Adding Formal Meanings to AADL with Hybrid Annex

Ehsan Ahmad!2, Yunwei Dong?, Shuling Wang?2, Naijun Zhan?*, and Liang Zou?

1 School of Computer Science, Northwestern Polytechnical University
2 State Key Lab. of Comput. Sci. Inst. of Software, Chinese Academy of Sciences

Abstract. AADL is a Model-Based Engineering language for architectural anal-
ysis and specification of real-time embedded systems with stringent performance
requirements (e.g. fault-tolerance, security, safety-critical etc.). However, core
AADL lacks of a mechanism for modeling continuous evolution of physical pro-
cesses which are controlled by digital controllers. In our previous work, we have
introduced Hybrid Annex—an AADL extension for continuous behavior and
cyber-physical interaction modeling based on Hybrid Communicating Sequen-
tial Processes (HCSP). In this paper, we present formal semantics of the syn-
chronous subset of AADL models annotated with Hybrid Annex specifications
using HCSP. The semantics are then used to verify correctness of AADL models
(with Hybrid Annex specifications) using an in-house developed theorem prover
— Hybrid Hoare Logic (HHL) prover.

Keywords: AADL, Formal Semantics, HCSP, Hybrid Annex, Hybrid Systems

1 Introduction

Embedded Systems (ESs) make use of computer units to control physical processes
so that the behavior of the controlled processes meets expected requirements. They
have become ubiquitous in our daily life, e.g. automotive, aerospace, consumer elec-
tronics, communications, medical, manufacturing and so on. ESs are used to carry out
highly complex and often critical functions such as to monitor and control industrial
plants, complex transportation equipment, communication infrastructure, etc. The de-
velopment process of ESs is widely recognized as a highly complex and challenging
task. A thorough validation and verification activity is necessary to enhance the quality
of ESs and, in particular, to fulfill the quality criteria mandated by the relevant standard-
s. How to design correct embedded systems is a grand challenge for computer science
and control theory. Model-Based Engineering (MBE) is considered as an effective way
of developing correct complex ESs, and has been successfully applied in industry [8,
10]. In the framework of MBE, a model of the system to be developed is defined at the
beginning; then extensive analysis and verification are conducted based on the model
so that errors can be detected and corrected at early stages of design of the system.
Afterwards, model transformation techniques are applied to transform abstract formal
models into more concrete models, even into source code. Hybrid Systems (HSs) are

* The corresponding author: No. 4, South Fourth Street, Zhong Guan Cun, Beijing, 100190, P.R.
China.

2 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou

mathematical models with precise mathematical semantics for ESs, wherein continu-
ous physical dynamics are combined with discrete transitions. Based on HSs, rigorous
analysis and verification of ESs become feasible.

Architectural Analysis & Design Language (AADL) is an SAE International stan-
dard and is an ADL for ESs [14]. It is based on architectural-centric MBE approach.
It has been introduced to cope with embedded system design challenges by minimiz-
ing model inconsistency, decreasing mismatched assumptions of different stakeholders
and supporting dependability predictions through analyzable architecture developmen-
t. However, core AADL only provides support for structural modeling of embedded
computing units and nothing related to detailed behavior of the software and physical
processes which are controlled by the software can be modeled. So, as a result not only
the reliability prediction, performance analysis and verification of AADL models are
not precise enough, but also the cost is very high. To address these issues, Behavior An-
nex (BA) and BLESS annex are introduced for more precise behavior modeling using
state transition systems with guards and actions [13, 15]. Both BA and BLESS annex
are intended to model discrete behavior of a control system. However, in practice, it
is quite common that a control system contains continuous behavior, in particular, the
behavior of controlled physical processes. In [18], we have introduced a lightweight
language extension to AADL called the Hybrid Annex (HA) for continuous behavior
and cyber-physical interaction modeling.

In addition, formal semantics are especially important for safety-critical systems
and are the basis for formal analysis and verification of these systems. Although con-
siderable amount of literature is available on formalization of AADL for performance
and dependability analysis but the majority of the literature is focused on discrete be-
havior (behavior of the computing units) only and formalization of the continuous part
of hybrid systems and the cyber-physical interaction (communication between the com-
puting unit and the physical processes) is not addressed at all.

Hence, in order to use AADL for modeling and verification of hybrid system, it is
required not only to define the formal semantics of the core language but also define the
formal semantics of the dedicated annex (HA) used for continuous behavior modeling,
in such a language which is designed to model and formally verify the HSs.

1.1 A Running Example

Throughout this paper, we use the Water Level Control System (WLCS) [9] as a running
example to explain the motivation, to illustrate how to apply the HA extension to model
HSs, as well as the use of proposed formal semantics for verification. As depicted in
Fig. 1, WLCS consists of two main parts, the water tank and the controller. Continuous
change of water level 4 in the water tank is described by

h:v~Q,,mx—7r-r2~\/2-g~h
v=0 ve{0,1}

where Q,,,c = 0.007m3s™!, 7 = 3.14, r = 0.0254m, and g = 9.8ms™2. v - Q4 is
the water inflow Q,, into the tank, which takes the value O or Q,,,, depending on if the
valve v is close or open. 7 - % - \/2 - g - h stands for water outflow Q,,,, which follows

Adding Formal Meanings to AADL with Hybrid Annex 3

N A) ve{0l}

0, [0, Q. 1 m’s™

Controller Q—@—

_ .2
Qu=nr".\2.g.h.u

ue{0,1}

Fig. 1. WLCS diagram - a classical hybrid system

Torricelli’s law.! S, v, and A represent the sensor, inflow valve and the actuator used to
control inflow valve (v) respectively. The main goal of WLCS is to maintain water level
h between a specified limit which is 0.30m to 0.60m, by controlling the inflow valve v
to be close or open. The control command is computed by the controller based on the
water level observed by sensor S and the predefined control strategy. The command is
then sent to actuator A to control the inflow valve v appropriately.

Core AADL with HA can be used to model the structural architecture of the con-
troller, continuous behavior of the water tank and the cyber-physical interaction be-
tween them. Assurance of the correct system behavior and the certification of real-time
and dependability related properties demand a system level formal verification approach
which is not addressed at all in the existing literature on formalization of AADL. In this
paper, formal semantics for AADL models with HA specifications are proposed to fill
this gap.

Contributions: In this paper, we propose formal semantics of AADL execution model
with synchronous communication and HA using HCSP. The contribution of the paper
is twofold. Firstly, we illustrate the use of HA to model the continuous behavior and the
communication between the controller and the physical process. Continuous system
behavior specified using HA can easily be attached to predefined AADL components.
Secondly, formal semantics of AADL execution model and synchronous communica-
tion mechanism based on a language (HCSP) suitable for hybrid systems modeling and
analysis is presented. Formal semantics are then used to verify correctness of AADL
model annotated with HA specifications using an in-house developed theorem prover
known as HHL prover [17, 20].

Outline: Section 2 introduces HCSP, HHL and AADL with its execution model and
synchronous communication semantics. Section 3 presents the continuous behavior and
cyber-physical interaction modeling using HA and Section 4 discusses the formal se-
mantics of AADL execution model along with synchronous communication. Section 5
illustrates verification of the case study using HHL prover. Section 6 presents a summa-
ry of the related work. Section 7 concludes this paper and discusses the future work.

' Normally, Q,,, = 7 - ¥* - /2 - g - h - u. But for simplicity, we take u = 1 here.

4 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou

2 Preliminaries

This section presents an overview of HCSP by highlighting primitive language con-
structs. The specification logic HHL for reasoning about HCSP behavior is then intro-
duced briefly. Basic AADL notions and notations are also presented with emphases on
execution model and synchronous data communication semantics.

2.1 Overview of HCSP

HCSP is an extension of Hoare’s Communicating Sequential Processes (CSP) for mod-
eling HSs [6,9] . In HCSP, differential equations are introduced to model continuous
evolution of the physical processes along with interrupts, so both discrete and contin-
uous behaviors are still modeled as processes. A hybrid system in HCSP is a parallel
composition of networked sequential processes interacting through dedicated channels,
or a repetition of a sub-system. Note that processes in parallel can only interact through
communication and no shared variables are allowed. The set of variables is denoted by
V = {x, y z...} and the set of channels is denoted by X' = {ch1, cho,chs,...}. The
processes of HCSP are constructed as follows:

P ::=skip |x:=e|waitd|ch?x|chle | P;Q|B — P|PUQ]| [ics (chix — Q;) | P*
| (F(5,5) = 0&B) | (F(5,5) = 0&B) >4 Q| (F(5,5) = 0&B) > [ljei(chix — O;)
Sa=P|S*|S|S

Here P, Q, and Q; represent sequential processes, whereas S stands for a (sub)system;
ch,ch; € X are communication channels, while ch;* is a communication event which
can be either an input event ch?x or an output event chle; B and e are boolean and
arithmetic expressions respectively, and d is a non-negative real constant.

Process skip terminates immediately without updating variables, and process x := e
assigns the value of expression e to x and then terminates. Process wait d keeps idle for
d time units without any change to respective variables. Interaction between processes
is based on two types of communication events: ch!e sends the value of e along channel
ch and ch?x assigns the value received along channel ch to variable x. Communication
takes place when both the source process and the destination process are ready.

HCSP supports both sequential and concurrent composition. A sequentially com-
posed process P; Q behaves as P first, and if it terminates, as Q afterwards. The alter-
native process B — P behaves as P only if B is true and terminates otherwise. Internal
choice between processes P and Q, denoted as P LI Q is resolved by the process itself.
Communication controlled external choice [);c;(chix — Q;) specifies that as soon as
one of the communications ch;* takes place, the process starts behaving as respective
process Q;. The repetition P* executes P for an arbitrary finite number of times, and the
choice of the number of times is non-deterministic.

Continuous evolution is specified as (F(§,s) = 0&B). Real variables s evolve con-
tinuously according to differential equations F as long as the boolean expression B is
true. B defines the domain of s. Interruption of continuous evolution due to B (as soon
as it becomes false) is known as Boundary Interrupt. Continuous evolution can also be
preempted due to the following interrupts:

Adding Formal Meanings to AADL with Hybrid Annex 5

— Timeout Interrupt: (F($,s) = 0&B) >4 Q behaves like (F($,s) = 0&B), if the
continuous evolution terminates before d time units. Otherwise, after d time units
of evolution according to F, it moves on to execute Q.

— Communication Interrupt: (F($,s) = 0&B) > [lic/(chix — Q;) behaves like
(F(5,s) = 0&B), except that the continuous evolution is preempted whenever one
of the communications ch;* takes place, which is followed by respective Q;.

Finally, S defines a HCSP system on the top level. A parallel composition Sy || So
behaves as if S; and S> run independently except that they need to synchronize along
the common communication channels.

Ehsan Ahmad, Brian R. Larson, Stephen C. Barrett, Naijun Zhan, Yunwei Dong,
Hybrid Annex: An AADL extention for continuous behavior and cyber-physical inter-
action modeling, accepted for publication, HILT’ 14, 2014.

2.2 Overview of Hybrid Hoare Logic (HHL)

In [11], we have extended Hoare Logic to hybrid systems, by adding history formulas
to describe continuous properties that hold throughout the whole execution of HCSP
processes. The history formulas are defined by Duration Calculus (DC), which is a real
arithmetic extension of Interval Temporal Logic (ITL) for specifying and reasoning
about real-time systems. The mainly used assertion [.S], where S is a state formula,
means that S holds everywhere inside the considered interval.

In HHL, the specification for a sequential process P is of the form { Pre} P { Post; HF },
where Pre, Post represent pre-/post-conditions, expressed by first-order logic, to specify
properties of variables held at starting and termination of the execution of P, and HF
is a history formula, expressed by DC, to record the execution history of P, including
real-time and continuous properties. The specification for a parallel process is then de-
fined by assigning to each sequential component the respective pre-/post-conditions and
history formula, that is

{Prel,Prez}PlHPQ {POSll,POSIQ;HFl,HFQ}

In HHL, each HCSP construct is axiomatized by a set of axioms and inference rules.
Based on the inference system, we have implemented an interactive theorem prover for
HHL in proof assistant Isabelle/HOL. The tool can be downloaded from Ics.ios.ac.cn/~
znj/HHLProver. For further details on HCSP, HHL and HHL prover, we refer to [17].

The WLCS can be modeled, using HCSP, as a parallel composition of the water
tank and the controller, whose specification is given as follows:

{Pre1, Pres} Watertank||Controller{0.30 < h < 0.60, True; [0.30 < h < 0.60], True}.

As shown by the postcondition and history formula corresponding to Watertank, the
water level 2 will always be kept in the range [0.30, 0.60]. The details for the modeling
and verification of the WLCS system are described in the rest of the paper.

6 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou

2.3 Overview of AADL

AADL contains components for both the application software, and the execution hard-
ware of an embedded system, and supports textual, graphical and XML Metadata Inter-
change (XMI) specification formats. Components with type and implementation classi-
fiers are instantiated and connected together to structure the system architecture. AADL
core language constructs are categorized into application software, execution platform
and composite components. The system component represents a composite entity con-
taining software, execution platform or system components.

Components and Connections Execution platform category represents computation
and communication resources including processor, memory, bus and device compo-
nents. A processor component represents the hardware and software responsible for
thread scheduling and execution. Properties can be assigned to a processor component
to specify scheduling policies, high-level operating system services and communication
protocols. A memory component is used to represent storage entities for data and code.
A device component can model a physical entity in the external environment: a plant
or the software simulation of the plant. It can also be used as an interactive component
like sensor or actuator. A bus component represents the physical connections among
execution platform components.

Application software category consists of process, data, subprogram, thread, and
thread group components. A process component represents the protected address space,
which is bound to a memory component. A data component can be used to abstract data
type, local data or parameter of a subprogram. A subprogram models the executable
code which is called, with parameters, by thread and other subprograms. Thread is the
only schedulable component with execution semantics to model system execution be-
havior. A thread represents sequential flow of the execution and the associated semantic
automation describes life cycle of the thread.

A component type declaration defines interface elements and may contain Features.
Features contain communication ports. AADL supports data, event and event data ports
to transmit and receive data, control, and control and data respectively. Port communi-
cation is typed and directional. An in port receives data/control and an out port sends
data/control while an in out port can send and receive data/control. Communication is
realized through connections between ports, parameters and access to shared data.

This paper is focused on formalizing execution model semantics of AADL with
synchronous communication in which threads are communicating through data ports.
Due to the page limitation, these two aspects are briefly discussed in the rest of this
section. We refer to AADL standard document AS5506-B [14] for further details.

Execution Model AADL structure model (hierarchical composition of the compo-
nents) does not contain explicit information about the execution model, instead it is
specified by the execution control automaton and properties at model and project lev-
el. AADL execution model deals with execution control automaton, thread dispatch
strategy, scheduling and execution and fault handling. Our focus in this paper is on the
execution model and (synchronous) communication formalism and the formalization of
thread fault handling and modal semantics will be subject of a later paper.

Adding Formal Meanings to AADL with Hybrid Annex 7

rompite Error_event
complete
E
stop? 1 ¢ 0| activate?

10
Finalize FEvE
stop?

fe 0 complete initialmode? sxitmode?

AwaitDispatch

Compute

Fig. 2. Thread execution state machine

Thread execution life cycle, as depicted in Fig. 2 is same for every thread. Thread
execution life cycle consists of two types of states: action states and rest states. Threads
in action states are forced to execute associated program code while in rest states threads
do not perform any execution. [nitialize, Activate, Deactivate, Compute, and Finalize
are the action states while Halted, AwaitMode, and AwaitDispatch are the rest states.
Active states can have properties specifying the source code entry points, computation
time and deadlines.

Thread in AwaitDispatch state is active in current operational mode (AADL sup-
ports more than one operational modes) and is waiting for dispatch. Thread dispatch
condition is type dependant. A Periodic thread is dispatched after a fixed time interval
specified in its Period property. An aperiodic thread, if its predefined dispatch port is
not connected, is dispatched each time it receives an event, otherwise it is dispatched
each time it receives an event on dispatch port.

A thread is initialized after the respective process is loaded into memory and is
directly moved to AwaitDispatch state if it is active in current process mode otherwise it
is moved to AwaitMode state. Thread dispatch is controlled by Enabled(t) function and
Wait_For_Dispatch invariant in AwaitDispatch state. The clock variable ¢ is reset each
time an active state is entered, and the timing assertion assert t < (state_Deadline +
Recover_Deadline) is placed in the active state to specify deadline violation. If assertion
in any active state is violated, thread is moved to the Halted state.

Synchronous Communication Inter-thread communication in synchronous data flow
communication pattern can either be immediate or delayed depending on data port con-

8 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou

Wilcs.impl

__________ get_data

/ ’ /2y
actuator c4 /C3 ! K 4
c e ;N
; { \ 4 s
,

Fig. 3. AADL model of WLCS using graphical notations

nections. For an immediate connection, data is transmitted whenever the source thread
completes its execution and meanwhile destination thread is suspended. The value re-
ceived at destination is the value produced at the latest completion of source thread. For
immediate connection, threads must share a common dispatch. For a delayed connec-
tion the output is transmitted at the deadline of the source thread so it is available to
the destination thread at the next dispatch. The value received at destination is the value
produced at the latest deadline of the source thread. For delayed connection, threads do
not need to share a common dispatch.

2.4 WLCS Discrete Behavior Modeling

Depicted using the AADL graphical notations, Fig. 3 shows the architecture of the
controller of the running example (WLCS), while the detailed behavior of the water
tank is presented in Listing 1 and is discussed in the next section. The continuous state
of the water tank, i.e. the water level h, is measured by a sensor and the output is
sent to the controller process Wics.impl through connection C1, which contains two
periodic threads get_data and com_cmd. Threads are connected through an immediate
connection Conn. Thread get_data samples sensor data through its in data port s along
connection C2 on every dispatch and sends computed data to com_cmd thread through
out data port w along connection Conn. Control command according to control laws,
is computed by com_cmd thread and is sent to actuator through out data port ¢ using
connections C3 and C4.

In relation to execution model and synchronous communication mechanisms dis-
cussed earlier, threads get_data and com_cmd share same execution life cycle pre-
sented in Fig. 2 and the immediate connection Conn between them is as discussed
in Section 2.3. Formal semantics of this discrete behavior of the controller component
(consisting of threads and communication between them) are presented in Section 4 in
detail.

3 Hybrid Annex

Hybrid Annex (HA) has been proposed to equip AADL for hybrid system modeling and
analysis [18]. An HA specification can be attached to either the implementation classifi-
er of an AADL device component or to an abstract component to model the continuous
behavior of the interactive components (i.e. sensors and actuators) or to model the be-
havior of a physical process respectively. An HA specification may contain six sections:

Adding Formal Meanings to AADL with Hybrid Annex 9

Listing 1. AADL WaterTank Component Specification using Hybrid Annex

(abstract WaterTank
features
cc: in data port WLCS::ValveStatus;
wl: out data port WLCS::WaterLevel;
end WaterTank;
abstract implementation WaterTank.impl
annex hybrid {*x*

variables

t : WLCS::Time

v : WLCS::ValveStatus

h : WLCS::WaterLevel
constants

Qmax = 0.007 cmps

g = 9.8 mpss

pi = 3.14

r = 0.0254 m

u =1

period = 0.01 sec
behavior

Plant ::= t := 0 &

'DT 1 h =(v+Qmax)—(pi* (r*2)*1.414% (g*0.5)* (h*0.5)*u)’ &
'DT 1 v = 0’ <(t<period)> [[> wl! (h)]]> GetCmd

GetCmd ::= cc?(v)
WaterTank ::= repeat (Plant)
*x};

end WaterTank.impl;

assert, invariant, variables, constants, channels, and behavior to speci—
fy predicates, predicates that must hold throughout continuous behavior model, local
variables, constants, communication channels and continuous behavior respectively.

Listing 1 presents the complete textual AADL model with HA specifications of the
water tank of WLCS—-the running example. The type classifier declares the interface
of the WaterTank component with two data ports. The out data port wl is used to
send the current water level, while the in data port cc is used to receive the control
command. The WwaterTank is connected to the sensor and actuator using ports wl and
cc with appropriate connections. The WaterLevel and ValveStatus refer to AADL
Data Model Annex components in package Wi.CS that specifies the details of the range
and measuring units of the data types used in this model.

The implementation of the WaterTank component in Listing 1 is specified using
three HA sections: variables, constants, and behavior. Below we explain each
of these sections in the context of the running example. The formal syntax, grammar
and details on each section of HA are presented in [18].

10 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou

3.1 Variables Section

Local variables in the scope of current HA subclause are declared in variables sec-
tion. A variable may either be discrete or continuous depending on the component to
which HA specification is attached and must have a data type specified by AADL com-
ponent classifier reference. In Listing 1, the variables section contains t, v, and h to
specify the current time, status of the inflow valve and the current water level. Variable
v can take value either O or 1 to represent the close and open status of the inflow valve.

3.2 Constants Section

In the standard way, constants section is used to define constants that are used in
modeling continuous behavior of the physical process. Constants are only initialized
once at declaration by either integer or real value, along with appropriate measuring
unit specification.

The constants section in Listing 1 contains six constants. Constant Qmax with
value 0.007 specifies the maximum water inflow through valve v. Measuring unit of
the water inflow m3s~! is specified as cmps. Constant g is the gravitational force with
9.8 and measuring unit ms~? specified as mpss. Constants pi and u represent the
value of 7 and status of the outflow valve without any measuring unit specification.
The constant period with value 0.01 and measuring unit seconds specified as sec
represents the sampling period of the controller. Radius of the outflow valve r takes
value 0.0254 and is measured in meters specified as m.

3.3 Behavior Section

The behavior section in HA contains parallel composition of networked sequential
processes to specify the continuous behavior and cyber-physical interaction between
AADL components and the physical processes. Each behavior specification is repre-
sented as a HCSP process explained in section 2.1. Specification of a continuous evo-
lution consists of differential expression along with boolean conditions followed by
one or more communication events denoting interrupts. Differential expression con-
tains differential equations specified using the keyword DE followed by the order of the
differential equation and the dependant and independent variables. Keeping in view the
extensive use of time derivation in real-time modeling, separate notation is defined for
time derivation specification consisting of the keyword DT followed by the order and
the dependant variable.

The behavior section in Listing 1 shows HA specification for the water tank of the
running example. Continuous evolution of water level i is modeled using time deriva-
tion ’DT 1 h = (v+#Q0max)— (pix (r*2)+1.414x (g~0.5)* (h*0.5) xu)’ with bound-
ary condition t < period as process Plant. Here, (v+QOmax) is the total water inflow
if the value of v is 1 and (pix (r*2)*1.414%(g”~0.5)* (h”~0.5)«u)’ is the total
water outflow at a particular time t. 'DT 1 v = 0’ represents the rate of change of
variable v with respect to time, which is 0 in this case. The continuous evolution of
the water level h is preempted by the communication event on out data port wl. This
communication interrupt is modeled using [[> w1! (h) 1]> followed by the process

Adding Formal Meanings to AADL with Hybrid Annex 11

Algorithm 1: Translation of an AADL model into HCSP processes
Require: AADL instance model
Ensure: Generate HCSP processes for periodic threads and connections
1: for all tr € Tr do
2: generate an activation process ACT,, (Section 4.1)

3: generate a dispatch process DIS; (Section 4.2)
4: generate a compute process COM,, (Section 4.3)
5: end for
6: for all ¢,, € CON,, do
7: if tr is source in ¢, then
8: update COM,, for ¢, (Section 4.4)
9: else
10: update DIS;, for ¢, (Section 4.4)
11: endif
12: end for

GetCmd. Process GetCmd contains the communication event cc? (v) used to get the
control command from the controller on port cc. The repeating continuous behavior of
the water tank is modeled by the WaterTank process where every iteration starts by
resetting the time clock t :=0.

HA is expressive enough to model physical processes with complex continuous
dynamics attached to AADL ports and mapped with AADL connections.?

4 Formal Semantics

4.1 Formalization of Synchronous Subset of AADL

Algorithm 1 lists the main steps followed for defining formal semantics of the AADL
execution model with synchronous communications. Here, 7r is a set of threads in an
AADL model, and for every tr € Tr, processes ACT},, DIS,,, and COM,, are generat-
ed to specify activation, dispatch and computation behavior of the thread. Based on
specific properties, associated connections and timing constraints, each active thread
corresponding to state machine shown in Fig. 2 is translated into one HCSP process.

Separate activation and dispatch processes are defined for each thread to specify the
activation and dispatch behavior of the thread. AADL modal semantics is not consid-
ered here, so every thread has only one operational mode. Following parallel composi-
tion of ACT, DIS and COM processes represents the HCSP process corresponding to an
AADL periodic thread.

ThrdName(period, deadline, bcet, weet) = ACT*||DIS* ||COM*

> The details of the AADL textual model for the Controller component and all proof
files (discussed in Section 5) related to the running example are available at http-
s://github.com/ehah/FACS2014

12 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou

Here, period, deadline, bcet, and wcet are process parameters to represent Period, Dead-
line, minimum and maximum Compute_Execution_Time properties respectively. Pro-
cesses ACT, DIS and COM have repeating behavior and can only communicate through
common channels.

Process ACT is used to specify the behavior of a thread which had already been
initialized, activated and is ready for dispatch. Behavior of ACT process, as shown be-
low, is quite simple. It only signalizes process DIS via output communication event
complete_act!, which shows the execution completion of source code contained in a
file associated with Activate_Entrypoint_Source_Text property of a thread.

ACT & complete_act!

Below we explain dispatch (DIS) and compute (COM) processes in detail.

4.2 Dispatch Process

A periodic thread is dispatched after every fixed time interval specified in its Period
property. The dispatch process for a periodic thread is specified as:

DIS £ complete_act?; wait period; dispatch\dis; GetData(data); trans\data;

complete_comp?

At the start, process DIS is ready to receive activation completion event from process
ACT. Then it keeps idle for the period of the thread, after which it is ready to send dis-
patch event (dis) over channel dispatch. Thread execution completion event is received
across channel complete_comp and after which the process is repeated again. Periodic
thread inputs value from in data ports at dispatch time and outputs values to out data
ports at completion time. Process GetData shows getting data from all in data ports at
dispatch time. The data is then sent along channel frans to compute process (COM)
which is explained below.

4.3 Compute Process

Compute process itself is a parallel composition of Ready, Running, and AwaitResource
processes with clock variables ¢ and ¢ to be initialized at the start, as depicted in Fig. 4.
continuous evolution of variable # represents the total amount of time since the dispatch
event received from the dispatch process while the continuous evolution of variable
c specifies execution time in the current dispatch. Therefore, the clock ¢ is always
progressing in all the sub-states (represented by d¢ = 1), while c is only progressing in
Running sub-state (represented by dc = 1).

Process COM below specifies behavior of a compute process. After the dispatch
event, it first receives data x5 along channel trans, then communications along frij
for k = 1,2, 3 are performed, not only to coordinate the execution order between the
four parallel sub-processes, but also to transmit xo to processes Ready, Running, and

Adding Formal Meanings to AADL with Hybrid Annex 13

dispatch| < 0,c <0

Running
complete_comp
s

resume))
oc =1,¢c < Max(Execution _Time)

?¢ = Min| Execution _Time)

AwaitResource
dc=0
Compute

Fig. 4. Thread execution and actions in compute state

AwaitResource. The boolean variable isReady indicates whether the ready state is en-
abled.

COM £ (dispatch?x; trans?xo; triy\xo; tris)xvo; triz)xs)
||(tri1?yy1;t := 0; isReady := 1; (isReady — Ready)*)

||(triz?ys; ¢ := 0; Running™)||(triz?ys; AwaitResource™)

Thread execution in Compute state (see Fig. 4) is controlled by the scheduler mod-
eled using AADL processor component. Detailed specification of the scheduling poli-
cies and protocols is beyond the scope of this paper as we are not aiming for schedulabil-
ity analysis. Although, in this paper, we use a simplified static scheduler with predefined
unique thread priorities assigned at design level, proposed semantics can be enhanced
to model dynamic scheduling by adding a separate process to specify the respective
behavior. Whenever the executing thread completes its execution or is blocked due to
required resources, the processor is allocated to the highest priority thread in the Ready
state (modeled as Ready process). Execution of the thread can only be interrupted due
to required resources blocked by any other thread. This waiting for resource behavior
is specified by AwaitResource process.

Process Ready maintains a continuous variable ¢ to model the deadline of the thread.
Continuous evolution of time ¢ starts once a dispatch event is received from DIS process
on dispatch channel by the parent process COM. After process Ready receives an event
from the scheduler via run channel, indicating that current thread is ready to run, it
then sends current value of time ¢ via resume channel to process Running. After this
communication, it is ready to accept the new value of ¢ via unblock channel sent by
AwaitResouce process. If the new value of ¢ is equal to the deadline, the ready state is
disabled, as a result the thread will need re-initialization and re-activation. The Ready
process is specified as below:

Ready = (t = 1&t < deadline) > (run? — (resume!t; unblock?t));
t = deadline — isReady := (0

14 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou

Process Running maintains variable ct to record current time ¢ sent by process
Ready via resume channel, and variable ¢ (defined in COM process) to record exe-
cution time. The boundary condition for continuous evolution is to check if ¢ is less
than or equal to WCET and ct is less than or equal to the deadline. Continuous evo-
lution can be interrupted by an event from the scheduler along res_busy channel, in-
dicating that the shared resource is blocked, then the Running process will send the
current value of ct along block channel to AwaitResource. Continuous evolution can
also be interrupted by an event to the scheduler along complete_exec channel, indi-
cating the execution completion of the source code specified in a file associated with
Compute_Entrypoint_Source_Text property of the thread in the dispatch. The Running
process will then signal the successful execution completion along complete_comp! to
process DIS. To ensure determinism, it is checked that the thread must execute at least
till BCET otherwise it has to wait for (bcet — ¢) time units. Process SetData(z,.) rep-
resents the computation of new values x, based on the received data y, (as shown in
the parent COM process) and then sending new values to the out data ports. As an il-
lustration, it is instantiated and explained in [19] in detail for our running example. The
Running process is specified as below:

Running = resume?ct; (¢ = 1,¢t = 1&c < weet A ct < deadline)>
((res_busy? — blocklct) || (complete_exec! — (SetData(x,);
complete_comp! — ¢ < bcet — wait (bcet — ¢))))

When an executing thread accesses a shared data component locked by any other thread,
it is blocked. Such waiting behavior is specified by AwaitResource process. It receives
current time via block channel from process Running and stores it in variable act. After
it receives an event via res_free channel from the scheduler, indicating that the required
resource is available, the current value of act is sent via unblock channel to Ready
process. Below is the specification of AwaitResource process.

AwaitResource = block?act; (act = 1&act < deadline) > (res_free? — unblocklact);

The lock/un-clock mechanism of shared resources depends on the implementation s-
trategies and does not affect analysis at architecture level so it is not discussed here.

4.4 Connection Process

The connection between two threads or between a thread and a device has an ultimate
source and an ultimate destination. Synchronous communication in AADL is realized
through periodic thread with data ports. Based on communication semantics explained
in Section 2.3, the behavior of a connection is specified by

Conn,, & StC?x.; CtD!x,.

StC is a communication channel between the source and the connection process (Conn,
in this case). StC?x. shows input communication event ready to occur when the respec-
tive source thread completes its execution and is ready to send dispatch event, and

)

Adding Formal Meanings to AADL with Hybrid Annex 15

moreover, receives the data x. from the source state. The dispatch event together with
the data x.. is sent across channel CtD to destination thread to start its execution.

For every connection ¢, € CON,, in which thread tr is a source thread, the Running
process is updated based on connection type: immediate or delayed. In case of immedi-
ate connection it sends the complete event on execution completion together with data
X, to connection process Conn,, via StC as defined below.

Running; Zresume?ct; (¢ = 1,¢t = 1&c < weet A ct < deadline)™>
... (SetData(x,); complete_comp! —
¢ < beet — wait(bcet — ¢); StClx,.) ...

The behavior of the Running process, in case of a source thread with delayed connec-
tion, is specified below, in which the completion event complete_comp! together with
data x, is sent after the deadline.

Running; Zresume’ct; (¢ = 1,¢t = 1&c < weet A ct < deadline) > ...
(ct = deadline — StC! x,.; complete_comp))...

For every connection c¢;, € CON,, in which tr is a destination thread, the respective
DIS process is updated to wait for complete event with the data from the connection
process Conn,, via CtD channel. As a result, process DIS does not need to specify
the period of the thread. Instead, after the complete event with data z is received from
channel CtD, the dispatch dis event is sent across channel dispatch which is received by
respective COM process. The behavior of modified DIS process of a destination thread
is specified as follows:

DIS & complete_act?; CtD?z; dispatch\dis; GetData(data); trans\data; complete_comp?

4.5 WLCS Hybrid System Modeling

The structure of the running example (WLCS) has been simplified to focus tightly on
the elements needed to present a description of hybrid behavior of the system using
plant and the controller while the internal behavior of the sensor and actuator is not dis-
cussed. So, connections C1 and C2 in Fig. 3 are specified as channel w/ and connections
C3 and C4 are mapped to channel cc resulted in a cyber-physical interaction supported
by HA. HA uses ports to communicate with other AADL component and channels for
internal process communication. Both of these communication mechanisms are mapped
as channel communications for verification in terms of HCSP. The hybrid system of the
running example (WLCS as whole), as specified below, is modeled as parallel compo-
sition of the WaterTank and the Controller.

WLCS £ Watertank| Controller
Watertank = (t := 0; Plant)*
Plant 2 (h= v Quu— 7 12-\/2-g hv=0&t<0.01)

Swll h — cc?v;
Controller = get_data||Conn||com_cmd

16 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou

Behavior of the WaterTank is specified in Listing 1 and the behavior of Controller
is obtained by applying the translation approach explained in Algorithm 1 to the AADL
model of Fig. 3. The process Controller is composed of three subprocesses: get_data,
Conn, and com_cmd executing in parallel. These processes specify behavior of thread
get_data, immediate connection Conn and thread com_cmd respectively.

The complete HCSP model of the running example, along with parameters (ob-
tained from respective AADL properties) and details of the subprocesses getr_data,
Conn, and com_cmd, are presented in [19]. As HA is based on HCSP so each nota-
tion of HA automatically corresponds to a respective HCSP notation.

5 Verification using HHL prover

In this section, we show how to use HHL prover to formally verify an AADL model
with HA specification through the running example WLCS.

The main goal of WLCS is to maintain water level & between a specified limit which
is 0.30m to 0.60m, by controlling the inflow valve v to be close or open. The control
algorithm of the system is designed as follows: every 0.01sec , the controller samples
the value of h, and when 4 is greater than 0.59m, it assigns value O to v, while when 4 is
less than 0.31m, v assigned value 1. We can investigate the safety of the WLCS system
from two aspects:

— it is deadlock-free, under the assumption that the scheduler is well-behaved
— the property 0.30 < & < 0.60 always holds for the WLCS system

The deadlock-freedom can be checked by some existing CSP checkers, like the known
CSP tool FDR. Here we focus on the verification of the second property, which is mostly
related to the hybrid behavior of the system. Thus, we abstract away various communi-
cations for synchronizing AADL components, and obtain a simplified controller for the
WLCS system with the same control behavior as the Controller in the translated HCSP
model:

Controller = (wait period; wl?x;x < 0.31 — y := 1;2 > 0.59 — y := 0; ccly)”

where period is 0.01sec as mentioned above. The resulting model for the WLCS sys-
tem covers the continuous plant, the controller containing the corresponding control
algorithm, and the interactions between them.

By applying the HHL prover, we have proved the following specification for the
WLCS system:

{t=0/\h=0.31/\v= l,y=0Vy= 1} WLCS
{0.30 < h < 0.60, True; [0.30 < h < 0.60], True}

indicating that from the initial state when ¢ is Osec, h is 0.31m and v is open, throughout
the execution of WLCS, the safety requirement 0.30 < 2 < 0.60 always holds for the
water tank.

Adding Formal Meanings to AADL with Hybrid Annex 17
6 Related Work

Formalization of AADL has been explored a lot. Here we summerize some of the im-
portant work. Yang et al [16] have formalized BA by translating it into Time Abstract
State Machine (TASM). Process algebra interpretation of AADL models is presented
in [12]. They have translated AADL models to process algebra ACSR and Real-Time
Calculus (RTC) for performance evaluation using VERSA and RTC Toolbox respec-
tively. COMPASS toolset used a variant of AADL called SLIM and SuSMv model
checker for safety, dependability and performance evaluation [5]. In [7], a tool called
AADL2BIP based on BIP (Behavior Interaction Priority) for safety property verifica-
tion has been introduced.

Considerable amount of efforts are made to formalize AADL, but most of them are
focused on control systems with discrete behavior. To our best knowledge, formaliza-
tion of the continuous time modeling based on a dedicated annex has not been explored
before. The proposed formal semantics based on language purely designed for hybrid
system is novel and the first step to enhance AADL modeling and formal analysis ca-
pabilities for systems with both discrete and continuous dynamics.

There have been a number of modeling languages proposed for formalizing hybrid
systems. The most popular is hybrid automata [1, 2], with real-time temporal logics
interpreted on their behaviors as specification languages. However, analogous to state
machines, hybrid automata provides little support for structured description and compo-
sition. As an alternative approach, Platzer [3] proposed hybrid programs and the related
differential dynamic logic for the compositional modeling and deductive verification of
hybrid systems. However, in his work, parallelism and communication were not well
handled, that occur ubiquitously in AADL models.

Based on HA for continuous behavior modeling and AADL core for discrete mod-
eling, our approach of defining formal semantics for verification is scalable and can be
used to verify complex HSs.

7 Conclusion and Future Work

The AADL with Hybrid Annex can model continuous behavior of the physical pro-
cess to be monitored and controlled by the control system. Formal semantics, based on
HCSP, of synchronous subset of AADL annotated with Hybrid Annex are presented to
furnish AADL for modeling and verification of hybrid systems. The application of the
Hybrid Annex for modeling and formal semantics for verification is illustrated through
a benchmark of hybrid system, i.e., the example of water level control system. AADL
model is verified using an in-house developed theorem prover called HHL prover. Being
the first step towards formalization of continuous behavior and cyber-physical interac-
tion modeling and verification using AADL, this study has opened new horizon for
research in AADL.

Our future work includes enhancement of the current approach to cover asynchronous
subset of AADL which is based on aperiodic thread with event-driven communication
models and the development of a plug-in to Open-Source AADL Tool Environment
(OSATE), the development environment for AADL modeling, for automatic translation

18 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang Zou

of AADL models (with Hybrid Annex specifications) to HCSP processes and verifica-
tion using HHL prover.

Acknowledgements. The work has been partly supported by the National Basic Re-
search Program of China under Grant No. 2014CB340700, by Natural Science Founda-
tion of China under Grant No. NSFC-91118007 and NSFC-6110006, by the CAS/SAFEA
International Partnership Program for Creative Research Teams, and by the National In-
frastructure Software Plan under Grant No.2012Z2X01041-002-003.

References

1. Alur, R., Courcoubetis, C., Henzinger, T. and Ho, P.: Hybrid automata: An algorithmic ap-
proach to the specification and verification of hybrid systems. In Hybrid Systems, LNCS
736, pp. 209-229, 1992.

2. Manna, Z. and Pnueli, A.: Verifying hybrid systems. In Hybrid Systems, LNCS 736, pp.
4-35,1993.

3. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated Reasoning,
41(2):143-189, 2008.

4. Ayan, B., Sailesh, K., Tridib, M., Gupta, S.K.S.: Band-aide: A tool for cyber-physical orient-
ed analysis and design of body area networks and devices. ACM Transantions on Embedded
Computing Systems, 11(2):1-49, 2012.

5. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V., Noll, T., Roveri, M., Wimmer, R.: A
model checker for AADL. In Proc. of CAV 2010, LNCS 6174, pp.562-565, 2010.

6. Zhou, C., Wang, J., Ravn, A.: A formal description of hybrid systems. In Proc. of Hybrid
Systems III, LNCS 1066, pp.511-530, 1996.

7. Chkouri, M., Robert, A., Bozga, M., Sifakis, J.: Translating AADL into BIP - application
to the verification of real-time systems. In Proc. of MODELS 2008, LNCS 5421, pp. 5-19,
20009.

8. Henzinger, T., Sifakis, J.: The embedded systems design challenge. In Proc. of FM 2006,
LNCS 4085, pp.1-15, 2006.

9. He, J.:From CSP to hybrid systems. A classical mind, pp.171-189. Prentice Hall, 1994.

10. Lee, E.: What’s ahead for embedded software? IEEE Computer, 33(9):18-26, 2000.

11. Liu, J,, Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for hybrid CSP.
In Proc. of APLAS 2010, LNCS 6461, pp.1-15, 2010.

12. Sokolsky, O., Lee, 1., Clarke, D.: Process-algebraic interpretation of AADL models. In Proc.
of Ada-Europe 2009, LNCS 5570, pp.222-236, 20009.

13. SAE Internatinal, Architecture Analysis & Design Language (AADL) Annex Volume 2:
Annex D: Behavior Annex, SAE International Standards, 2011.

14. SAE International, Aarchitecture Analysis & Design Language (AADL), revision: B, SAE
International Standards, 2012.

15. Larsson, B., Chalin, P., Hatcliff, J.: BLESS: Formal specification and verification of behav-
iors for embedded systems with software. In Proc. of NFM 2013, LNCS 7871, pp.276-290,
2013.

16. Yang,Z., Kai, H., Ma, D, Lei, P.: Towards a formal semantics for the AADL behavior annex.
In Proc. of DATE 2009, pp. 1166-1171, 2009.

17. Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of hybrid systems.
In the book of Theories of Programming, LNCS 8050, pp. 207-281, 2013.

18.

19.

20.

Adding Formal Meanings to AADL with Hybrid Annex 19

Ahmad, E., Larson, B., Barrett, S., Zhan, N., Dong, Y.: Hybrid Annex: An AADL extention
for continuous behavior and cyber-physical interaction modeling, accepted for publication,
HILT’ 14, 2014.

Ahmad, E., Dong, Y., Wang, S., Zhan, N., Zou, L.: Adding formal meanings to AADL with
hybrid annex, Tech. Report ISCAS-SKLCS-14-09, State key Lab. of Computer Science, In-
stitute of Software, Chinese Academy of Sciences, Beijing 100190. China, 2014.

Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying Chinese train
control system under a combined scenario by theorem proving. In Proc. of VSTTE 2013,
LNCS 8164, pp. 262-280, 2013.

