 ≤ z ∧ (6)

0 < x < y ⇒ I ≤ 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1) ∧ (7)

x ≤ 0 ∨ y ≤ x ⇒ 0 ≤ 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1) (8)

The program in this example originally served as a running example in [7].
There, after transforming the constraints into the form above, Lagrange interpo-
lation was applied to synthesize the template coefficients. Our approach asserts
the correctness of each conjunct in (4–8) by checking the nonnegativity of the
polynomial on the right side over a semialgebraic set related to polynomials
on the left side. In this way, we use the Positivstellensatz to synthesize the
coefficients.
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4 Constraint Solving by Semidefinite Programming

Our aim is to synthesize coefficients for the fixed invariant template for simple
(Subsect. 4.1) and nested (Subsect. 4.2) programs. Checking the validity of con-
straints can be transformed into checking the emptiness of a semialgebraic set.
Then, we show that the emptiness problem can be turned into sum-of-squares
constraints using Stengle’s Positivstellensatz.

Our Approach in a Nutshell. For a given polynomial template as a candidate
quantitative loop invariant, it needs to satisfy boundary and invariant condi-
tions. Our goal is to synthesize the coefficients in the template. These conditions
describe a semialgebraic set, and the satisfiability of the constraints is equiva-
lent to the non-emptiness of the corresponding semialgebraic set. Applying the
Positivstellensatz (see Sect. 2.3), we will transform the problem to an equivalent
semidefinite programming problem using Lemma 8. Existing efficient solvers can
be used to solve the problem. A more efficient yet sufficient way is to transform
the problem into a sum-of-squares problem using Lemma 9 and then to solve
it by semidefinite programming. After having synthesized the coefficients of the
template, we verify whether they are valid. In case of a negative answer, which
may happen due to numerical errors, some amendments can be made by adding
further constraints, which is described in Sect. 4.3. If the problem is still unsolved,
we try raising the degree of the template and reiterate the procedure.

4.1 Synthesis Algorithm for Simple Loop Programs

Now we are ready for the transformation method. Each conjunct obtained in
Lemma 6 is of the form F ⇒ G, where F is a quantifier-free formula constructed
from (in)equalities between polynomials in R

≤d[Xn], and G is of the form f ≤ g,
f ≤ 0 or 0 ≤ g, with f, g ∈ R

≤d[Xn]. If F contains negations, we use De Morgan’s
laws to eliminate them. If there is a disjunction in F , we split the constraints
into sub-constraints as ϕ ∨ ψ ⇒ χ is equivalent to (ϕ ⇒ χ) ∧ (ψ ⇒ χ). After
these simplifications, F ⇒ G can be written in the form

∧
i(fi �i 0) ⇒ g ≥ 0

where �i ∈ {≥,=}. Observe that a constraint
∧

i(fi �i 0) ⇒ g ≥ 0 is satisfied if
and only if the set {x|fi(x) �i 0 for all i; −g(x) ≥ 0; and g(x) 	= 0} is empty. In
this way, we transform our constraint into the form required by Theorem 4.

Summarizing, Constraint (2) (the main condition of Theorem 5) is satisfied
if and only if all semialgebraic sets created using the procedure above are empty.
Now we are ready to transform this constraint to an SDP problem.

Lemma 8 [9,25]. The emptiness of (1) is equivalent to the feasibility of an SDP
problem.

This and the following results are proven in the technical report [12] accom-
panying this publication. Although the transformation in Lemma 8 is effective,
it is complicated in practice. In the following lemma we present a simpler yet
sufficient procedure.
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Lemma 9. The following statements hold (with �i ∈ {≥,=}):
1. f(Xn) ≥ 0 ⇒ g(Xn) ≥ 0 holds if g(Xn) − u · f(Xn) is a sum of squares for

some u ∈ R≥0.
2. f(Xn) = 0 ⇒ g(Xn) ≥ 0 holds if g(Xn) − v · f(Xn) is a sum of squares for

some v ∈ R.
3. f1(Xn) �1 0 ∧ f2(Xn) �2 0 ⇒ g(Xn) ≥ 0 holds if g(Xn) − r1 · f1(Xn) − r2 ·

f2(Xn) is a sum of squares for some r1, r2 ∈ R; if �i is ≥, it is additionally
required that ri ≥ 0.

Note that Item (3) can be strengthened slightly by adding a cross product
r12f1(Xn)f2(Xn) and squares of the fi(Xn).

Example 10. Applying the above procedure, Constraint (5) in Example 7 is split
into (x ≤ 0 ⇒ I ≤ z) ∧ (y ≤ x ⇒ I ≤ z) and then normalized to (−x ≥ 0 ⇒
z − I ≥ 0) ∧ (x − y ≥ 0 ⇒ z − I ≥ 0). This holds if z − I + u1x is a SOS for
some u1 ∈ R≥0 and z − I + u2(y − x) is a SOS for some u2 ∈ R≥0. The other
constraints can be handled in a similar way.

After applying the Positivstellensatz and Lemma 8, template coefficients for
the loop invariant can be synthesized efficiently by semidefinite programming.
See our technical report [12] for details on the corresponding technique.

Algorithm 1. Loop Invariant Generation with Refinement
Input: sentence := 〈preE〉 while(G){body} 〈postE〉 with program variables Xn

Output: a loop invariant satisfying the boundary and invariant conditions

1: loop
2: d := 2
3: Choose a template for I ∈ R

≤d[Xn]
4: Let f be Constraint (2), i. e. the boundary and invariant conditions from Theo-

rem 5, for sentence
5: Let constraints be the SDP problem equivalent to f according to Lemma 8
6: while constraints is feasible do
7: Set the coefficients in the template for I
8: Round the coefficients of I into rational numbers
9: if I satisfies the boundary and invariant conditions then

10: Output I and terminate
11: end if
12: Refine constraints
13: end while
14: d := d + 2
15: end loop

We summarize our approach in Algorithm 1. The aim is to synthesize the
coefficients of template I. The terms in I are all terms with degree ≤ d from
variables in Xn. Algorithm 1 is semi-complete in the sense that it will generate
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an invariant if there exists one. Its termination is guaranteed in principle by
Theorem 4 and the equivalence between SOS and SDP in Lemma 8, though due
to numerical errors, the algorithm may fail to find I in practice.

For efficiency, Lemma 9 is often used instead of Lemma 8. Step 5 in
Algorithm 1 is replaced by: “Let constraints be the relaxation of f to an SOS
problem according to Lemma 9”; this can be translated to an equivalent SDP
problem, which is simpler than the direct translation of Lemma 8.

Example 11. We extend Example 7 using Lemma 9. To illustrate our solution
method, we choose Constraints (4), (5), and (7). The initial condition z = 0 is not
included in these constraints, so (4) needs to be refined to z = 0 ⇒ xy − x2 ≤ I.

First, we set a template for I. Assume I as a quadratic polynomial with three
variables x, y, z:

I = c0 + c1x + c2y + c3z + c11x
2 + c12xy + c13xz + c22y

2 + c23yz + c33z
2

where c0, . . . , c33 ∈ R are coefficients that remains to be determined.
For Constraint (4) with initial constraint z = 0, we get the following corre-

sponding constraint:

I − (xy − x2) − v · z ≥ 0 (4′)

For (5), the antecedens is a conjunction of two constraints. As in Example 10,
(5) is split into two constraints and transformed into

z − I + u1 · x ≥ 0 and
z − I − u2 · (x − y) ≥ 0 (5′)

For (7), the constraint 0 < x < y needs to be split into two inequalities
x > 0 ∧ y − x > 0. Similarly to (5), we transform (7) to

0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1) − I − u3 · x − u4 · (y − x) ≥ 0
(7′)

In this way the example can be transformed into an SDP problem with
constraints (4′), (5′), and (7′), and positivity constraints on the multipliers u1 ≥
0, . . . , u4 ≥ 0. (For v, an arbitrary real value is allowed.) Then the resulting SDP
problem can be submitted to any SOS solver.

The result using solver SeDuMi [30] is shown below.

I = −7.1097 · 10−10 − 3.8818 · 10−10x − 0.4939 · 10−10y + z − x2 + xy +
2.7965 · 10−10xz + 0.97208 · 10−10y2 + 4.4656 · 10−10yz − 0.28694 · 10−10z2

If we ignore the amounts smaller than the order of magnitude of 10−6, we
get I = z − x2 + xy. This I satisfies all constraints (including (6) and (8), which
are similar to (5) and (7)), so it is correct.
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4.2 Synthesis Algorithm for Nested Loop Programs

We are now turning to programs containing nested loops. To simplify our dis-
cussion, we assume the program only contains a single, terminating inner loop,
i.e. it can be written as

P = while(G){body}
= while(G){body1 ; while(Ginn){body inn}; body2}

where body1 , body inn, and body2 are loop-free program fragments. (If the inner
loop is placed within an if statement, one can transform it to the above
form by strengthening G.) For a given preE and postE , we need to verify
whether there exists an invariant I that satisfies Constraint (2) (the bound-
ary and invariant conditions of Theorem 5). We denote the inner loop by
Pinn = while(Ginn){bodyinn}.

For such a program, the main difficulty is how to deal with wp(body , I) in
Constraint (2). We propose a method here that takes the inner and outer iter-
ation into consideration together and uses the verified pre-expectation of the
inner loop to relax the constraint.

Fix templates for the polynomial invariants: I for the outer loop and Iinn for
the inner loop Pinn, both with degree d. Since body2 is loop-free, it is easy to
obtain Ĩ := wp(body2 , I). We use Ĩ as post-expectation postE inn for the inner
loop. Note that (2) for the inner loop requires preE inn ≤ Iinn, so we can use
the template Iinn also as template for preE inn. Then the constraints for loop
invariants I and Iinn are

preE ≤ I

I · [1 − χG] ≤ postE
I · χG ≤ w̃p(body , I) := wp(body1 , preEinn)

preE inn = Iinn

Iinn · [1 − χGinn ] ≤ postE inn = wp(body2 , I)
Iinn · χGinn ≤ wp(body inn, Iinn)

(9)

The first three equations are almost Constraint (2) for the outer loop, except
that w̃p is the strengthening of the weakest pre-expectation using preE inn =
Iinn in the wp-calculation instead of wp(Pinn, Ĩ). The last three equations are
Constraint (2) for the inner loop, except that we require equality in preE inn ≤
Iinn.

Then we have the following lemma, proven in our technical report [12].

Lemma 12. An invariant I that satisfies Constraint (9) also satisfies (2), there-
fore it is a loop invariant for program P .

4.3 Handling Numerical Error

In practice, it sometimes happens that numerical errors lead to wrong or trivial
coefficients in the templates. We suggest several methods to refine the constraints
and avoid these errors.
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Due to the inaccuracy of floating-point calculations, it is hard for a software
to check equations and inequalities like x = 0 or x 	= 0. A common trick to
avoid this problem is to turn the equality constraint into x ≥ 0 ∧ x ≤ 0. As
for inequalities, taking x 	= 0 as an example, a way to solve the problem is
adding a new variable y to transform the constraint into xy ≥ 1, since xy ≥ 1
implies x 	= 0 for any value of y. The new constraints are in the form required
by Theorem 4.

Numerical errors may also lead to an unsound invariant: we may get some
coefficients with a small magnitude, which often result from floating-point inac-
curacies. A common solution for this problem is to ignore those small numbers,
usually smaller than 10−6 in practice, which means that if r is presented as a0

a1
with a1 > 0, then it is the closest to r in all rational numbers having smaller
denominator. In Example 11, eliminating the terms with a small order of mag-
nitude was successful, but we cannot be sure whether the resulting invariant is
correct if the remaining coefficients are approximate. We propose to check the
soundness of such solutions symbolically as follows. Checking whether the gen-
erated invariant satisfies Constraint (2) is a special case of quantifier elimination
∀xn ∈ R

n, f(xn) ≥ 0. Such problem can be solved efficiently using an improved
Cylindrical Algebraic Decomposition (CAD) algorithm implemented in [17]. In
our experiments in Sect. 5, the found solutions are obtained by ignoring small
numbers, and we verified they are correct by running CAD in a separate tool.

If the invariant still violates some of the constraints, we can try to strengthen
the constraint (e. g., change x ≥ 0 to x ≥ 0.1) and repeat our method.

5 Experimental Results

We have implemented a prototype in Python to test our technique. We call the
MATLAB toolbox YALMIP [22] with the SeDuMi solver [30] to solve the SDP
feasibility problem. We use the math software Maple to verify the correctness of
the constraints through CAD. The experiments were done on a computer with
Intel(R) Core(TM) i7-4710HQ CPU and 16 GiB of RAM. The operating system
is Window 7 (32bit). Constraint refinement cannot be handled automatically in
the current version, but we plan to add it together with projection for rounding
solutions in a future version.

Our prototype and the detailed experimental results can be found at http://
iscasmc.ios.ac.cn/ppsdp. For each probabilistic program, we give the pre- and
post-expectations in Table 1. The annotated pre-expectation serves as an exact
estimate of the annotated post-expectation at the entrance of the loop. We
apply the method to several different types of examples. A summary of the
results is shown in Table 1. The first eleven probabilistic programs are bench-
marks taken from paper [7]. We have further constructed three case studies to
illustrate continuous distributions, polynomial probabilistic programs and nested
loop programs. Detailed descriptions and the code of all examples are available
from [12]. After generating an invariant, we ran CAD in Maple manually to
verify its feasability.

http://iscasmc.ios.ac.cn/ppsdp
http://iscasmc.ios.ac.cn/ppsdp
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Table 1. The column “Name” shows the name of each experiment. The annotated pre-
and post-expectations are shown in the columns “preE” and “postE”. The inferred
quantitative loop invariant for each example is given in the column “Invariant”. The
column “Time” gives the running time needed of our tool: the first one is the total
running time, and the second one is the time used in the SeDuMi solver.

Name preE postE Invariant Time (s)

ruin xy − x2 z z + xy − x2 0.4/0.3

bin1 x + 1
4
ny x x + 1

4
ny 0.4/0.2

bin2 1
8
n2 − 1

8
n + 3

4
ny x x + 1

8
n2 − 1

8
n + 3

4
ny 0.7/0.3

bin3 1
8
n2 − 1

8
n + 3

4
ny2 x x−0.0057n−0.0014x2 +

0.1763xn + 712.909n2 +
0.0014x2n+0.4114xn2 +
0.4188ny2 − 0.0178n3

0.7/0.3

geo x + 3zy x x + 3zy 0.2/0.2

geo2 x + 15
2

x x+30.2312y+3.4699z−
12.6648y2 − 44.6591yz −
35.5112z2 − 22.8807

0.2/0.1

sum 1
4
n2 + 1

4
n x x + 1

4
n2 + 1

4
n 0.3/0.1

prod 1
4
n2 − 1

4
n xy − 1

4
n + xy + 1

2
xn +

1
2
yn + 1

4
n2

0.3/0.1

fair coin1 1
2

− 1
2
x 1 − x + xy 0.7130 − 0.5622x +

0.3364y + 0.8564n −
1.2740x2 + 07610xy −
1.4572xn − 1.2208y2 +
1.4572yn − 0.1366n2

0.2/0.1

fair coin2 1
2

− 1
2
y x + xy 1.1941 + 1.6157x +

0.6387y + 7.9774n −
14.6705x2 + 9.7904xy −
14.9948xn− 14.6457y2 +
14.9948yn − 1.4058n2

0.3/0.1

fair coin3 8
3

− 8
3
x − 8

3
y + 1

3
n n 6.0556 + 2.5964x +

3.2468y + 39.2052n −
69.9038x2 + 44.0224xy −
72.1408xn− 69.8067y2 +
72.1408yn − 6.7632n2

0.2/0.1

simple perceptron −2b n n − 2b 0.3/0.1

airplane delay 106.548x h 106.548x − 106.548n + h 0.4/0.2

airplane delay2 282.507x h 282.507(x − n) + h 0.5/0.2

nested loop 20(m − x) k k + 20(m − x) 1.6/1.1

As we can see from Table 1, the running time of our method is within one
second. There are some notes when calculating the examples. We relax the loop
condition z 	= 0 in example geo2 into z ≥ 0.5. Also in the fair coin example, we
relax the loop condition x 	= y into x − y ≥ 0.5 ∨ y − x ≥ 0.5. Since variables in
those two examples are integers, the relaxation is sound.
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5.1 Evaluation

Other approaches to compute loop invariants in probabilistic programs are the
Lagrange Interpolation Prototype (LIP) in [7], the tool for martingales (TM)
in [3] and Prinsys in [15]. The tools are executed on the same computer, LIP
and TM under Linux and the other two under Windows. In Table 2, we compare
the features supported by the four tools.

Table 2. Comparison of the features supported by 4 tools

Prinsys LIP TM Our tool

Type of program Linear Cubic Linear Polynomial

Type of invariant Linear Polynomial Linear Polynomial

Computation method Symbolic Symbolic Numerical Numerical

Distribution of variable Discrete Discrete Continuous Continuous

We have tested the examples in Table 1 on these four tools. Prinsys takes
the longest time and fails to verify any of non-linear examples presented. LIP
fails to verify any examples that include a continuous variable or have a degree
larger than 3; additionally it is always about 10 times slower than our tool. TM
fails to verify examples ruin, bin3 and geo directly. We observe that it cannot
treats constraints of the form x = y or x 	= y (where x and y might be variables
or constants). However, by transforming x = y into x ≥ y ∧ y ≥ x, TM can
synthesize a supermartingale for the program. Also, it cannot verify the simple
perceptron, as it is a non-linear program. Furthermore, TM cannot deal with
nested loop programs.

A weakness of our approach is that it depends heavily on the number of
variables. We have constructed an artificial example to expose this: a parametric
linear program that repeats t times the probabilistic assignment

h := h + x1 + · · · + xn [0.5] h := h + x1 + · · · + xn + UnifDist(0, 2n)

This program has n + 2 variables. Table 3 compares the time consumption of
the main technical step in our prototype. Adding five variables leads to a solver
time that is about 2.5 times higher, showing that the measured solver time is
exponential in the number of variables. The full description and code are, again,
in our report [12].

Table 3. Comparison of running time (in seconds) of the parameterized linear example

Number of variables n = 15 n = 20 n = 25 n = 30 n = 35 n = 40

Solver time of our tool 0.41 1.30 2.44 8.30 20.56 46.62
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6 Conclusion

In this paper, we propose a method to synthesize polynomial quantitative invari-
ants for recursive probabilistic programs by semialgebraic programming via
a Positivstellensatz. First, a polynomial template is fixed whose coefficients
remain to be determined. The loop and its pre- and post-expectation can be
transformed into a semialgebraic set, of which the emptiness can be decided by
finding a counterexample satisfying the condition of the Positivstellensatz. Semi-
definite programming provides an efficient way to synthesize such a counterexam-
ple. The method can be applied to polynomial programs containing continuous
or discrete variables, including those with nested loops. When numerical errors
prevent finding a loop invariant polynomial right away, we currently can cor-
rect them ad hoc (by deleting terms with very small coefficients and sometimes
strengthening the constraints), but we would like to develop a more systematic
treatment.

As future improvement, we are working on the handling of numerical errors.
A better approximation can be found by projecting Ĩ(x) onto a rational sub-
space defined by SDP constraints [19,26]. There are also acceleration meth-
ods for different types of probabilistic programs: For linear programs, Handel-
man’s Positivstellensatz describes a faster way to synthesize SOS constraints,
and for Archimedean programs, [9] describes a faster way to apply Stengle’s
Positivstellensatz.
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Foundation of China (Grants 61532019 and 61472473), the CAS/SAFEA International
Partnership Program for Creative Research Teams, and the Sino-German CDZ project
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