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Abstract. We report on our recent experience in applying formal methods to the
verification of a descent guidance control program of a lunar lander. The powered
descent process of the lander gives a specific hybrid system (HS), i.e. a sampled-
data control system composed of the physical plant and the embedded control
program. Due to its high complexity, verification of such a system is very hard.
In the paper, we show how this problem can be solved by several different tech-
niques including simulation, bounded model checking (BMC) and theorem prov-
ing, using the tools Simulink/Stateflow, iSAT-ODE and Flow∗, and HHL Prover,
respectively. In particular, for the theorem-proving approach to work, we study
the invariant generation problem for HSs with general elementary functions. As a
preliminary attempt, we perform verification by focusing on one of the 6 phases,
i.e. the slow descent phase, of the powered descent process. Through such verifi-
cation, trustworthiness of the lunar lander’s control program is enhanced.

Keywords: Lunar lander, formal verification, hybrid systems, reachable set,
invariant.

1 Introduction

Recently, China just launched a lunar lander to achieve its first soft-landing and rov-
ing exploration on the moon. After launching, the lander first entered an Earth-Moon
transfer orbit, then a 100 kilometers (km)-high circular lunar orbit, and then a 15km ×
100km elliptic lunar orbit. At perilune of the elliptic orbit, the lander’s variable thruster
was fired to begin the powered descent process, which can be divided into 6 phases. As
shown in Figure 1, the terminal phase of powered descent is the slow descent phase,
which should normally end several meters above the landing site, followed by a free
fall to the lunar surface. One of the reasons to shut down the thruster before touchdown
is to reduce the amount of stirred up dust that can damage onboard instruments.
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Fig. 1. The powered descent process of the lunar lander

Powered descent is the most challenging task of the lunar lander mission because
it is fully autonomous. Due to communication delay, it is impossible for stations on
earth to track the rapidly moving lander, and remote control commands from earth
cannot take effect immediately. The lander must rely on its own guidance, navigation
and control (GNC) system to, in real time, acquire its current state, calculate control
commands, and use the commands to adjust its attitude and engine thrust. Therefore
the reliable functionality of the GNC system is the key to the success of soft-landing.
The motivation of this work is to enhance the trustworthiness of the guidance control
program used in the powered descent process by application of formal methods.

The general framework of our approach is as follows. Firstly, with the help of engi-
neers participating in the lunar lander project, we build a closed loop model consisting
of the lander’s physical dynamics and the program controlling the lander; the program
model is excerpted from the real C-code program by keeping the critical control flows
and numerical computations while abstracting away non-essential information. In addi-
tion, properties about the closed-loop system that are the engineers’ main concerns are
proposed. Then these properties are analyzed or formally verified.

The closed-loop model has the following prominent features: 1) the physical dy-
namics is modelled by ordinary differential equations (ODEs) with general elemen-
tary functions (rational, trigonometric, exponential functions etc.); 2) the program has
complex branching conditions and numerical computations; 3) the physical process is
frequently interrupted by control inputs from the program; 4) the system suffers from
various uncertainties. Verification of such a system is beyond the capacity of many
existing verification tools. Our solutions are as follows: 1) we first build a Simulink/S-
tateflow model of the closed-loop system and analyze its behaviour by simulation; 2)
we then perform bounded model checking (BMC) of the system w.r.t. proposed prop-
erties using the tools iSAT-ODE [5] and Flow∗ [3]; 3) thirdly, with the tool Sim2HCSP
[16,15] we automatically translate the Simulink/Stateflow graphical model to a formal
model given by HCSP [8,13], a formal modelling language of HSs, and then perform
unbounded safety verification of the system using HHL Prover [14], a theorem prover
for HSs, by extending our previous work on invariant generation for polynomial HSs
[11] to HSs with general elementary functions.

We have tried to show the effectiveness of three different formal verification tools
because each of them has its own strength (and weakness) and cannot be replaced by
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the others: iSAT-ODE can deal with very complex logical structures and data types
(real, integer, Boolean) of programs, and provides flexible control of unwinding depth
for BMC; Flow∗ can cope with large initial sets and perturbation of system models;
HHL Prover can save lots of efforts in safety verification, especially when considering
safety in a large or even unbounded time interval.

In this paper, we mainly focus on applying the above framework to the slow de-
scent phase. Verification is performed before the real program is deployed on the lunar
lander’s computer, and thus strengthens our trust in the dependability of the program.

1.1 Related Work

Verification of full feedback system combining the physical plant with the control pro-
gram has been advocated by Cousot [4] and Goubault et al. [7]. There are some recent
work in this trend which resembles our work in this paper. In [2], Bouissou et al. pre-
sented a static analyzer named HybridFluctuat to analyze hybrid systems encompassing
embedded software and continuous environment; subdivision is needed for HybridFluc-
tuat to deal with large initial sets. In [12], Majumdar et al. also presented a static ana-
lyzer CLSE for closed-loop control systems, using concolic execution and SMT solving
techniques; CLSE only handles linear continuous dynamics. In [1], Saha et al. verified
stability of control software implementations; their approach requires expertise on anal-
ysis of mathematical models in control theory using such tools as Lyapunov functions.

There are some recent work on application of formal methods in the aerospace in-
dustry. For example, in [9] Johnson et al. proved satellite rendezvous and conjunction
avoidance by computing the reachable sets of nonlinear hybrid systems; in [6] Katoen et
al. reported on their usage of formal modelling and analysis techniques in the software
development for a European satellite.

Paper Organization. The rest of this paper is organized as follows. In Section 2, we give
a detailed description of the slow descent phase and the related verification problems.
In Section 3, we build the Simulink/Stateflow model and then analyze the system’s
behaviour by simulation. In Section 4 we formally verify the proposed properties by
BMC and theorem proving. The paper is concluded by Section 5.

2 Description of the Verification Problem

Overview of the Slow Descent Phase. The slow descent phase begins at an altitude
(relative to lunar surface) of approximately 30m and terminates when the engine shut-
down signal is received. The task of this phase is to ensure that the lander descends
slowly and smoothly to the lunar surface, by nulling the horizontal velocity, maintain-
ing a prescribed uniform vertical velocity, and keeping the lander at an upright position.
The descent trajectory is nearly vertical w.r.t. the lunar surface (see Figure 2).

The operational principle of the GNC system for the slow descent phase (and any
other phases) can be illustrated by Figure 3. The closed loop system is composed of
the lander’s dynamics and the guidance program for the present phase. The guidance
program is executed periodically with a fixed sampling period. At each sampling point,
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Fig. 2. The slow descent phase Fig. 3. A simplified configuration of GNC

the current state of the lander is measured by IMU (inertial measurement unit) or vari-
ous sensors. Processed measurements are then input into the guidance program, which
outputs control commands, e.g. the magnitude and direction of thrust, to be imposed on
the lander’s dynamics in the following sampling cycle.

We next give a mathematical description of the lander’s dynamics as well as the
guidance program of the slow descent phase. For the purpose of showing the technical
feasibility and effectiveness of formal methods in the verification of aerospace guidance
programs, we neglect the attitude control as well as the orbit control in the horizontal
plane, resulting in a one-dimensional (the vertical direction) orbit dynamics.

Dynamics. Let the upward direction be the positive direction of the one-dimensional
axis. Then the lander’s dynamics is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙ = v
v̇ = Fc

m − gM

ṁ = − Fc

Isp1

Ḟc = 0
Fc ∈ [1500, 3000]

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙ = v
v̇ = Fc

m − gM

ṁ = − Fc

Isp2

Ḟc = 0
Fc ∈ (3000, 5000]

, where (1)

– r, v and m denote the altitude (relative to lunar surface), vertical velocity and mass
of the lunar lander, respectively;

– Fc is the thrust imposed on the lander, which is a constant in each sampling period;
– gM is the magnitude of the gravitational acceleration on the moon, which varies

with height r but is taken to be the constant 1.622m/s2 in this paper, since the
change of height (0≤r≤30m) can be neglected compared to the radius of the moon;

– Isp1 = 2500N·s/kg and Isp2 = 2800N·s/kg are the two possible values that the
specific impulse1 of the lander’s thrust engine can take, depending on whether the
currentFc lies in [1500, 3000] or (3000, 5000], and thus the lander’s dynamics com-
prises two different forms as shown in (1);

– note that the terms Fc

m in (1) make the dynamics non-polynomial.

1 Specific impulse is a physical quantity describing the efficiency of rocket engines. It equals
the thrust produced per unit mass of propellant burned per second.
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Guidance Program. The guidance program for the slow descent phase is executed
once for every 0.128s. The control flow of the program, containing 4 main blocks, is
demonstrated by the left part of Figure 4.

Fig. 4. The guidance program for the slow descent phase

The program first reads data given by navigation computation (block 1), and then
decides whether to stay in the slow descent phase or switch to other phases by testing
the following conditions (block 2):

(SW1) shutdown signal 1, which should normally be sent out by sensors at the height
of 6m, is received, and the lander has stayed in slow descent phase for more
than 10s;

(SW2) shutdown signal 2, which should normally be sent out by sensors at the height
of 3m, is received, and the lander has stayed in slow descent phase for more
than 10s;

(SW3) no shutdown signal is received and the lander has stayed in the slow descent
phase for more than 20s.

If any of the above conditions is satisfied, then the GNC system switches from slow
descent phase to no-control phase and a shutdown command is sent out to the thrust
engine; otherwise the program will stay in the slow descent phase and do the guidance
computation (block 3) as shown in the right part of Figure 4, where

– v and gM are the vertical velocity and gravitational acceleration from navigation
measurements or computation; note that we have assumed gM to be a constant;

– Fc and m are the computed thrust and mass estimation at last sampling point; they
can be read from memory;

– DeltaT = 0.128s is the sampling period;
– Isp is the specific impulse which can take two different values, i.e. 2500 or 2800,

depending on the current value of Fc;
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– mMin = 1100kg and mMax =3000kg are two constants used as the lower and
upper bounds of mass estimation;

– c1 = 0.01 and c2 = 0.6 are two control coefficients in the guidance law;
– vslw = −2m/s is the target descent velocity of the slow descent phase;
– the output Fc (block 4) will be used to adjust engine thrust for the following sam-

pling cycle; it can be deduced from the program that the commanded thrust Fc

always lies in the range [1500, 5000].

Verification Objectives. Together with the engineers participating in the lunar lander
project, we propose the following properties to be verified regarding the closed-loop
system of the slow descent phase and the subsequent free fall phase.

Firstly, suppose the lunar lander enters the slow descent phase at r = 30m with
v = −2m/s, m = 1250kg and Fc = 2027.5N. Then

(P1) Safety 1: |v − vslw | ≤ ε during the slow descent phase and before touchdown2,
where ε = 0.05m/s is the tolerance of fluctuation of v around the target vslw =
−2m/s;

(P2) Safety 2: |v| < vMax at the time of touchdown, where vMax = 5m/s is the
upper bound of |v| to avoid the lander’s crash when contacting the lunar surface;

(P3) Reachability: one of the switching conditions (SW1)-(SW3) will finally be sat-
isfied so that the system will exit the slow descent phase.

Furthermore, by taking into account such factors as uncertainty of initial state, dis-
turbance of dynamics, sensor errors, floating-point calculation errors etc., we give

(P4) Stability and Robustness: (P2) and (P3) still holds, and an analogous of (P1) is
that v will be steered towards vslw = −2m/s after some time.

3 Simulation

We first build a Simulink/Stateflow model3 of the closed-loop system for the slow de-
scent phase. Then based on the model we analyze the system’s behaviour by simulation.

According to Section 2, the physical dynamics is specified by (1), which is modelled
by the Simulink diagram shown in Figure 5.

In Figure 5, several blocks contain parameters that are not displayed:

– the threshold of Isp is 3000, which means Isp outputs 2800 when Fc is greater than
3000, and 2500 otherwise;

– the initial values of m, v and r (m = 1250kg, r = 30m, v = −2m/s) are specified
as initial values of blocks m1, v1 and r respectively.

2 Note that if no shutdown signal is received, there exists possibility that the lander stays in the
slow descent phase after landing.

3 All the details of simulation and verification in this paper can be found at
http://lcs.ios.ac.cn/~zoul/casestudies/hcs.rar

http://lcs.ios.ac.cn/~zoul/casestudies/hcs.rar
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Fig. 5. The Simulink diagram of the dynamics for the slow descent phase
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Fig. 6. The Simulink diagram of the guidance program for the slow descent phase

As specified in Figure 4, The guidance program includes three parts: updating mass
m, calculating acceleration aIC, and calculating thrust Fc. The Simulink diagram for
the guidance program is shown in Figure 6, in which the sample time of all blocks are
fixed as 0.128s, i.e. the period of the guidance program. In Figure 6, blocks m and mSat
are used to update mass m, blocks Fc1 and FcSat are used to calculate thrust Fc, and
the rest are used to calculate acceleration aIC. Blocks mSat and FcSat are saturation
blocks from Simulink library which limit input signals to the upper and lower bounds
of m and Fc respectively.

The simulation result is shown in Figure 7. The left part shows that the velocity of
the lander is between -2 and -1.9999, which corresponds to (P1); the right part shows
that if shutdown signal 1 is sent out at 6m and is successfully received by the lander,
then (SW1) will be satisfied at time 12.032s, which corresponds to (P3).

Fig. 7. The simulation result
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4 Verification

In this section, we formally verify the properties (P1)-(P4) proposed in Section 2.
Firstly, using iSAT-ODE [5] we build an exact model of the dynamics (1) and the guid-
ance program shown in Figure 4, and then verify (P1)-(P3) by BMC with an initial set
of a single point as specified in Section 2. Secondly, we take various uncertainties into
account and verify (P4) by computing the system’s (bounded) reachable set using Flow∗

[3]; to simplify the modelling in Flow∗, we have made reasonable simplifications of the
guidance control program. Finally, we show how theorem proving can be an alternative
to BMC by performing unbounded verification of (P1) using HHL Prover [14].

4.1 Verification by Bounded Model Checking

Bounded model checking (BMC) is a verification technique that, for a given state tran-
sition system and an initial set of states, answers whether an unsafe state can be reached
by unwinding the transition system to a depth of k. BMC is suitable for the verification
of sampled-data systems because the periodic sampling and control naturally induce
state transitions with a fixed time step. The tool iSAT-ODE [5] is a bounded model
checker that handles nonlinear arithmetic and nonlinear differential equations.

Modelling in iSAT-ODE. Thanks to the support of Boolean, integer and real data
types, as well as such functions as max, min, abs etc. in iSAT-ODE, modelling of the
closed loop system for the slow descent phase is straightforward. We first define two
Boolean variables mode_slow and mode_free to represent the slow descent phase and
the free fall phase respectively. We further require that at any time one and only one
of mode_slow and mode_free is TRUE. Each sampling cycle induces two kinds of
state transitions, i.e. the continuous and discrete transition, which are distinguished by
a Boolean variable jump. For example, the following texts:

mode_slow and !jump -> (d.r / d.time = v);
mode_slow and !jump -> (d.v / d.time = Fc/m - gM);
mode_slow and !jump -> (d.m / d.time = -Fc/Isp1);
mode_slow and !jump -> (d.Fc / d.time = 0);

can be used to define a continuous transition under dynamics (1) with specific impulse
Isp1, where ! jump denotes the negation of jump and Isp1 is the constant 2500. Simi-
larly, an update of Fc by a discrete computation has the following form:

mode_slow and jump -> Fc’ = (***);

where Fc′ denotes the value of Fc after transition, and (***) is not the language of iSAT-
ODE but the abbreviation of the omitted updating assignments of Fc. The duration of
each transition is represented by a real variable delta_time, which equals the sampling
period in the continuous case and 0 in the discrete case.

The critical part is to model the conditions of switching from the slow descent phase
to the free fall phase, i.e. (SW1)-(SW3). Based on whether the shutdown signal 1 or 2 is
received, we build three different models with the conditions (SW1), (SW2) and (SW3)
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respectively. For example, if shutdown signal 1 is sent out exactly at a height of 6m and
is successfully received, then (SW1) will be used in the model and it is encoded as:

mode_slow and jump -> (mode_free’ <-> r <= 6 and time > 10);

where time denotes the total time elapsed in the slow descent phase. The properties
(P1)-(P3) will be verified on all three models.

In our model we assume the lander’s velocity becomes 0 immediately upon touch-
down and stays at 0 afterwards.

Verification in iSAT-ODE. Bounded model checking in iSAT-ODE can be done by
specifying a target set (formula) whose reachability is to be checked, as well as the
minimal and maximal unwinding depth of the state transition system for constructing
BMC formulas. For the model of the slow descent phase, since each sampling cycle
corresponds to two transition steps4, if the system’s reachable set in n sampling cycles
is going to be checked against the target formula, then the minimal and maximal depth
should be specified as 0 and 2n (or 2n− 1) respectively.

We first try to verify (P3) by setting the target formula to !mode_slow. If the current
phase is the slow descent phase, then the result unsatisfiable will be returned; otherwise
satisfiable will be expected. In our model mode_slow is initially set to TRUE. We check
for each k ≥ 0 to find the first k that gives the satisfiable answer, which means phase
switching happens at k. However, according to our experience, at the unwinding depth
where the target formula becomes satisfiable, iSAT-ODE will run for a long time until
memory is exhausted without giving an answer. In practice, when this phenomenon is
observed, it is very likely that the target formula is satisfiable at the current depth, so if
we check against the negation of the target formula, then an unsatisfiable answer will
be expected. A good rule of thumb is that with iSAT-ODE, it’s better to check against a
target that is indeed unsatisfiable. In this way, we have shown that:

– if shutdown signal 1 is received, phase switching happens at k=188, i.e. the end of
the 94th sampling cycle, or equivalently the time 12.032s (consistent with Figure 7);

– if shutdown signal 1 is not received and shutdown signal 2 is received, phase switch-
ing happens at k = 212;

– if no shutdown signal is received, phase switching happens at k = 314.

We then try to verify (P1) by setting the target formula to the negation of (P1):

r > 0 and !(v >= −2.05 and v <= −1.95) .

Since we are only considering the lander’s velocity in the slow descent phase, this target
is checked for depth 0 ≤ k ≤ 187, 0 ≤ k ≤ 211, 0 ≤ k ≤ 313 respectively for three
different models. In this way we have successfully verified (P1).

We finally try to verify (P2) by first getting an estimation of the ranges of v and r at
the time phase switching happens, i.e. k = 188, 212, 314 for the three different models
respectively. To this end, we have to guess a possible range of v or r and then check

4 In our model, the k-th transition is a continuous transition if k is an odd number, and a discrete
transition if k is an even number.
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against the negation of the estimated range in iSAT-ODE. It’s a process of trial and
error. Bipartition of intervals can be applied. Eventually, we get

– if shutdown signal 1 is received, then r ∈ [5.9, 6.0] (consistent with Figure 7) and
v ∈ [−2.05,−1.95] when phase switching happens;

– if shutdown signal 1 is not received and shutdown signal 2 is received, then r ∈
[2.8, 2.9] and v ∈ [−2.05,−1.95] when phase switching happens;

– if no shutdown signal is received, then r = 0, v = 0 when phase switching happens,
and by the verified (P1) we have v ∈ [−2.05,−1.95] whenever r > 0.

Since slow descent phase is followed by free fall, using the range estimations of v and r
and the dynamics of free fall, we show that in all three cases |v|<5m/s upon touchdown.

The cost of the above verification, on the platform with Intel Q9400 2.66GHz CPU
running a Debian virtual machine with 3GB memory allocated, is shown in Table 1.

Table 1. Time and memory cost of the verification in iSAT-ODE

Model with (SW1) Model with (SW2) Model with (SW3)
(P1) 2min46sec, 477MB 3min46sec, 594MB 14min3sec, 1.8GB
(P2) 24sec, 304MB 31sec, 378MB 50sec, 602MB
(P3) 1min22sec, 290MB 2min1sec, 350MB 2min7sec, 62MB

4.2 Verification with Uncertainties

We have shown how properties (P1)-(P3) can be verified using iSAT-ODE, by assum-
ing the initial state to be a single point, and the continuous dynamics, sampling time
points, navigation and guidance computations etc. are all exact. However, in practice
such ideal models do not exist because disturbances and noises are unavoidable in the
physical world. Therefore it is meaningful to analyze the performance of the lander’s
GNC system by taking into account various uncertainties. To this end, we next verify
(P4) proposed in Section 2 using Flow∗ [3], a tool for computing over-approximations
of the reachable sets of continuous dynamical and hybrid systems. The prominent fea-
tures of Flow∗ include the handling of non-polynomial ODEs, ODEs with uncertainties,
reset functions with uncertainties, and so on, which all facilitate our modelling here.

Modelling as Hybrid Automata. Basically, in Flow∗ a hybrid system is modelled as
a hybrid automaton (HA). If we build a complete model in Flow∗ for the slow descent
phase using the program in Figure 4, then the max and min functions would make the
transition relation in the resulting HA very complex. To simplify the modelling and
verification in Flow∗, we make the following assumption which will be justified later:

(A1) throughout the execution of the guidance program, the value of m lies in the
range [mMin ,mMax ], and the value of

F ′
c =̂ − c1 · (Fc −m · gM )− c2 · (v − vslw ) ·m+m · gM (2)

lies in the range [1500, 5000].
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Under assumption (A1) all the max and min functions can be simplified and it is easy to
check that the computation of thrust in the guidance program is equivalent to Fc := F ′

c.
As in iSAT-ODE, we can also build three different models in Flow∗ with the switch-

ing conditions (SW1), (SW2) and (SW3) respectively. In the following, we only discuss
the model with (SW1) as illustrated by Figure 8, and the verification work done with it.

Fig. 8. The HA model of the slow descent phase Fig. 9. The invariant for HHL Prover

For Figure 8, we give the following explanations:

– the three modes represent the slow descent phase with specific impulse 2500, 2800,
and the free fall phase, respectively; the mode domains are shown in the picture;
the continuous dynamics are the two in (1) and the standard dynamics of free fall
on the lunar surface; all dynamics are augmented with the flow rate of time ṫ = 1
and Ṫ = 1, where t represents the local elapsed time in the current sampling cycle
and T denotes the total elapsed time since the beginning;

– all the discrete jumps take place at t = 0.128 and t is reset to 0 for every jump;
– the jumps from Mode_slow_Isp1 or Mode_slow_Isp2 to Mode_free_fall depend on

the truth value of (SW1), i.e. r ≤ 6 ∧ T > 10;
– the jumps from Mode_slow_Isp1 and Mode_slow_Isp2 to themselves, or the jumps

between them, depend on (SW1) and the comparison of F ′
c (defined in (2)) to 3000;

the value of Fc is updated to F ′
c for every such jump.

Introducing Uncertainties. We next modify the model in Figure 8 by introducing into
it various kinds of uncertainties according to different origins:

– The initial states are chosen to be intervals, e.g. v ∈ [−2.5,−1.5], r ∈ [29.5, 30.5],
m ∈ [1245, 1255] Fc ∈ [2020, 2035],5 and so on.

– Add interval disturbances to dynamics (1) and the dynamics of free fall. The causes
of such uncertainties could be: the direction of Fc may deviate from the vertical

5 Thus the initial mode should be the slow descent phase with specific impulse 2500.
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direction; the specific impulse may not be exactly 2500 or 2800; the engine may
not be able to keep a constant thrust in one cycle; the acceleration of gravity is
not the constant 1.622 but changes with height; and so on. For example, we have
ṁ = − Fc

2500+[−0.1,0.1] if the specific impulse has a ±300 perturbation around 2500.
– In the guidance program, the value of Fc is stored in memory so it is not changed

between two sampling points, while the actual thrust imposed on the lander may
not be constant in one cycle; besides, due to uncertainty of specific impulse, the
estimated value of m by the program using fixed specific impulse values 2500 or
2800 may deviate from the real mass value. Therefore we introduce two new vari-
ables mp and Fp, whose time derivatives are zero, to distinguish between program
variables and continuous state variables.

– The measurement of time in the computer system may not be precise, and thus the
length of one sampling cycle may vary in the range, say [0.127, 0.129]. This should
be reflected in the domains and transition guards of the hybrid automaton.

– The measured height may suffer from sensor errors, say ±0.1m, and thus the shut-
down signal may be sent out at a height of 6± 0.1m. Therefore we revise the phase
switching condition by taking into consideration such imprecision.

– The measured velocity may also suffer from sensor errors, say ±0.1m/s. Since the
value of m (or mp) is greater than 1000kg, by (2), this may cause a fluctuation of
nearly 100N of the commanded thrust. Therefore we revise (2) by

F ′
p =̂ − c1 · (Fp−mp · gM )− c2 · (v− vslw) ·mp+mp · gM +[−100, 100] . (3)

In the computation of Fp, there may also exist floating point errors, which we claim
can be absorbed by the large interval [−100, 100].

Computation Results. We compute the reachable set of the above described model
with a time bound of 25s and an unwinding depth (the maximal number of allowed
jumps) of 200. The computation costs 19 minutes and 769MB memory on the platform
with Intel Q9400 2.66GHz CPU and 4GB RAM running Ubuntu Linux. The relations
between v, r, Fp,mp and T and shown in Figure 10 which can be explained as follows:

– The ranges of T in all pictures are within [0, 18]. Neither the time bound 25 or the
unwinding depth 200 is reached during the flowpipe computation, which implies
that the result covers all the reachable states of the hybrid automaton in Figure 8.

– The top left picture shows the relation between v and T . Since the initial range of v
is [−2.5,−1.5], property (P1) does not make sense. However, we can still conclude
that the system has a good asymptotic property, that is, the value of v converges to
a stable interval, approximately [−2.25,−1.75] after some time. Besides, it can be
seen from the picture that v is always above the level −5m/s; actually property (P2)
can be formally verified with the support of safety checking in Flow∗. Furthermore,
from the sharp decrease in v we can infer6 property (P3), that is, starting from any
initial state the system will finally switches to the free fall phase.

– The top right picture shows the relation between r and T .

6 A formal proof can be obtained by looking into the mode information of computed flowpipes.
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Fig. 10. Reachable sets given by Flow∗

– The bottom left picture shows the relation between Fp and T . Although the initial
range of Fp is narrow (defined to be [2015, 2040]), by (3), the variation of v in
[−2.5,−1.5] would cause fluctuation of Fp by several hundreds. Nevertheless, the
picture shows that the range of Fp also stabilizes after some time. Besides, Fp

always lies in [1500, 2600], which justifies our assumption (A1).
– The bottom right picture shows the relation between mp and T . The initial value of
mp is defined to be [1240, 1260]. It can be seen that mp always lies in [1225, 1260],
which also justifies the assumption (A1).

4.3 Verification by Theorem Proving

One disadvantage of verification by BMC is that it cannot verify a safety property at all
time. Even if we only care about properties within a bounded time interval, BMC may
not work with very large intervals, since more resources are required for larger unwind-
ing depths, a fact confirmed by Table 1. We show that theorem proving can be a good
alternative to BMC for safety verification, by verifying (P1) using HHL Prover [14].

Transformation to HCSP. We first build a Simulink/Stateflow model similar to the one
in Section 3 with simplified thrust computations according to assumption (A1), which
has been justified by the verification results of Flow∗. We then automatically translate
the model into a formal model given by HCSP using the tool Sim2HCSP [16]. Basically
the transformed HCSP process is as follows:

definition P :: proc where
"P == PC_Init;PD_Init;t:=0;(PC_Diff;t:=0;PD_Rep)*"
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In process P, PC_Init and PD_Init are initialization procedures for the continuous dy-
namics and the guidance program respectively; PC_Diff models the continuous dynam-
ics given by (1) within a period of 0.128s; PD_Rep calculates thrust Fc according to (2)
for the next sampling cycle; variable t denotes the elapsed time in each sampling cycle.

Verification in HHL Prover. In order to verify property (P1), we give the following
proof goal in HHL Prover:

lemma goal : "{True} P {safeProp; (l=0 | (high safeProp))}"

where safeProp stands for |v − vslw | ≤ ε. The parts True and safeProp; specify the
pre- and post-conditions of P respectively. The part (l=0 | (high safeProp)) specifies a
duration property, where l=0 means the duration is 0, and high is just a syntax construct.

After applying proof rules in HHL Prover with the above proof goal, the following
three lemmas remain unresolved:

lemma constraint1: "(t<=0.128) & Inv |- safeProp"
lemma constraint2: "(v=-2) & (m=1250) & (Fc=2027.5)

& (t=0) |- Inv"
lemma constraint3: "(t= 0.128) & Inv

|- substF([(t,0)], substF([(Fc,
-0.01*(Fc-1.622*m) - 0.6*(v+2)*m + 1.622*m)],Inv))"

In a more readable way, the three lemmas impose the following constraints:

(C1) 0 ≤ t ≤ 0.218 ∧ Inv −→ |v − vslw | ≤ ε;
(C2) v = −2 ∧m = 1250 ∧ Fc = 2027.5∧ t = 0 −→ Inv ;
(C3) t = 0.128 ∧ Inv −→ Inv(0 ← t;F ′

c ← Fc) , with F ′
c defined in (2);

(C4) Inv is the invariant of both constrained dynamical systems

〈ODE1; 0 ≤ t ≤ 0.128∧Fc ≤ 3000〉 and 〈ODE2; 0 ≤ t ≤ 0.128∧Fc > 3000〉 ,
where ODE1 and ODE2 are the two dynamics defined in (1).

We will address the problem of invariant generation in the subsequent subsection.

Invariant Generation. Invariant generation for polynomial continuous/hybrid systems
has been studied a lot [11]. To deal with systems with non-polynomial dynamics, we
propose a method based on variable transformation. For this case study, we replace the
non-polynomial terms Fc

m in ODE1 and ODE2 by a new variable a. Then by simple
computation of derivatives we get two transformed polynomial dynamics:

ODE ′
1 =̂

⎧
⎨

⎩

ṙ = v
v̇ = a− 1.622

ȧ = a2

2500

and ODE ′
2 =̂

⎧
⎨

⎩

ṙ = v
v̇ = a− 1.622

ȧ = a2

2800

. (4)

Furthermore, it is not difficult to see that the update of Fc as in (2) can be accordingly
transformed to the update of a given by

a′ =̂ − c1 · (a− gM )− c2 · (v − vslw) + gM . (5)
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As a result, if we assume Inv to be a formula over variables v, a, t, then (C2)-(C4) can
be transformed to:

(C2’) v = −2 ∧ a = 1.622∧ t = 0 −→ Inv ;
(C3’) t = 0.128 ∧ Inv −→ Inv(0 ← t; a′ ← a), with a′ defined in (5);
(C4’) Inv is the invariant of both constrained dynamical systems 〈ODE ′

1; 0 ≤ t ≤
0.128〉 and 〈ODE ′

2; 0 ≤ t ≤ 0.128〉7 with ODE ′
1 and ODE ′

2 defined in (4).

Note that the constraints (C1) and (C2’)-(C4’) are all polynomial. Then the invari-
ant Inv can be synthesized using the SOS (sum-of-squares) relaxation approach in the
study of polynomial hybrid systems [10]. With the Matlab-based tool YALMIP and
SDPT-3, an invariant p(v, a, t) ≤ 0 as depicted by Figure 9 is generated. Furthermore,
to avoid the errors of numerical computation in Matlab, we perform post-verification
using the computer algebra tool RAGlib8 to show that the synthesized p(v, a, t) ≤ 0
is indeed an invariant. Thus we have successfully completed the proof of property (P1)
by theorem proving. On the platform with Intel Q9400 2.66GHz CPU and 4GB RAM
running Windows XP, the synthesis costs 2s and 5MB memory, while post-verification
costs 10 minutes and 70MB memory.

5 Conclusions

We studied a short piece of program used for the guidance and control in the termi-
nal slow descent phase of a lunar lander. With the assistance of engineers from the
lunar lander project, a closed-loop system linking the program and the lander’s dynam-
ics was mathematically described, and safety-critical properties about the system were
proposed. These properties were all successfully verified by using or extending several
existing formal verification techniques that can handle continuous-discrete interactions,
general nonlinear differential equations and uncertainties. The dependability of the lu-
nar lander’s guidance control program was enhanced through such verification.

The preliminary results in this paper show good prospect of closed-loop verification
of embedded software in sampled-data control systems. For future work, we will first
try to perform a thorough verification of the lunar lander system; we also plan to inves-
tigate more effective invariant generation or flowpipe computation methods for general
nonlinear ODEs. An ambitious goal is to develop a tool that can be used by engineers.
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