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Abstract. We extend a template-based approach for synthesizing
switching controllers for semi-algebraic hybrid systems, in which all ex-
pressions are polynomials. This is achieved by combining a QE (quantifier
elimination)-based method for generating invariants with a qualitative
approach for predefining templates. Our synthesis method is relatively
complete with regard to a given family of predefined templates. Using
qualitative analysis, we discuss heuristics to reduce the numbers of pa-
rameters appearing in the templates. To avoid too much human interac-
tion in choosing templates as well as the high computational complexity
caused by QE, we further investigate applications of the SOS (sum-of-
squares) relaxation approach and the template polyhedra approach in
invariant generation, which are both supported by modern numerical
solvers.

1 Introduction

Hybrid systems, in which computations proceed by continuous evolutions as well
as discrete jumps simulating transitions from one mode to another mode, are
often used to model devices controlled by computers in many application do-
mains [1]. Combining ideas from state machines in computer science and control
theory, formal analysis, verification and synthesis of hybrid systems have been
an important area of active research. In verification problems, a given hybrid
system is required to satisfy a desired safety property e.g. that the temperature
of a nuclear reactor will never go beyond a maximum threshold, as it may cause
serious economic, human and/or environmental damage, thus implying that the
system will never enter any unsafe state. A synthesis problem is harder given
that the focus is on designing a controller that ensures the given system will
satisfy a safety requirement, reach a given set of states, or meet an optimality
criterion, or a desired combination of these requirements.

Automata-theoretic and logical approaches have been primarily used for ver-
ification and synthesis of hybrid systems [2,4,45]. In [4,45], a general framework
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for controller synthesis based on hybrid automata was proposed. This approach
relies on backward reachable set computation and fixed point iteration, and thus
has two main restrictions: (i) the computation of backward reachable set is hard
for most continuous dynamics, and (ii) termination of the fixed point iteration
process cannot be guaranteed, even for those hybrid systems whose backward
reachable sets are effectively computable. Therefore most of the research, e.g.
[14], focuses on overcoming the above two restrictions.

Recently, a deductive approach for verification and synthesis based on con-
straint solving was proposed in [11,28,27,41,21,40]. The central idea is to reduce
verification and synthesis problems of hybrid systems to invariant generation
problems, much like verification of programs. As proposed in [16,15,34], if in-
variants are hypothesized to be of certain shapes, then corresponding templates
with associated parameters can be used and the invariant generation problem
can be reduced to constraint solving over parameters by quantifier elimination.
This methodology is used in [41] for synthesizing switching controllers meeting
safety requirements, while in [43], the approach is extended for satisfying both
safety and reachability requirements. A common problem with template-based
method is that it heavily relies on a user specifying the shape of invariants
that are of interest, thus making it interactive and user driven, raising doubts
about its scalability and automation. Besides, the inference rules for inductive
invariants in [42,41,43] are sound and complete for several classes of invariants,
e.g. smooth, quadratic and convex invariants, but are not complete for generic
semi-algebraic sets1.

Inspired by [17,4,41] and [22], we extend in this paper the template-based
invariant generation approach for synthesizing switching controllers of hybrid
systems to meet given safety requirements. The paper makes the following con-
tributions:

– We propose a method for synthesizing switching controllers for hybrid sys-
tems using a family of invariants, which could be different for different modes
of a hybrid system. We use templates for invariant generation based on
quantifier-elimination (QE) techniques combined with numerical methods.

– In the QE-based synthesis approach, we adopt the invariant generation
method proposed in [22], which is proved to be sound and relatively complete
with respect to a given shape of semi-algebraic invariants (i.e. a given family
of predefined semi-algebraic templates). The advantage is that, compared to
the invariant generation methods used in [42,41,43], there is more possibility
of discovering invariants of the given shape.

– Using the qualitative approach proposed in [17] for analyzing continuous
evolution in each mode of a hybrid system, we can identify those continu-
ous states at which even small perturbation would lead to continuous evo-
lution violating the safety requirement. Such continuous states are called
critical control points, using which we can determine a more precise shape of

1 A subset A ⊆ R
n is called semi-algebraic if there is a quantifier-free polynomial

formula ϕ s.t. A = {x ∈ R
n | ϕ(x) is true} .
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templates to be used as invariants, thus reducing the number of parameters
appearing in templates.

– Quantifier elimination techniques have high complexity especially for cases
when templates have lots of parameters. Even though qualitative analysis is
helpful in bringing down the number of parameters and thus the complexity
of QE, the paper also explores two kinds of predefined templates where nu-
merical techniques can be exploited to improve the degree of automation and
scalability. In particular, (i) for polynomial templates, using sum-of-squares
(SOS) relaxation, the constraint on parameters appearing in templates is
transformed into a semi-definite program(SDP), which is convex and can be
solved efficiently; (ii) for linear systems and a special type of templates—
template polyhedra, the invariant generation problem can be reduced to a
BMI (bilinear matrix inequality) feasibility problem, which is also easier to
solve (numerically) than QE.

Paper Structure. The rest of this paper is structured as follows. In Section 2
we formally define the switching controller synthesis problem for safety of hybrid
automata. In Section 3 we introduce the notion of invariant in the context of
hybrid system, and formulate an abstract solution to the controller synthesis
problem using invariants; then we extend a template-based method for invariant
generation to solve the controller synthesis problem, by combining quantifier
elimination (QE) techniques and qualitative analysis. In Section 4 we investigate
the application of two numerical approaches in switching controller synthesis
by generating invariants numerically. We finally conclude the paper with some
discussions by Section 5.

1.1 Related Work

Our work in this paper resembles [41] but differs in that: i) our method is cast
in the setting of hybrid automata, and therefore rather than generating a single
global controlled invariant, we searches for a family of invariants that refine the
domain of each mode of the original hybrid automata; ii) a sound and complete
criterion is used in invariant generation; iii) various techniques are applied for
scalability.

The SOS relaxation approach has been successfully used in safety verifica-
tion of hybrid systems. In [31,32], the authors used the SOSTOOLS software
package [33] to compute barrier certificates for polynomial hybrid systems. In
[20,48], the authors proposed a hybrid symbolic-numeric approach to compute
exact inequality invariants of hybrid systems, by first solving (bilinear) SOS pro-
gramming numerically and then applying rational vector recovery techniques.

A necessary and sufficient condition for positive invariance of convex polyhe-
dra for linear continuous systems was provided in [7]. This condition is extended
to linear systems with open polyhedral domain for our need in this paper. Tem-
plate polyhedra were used in [36,35] to compute positive invariants of hybrid
systems by policy iteration, which differs from our treatment of the problem us-
ing BMI; besides, unlike [35], we do not require the polyhedral invariant to be
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generated to have the same shape as the domain. Recently, a method for com-
puting polytopic invariants for polynomial dynamical systems using template
polyhedra and linear programming was proposed [38].

Mathematical programming techniques and relevant numerical solvers have
also been widely applied to static program analysis. Actually, the template poly-
hedra abstract domain was first proposed in [37] to generate linear program in-
variants using linear programming. In [8], to verify invariance and termination
of semi-algebraic programs, verification conditions are abstracted into numeri-
cal constraints using Lagrangian relaxation or SOS relaxation, which are then
resolved by efficient SDP solvers.

In our recent work [49], we studied an optimal switching controller synthesis
problem arising from an industrial oil pump system with piece-wise constant
continuous dynamics. A hybrid approach combining symbolic computation with
numerical computation was developed to synthesize safe controllers with better
optimal values.

2 Hybrid Systems and Switching Controller Synthesis
Problem

We use hybrid automata to model hybrid systems.

Definition 1 (Hybrid Automaton). A hybrid automaton (HA) is a system
H �= (Q,X, f,D,E,G), where

• Q = {q1, . . . , qm} is a finite set of modes;
• X = {x1, . . . , xn} is a finite set of continuous state variables, with x =

(x1, . . . , xn) ranging over R
n; Q× R

n is the state space of H;
• f : Q→ (Rn → R

n) assigns to each mode q ∈ Q a vector field fq;
• D : Q→ 2R

n

assigns to each mode q ∈ Q a domain Dq ⊆ R
n;

• E ⊆ Q×Q is a set of discrete transitions;
• G : E → 2R

n

assigns to each transition e ∈ E a switching guard Ge ⊆ R
n .

Compared with the conventional versions of HA as in [2], in Definition 1 we
make the following assumptions:

– for all q ∈ Q, fq is a polynomial vector function, and thus the existence and
uniqueness of solutions to ẋ = fq is guaranteed; besides, fq is required to be
a complete2 vector field, that is, for any x0 ∈ R

n, the solution x(t) to ẋ = fq
exists for all t ∈ [0,∞); however, unlike [17], no assumption is made about
whether a closed form solution to ẋ = fq exists;

– for all q ∈ Q and all e ∈ E, Dq and Ge are closed semi-algebraic sets;
– the initial set of each mode is identical with the domain, and thus omitted;
– all resets are assumed to be identity mappings for ease of presentation, but

can also be generalized to polynomial functions.

2 This assumption is used in the proof of Theorem 1, to exclude the possibility that a
hybrid system is blocked due to the inextensibility of trajectories defined by f .
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We use a nuclear reactor system discussed in [3,12,17] as a running example
throughout this paper.

Example 1. The nuclear reactor system consists of a reactor core and a cooling
rod which is immersed into and removed out of the core periodically to keep the
temperature of the core, denoted by x, in a certain range. Denote the fraction
of the rod immersed into the reactor by θ. Then the initial specification of this
system can be represented using the hybrid automaton in Fig. 1.

�

�

�

�

G12 =̂ θ =0

G34 =̂ θ =1

G41 =̂ θ =0 G23 =̂ θ =1

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ= x/10−6θ−50

θ̇ =0
D1 =̂ θ =0

ẋ= x/10−6θ−50

θ̇ =1
D2 =̂ 0≤θ ≤1

ẋ= x/10−6θ−50

θ̇ =0
D3 =̂ θ =1

ẋ= x/10−6θ−50

θ̇ =−1

D4 =̂ 0≤θ ≤1

Fig. 1. Nuclear reactor temperature control

The semantics of a hybrid automaton H can be defined by the set of trajecto-
ries it accepts. For the formal definitions of hybrid time set and hybrid trajectory
the readers are referred to [45].

The domain of a hybrid automaton H is defined as DH �= �
q∈Q({q} ×Dq).

We call H non-blocking if for any (q,x) ∈ DH, there is a hybrid trajectory from
(q,x) which can either be extended to infinite time t = ∞ or execute infinitely
many discrete transitions; otherwise H is called blocking.

A safety requirement S assigns to each mode q ∈ Q a safe region Sq ⊆ R
n, i.e.

S =
�

q∈Q({q} × Sq). Alternatively, there could be a global safe region S which
all modes are required to satisfy, i.e. Sq = S for all q ∈ Q.

One way of formulating a switching controller synthesis problem for meeting
a safety requirement can be precisely defined as follows [4].

Problem 1 (Controller Synthesis for Safety). Given a hybrid automaton H and
a safety property S, find a hybrid automaton H′ = (Q,X, f,D′, E,G′) such that

(r1) Refinement: for any q ∈ Q, D′
q ⊆ Dq, and for any e ∈ E, G′

e ⊆ Ge;
(r2) Safety: for any trajectory ω that H′ accepts, if (q,x) is on ω, then x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.

If such H′ exists, then SC �= {G′
e ⊆ R

n | e ∈ E} is a safe switching controller
associated with the set of transitions E, and DH′ �= �

q∈Q({q} × D′
q) is the

controlled invariant set rendered by SC.
Informally, the switching controller synthesis problem reduces to identifying a

set of continuous states for each transition, only at which the system is allowed
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to switch from one mode to another, guaranteeing that the system satisfies the
safety requirements imposed on every mode as well as can run forever.

3 A QE-Based Approach

In this section, we propose a quantifier elimination (QE) based approach for syn-
thesizing a switching controller for a hybrid automaton by integrating heuristics
based on qualitative analysis [17] for predefining templates of invariants, into a
relatively complete method for generating semi-algebraic invariants for polyno-
mial continuous dynamical systems with domain [22]. Below we first review the
concept of invariant used in [22] based on a related concept in [28].

3.1 Invariants for Continuous Dynamical System with Domain

The notion of positively invariant set plays a very important role in the study
of continuous dynamical systems [5].

Definition 2. A subset P ⊆ R
n is called a positively invariant set for a system

ẋ = f(x), if for all x0 ∈ P , the solution x(t) to ẋ = f(x) starting from x0

satisfies x(t) ∈ P for all t > 0.

However, the above concept of invariant is not suitable for the study of hybrid
systems. The reason is that each mode of a hybrid automaton H can be ab-
stracted as a pair (D, f), where D and f are the domain and vector field of a
certain mode of H; for any trajectory x(t) of f , only the part of x(t) that lies
in D is meaningful to the behavior of H, rather than the complete trajectory
with all t > 0 as in Definition 2. Therefore the following concept of invariant is
proposed for systems like (D, f).

Definition 3. A subset P ⊆ R
n is called an invariant of (D, f), if for all x0 ∈ P

and all T ≥ 0, the solution x(t) of ẋ = f(x) over [0, T ] with x(0) = x0 satisfies

(∀t ∈ [0, T ].x(t) ∈ D) −→ (∀t ∈ [0, T ].x(t) ∈ P ) .

Intuitively, P is an invariant of (D, f) if any continuous evolution starting from
P stays in P as long as it stays in D. If D = R

n, then an invariant of (D, f) is a
positively invariant set of ẋ = f(x) as defined in Definition 2; otherwise if D is
a proper subset of Rn, then generally the notion of invariant in Definition 3 is
weaker, and thus allows a broader class of sets to be invariants.

Example 2. Suppose D �= x > 0 and f = (−y, x). It can be shown (please to the
full version [18]) that P �= y ≥ 0 is not a positively invariant set of ẋ = f(x),
but is an invariant of (D, f).

The above arguments show that when dealing with continuous evolutions in
the context of hybrid system, it is necessary to study invariants for augmented
systems (D, f), rather than pure continuous dynamical systems ẋ = f(x).
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3.2 The Abstract Synthesis Procedure

Solving Problem 1 amounts to refining the domains and guards of H by removing
so-called bad states. A state (q,x) ∈ DH is bad if the hybrid trajectory starting
from (q,x) either blocksH or violates S; otherwise, it is called a good state. From
Definition 3, we observe that the set of good states of H can be approximated
using invariants, which results in the following solution to Problem 1.

Theorem 1. Let H and S be as in Problem 1. Further, for each q ∈ Q, let D′
q

be a closed subset of Rn such that
�

q∈QD
′
q is non-empty (to imply at least one

D′
q is non-empty). If we have

(c1) for all q ∈ Q, D′
q ⊆ Dq ∩ Sq;

(c2) for all q ∈ Q, D′
q is an invariant of (Hq, fq) with

Hq �=
� �
e=(q,q′)∈E

G′
e

�c
,

where G′
e �= Ge ∩ D′

q′ for e = (q, q′), and Ac denotes the complement of A in
R

n, then the HA H′ = (Q,X, f,D′, E,G′) is a solution to Problem 1.

Proof. Please refer to the full version of this paper [18]. 	

In Theorem 1, condition (c1) ensures that D′

q is a refinement of Dq and mode
q satisfies its safety condition, thus guaranteeing (r1) and (r2) of Problem 1;
condition (c2) requires that any trajectory starting in mode q will either remain
in mode q or jump to another mode q′ when the associated guard is satisfied,
thus guaranteeing (r3) of Problem 1.

Based on Theorem 1, we give below the steps of a template-based method for
synthesizing a switching controller.

(s1) Template assignment: assign to each q ∈ Q a template parametrically
specifying D′

q, which will be required (see step (s3)) to be a refinement of
Dq, as well as the invariant to be generated at mode q ;

(s2) Guard refinement: refine guard Ge for each e = (q, q′) ∈ E by setting
G′

e �= Ge ∩D′
q′ ;

(s3) Deriving synthesis conditions: encode (c1) and (c2) in Theorem 1 into
constraints on parameters appearing in the templates;

(s4) Constraint solving: solve the constraints derived from (s3) in terms of
the parameters;

(s5) Parameters instantiation: find an appropriate instantiation of D′
q and

G′
e such that D′

q are closed3 sets for all q ∈ Q, and D′
q is non-empty4 for

at least one q ∈ Q; if such an instantiation is not found, we choose a new
set of templates and go back to (s1).

3 This can be enforced by restricting to ≥,≤,= and ∨,∧ symbols in templates.
4 To avoid trivially generating an empty set, some additional constraints can be en-
coded in step (s3).
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We have assumed the hybrid automata to be specified by polynomial expres-
sions. If in addition we restrict the form of safety requirements and templates
to polynomial formulas, then computability of the above abstract procedure is
guaranteed by Tarski’s result [44].

In (s3), condition (c1) can be encoded into a first-order polynomial formula
straightforwardly; encoding of (c2) into first-order polynomial constraints is
based on our previous work in [22] on a relatively complete method for gen-
erating invariants (see Section 3.3). We use quantifier elimination (QE) to solve
the first-order polynomial constraints obtained in (s4).

The shape of chosen templates in (s1) determines the likelihood of success of
the above procedure, as well as the complexity of QE in (s4). In Section 3.5,
we discuss heuristics for choosing appropriate templates using the qualitative
analysis discussed in [17].

3.3 A Relatively Complete Method for Generating Invariants

In [22] we presented a sound and relatively complete approach for generating
semi-algebraic invariants for (D, f) with semi-algebraic domain D and polyno-
mial vector function f . For self-containedness, we introduce below the main result
in the simplest case. For details the readers can consult [22].

Given a polynomial p(x) and a polynomial vector field f(x), define the Lie
derivatives of p along f , Lk

f p : R
n −→ R for k ∈ N, as follows:

• L0
f p(x) = p(x) ;

• Lk
f p(x) = 〈∇Lk−1

f p(x), f(x)〉, for n > 0,

where ∇g(x) denotes the gradient vector of a scalar function g(x), and 〈·, ·〉 is
the inner product of two vectors.

Example 3. Suppose f = (1, 1) and p(x, y) = −x2+y. Then L0
f p(x, y) = −x2+y,

L1
f p(x, y) = −2x+ 1, L2

f p(x, y) = −2, and Lk
f p(x, y) = 0 for all k ≥ 3.

The importance of Lie derivatives is that they can be used to predict continuous
evolutions of f in terms of a polynomial p. To illustrate this, look at Fig. 2
showing the vector field f (small arrows) and the semi-algebraic set P �= p ≥ 0
(grey area), with f and p defined in Example 3. At point A0(−1, 1) on the
boundary of P , the first-order Lie derivative L1

f p(−1, 1) = 3 > 0, indicating
that the angle between the vector field (1, 1) (arrow −−→

A0A1), and the gradient
∇p(−1, 1) = (2, 1) (arrow −−→

A0A2) is less that π
2 , which further indicates that the

trajectory of f from A0 (arrow −−→
A0A3) would move towards the p > 0 side.

At point B0(
1
2 ,

1
4 ), L

1
f p(

1
2 ,

1
4 ) = 0 indicates that the vector field −−→

B0B1 is or-
thogonal to the gradient −−→

B0B2, from which we cannot tell how the trajectory
from B0 (arrow −−→

B0B3) evolves with respect to P . However, if we resort to higher
order Lie derivatives, then from L2

f p(
1
2 ,

1
4 ) = −2 < 0 we assert that −−→B0B3 would

go out of P into the p < 0 side immediately.
Generally, given p and f , to make predictions as above at a point x ∈ R

n,
we need to compute L0

f p(x), L
1
f p(x), . . . to get the first k ∈ N s.t. Lk

f p(x) �= 0.
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Fig. 2. Using Lie derivatives to predict continuous evolution

Furthermore, we can compute an integer Np,f from p and f such that if all Lie
derivatives with order ≤ Np,f evaluate to 0 at x, then Lk

f (x) = 0 for all k ∈ N.
As a result, it suffices to compute Lie derivatives up to the Np,f -th order.

Formally, we have

Theorem 2. Given a system (D, f) with D �= h(x) > 0, it has an invariant of

the form P �= p(x) ≥ 0 if and only if ∀x.
�
p(x) = 0 ∧ h(x) > 0 −→ ψ(p, f)

�
,

where

ψ(p, f) �=
L1
f p(x) > 0

∨ L1
f p(x) = 0 ∧ L2

f p(x) > 0
∨ · · ·
∨ L1

f p(x) = 0 ∧ · · · ∧ LNp,f−1
f p(x) = 0 ∧ LNp,f

f p(x) > 0

∨ L1
f p(x) = 0 ∧ · · · ∧ LNp,f−1

f p(x) = 0 ∧ LNp,f

f p(x) = 0

.

Proof. Please refer to [22]. 	

The above theorem can be generalized for parametric polynomials p(u,x), thus
enabling us to use polynomial templates and QE to automatically discover in-
variants. Such a method for invariant generation is relatively complete, that is,
if there exists invariants in the form of the predefined template, then we are able
to find one.

3.4 Comparison with Other Invariant Generation Approaches

In Platzer et al’s work [28,27,30,29] and Tiwari et al’s work [11,42,41], various
criteria are proposed for checking invariants for systems ẋ = f(x) or (D, f).
We will show the strength of our criterion due to its completeness through the
following comparison.

Consider the system (R2, f) from [42] with f �= (1−y, x). It can be shown that
this system has an invariant p ≥ 0 with p �= − (−x2 − y2 +2y)2. Geometrically,
the trajectories of f are all circles centered at (0, 1). The set p ≥ 0, or equivalently
p = 0 is actually one of these circles with radius 1, thus an invariant.
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In [42], sound and complete inference rules are given for invariants that
are linear, quadratic, smooth or convex. However, it was also pointed out in
[42] that all these rules failed to prove the invariance property of p ≥ 0, for
in this example p ≥ 0 is not linear or quadratic, nor is it smooth or con-
vex. Furthermore, by a simple computation we get Lk

f p ≡ 0 for all k ≥ 1, so
the sound but incomplete rule in [42,41] which involves only strict inequalities
over finite-order Lie derivatives is also inapplicable. However, from L1

f p ≡ 0 we
get5 Np,f = 0, and then according to Theorem 2, p ≥ 0 can be verified since
∀x∀y. �−(−x2 − y2 + 2y)2 = 0 −→ true

�
holds trivially.

Although the rule in [28] can also be used to check the invariant p ≥ 0,
generally it only works on very restricted invariants. Even for linear systems like
(R, ẋ = x), it cannot prove the invariant x ≥ 0 because the verification condition
∀x.x ≥ 0 is obviously false; whereas our approach requires ∀x.(x = 0 → true)
(for this example Np,f=0 so ψ(p, f) in Theorem 2 is true), which is trivially true.

Intuitively, to prove that p ≥ 0 is an invariant of (D, f), the rule in [28] requires
L1
f p ≥ 0 over the whole domain D, while the rule in [42,41] requires that on the

boundary of p ≥ 0 inside D, the first non-zero high order Lie derivative, say Lk
f p,

is strictly positive. Completeness is lost either because non-boundary points are
unnecessarily examined, or an upper bound on the order of Lie derivatives to be
considered (the number Np,f in our rule) is not given.

The above analysis shows the generality of our approach, using which it is
possible to generate invariants in many general cases, and hence gives more
possibility to synthesize a controller based on our understandings of the kind of
controllers that can be synthesized using methods in [41,43,40].

3.5 Heuristics for Predefining Templates

The key steps of the qualitative analysis used in [17] are as follows.

1. Infer the evolution behavior (increasing or decreasing) of continuous variables
in each mode from the differential equations (using first or second order
derivatives).

2. Identify modes at which the evolution behavior (increasing or decreasing)
of a continuous variable changes, and thus the maximal (or minimal) value
of this continuous variable can be achieved. Such modes are called control
critical modes.

3. At a control critical mode, equate the maximal (or minimal) value of a
continuous variable to the corresponding safety upper (or lower) bound to
obtain a specific continuous state, called a critical point.

4. At a control critical mode, use the critical point as the initial value to com-
pute a closed form solution of the differential equation at that mode; then
backtrack along this solution to compute a switching point which evokes a
transition leading to the control critical mode.

5. The above obtained switching point is chosen as a new critical point, which
is then backward propagated to other modes in a similar way.

5 How to compute Np,f for polynomial functions p and f can be found in [22].
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Next, we illustrate how such an analysis helps in predefining templates for the
running example.

Example 4 (Nuclear Reactor Temperature Control). Our goal is to synthesize a
switching controller for the system in Example 1 with the global safety require-
ment that the temperature of the core lies between 510 and 550, i.e. Si �= 510 ≤
x ≤ 550 for i = 1, 2, 3, 4. Please refer to Fig. 3 to get a better understanding of
following discussions.

1) Refine domains. Using the safety requirement, domainsDi for i = 1, 2, 3, 4
are refined by Ds

i �= Di ∩ Si, e.g. D
s
1 �= θ = 0 ∧ 510 ≤ x ≤ 550 .

2) Infer continuous evolutions. Let l1 �= x/10−6θ−50 = 0 be the zero-level
set of ẋ and check how x and θ evolve in each mode. For example, in Ds

2,
ẋ > 0 on the left of l1 and ẋ < 0 on the right; since θ increases from 0 to 1, x
first increases then decreases and achieves maximal value when crossing l1.

3) Identify control critical modes. By 2), q2 and q4 are control critical
modes at which the evolution direction of x changes and the maximal (or
minimal) value of x is achieved.

4) Generate critical points. By 3), we can get a critical point E(5/6, 550)
at q2 by taking the intersection of l1 and the safety upper bound x = 550;
and F (1/6, 510) can be obtained similarly at q4.

5) Propagate critical points. E is backward propagated to A(0, a) using
the trajectory �AE through E defined by fq2 , and then to C(1, c) using the
trajectory�CA through A defined by fq4 ; similarly, by propagating F we get
D and B.

6) Construct templates. For brevity, we only show how to construct D′
2. In-

tuitively, θ = 0, θ = 1,�AE and�BD form the boundaries of D′
2. In order to get

a semi-algebraic template, we need to fit�AE and�BD (which are generally not
polynomial curves) by polynomials using points A,E and B,D respectively.
By the inference of 2), �AE has only one extreme point (also the maximum
point) E in Ds

2, and is tangential to x = 550 at E. A simple algebraic curve
that can exhibit a shape similar to�AE is the parabola through A,E opening
downward with l2 �= θ = 5

6 the axis of symmetry. Therefore to minimize the
degree of terms appearing in templates, we do not resort to polynomials with
degree greater than 2. This parabola can be computed using the coordinates
of A,E as: x − 550− 36

25 (a − 550)(θ − 5
6 )

2 = 0 , with a the parameter to be
determined.

Through the above analysis, we generate the following templates:

• D′
1 �= θ = 0 ∧ 510 ≤ x ≤ a ;

• D′
2 �= 0 ≤ θ ≤ 1 ∧ x− b ≥ θ(d− b) ∧ x− 550− 36

25 (a− 550)(θ − 5
6 )

2 ≤ 0 ;
• D′

3 �= θ = 1 ∧ d ≤ x ≤ 550 ;
• D′

4 �= 0 ≤ θ ≤ 1 ∧ x− a ≤ θ(c− a) ∧ x− 510− 36
25 (d− 510)(θ − 1

6 )
2 ≥ 0 ,

in which a, b, c, d are parameters satisfying

510 ≤ b ≤ a ≤ 550 ∧ 510 ≤ d ≤ c ≤ 550 .
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Fig. 3. Predefining templates via qualitative analysis

Note that without qualitative analysis, a single generic quadratic polynomial
over θ and x would require

�2+2
2

�
= 6 parameters.

Based on the framework presented in Section 3.2, we show below how to
synthesize a switching controller for the system in Example 4 step by step.

Example 5 (Nuclear Reactor Temperature Control Contd.).

(s1) The four templates are defined in Example 4.
(s2) The four guards are refined by G′

ij �= Gij ∩D′
j and then simplified to :

• G′
12 �= θ = 0 ∧ b ≤ x ≤ a ;

• G′
23 �= θ = 1 ∧ d ≤ x ≤ 550 ;

• G′
34 �= θ = 1 ∧ d ≤ x ≤ c ;

• G′
41 �= θ = 0 ∧ 510 ≤ x ≤ a .

(s3) Based on Theorem 1 and a general version of Theorem 2 [22], we can
derive the synthesis condition, which is a first-order polynomial formula in
the form of φ �= ∀x∀θ.ϕ(a, b, c, d, x, θ). We do not include φ here due to its
big size.

(s4) By applying QE to φ, we get the following solution to the parameters:6

a =
6575

12
∧ b =

4135

8
∧ c =

4345

8
∧ d =

6145

12
. (1)

(s5) Instantiate D′
i and G′

ij by (1). It is obvious that all D′
i are nonempty

closed sets. According to Theorem 1, we get a safe switching controller for
the nuclear reactor system, i.e.

• G′
12 �= θ = 0 ∧ 4135/8 ≤ x ≤ 6575/12 ;

• G′
23 �= θ = 1 ∧ 6145/12 ≤ x ≤ 550 ;

• G′
34 �= θ = 1 ∧ 6145/12 ≤ x ≤ 4345/8 ;

• G′
41 �= θ = 0 ∧ 510 ≤ x ≤ 6575/12 .

In [17], an upper bound x = 547.97 for G12 and a lower bound x = 512.03 for G34

are obtained by solving the differential equations at mode q2 and q4 respectively.

6 The process of applying QE and selecting a sample solution demands some human
effort which can be found in the full version of this paper [18].
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By (1), the corresponding bounds generated here are x ≤ 6575
12 = 547.92 and

x ≥ 6145
12 = 512.08.

As should be evident from the above results, in contrast to [17], where dif-
ferential equations are solved to get closed-form solutions, we are able to get
good results without requiring closed-form solutions. This indicates that our ap-
proach should work well for hybrid automata where differential equations for
modes need not have closed form solutions.

4 Speeding Computations Using Numerical Methods on
Specialized Templates

The QE-based approach crucially depends upon quantifier elimination tech-
niques. It is well known that the complexity of a general purpose QE method
over the full theory of real-closed fields is doubly exponential in the number
of variables [9]. Therefore it is desirable to develop heuristics to do QE more
efficiently. As shown in Section 3.5, qualitative analysis helps in reducing the
number of parameters in templates. Another possible way to address the issue
of high computational cost is resorting to numerical methods. In this section, we
will discuss the application of two such approaches on specialized templates.

4.1 The SOS Relaxation Approach

Let R[x1, x2, . . . , xn], or R[x] for short, denote the polynomial ring over variables
x1, x2, . . . , xn with real coefficients. A monomial is an expression in the form of
xα1
1 xα2

2 · · ·xαn
n with (α1, α2, . . . , αn) ∈ N

n. A polynomial p(x) ∈ R[x] of degree
d can be written as a linear combination of

�n+d
d

�
monomials, i.e.

p(x) =
	

α1+α2+···+αn≤d

c(α1,α2,...,αn) · xα1
1 xα2

2 · · ·xαn
n .

We call p an SOS (sum-of-squares) if there exist s polynomials q1, q2, . . . , qs s.t.

p =
	

1≤i≤s

q2i .

It is obvious that any SOS p is non-negative, i.e. ∀x ∈ R
n. p(x) ≥ 0 .

The basic idea of SOS relaxation is as follows: to prove that a polynomial p is
nonnegative, it suffices to show that p can be decomposed into a sum of squares,
a trivially sufficient condition for non-negativity (but generally not necessary);
similarly, to prove p ≥ 0 on the semi-algebraic set q ≥ 0, it is sufficient to find
two SOS r1, r2 such that p = r1 + r2 · q.

SOS relaxation is attractive because SOS decomposition can be reduced to
a semi-definite programming (SDP) problem according to the following equiva-
lence [26]:

A polynomial p of degree 2d is an SOS if and only if there exists a semi-
definite matrix Q such that p = q ·Q·qT , where q is a

�n+d
d

�
-dimensional

row vector of monomials with degree ≤ d.
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SDP is a convex programming that is solvable in polynomial time using numerical
methods such as the interior point method [47]. Therefore the searching for SOS
is a tractable problem.

We now show how SOS can be related to invariant generation. Let p ≥ 0 be a
parametric template defined for the system (h > 0, f). By Theorem 2, a sufficient
condition for p ≥ 0 to be an invariant of (h > 0, f) is

∀x.
�
p(x) = 0 ∧ h(x) > 0 −→ L1

f p(x) > 0
�
,

of which a sufficient condition is

∀x.
�
h(x) > 0 −→ L1

f p(x) > 0
�
,

and again of which a sufficient condition given by SOS relaxation is

L1
f p = s1 + s2 · h+ ε , (2)

where s1, s2 are SOS and ε is a positive constant. By expressing s1, s2 via un-
known semi-definite matrices and equating the parametric coefficients of mono-
mials on both sides of (2), we can obtain an SDP problem, the solution of which
gives an invariant p ≥ 0.

As shown above, in general, a constraint that possesses easy SOS relaxation
encoding has the form ∀x.(
m

i=1 gi 	 0 −→ gm+1 	 0), where all gi’s are poly-
nomials in x and 	 ∈ {≥, >}. Handling arbitrary Boolean combinations, which
is common case in Theorem 1 and 2, is not the strength of the SOS approach.
For the particular purpose of facilitating SOS encodings of controller synthesis
conditions, we propose specialized use of both Theorem 1 and 2, which can be
found in the full version of this paper [18].

For the nuclear reactor example, we define two general quartic templates in
the form of

θ ≥ 0 ∧ θ ≤ 1 ∧
	

α1+α2≤4

c(α1,α2) · θα1xα2 ≤ 0

for mode q2 and q4. The idea is to fit the two boundaries of D′
2 (or D′

4), i.e.�AE and �BD in Fig. 3 simultaneously by one quartic polynomial, rather than two
polynomials with lower degrees. The high efficiency of SOS solvers gives such
possibility of using generic templates with higher degrees. Using the SOS relax-
ation techniques discussed above, the following switching controller is obtained:

– G′
12 �= θ = 0 ∧ 519.10 ≤ x ≤ 547.86 ;

– G′
23 �= θ = 1 ∧ 512.09 ≤ x ≤ 550.00 ;

– G′
34 �= θ = 1 ∧ 512.09 ≤ x ≤ 546.15 ;

– G′
41 �= θ = 0 ∧ 510.00 ≤ x ≤ 547.86 .

For more details on the issues of defining templates, encoding constraints, ap-
plying numerical solvers etc, please refer to the full version [18].
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4.2 The Template Polyhedra Approach

Convex polyhedra are a popular class of (positive) invariant sets of linear (con-
tinuous or discrete) systems [5]. A convex polyhedron in R

n can be represented
using linear inequality constraints as Qx ≤ ρ, where Q ∈ R

r×n is an r×nmatrix,
and x ∈ R

n×1, ρ ∈ R
r×1 are column vectors.

Given a linear continuous dynamical system ẋ = Ax with A ∈ R
n×n, the

following result on (positive) polyhedral invariant set is established in [7].

Proposition 1. The polyhedron Qx ≤ ρ is a positive invariant set of ẋ = Ax if
and only if there exists an essentially non-negative7 matrix H ∈ R

r×r satisfying
HQ = QA and Hρ ≤ 0.

By simply applying the famous Farkas’ lemma [11], we can generalize Proposi-
tion 1 and give a sufficient condition for polyhedral invariants of linear dynamics
with open polyhedral domain (below we use a simple domain for ease of presen-
tation).

Proposition 2. Let f �= Ax+ b and D �= cx < a, where a ∈ R, b ∈ R
n×1 is a

column vector, and c ∈ R
1×n is a row vector. Then the polyhedron Qx ≤ ρ is an

invariant of the system (D, f), if there exists an essentially non-negative matrix
H ∈ R

r×r and a non-negative column vector λ ≥ 0 in R
r×1 s.t.

(1) HQ = diag(λ)QA − ones(r,1)c ; and
(2) Hρ ≤ −diag(λ)Qb− ones(r,1)a ,

where diag(λ) denotes the r×r diagonal matrix whose main diagonal corresponds
to the vector λ, and ones(r,1) denotes the r × 1 column vector with all entries 1.

Proof. Please refer to the full version of this paper [18]. 	

Proposition 2 serves as the basis of automatic generation of polyhedral invariants
for linear systems. To reduce the number of parameters in a polyhedral template,
we propose the use of template polyhedra. The idea is to partly fix the shape
of the invariant polyhedra by fixing the orientation of their facets. Formally, a
template polyhedron is of the form Qx ≤ ρ whereQ is fixed a priori and ρ is to be
determined. Any instantiation of ρ from R

r×1 produces a concrete polyhedron.
In this paper, since the system is planar, we choose Q in such a way that its row
vectors form a set of uniformly distributed directions on a unit circle, i.e.

qi =
�
cos(

i − 1

r
2π), sin(

i− 1

r
2π)
�

for 1 ≤ i ≤ r, where qi denotes the i-th row of Q. It is easy to see that Qx ≤ ρ
is just a rectangle when r = 4, and an octagon when r = 8.

To determine ρ, we need to find such matrices H and λ satisfying Proposi-
tion 2. Note that since both H and ρ are indeterminate, the constraint (2) in

7 A square matrix is essentially non-negative if all its entries are non-negative except
for those on the diagonal. Besides, given a matrix M , in this paper the inequalities
or equations M ≥ 0, M > 0, M = 0 should be interpreted entry-wise.
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Proposition 2 becomes bilinear, making the problem NP-hard [46] to solve. It is
however still tractable using modern BMI solvers.

Using octagonal templates8 for mode q2 and q4 in the nuclear reactor example,
we obtain the following switching controller:

– G′
12 �= θ = 0 ∧ 519.90 ≤ x ≤ 545.70 ;

– G′
23 �= θ = 1 ∧ 514.40 ≤ x ≤ 550.00 ;

– G′
34 �= θ = 1 ∧ 514.40 ≤ x ≤ 538.24 ;

– G′
41 �= θ = 0 ∧ 510.00 ≤ x ≤ 545.70 .

As in Section 4.1, the readers are referred to [18] for more details about the
application of the template polyhedra approach.

5 Conclusion and Discussion

We have extended a template-based approach for synthesizing switching
controllers for semi-algebraic hybrid systems by combining symbolic invariant
generation methods using quantifier elimination with qualitative methods to
determine the likely shape of invariants. We have also investigated the applica-
tion of numerical methods to gain more scalability and automation. A summary
comparison of the three proposed approaches, as well as their advantages and
problems, are given in the following aspects based on our experience.

– Applicability. The QE-based and SOS relaxation approaches can be ap-
plied to semi-algebraic systems which do not have closed-form solutions,
while the template-polyhedra approach is only applicable to linear systems.

– Design of Templates. The QE-based approach demands much heuristics,
which currently works well only on systems with low dimension, in deter-
mining templates, while the other two require less human effort.

– Derivation of Synthesis Conditions. For the QE-based method, deriva-
tion of synthesis conditions is a routine work because of the power of first-
order formulas in formulating problems; the other two approaches are not
good at handling complex logical structures and require the problems to be
of specific forms, which usually demands some human work in practice.

– Quality of Results.The QE-based and SOS relaxation approaches can gen-
erate (non-convex) semi-algebraic invariants, while the template-polyhedra
approach can only generate convex polyhedral invariants. Figure 4 demon-
strates the synthesized D′

2 for the nuclear reactor example by the three
approaches in turn: the first one is formed by straight lines and a parabola,
the second one by straight lines and a quartic polynomial curve, and the
third one is an octagon. For the switching controller synthesis problem, it’s
desirable to generate as large as possible invariants to gain more possibil-
ity of further refinement of the controllers based on other criteria. In this
sense it’s difficult to judge the merits of three approaches (e.g. in Fig. 4 the
synthesized invariants have similar sizes).

8 We search for polyhedral invariants using templates with 4, 8, 12, . . . facets, and could
not get a solution using templates with 4 facets.
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Fig. 4. Shapes of synthesized invariants by three approaches

– Computational Issues. For the QE-based approach, we have used the al-
gebraic tool Redlog [10] to perform QE, and run several rounds of QEPCAD
[6] (the slfq function) with human interactions to simplify the output of
Redlog. For the numerical approaches, we use the MATLAB optimization
toolbox YALMIP [24,25] as a high-level modeling environment and the in-
terfaced external solvers SeDuMi [39] and PENBMI [19] (the TOMLAB [13]
version) to solve the underlying SDP and BMI problems respectively. In our
experiments, the SDP solver exhibits consistently good performances, but
the BMI solver frequently runs into numerical problems. To make the BMI
solver work we have to adjust the input constraints and the solver options a
lot with trials and errors9. Table 1 shows the time cost of three approaches

Table 1. Templates and time cost of three controller synthesis approaches

Approach QE-based SOS-relaxation template-polyhedra

Tool Redlog + slfq YALMIP + SeDuMi YALMIP + PENBMI

Template
NR quadratic, #PARMS= 4 generic quartic 8 facets
TS quadratic, #PARMS= 2 generic quartic 12 facets

Time NR 12.663 1.969 0.578
(sec) TS 7.092 1.609 1.703

on the nuclear reactor (NR) example as well as a thermostat (TS) example
from [14]. All computations are done on a desktop with the Intel Q9400
2.66GHz CPU and 4GB RAM running Ubuntu Linux. We can see that for
these two examples the QE-based approach is more expensive in time com-
pared to numerical approaches. However, according to our experience, the
template-polyhedra approach does not scale well due to the NP-hardness of
BMI problems, so its superiority to QE-based approach may not always be
the case. For a detailed explanation of Table 1 as well as the description of
the TS example please refer to [18].

9 Another way is to use the global nonlinear optimization solver BMIBNB in YALMIP,
which would cause an increase of time cost by dozens (even hundreds) of times for
the same two examples.
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– Soundness.The QE-based approach is exact while the other two approaches
suffer from numerical errors which would cause the synthesis of unsafe con-
trollers. To partly address this problem, we have directly encoded some tol-
erance of numerical errors into the synthesis conditions to increase robust-
ness and reduce the risk of synthesizing bad controllers. The justification for
adopting numerical methods is that verification is much easier than synthe-
sis. For example, for the nuclear reactor example, we have verified posteriorly
and symbolically the controllers synthesized by both numerical approaches,
and the verification process is very efficient.

Our preliminary analysis suggests the effectiveness of the three proposed ap-
proaches. We are currently experimenting with these methods on more examples,
especially nonlinear ones which do not possess closed-form solutions. We plan
to extend these approaches for reachability and/or optimality requirements as
well, by incorporating our previous results on asymptotic stability analysis [23]
and a case study in optimal control [49].
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