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Abstract. Delay differential equations (DDEs) arise naturally as mod-
els of, e.g., networked control systems, where the communication delay in
the feedback loop cannot always be ignored. Such delays can prompt os-
cillations and may cause deterioration of control performance, invalidat-
ing both stability and safety properties. Nevertheless, state-exploratory
automatic verification methods have until now concentrated on ordinary
differential equations (and their piecewise extensions to hybrid state) on-
ly, failing to address the effects of delays on system dynamics. We over-
come this problem by iterating bounded degree interval-based Taylor
overapproximations of the time-wise segments of the solution to a DDE,
thereby identifying and automatically analyzing the operator that yields
the parameters of the Taylor overapproximation for the next temporal
segment from the current one. By using constraint solving for analyzing
the properties of this operator, we obtain a procedure able to provide
stability and safety certificates for a simple class of DDEs.

1 Introduction

“Despite [. . . ] very satisfactory state of affairs as far as [ordinary] differential
equations are concerned, we are nevertheless forced to turn to the study of
more complex equations. [. . . ] the rate of change of physical systems depends
not only on their present state, but also on their past history.” [2, p. iii]

Ever since we first managed to make a children’s swing oscillate with ourselves
sitting happily on top, all of us are perfectly aware of the impact of feedback
delays on the performance of control loops. The same is true for more serious ap-
plications in automatic control, where digital implementation of the controller,
though adding flexibility, comes at the price of introducing increasingly rele-
vant delays into the feedback loop between controller and plant. The sources of
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such delays are manifold: conversions between analog and digital signal domains,
complex digital signal-processing chains enhancing, filtering, and fusing senso-
ry signals before they enter control, sensor networks harvesting multiple sensor
sources before feeding them to control, or network delays in networked control
applications physically removing the controller(s) from the control path. In each
such application, describing the feedback dynamics of the controlled system by
conjoining the ordinary differential equations (ODEs) describing the plant dy-
namics with the ODEs describing control may be misleading, as the delays in-
troduced into the feedback loop may induce significantly deviating dynamics;
cf. Fig. 1 for a simple example. Delays may prompt oscillations in otherwise
convergently stable feedback loops or vice versa, they can destabilize otherwise
stable orbits [40], can stretch dwell times, may induce residual error that never
settles, or can cause transient overshoot into unsafe operational regimes (e.g. to
negative values in Fig. 1), to name just a few of the various possible effects fun-
damentally altering system dynamics. Unmodeled delays in a control loop thus
have the potential to invalidate any stability or safety certificate obtained on the
delay-free model, as delays may significantly deteriorate control performance.

Given the omnipresence of such delays in modern control schemes, the appar-
ent lack of tools permitting their safe automatic analysis surprises. While delay
differential equations (DDEs) describing system dynamics as a function

d

dt
x(t) = f(x(t),x(t− δ1), . . . ,x(t− δn)), with δn > . . . > δ1 > 0, (1)

of past system states have long been suggested as an adequate means of mod-
eling delayed feedback systems [2], their tool support still seems to be confined
to numerical simulation based on integration from discontinuity to discontinu-
ity, e.g. by Matlab’s dde23 algorithm. Such numerical simulation, despite being
extremely useful in system analysis, nevertheless fails to provide reliable certifi-
cates of system properties, as it is numerically approximate only — in fact, error
control even is inferior to ODE simulation codes as dynamic step-size control is
much harder to attain for DDEs due to the non-local effects of step-size changes.
Counterparts to the plethora of techniques for safely enclosing set-based initial
value problems of ODEs, be it safe interval enclosures [27, 37, 25], Taylor mod-
els [3, 28], or flow-pipe approximations based on polyhedra [6], zonotopes [13],
ellipsoids [19], or support functions [22], are thus urgently needed for DDEs. As
in the ODE case, such techniques would safely (and preferably tightly) overap-
proximate the set of states reachable at any given time point from the set of
initial values. The reason for their current lack is that DDEs are in some respect
much more complex objects than ODEs: DDEs belong to the class of systems
with functional state, i.e., the future (and past) is not determined by a single
temporal snapshot of the state variables, yet by a segment of a trajectory. This
renders the systems infinite-dimensional; in fact, as can be seen from Eq. (1),
transformed copies of the initial segment of duration δn will generally be found
in higher-order derivatives of x(t) even after arbitrarily long time.

A safe enclosure method for DDEs therefore has to manipulate computa-
tional enclosures of sets of trajectory segments x : [a, b] → Rn rather than
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computational enclosures of sets of states x ∈ Rn, like interval boxes, zonotopes,
ellipsoids, or support functions. A reasonable data structure could be interval-
based Taylor forms, being able to enclose a set of functions by a parametric
Taylor series with parameters in interval form. To avoid dimension explosion
incurred by the ever-growing degree of the Taylor series along the time axis, fol-
lowing the idea of Taylor models [3, 28], we employ Taylor series of fixed degree
and move higher-degree terms into the parametric uncertainty. We use this data
structure to iterate bounded degree Taylor overapproximations of the time-wise
segments of the solution to a DDE, thereby identifying and automatically ana-
lyzing the operator that yields the parameters of the Taylor overapproximation
for the next temporal segment from the current one. By using constraint solving
for analyzing the properties of this operator, we obtain an automatic procedure
providing stability and safety certificates for a simple class of DDEs of the form

d

dt
x(t) = f(x(t− δ)) (2)

with linear or polynomial f : Rn → Rn. While this form is very restrictive, in
particular excluding immediate feedback between the state vector x(t) and its
dynamics d

dtx(t) in the model of the physical plant, it serves well as an illustrative
example for exposing the method, and can easily be generalized by combination
with the well-developed techniques for flow-pipe approximations of ODEs.

2 Related Work

Driven by the demand for safety cases (in a broad sense) for safety-critical control
systems, we have over the past decades seen a rapidly growing interest in auto-
matic verification procedures for system models involving continuous quantities
and dynamics described by, a.o., differential equations. Verification problems of
primary interest are thereby invariance properties concerning the dynamically
reachable states and stability properties describing the long-term behavior.

Invariance properties are a prototypical safety property. A natural approach
to their automatic verification is state-space exploration aiming at computing the
reachable state space. Unfortunately, only very few families of restrictive linear
dynamic systems feature a decidable state reachability problem [20, 16]. A more
generally applicable option is to compute overapproximations of the state sets
reachable under time-bounded continuous dynamics, and then to embed them,
e.g., into depth-bounded automatic verification by bounded model checking, or
into unbounded verification by theorem proving. Among the many abstraction
techniques proposed for over-approximating reachable sets of continuous dynam-
ics given as ordinary differential equations are use of interval arithmetic [33, 27,
37, 25], Taylor models [3, 28], flow-pipe approximations based on polyhedra [6],
zonotopes [13], ellipsoids [19], or support functions [22], and abstraction based
on discovering invariants [36, 32, 31, 23]. There are several bounded model check-
ers available for continuous and hybrid systems, like iSAT-ODE [8], Flow* [5],
and dReach [18], to name just a few. Theorem provers for ODE dynamics and
hybrid systems are also available, e.g., KeYmaera [30] or HHL Prover [41].
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Safety verification is complemented by automatic procedures for providing
certificates of stability. Most such methods are based on the automatic con-
struction of Lyapunov functions [4] or piecewise Lyapunov functions [29]. Again,
such procedures can only be complete for restricted, mostly linear cases, though
incomplete extensions to rather general classes exist, e.g. [24].

Delay differential equations (DDEs) [2] model continuous processes with de-
layed feedback, be it natural dynamic systems [1] or technical applications in
automatic control, which increasingly feature feedback delay due to, a.o., com-
munication networks. As the delay substantially alters system behavior, verifi-
cation of properties of DDE is an independent area of research. Albeit there is
extensive literature on the theory of DDEs, obviously also addressing the ques-
tion of how to manually verify stability, fully automatic proof procedures for
such models are currently lacking and thus provide an open area of research.
To this end, it should be noted that DDE model a richer class of delay phe-
nomena than sample-and-hold devices or sampled controllers, even if the latter
come equipped with delayed output delivery. Such devices can well be modeled
by hybrid automata, providing an infinite-state yet finite-dimensional Marko-
vian model, and consequently can be analyzed by the corresponding verification
tools. The functional state of DDE, in contrast, is infinite-dimensional.

3 Overview of Our Approach

Fig. 1. Solutions to the ODE ẋ = −x
(dashed graph) and the related DDE
ẋ(t) = −x(t − 1) (solid line), both on
similar initial conditions x(0) = 1 and
x([0, 1]) ≡ 1, respectively.

A reasonably small delay does not affect
the solution of a linear ordinary differen-
tial equation (ODE) much, such that ana-
lyzing the ODE derived from the DDE by
ignoring the delays may be indicative of
the overall behavior. Unfortunately, it is
unclear how much delay can be ignored in
general, as this depends on the property
under investigation. The following exam-
ple demonstrates the difference between a
DDE and the related ODE obtained by
neglecting delays.

In Fig. 1, the dashed and solid lines
represent the solution of the ODE ẋ = −x
without delay and of the related DDE
ẋ(t) = −x(t − 1) with 1 second delay, re-
spectively. Both are given as initial value
problems, where for the ODE we assume
an initial value x(0) = 1, which we gener-
alize for the DDE to x([0, 1]) ≡ 1. Figure 1 demonstrates that the delay tremen-
dously prolongs dwell times, as well as invalidates some safety properties: the
dashed line (representing the ODE behavior) always stays above the horizontal
axis whereas, in contrast, the solid line (representing the DDE solution) visits
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the negative range repeatedly. Even though the difference between the solutions
of the ODE and the DDE becomes smaller when the delay turns smaller, it is in
general hard to say how small a delay may ensure conservation of some safety
property valid of the ODE. Hence, it is necessary to have native methods for
analyzing the behaviour of DDE.

3.1 Computing Enclosures by Taylor Models

In the following, we will as a running example show how to analyze the DDE

ẋ(t) = −x(t− 1) (3)

with the initial condition x([0, 1]) ≡ 1.
The solution to the DDE (3) can be computed segment-wise by integration,

computing segments of duration 1 each. As we know the initial segment, we can
set f0(t) = 1 for t ∈ [0, 1], and can assume that the segment number n ∈ N
satisfies n ≥ 1 in what follows. Clearly, the solution of Eq. (3) over the time
interval (n, n + 1] can be represented by using its solution over the previous 1
second interval (i.e., the solution on (n− 1, n]) as follows:

x(n+ t) = x(n) +

∫ n−1+t

n−1
−x(s)ds, for t ∈ (0, 1]. (4)

We simplify Eq. (4) by renaming x(n+ t1) to fn(t1). Thus, fn(t) : (0, 1]→ R
is the solution of Eq. (3) on interval (n, n+ 1], but the domain of the solution is
shifted to interval (0, 1] to obtain a normalized presentation, i.e.,

fn(t) = fn−1(1) +

∫ t

0

−fn−1(s)ds, t ∈ (0, 1] (5)

From Eq. (5) it follows that the degree of the solution fn over the n-th
interval will be n − 1, e.g., 3599 after one hour. Therefore, even if the DDE
easily is solvable by polynomials, its representation rapidly gets too complex to
be algorithmically analyzable due to excessive degrees and number of monomials.
For instance, it is hard to calculate the reachable set of the DDE in Eq. (3).

In order to address this issue, we will propose a method based on bounded-
degree interval Taylor models to over-approximate the solution by polynomials
with fixed degree. For instance, suppose we are trying to over-approximate the
solution by polynomials of degree 2. We can then predefine a template of the
form fn(t) = an0 + an1t+ an2t

2 on interval [n, n+ 1], where an0, an1, and an2
are interval parameters able to incorporate the approximation error necessarily
incurred by bounding the degree of the polynomial. Thus, the solution on the
next interval can be safely over-approximated using such a Taylor model.

To compute the Taylor model, we first need to obtain the first and second

derivative f
(1)
n+1(t) and f

(2)
n+1(t) of solution segment n+ 1 based on the preceding

segment. The first derivative f
(1)
n+1(t) is computed directly from Eq. (3) as

f
(1)
n+1(t) = −fn(t) = −an0 − an1t− an2t2 .
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The second derivative f
(2)
n+1(t) is computed based on f

(1)
n+1(t) by

f
(2)
n+1(t) =

d (f
(1)
n+1(t))

d t
= −an1 − 2an2t .

Note that while polynomial derivative rules do in general not lift to interval Tay-
lor series, as the interval parameters permit to cover functions locally exhibiting
larger derivatives, the generation process of the interval Taylor series for the first
derivative avoids this fallacy here.

Using a Lagrange remainder with fresh variable ξn ∈ [0, 1], we hence obtain

fn+1(t) = fn(1) +
f
(1)
n+1(0)

1!
t+

f
(2)
n+1(ξn)

2!
t2

= (an0 + an1 + an2)− an0t−
an1 + 2an2ξn

2
t2.

In order to proceed towards analysis of the asymptotic behavior of the sys-
tem, we in a second step derive the operator expressing the relation between
Taylor coefficients in the current and the next step. By replacing fn+1(t) with
its parametric form an+10+an+11t+an+12t

2 in the above equation, one therefore
derives the operator [

an+10

an+11

an+12

]
=

[
1 1 1
−1 0 0
0 − 1

2
−ξn

][
an0

an1

an2

]
(6)

mapping the coefficients of the Taylor form at step fn to the coefficients of the
Taylor form of fn+1. Hence, the coefficients change every second according to the
above linear operator, which can be made time-invariant (yet interval-valued)
by replacing ξn with its interval [0, 1].

Having obtained such a linear and time-invariant discrete system, we can in
a third step determine whether this discrete dynamic system is asymptotically
or robustly stable using the method proposed in [7]. If this holds, the sequence of
coefficients finally converges to an equilibrium point, which in turn implies that
the DDE in Eq. (3) is also asymptotically or robustly stable.

If we are interested in safety verification rather than stability, the above
operator can be iterated within bounded model checking (BMC), using any BMC
tool built on top of an arithmetic SMT solver being able to address polynomial
arithmetic, e.g. iSAT [11]. For a given safety property like S(x)=̂ − 1 ≤ x ≤ 1,
the requirement in the n-th segment translates to ∀t ∈ [0, 1] : S(fn(t)), where
fn is the Taylor form stemming from the n-th iteration of the above linear
operator. Hence, the safety property S(x) for system (3) becomes safety property
∀n ∈ N, t ∈ [0, 1] : S(fn(t)) in system (6). Discharging this proof obligation in
BMC requires polynomial constraint solving due to the Taylor forms involved.

We can also conduct unbounded safety verification by means of pursuing BM-
C for sufficiently many steps ks in case our DDE is stabilizing. The corresponding
upper bound ks on the number of steps can be computed via the following pro-
cedure (please refer to [7] for details): The asymptotic or robust stability of the
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linear time-invariant discrete dynamic system in Eq. (6) is guaranteed by solving
a linear matrix inequality given by Theorem 1, which also gives a Lyapunov func-
tion V (an0, an1, an2, ξn) (denoted by V (A(n), ξn) in the following, where A(n)
represents an0,an1, and an2). Using the Lyapunov function, we first compute by
iSAT3 the largest c such that V (A(n), ξn) ≤ c∧¬S(fn(t)) is unsatisfiable. Then
we calculate the minimum reduction dm on the condition V (A(n), ξn) ≥ c, i.e.

dm = min{V (A(n), ξn)− V (A(n+ 1), ξn+1) | V (A(n), ξn) ≥ c} ,

where the constraint can be eliminated by Lagrange multipliers and dm can be
calculated by Matlab function fmincon. The existence of such c implies that

V (A(n), ξn) ≤ c → S(fn(t)) holds, which implies that after ks = V (A(0),ξ0)−c
dm

steps we can be sure to reside inside the safety region S(fn(t)). As V (A(0), ξ0)
is linear in ξ0 (as explained in the next section), it follows that it is monotonic

or antimonic in ξ0 and thus max
(
V (A(0),0)−c

dm
, V (A(0),1)−c

dm

)
provides an upper

bound for ks. Hence, all that remains to be done is to pursue BMC for ks steps,
as safety violations can only arise transiently during those first ks steps.

In fact, there is no need to blindly unwind and compute the BMC problems
up to depth ks. Instead, it suffices to do so until the Lyapunov function decreases
to below c —which is guaranteed after at most ks steps, but maybe faster— and
then stop. Hence, we may save a lot of computations by checking for the goal
¬S(fn(t))∨V (A, ξ) ≤ c at each step in our BMC process. If the condition holds,
the bounded model checking procedure terminates immediately. Then of course
we need to disambiguate cases by determining which disjunct in ¬S(fn(t)) ∨
V (A, ξ) ≤ c is satisfied. If the first alternative ¬S(fn(t)) is satisfied, then a
counter-example to the safety property is found, otherwise the safety property
has been certified by the BMC in at most ks steps.

In this example, no linear (i.e., Taylor order 1) enclosure for the DDE in
Eq. (3) suffices to prove the safety property −1 ≤ x ≤ 1, but the enclosure
computed for degree 2 guarantees it.

4 Formal Analysis of Polynomial DDEs

In this section, we will generalize the basic idea to a general technique for poly-
nomial DDE of shape (2). The DDE under consideration thus are of the form

ẋ(t+ δ) = g(x(t)), ∀t ∈ [0, δ] : x(t) = p0(t), (7)

where x is a state vector in Rm, p0(t) is a vector of polynomials in Rm[x]
representing the initial condition as a trajectory of the DDE in the initial δ time
units, and g is a vector of polynomials in Rm[x].

In order to compute an enclosure for the trajectory defined by DDE (7), we
predefine a template interval Taylor form of fixed degree k as

fn(t) = an0
+ an1

t+ · · ·+ ank
tk, (8)
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where an0
, . . . ,ank

are interval-vector parameters. As before, fn is used to
enclose the trajectory for time interval [nδ, (n + 1)δ]. In what follows, we set
f0(t) = p0(t) and will compute the successive fn recursively from it. For nota-
tional convenience, we denote [an0

, . . . ,ank
] by a matrix A(n) in Rm×(k+1).

4.1 Constraints on Interval Parameters

As explained in Section 3, the trajectory induced by the DDE in Eq. (7) can be
represented by a piecewise function, with the duration of each piece being the
feedback delay δ. In order to compute an enclosure for the whole trajectory of
the DDE, we may calculate the relation between A(n) and A(n+1). In contrast
to the linear case of the previous section, we now need to exploit different orders

of Lie derivatives f
(1)
n+1,f

(2)
n+1, . . . ,f

(k)
n+1, which can be computed as follows:

f
(1)
n+1(t) = g(fn(t)),f

(2)
n+1(t) =

df
(1)
n+1(t)

d t
, . . . ,f

(k)
n+1(t) =

df
(k−1)
n+1 (t)

d t
, (9)

i.e., the first-order Lie derivative is obtained directly from Eq. (7) and the (i+1)-
st order Lie derivative is computed from the i-th order Lie derivative by symbolic
differentiation. The Taylor expansion of fn+1(t) is derived from this as

fn+1(t) = fn(δ) +
f
(1)
n+1(0)

1!
t+ · · ·+

f
(k−1)
n+1 (0)

(k − 1)!
tk−1 +

f
(k)
n+1(ξn)

k!
tk , (10)

where ξn is a vector ranging over [0, δ]m.

From Eq. (10), by comparing the coefficients of the monomials with the same
degree at the two sides, a relation between An and A(n+1) is obtained. It can
be represented as a vector of polynomial equations possibly involving ξn, say

A(n+ 1) = R(A(n), ξn) (11)

where R is a vector of polynomial functions of overall type Rm(k+2) → Rm(k+1).

After substituting ξ with interval [0, δ], Eq. (11) again forms a time-invariant
discrete dynamic system. The stability of this system can again be determined by
existing approaches, as can the bounded and unbounded model-checking prob-
lems of the original system (7). We will elaborate on the approach subsequently.

4.2 Stability of the Time-Invariant Discrete Dynamic System

In this section, we discuss how to determine the stability of the resulting time-
invariant discrete dynamic system in Eq. (11), which implies stabilization of the
original system (7) to a stable orbit f→∞ which cycles through every δ time
units. We distinguish a linear and a more general polynomial case concerning
the right-hand side g of the DDE (as well as the initial condition).
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Linear g: In case g in (7) is a linear function, f
(1)
n+1(t), . . . ,f

(k)
n+1(t) are all linear

in the entries of A(n) according to Eq. (9). Using Eq. (10), the equation (11)
can hence be reformulated as

A(n+ 1) = T (ξn)A(n) , (12)

with T (ξn) an m×m-matrix whose entries are linear in the components of ξn.
The stability analysis for a linear time-invariant discrete dynamic system of

form (12) can be pursued using the following theorem from [7]:

Theorem 1 (Stability Analysis [7]). A system of the form

x(n+ 1) = T (ξn)x(n) , T (ξn) =
N∑
i=1

λniTi , λni ≥ 0,
N∑
i=1

λni = 1

is asymptotically/robustly stable if and only if there exist symmetric positive
definite matrices Si, Sj and matrices Gi with appropriate dimensions such that[

Gi +GTi − Si GTi T
T
i

TiGi Sj

]
> 0

for all i = 1, ..., N and j = 1, ..., N . Moreover, the corresponding Lyapunov

function is V (x(n), ξn) = x(n)T (
N∑
i=1

λniS
−1
i )x(n).

In order to exploit Theorem 1, we have to reformulate T (ξn) in Eq. (12) to

T (ξn) =

N∑
i=1

λniTi, where λni ≥ 0,

N∑
i=1

λni = 1. (13)

From Equations (8) and (9), we recover that the degree of f (i)
n (t) is k+1−i, for

i = 1, · · · , k. Furthermore, according to Eq. (12), each entry tij of T (ξn) is linear
in the components of ξn, written as tij(ξn), for i = 1, . . . ,m and j = 1, . . . ,m.
For each tij(ξn), we have

tij(ξn) = (1−
ξn1
δ

)tij(ξn)[0/ξn1] +
ξn1
δ
tij [δ/ξn1], (14)

where e[b/a] stands for substituting b for a in e. Hence,

T (ξn) = (1−
ξn1
δ

)T (ξn)[0/ξn1] +
ξn1
δ
T (ξn)[δ/ξn1] (15)

as tij(ξn) is linear in ξn1. Obviously, 0 ≤ 1 − ξn1

δ ≤ 1 and 0 ≤ ξn1

δ ≤ 1, as
ξn1 ∈ [0, 1]. By repeating the above procedure m times, we obtain

T (ξn) =

2m∑
i=1

λi(ξn)Ti, λi(ξn) ≥ 0,

2m∑
i=1

λi(ξn) = 1, (16)
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where Ti is a matrix, by substituting for each component of ξn either of the
extremal values 0 or δ in T (ξn). This is sound due to the linearity in ξn. Equation
(16) constitutes a form where the stability of the time-invariant linear discrete
dynamic system of Eq. (12) can be determined by the method of Theorem 1. Note
that stabilization of the sequence of Taylor forms implies global stabilization of
the underlying linear DDE (12), as the Taylor forms converge towards 0.

Polynomial g: When g is nonlinear, the relation between A(n+ 1) and A(n)
expressed in Eq. (11) becomes nonlinear. Thanks to existing methods on com-
puting parametric Lyapunov functions, such as [24, 34], we can apply such tech-
niques to analyze the stability of a time-invariant polynomial discrete dynamic
system of Eq. (11), as it arises for polynomial g. In this paper, we build on the
idea from [34] and adapt it to the discrete-time setting of Eq. (11).

A parametric polynomial in y of degree k is of the form
∑

(
∑
α)≤k bαy

α,

where y = (y1, · · · , ym),α = (α1, · · · , αm),yα = yα1
1 · · · yαm

m ,
∑
α =

∑m
i=1 αi.

We will subsequently denote such a polynomial by p(y, b), where b stands the
vector of the coefficients.

Definition 1. Given a dynamic system as in Eq. (11) and state sets A, B and
BA with BA ⊂ A, a parametric polynomial p((A, ξ), b) is called a relaxed Lya-
punov function with respect to A and BA iff

∃b ∈ B.∀A(n) ∈ A.∀ξn, ξn+1 ∈ [0, δ]m.

A(n) /∈ BA =⇒ p((A(n+ 1), ξn+1), b)− p((A(n), ξn), b) < 0 , (17)

where A and B are domain constraints on A(n) and b respectively, BA is a basin
of attraction.

In Definition 1, for any b0 which satisfies (17), the relaxed Lyapunov function
p((A, ξ), b0) behaves like Lyapunov function in A \ BA for the time-invariant
discrete polynomial dynamic system in Eq. (11), abbreviated as V (A, ξ). Com-
puting such b satisfying (17) can be achieved with interval arithmetic according
to the method given in [34] as follows:

Step 1: Replace vector variables A(n), ξn, and ξn+1 in (17) respectively with
the corresponding intervals (A(n) is bounded by A), and simplify the for-
mula with interval arithmetic.

Step 2: Solve the resulting constraints on b, which are a set of linear interval
inequalities (LIIs), by Rohn’s approach [35] (will be elaborated below).

Step 3: If the LIIs do not have a solution, bisect the intervals for vector variables
A(n), ξn and ξn+1, and repeat the steps 1 and 2 until a solution of b is
found or the length of intervals is smaller than a prescribed threshold ε.

LIIs can be solved almost exactly using Rohn’s approach [35] as follows: first,
replace each variable a by an expression a1−a2, where a1 ≥ 0 and a2 ≥ 0; then,
replace IaB 0 by Ia1 − Ia2 B 0, which is equivalent to I+a1 − I−a2 B 0, where
I+ = max I, I− = min I and B ∈ {<,≤}. One thus derives a system of linear
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inequalities that can be solved by linear programming. The only problem is that
(Ia1− Ia2) is not equivalent to (Ia) in general. However, if B is symmetric with
respect to the origin, i.e. bi ∈ [−Bi,Bi] for each bi of b, and I+ and I− have
a same sign, then the two formulas are equivalent by interval arithmetic. In an
actual implementation, it is easy to guarantee the above condition.

If the method succeeds, it proves that the parameters of the Taylor form will
eventually converge from anywhere in region A into region BA. This implies that
DDE (7) will converge into a corresponding region of its state space defined by
the range over t = [0, δ] of the Taylor polynomials with parameters in BA, when-
ever the DDE is started on initial conditions defined by the Taylor polynomials
with parameters in A. It thus constitutes a proof of local stability of the DDE.

4.3 Guaranteeing Safety

Now, we show how to compute the upper bound ks on steps potentially leaving
the safety region, as needed for unbounded verification of a given invariant S(x)
by means of bounded model checking (BMC). As computation of ks for linear g
has already been elaborated in the end of section 3, the following discusses the
computation of such ks for polynomial g based on the above method.

When replacing the right-hand side constant 0 in (17) with a positive constant
dm, the above algorithm for computing relaxed Lyapunov functions will find a
relaxed Lyapunov function that decreases by at least dm for each step outside BA.
This can be used for unbounded safety verification, as it provides a computable
bound for convergence into BA, where for simplicity we here assume that BA is
such that the range over t = [0, δ] of the Taylor polynomials with parameters in
BA is a subset of our safety region S(x), i.e. the conjectured invariant.

Given such a minimum reduction dm outside BA, and thus outside the safety
region S(x), we use iSAT to compute the largest c such that V (A(n), ξn) ≤
c ∧ ¬S(fn(t)) ∧ t ∈ [0, δ] is not satisfiable, where S(x) is the invariant to be
verified. Clearly, the existence of such c implies that V (A(n), ξn) ≤ c→ S(fn)

holds. Hence, after ks = V (x(0),ξ(0))−c
dm

steps S(fn) will necessarily hold, and
safety violations can only occur transiently during the first ks steps. Hence, using
bounded model-checking for ks steps yields an unbounded safety certificate in
case no violation is detected before that step bound. Note that BMC here again
requires polynomial SMT solving due to the Taylor forms. Again there is no need
to always unwind the BMC problem to depth ks, as checking the disjunctive goal
¬S(fn(t))∨V (A(n), ξn) ≤ c and disambiguating the outcome probably permits
early termination as in Sect. 3.

5 Implementation

The algorithms exposed in the previous section have been implemented in Matlab
and C++, thereby taking advantage of the iSAT3 tool through its API. Given a
DDE and the parameters relevant to the analysis, Matlab’s symbolic computa-
tion is first employed for computing the Lie derivatives and thus identifying the
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discrete time-invariant operator connecting segments of the Taylor approxima-
tion. For the linear case, stability analysis is then conducted by the Matlab LMI
solver, where actually synthesizing the pertinent Lyapunov function is done by
Matlab matrix functions, and the minimum descent dm outside the safety region
is calculated by Matlab function fmincon. Polynomial stability analysis is based
on Matlab and interval arithmetic packages b4m and Profil. Computation of
a barrier value characterizing the safety region in terms of Lyapunov ranges is
done by calling iSAT3. The same applies for bounded model checking.

6 Examples

In this section, we will introduce several examples to demonstrate how the ap-
proach works in practice. All these examples have been processed fully automat-
ically by our prototype implementation.3

Example 1. Consider the linear DDE ẋ(t) = −x(t−1) from Eq. (3)) with initial
condition x([0, 1]) ≡ 1 and check its stability as well as the safety property
�(−1 ≤ x ≤ 1).

Using a Taylor model with degree 1, we calculate the operator relating the
parameters of successive Taylor forms to

A(n+ 1) =

[
1 1
−1 −ξn

]
A(n) .

This operator cannot be shown stable by the method of Theorem 1.
The operator automatically obtained for degree 2 has already been presented

in Eq. (6). For this operator, stability verification by the method of Theorem 1
succeeds, as does (unbounded) safety verification for the property�(−1 ≤ x ≤ 1)
by bounded model checking.

Example 2. Consider the three-dimensional linear DDE

ẋ(t) =

−1 1
2

0
1
2

−1 1
4

0 1
4

−1

x(t− 1

100
) (18)

with initial condition x([0, 1]) ≡ [− 125
11 ,−

360
11 ,−

90
11 ]. This system, which has been

inspired by [15, p. 585ff], models heat dissipation in a typical home with an
insulated ground floor, topped by an attic without significant insulation and
supported by a basement surrounded by earth. Up to a coordinate shift intro-
duced in order to move the equilibrium point to (0, 0, 0), its three variables x1
to x3 model the temperatures in the basement, the ground floor, and the attic,
respectively. The standard model usually encountered in introductory textbook-
s on modeling with differential equations takes the dissipation equations to be

3 The prototype implementation of the verification tool as well as the examples are
available for download from https://github.com/liangdzou/isat-dde
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ODEs; it is, however, reasonable to assume that the heat transfer through the
walls between the three compartments actually takes time (one could also ad-
d delays for convective heat transport within the rooms). A DDE model thus
seems in place here. While the actual transport delays would be state dependent,
any reasonably sized constant delay will already make the model better. Not yet
being able to deal with state-dependent delays, we have set the delay to 1

100h
for the sake of demonstration.

For the resulting system, we have automatically checked stability as well as
safety with respect to the invariance property �(x2 ≤ 25

11 ), where x2 denotes the
(shifted) temperature in the ground floor.

Using Taylor models of degree 1, we compute the operator relating successive
parameters of the Taylor forms to

A(n+ 1) =



1 1
100

0 0 0 0

−1 −ξ1 1
2

ξ1
2

0 0
0 0 1 1

100
0 0

1
2

ξ2
2

−1 −ξ2 1
4

ξ2
4

0 0 0 0 1 1
100

0 0 1
4

ξ3
4

−1 −ξ3

A(n) .

This operator has been shown stable by the method from Theorem 1 and the
unbounded safety property has been verified by BMC.

Example 3. This example is an adaption of Gustafson’s model of nutrient flow
in an aquarium [15, p. 589f]. It deals with using a radioactive tracer for the food
chain consisting of two aquatic plankton varieties drifting with the currents.
The variables in this three-dimensional system reflect the isotope concentrations
in the water, a phytoplankton species, and a zooplankton species, respectively.
The original model was an ODE model; a concise model would presumably have
to use PDE (partial differential equations) to model spacial variations and the
necessary drifts of species in the predator-prey part of the food chain; our DDE
model here is a compromise between these two extremes. Therefore consider the
three-dimensional linear DDE

ẋ(t) =

−3 6 5
2 −12 0
1 6 −5

x(t− 1

100
) (19)

with initial condition x([0, 1]) ≡ [10, 0, 0] and the conjectured invariant �(x1 −
x2 − x3 ≥ 5).

Beware that the eigenvalues of the matrix in this example are 0, −10−
√

6,
−10+

√
6, which implies that not even the corresponding ODE is asymptotically

stable. Hence, it comes as no surprise that we are not able to find an asymptoti-
cally stable enclosure to the DDE. Using Taylor models of degree 1, we calculate
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the operator relating successive parameter vectors to

A(n+ 1) =


1 1

100
0 0 0 0

−3 −3ξ1 6 6ξ1 5 5ξ1
0 0 1 1

100
0 0

2 2ξ2 −12 −12ξ2 0 0
0 0 0 0 1 1

100

1 ξ3 6 6ξ3 −5 −5ξ3

A(n) ,

which cannot be proven stable by the method of Theorem 1. By translating above
system into the form required for Theorem 1, we get a set of Ti. After calculation,
we find out that the spectral radius of all the Ti is no more than 1, which at
least shows that A(n) does not grow too fast. Using bounded model-checking
on the Taylor approximation, we have been able to show the overapproximation
unsafe in step 12 (corresponding to t ∈ [0.12, 0.13]s), while Simulink simulation
confirms this for t = 0.1452s. Further exploiting iSAT3 for BMC on the Taylor-
based overapproximation, we actually found the safe set {x | x1 − x2 − xe ≥ 5}
itself (not its complement) being unreachable in step 18, i.e. for t = 0.18. This
constitutes a rigorous automatic proof that the system actually is unsafe.

Example 4. Consider the polynomial DDE ẋ(t) = −x(t− 1)3 with initial condi-
tion x([0, 1]) ≡ c, c ∈ [3, 6] arbitrary, and safety condition �(−3000 < x < 3000).

This system is unsafe and Taylor approximations of arbitrary degree will thus
eventually reach the complement of the safe set S = {x | −3000 < x < 3000}.
Using a Taylor approximation of degree 5, we are able to show by BMC that the
safe set S surely is left in the beginning of step 3, i.e., at t = 3, thus obtaining
a rigorous automatic proof that the system actually is unsafe.

Execution times for each evaluation step in each example above are stated in
Table 1, where the individual steps are calculating the Lyapunov function, the
barrier c characterizing the safe set wrt. Lyapunov values, the minimum per-step
reduction dm of the Lyapunov function outside the safe set, and verifying the
safety property, respectively. All benchmarks were performed on a 1.80GHz Intel
Core-i5 processor with 4GB RAM running 64-bit Ubuntu 14.04.

7 Conclusions and Future Work

In this paper, we have exposed an automatic method for the stability and safety
verification of a simple class of delay differential equations (DDEs). The method

CLF(s) CBV(s) CSR(s) VSP(s)

Ex. 1 1.9869 10.514 20.012 0.0302

Ex. 2 12.732 52.892 78.258 22.121

Ex. 3 55.053 skipped skipped 0.0003

Ex. 4 timeout skipped skipped 0.0003

CLF = computing Lyapunov function
CBV = computing barrier value
CSR = computing per-step reduction
VSP = verifying/falsifying safety prop.

Table 1. Analysis times for the sample problems.
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is based on using interval Taylor forms for safely enclosing segments of the solu-
tions of DDEs with point- or set-valued initial conditions. It thus complements
the established methods for enclosing reachable state sets of ordinary differen-
tial equations (ODEs), lifting their power to DDEs. It consequently covers the
situations actually encountered in many modern control applications, where the
feedback dynamics entails delays due to communication networks etc. and thus
can reasonably be described by DDEs. Relaxing these DDEs to ODEs in ver-
ification may yield misleading results due to the impact of delays on system
dynamics. To provide verification and reliable certificates for system properties,
e.g., stability and safety properties, we have thus established a safe enclosure
method for DDEs. Interval-based Taylor forms are used as a suitable data struc-
ture, facilitating to enclose a set of trajectories by parametric Taylor series with
parameters in interval form. This data structure is used to iterate bounded de-
gree interval-based Taylor overapproximations of the time-wise segments of the
solution to a DDE. Given a DDE, we thereby identify the operator that computes
the parameters of the Taylor overapproximation for the next temporal segment
from the current one, and we employ constraint solving for automatically an-
alyzing its properties. Based on such analysis by numeric constraint solving as
implemented in the iSAT tool [11], we were able to obtain an automatic proce-
dure able to provide stability certificates for a simple class of DDE.

For this introductory exposition of the method, we assumed that the system
dynamics is represented as a DDE with a single, constant delay, i.e., is of the
restricted form given by Eq. (2). Several dynamical systems can be modeled by
DDE with a single constant delay as in biology [14, 26], optics [17], economics
[39, 38], ecology [10]. In control applications, one may however want to combine
delayed feedback, as imposed by communication networks, with immediate state
feedback as suggested by ODE models of the plant dynamics derived from, e.g.,
Newtonian models. Such cases can be addressed by a layered combination of
Taylor-model computation for ODEs, e.g. [28], with the ideas exposed herein.
The pertinent algorithms are currently under development and will be exposed
in future work. Beyond that, we want to extend the method to still more general
kinds of DDEs, like DDEs with multiple different discrete delays (cf. Eq. (1)),
DDEs with randomly distributed delay, or DDEs with time-dependent or more
generally state-dependent delay [21]. Likewise, this work can (and will) be ex-
tended to facilitate the automatic verification and analysis for hybrid systems
featuring delays, extending Egger’s method for integrating safe ODE enclosures
into a SAT modulo theory (SMT) solver [8, 9] from ODE enclosures to DDE
enclosures. In this case, one will need to extend the enclosure methods for DDEs
to a constraint propagator mutually narrowing intervals of pre- and post-states
and integrate that propagator into the iSAT SMT solver as in [12].
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