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ABSTRACT

In this paper we study the problem of computing robust
invariant sets for state-constrained perturbed polynomial
systems within the Hamilton-Jacobi reachability framework.
A robust invariant set is a set of states such that every possible
trajectory starting from it never violates the given state
constraint, irrespective of the actual perturbation. The main
contribution of this work is to describe the maximal robust
invariant set as the zero level set of the unique Lipschitz-
continuous viscosity solution to a Hamilton-Jacobi-Bellman
(HJB) equation. The continuity and uniqueness property of
the viscosity solution facilitates the use of existing numerical
methods to solve the HJB equation for an appropriate number
of state variables in order to obtain an approximation of the
maximal robust invariant set. We furthermore propose a
method based on semi-definite programming to synthesize
robust invariant sets. Some illustrative examples demonstrate
the performance of our methods.
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1 INTRODUCTION

A fundamental problem in the theory of dynamical systems
is the computation of robust invariant sets [7, 21, 30, 42],
with applications ranging from system analysis over controller
design to safety verification. A robust invariant is a set of
states such that every possible trajectory starting from it
always satisfies the specified state constraints, regardless
of perturbations. It goes by numerous other names in the
literature, e.g., infinite-time reachability tubes in [7] and
invariance kernels in viability theory [2]. Synthesizing robust
invariant sets has been the subject of extensive research
over the past several decades, resulting in the emergence
of a number of theories and corresponding computational
approaches, e.g., Lyapunov function-based methods [20, 39],
fixed-point methods [22, 31, 32, 35] and viability theory
[2, 3, 12] and so on.

The present work studies the problem of computing ro-
bust invariant sets within the Hamilton-Jacobi reachability
framework. Hamilton-Jacobi reachability analysis addresses
reachability problems by exploiting the link to optimal control
through viscosity solutions of HJB equations [4]. It extends
the use of HJB equations, which are widely used in optimal
control theory [5], to perform reachability analysis over both
finite-time horizons [9, 15, 24, 26, 28] and the infinite time
horizon [11, 18, 19, 37]. While computationally intensive,
Hamilton-Jacobi reachability approaches are appealing nowa-
days due to the availability of modern numerical tools such
as [8, 13, 27], which allow solving associated problems conve-
niently for appropriate numbers of state variables. Within the
Hamilton-Jacobi framework, continuity of viscosity solutions
is a desirable property from a theoretical point of view s-
ince discontinuities may invalidate uniqueness of the solution
[5, 14]. Continuity is also desirable from a numerical compu-
tation point of view, since rigorous convergence results for nu-
merical approximations to the derived HJB equation usually
require continuity of the solution. Unfortunately, reachability
analysis under state constraints may induce discontinuities
in the viscosity solutions, see for instance [5, 6, 38], unless
the dynamics satisfies special assumptions at the boundary
of state constraints, e.g., the inward pointing qualification
assumption [36] and outward pointing condition [16]. These
conditions are, however, restrictive and viscosity solution can
therefore be discontinuous in general. Recently, without re-
quiring such assumptions, [9] infers a modified HJB equation
and considers reachability problems over finite time horizons
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for state-constraind systems with control inputs. This mod-
ified HJB equation exhibits a unique continuous viscosity
solution. Based on such Hamilton-Jacobi formulation in [9],
[26] studies the finite-time reach-avoid differential game for
state-constrained systems with competing inputs (control
and perturbation). [15] further investigates differential games
over finite time horizons where the target set, state constraint
set and dynamics are allowed to be time-varying. Recently
[19] considers the generation of the region of attraction over
the infinite time horizon. The region of attraction here is the
set of initial states that are controllable in that they can be
driven, using an admissible control while respecting a set of
state constraints, to asymptotically approach an equilibrium
state. To the best of our knowledge, there is no previous work
on the use of HJB equations having continuous viscosity
solutions to characterize the maximal robust invariant set for
state-constrained perturbed dynamical systems, where the
notion of invariance refers to an infinite time horizon.

In this paper we therefore extend the HJB formulation from
[9] to address computation of maximal robust invariant sets
for state-constrained perturbed polynomal systems. In our
framework, depending on whether a parameter introduced
is greater than or equal to zero, we gain two types of HJB
equations. One has a unique Lipschitz-continuous viscosity
solution, whose zero level set equals the maximal robust
invariant set. The formulation of this equation is the main
contribution of this paper. Existing well-developed numerical
methods [8, 13] can be employed to solve this equation for an
appropriate number of state variables, thereby obtaining an
approximation of the maximal robust invariant set. The other
type does not feature this uniqueness property, but the zero
sub-level set of its minimal lower semi-continuous viscosity
solution again describes the maximal robust invariant set. As
to this type, following [41] which considered the computation
of reachable sets on finite time horizons for systems free
of perturbation inputs and state constraints, we relax the
HJB equation into a system of inequalities and then encode
these inequalities in the form of sum-of-squares constraints,
finally leading to a simple implementation method such that
a robust invariant set can be generated via solving a single
semi-definite program. Finally, three illustrative examples
demonstrate the performance of our approaches.

The structure of this paper is as follows. In Section 2,
basic notions used throughout this paper and the problem of
interest are introduced. Then we present our approaches for
generating robust invariant sets in Section 3. After demon-
strating our approach on three examples in Section 4, we
conclude this paper in Section 5.

2 PRELIMINARIES

In this section we describe the system of interest and the
concept of robust invariant sets.

The following notations will be used throughout the rest of
this paper: R𝑛 denotes the set of n-dimensional real vectors;
R[·] denotes the ring of real polynomials in variables given
by the argument, R𝑘[·] denotes the set of real polynomials of

degree at most 𝑘 in variables given by the argument, 𝑘 ∈ N.
N denotes the set of nonnegative integers. ‖𝑥‖ denotes the

2-norm, i.e., ‖𝑥‖ :=
√︀∑︀𝑛

𝑖=1 𝑥
2
𝑖 , where 𝑥 = (𝑥1, . . . , 𝑥𝑛).

Vectors are denoted by boldface letters.
The state-constrained perturbed dynamical system of in-

terest in this paper is of the following form:

𝑥̇(𝑡) = 𝑓(𝑥(𝑡),𝑑(𝑡)), (1)

where 𝑥(·) : [0,∞) → 𝑋, 𝑑(·) : [0,∞) → 𝐷, 𝐷 = {𝑑 ∈ R𝑚 |⋀︀𝑛𝐷
𝑖=1 ℎ

𝐷
𝑖 (𝑑) ≤ 0} is a compact set in R𝑚 with ℎ𝐷𝑖 ∈ R[𝑑],

𝑋 = {𝑥 ∈ R𝑛 |
⋀︀𝑛𝑋
𝑖=1 ℎ𝑖(𝑥) ≤ 0} is a compact set in R𝑛 with

ℎ𝑖 ∈ R[𝑥], and 𝑓 ∈ R[𝑥,𝑑].
In order to define our problem succinctly, we present the

definition of an input policy 𝑑.

Definition 2.1. A perturbation policy, denoted by 𝑑, refers
to a measurable function 𝑑(·) : [0,∞) → 𝐷.

The set of all perturbation policies is denoted by 𝒟. Given
a perturbation policy 𝑑 ∈ 𝒟, we denote the trajectory of
system (1) initialized at 𝑥0 ∈ 𝑋 and subject to perturbation
𝑑 by 𝜑𝑑𝑥0

(·) : [0, 𝑇 ] → R𝑛, where 𝜑𝑑𝑥0
(0) = 𝑥0 and 𝑇 > 0 is

a time instant such that 𝜑𝑑𝑥0
(𝑡) ∈ 𝑋 for all 𝑡 ∈ [0, 𝑇 ]. Now,

we define the (maximal) robust invariant set for system (1).

Definition 2.2 ((Maximal) Robust Invariant Set). The max-
imal robust invariant set ℛ0 is the set of states such that
every possible trajectory of system (1) starting from it never
leaves 𝑋, i.e.

ℛ0 = {𝑥 | 𝜑𝑑𝑥(𝑡) ∈ 𝑋, ∀𝑡 ∈ [0,∞), ∀𝑑 ∈ 𝒟}. (2)

Correspondingly, a robust invariant set is a subset of the
maximal robust invariant set ℛ0.

3 INVARIANT SETS GENERATION

In this section we present our method to generate robust
invariant sets for system (1). We first construct an auxiliary
system in Subsection 3.1. Then based on the auxiliary system,
in Subsection 3.2 we characterize the maximal robust invari-
ant set ℛ0 as the zero level set of the unique bounded and
Lipschitz-continuous viscosity solution to a HJB equation,
which can be solved by existing numerical methods. Further-
more, a computationally tractable semi-definite programming
method is proposed to synthesize robust invariant sets in
Subsection 3.3.

3.1 Reformulation of System (1)

As 𝑓 ∈ R[𝑥,𝑑] in system (1), 𝑓 is only locally Lipschitz-
continuous over 𝑥. Therefore, existence of a global solution
𝜑𝑑𝑥0

(𝑡) over 𝑡 ∈ [0,∞) to system (1) is not guaranteed for
any initial state 𝑥0 ∈ R𝑛. In this subsection we construct
a system, to which a unique global solution over 𝑡 ∈ [0,∞)
starting from any initial state 𝑥0 ∈ R𝑛 exists and coincides
with the solution to system (1) over a compact set

𝒳 = {𝑥 | ℎ(𝑥) ≥ 0}, (3)

where ℎ(𝑥) ∈ R[𝑥]. The compact set 𝒳 satisfies 𝑋 ⊂ 𝒳
and 𝜕𝑋 ∩ 𝜕𝒳 = ∅. The primary reason for 𝒳 to take the
semi-algebraic set form as well as satisfy 𝜕𝑋 ∩ 𝜕𝒳 = ∅ is the
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need of constructing semi-definite programs to synthesize ro-
bust invariant sets. The constructed semi-definite program is
shown in Subsection 3.3. The set 𝒳 in (3) plays two important
roles in our approach.

(1) The condition 𝑋 ⊆ 𝒳 guarantees that the maximal
robust invariant set ℛ0 for system (1) can be exactly
characterized by trajectories to the auxiliary system
(4), as formulated in Proposition 3.2.

(2) The condition 𝜕𝒳 ∩𝑋 = ∅ assures that the zero sub-
level set of the approximating polynomial returned by
solving (42) in Subsection 3.3 is a robust invariant set.
It is useful in justifying Theorem 3.9 in Subsection 3.3.

The auxiliary system is of the following form:

𝑥̇(𝑠) = 𝐹 (𝑥(𝑠),𝑑(𝑠)), (4)

where 𝐹 (𝑥,𝑑) : R𝑛×𝐷 → R𝑛, which is globally Lipschitz over
𝑥 uniformly over 𝑑 ∈ 𝐷, i.e. there exists a constant 𝐿𝐹 such
that ‖𝐹 (𝑥1,𝑑)− 𝐹 (𝑥2,𝑑)‖ ≤ 𝐿𝐹 ‖𝑥1 − 𝑥2‖ for 𝑥1,𝑥2 ∈ R𝑛
and 𝑑 ∈ 𝐷. Moreover, 𝐹 (𝑥,𝑑) = 𝑓(𝑥,𝑑) over 𝒳 ×𝐷, where
𝒳 is defined in (3). This implies that trajectories to system
(4) coincide with ones to system (1) over the state space 𝒳 .

The existence of system (4) is guaranteed via Kirszbraun’s
theorem [40], which is stated in Theorem 3.1.

Theorem 3.1 (Kirszbraun’s Theorem). Let 𝐴 ⊂ R𝑛 be
a set and 𝑓 ′ : 𝐴→ R𝑚 a function. Suppose there exists 𝛾 ≥ 0
s.t. ‖𝑓 ′(𝑥)− 𝑓 ′(𝑦)‖ ≤ 𝛾‖𝑥− 𝑦‖ for 𝑥,𝑦 ∈ 𝐴. Then there is
a function 𝐹 ′ : R𝑛 → R𝑚 s.t. 𝐹 ′(𝑥) = 𝑓 ′(𝑥) for 𝑥 ∈ 𝐴 and
‖𝐹 ′(𝑥)− 𝐹 ′(𝑦)‖ ≤ 𝛾‖𝑥− 𝑦‖ for 𝑥,𝑦 ∈ R𝑛.

For instance, 𝐹 (𝑥,𝑑) = inf𝑦∈𝒳 (𝑓(𝑦,𝑑) + 𝑧𝐿𝑓‖𝑥 − 𝑦‖)
satisfies (4), where 𝑧 is an n-dimensional vector with each
component equaling to one and 𝐿𝑓 is the constant such that
‖𝑓(𝑥,𝑑)− 𝑓(𝑦,𝑑)‖ ≤ 𝐿𝑓‖𝑥− 𝑦‖ over 𝑥,𝑦 ∈ 𝒳 and 𝑑 ∈ 𝐷.
The existence of 𝐿𝑓 can be guaranteed since 𝑓 ∈ R[𝑥,𝑑].

Therefore, for each pair (𝑑,𝑥0) ∈ 𝒟 × R𝑛, there exists
a unique absolutely continuous trajectory 𝑥(𝑡) = 𝜓𝑑𝑥0

(𝑡)
satisfying (4) for 𝑡 ≥ 0 and 𝑥(0) = 𝑥0.

Proposition 3.2. The maximal robust invariant set ℛ0

for system (1) is equal to the set {𝑥 | 𝜓𝑑𝑥(𝑡) ∈ 𝑋, ∀𝑡 ∈
[0,∞),∀𝑑 ∈ 𝒟}.

Proof. Since 𝑓(𝑥,𝑑) = 𝐹 (𝑥,𝑑) over 𝑥 ∈ 𝑋 and 𝑑 ∈ 𝐷,
the trajectories for system (1) and (4) coincide in 𝑋. �

3.2 Characterization of ℛ0

In this subsection, based on system (4) we characterize the
maximal robust invariant set ℛ0 by means of viscosity solu-
tions to HJB equations.

Let ℎ′
𝑗(𝑥) =

ℎ𝑗(𝑥)

1+ℎ2
𝑗 (𝑥)

. Thus, −1 < ℎ′
𝑗(𝑥) < 1 over 𝑥 ∈ R𝑛

for 𝑗 = 1, . . . , 𝑛𝑋 . For 𝑥 ∈ R𝑛, given a scalar value 𝛼 ∈ [0,∞),
the value function 𝑉 : R𝑛 → R is defined by:

𝑉 (𝑥) := sup
𝑑∈𝒟

sup
𝑡∈[0,+∞)

max
𝑗∈{1,...,𝑛𝑋}

{︀
𝑒−𝛼𝑡ℎ′

𝑗(𝜓
𝑑
𝑥(𝑡))

}︀
. (5)

Obviously,

− 1 ≤ 𝑉 (𝑥) ≤ 1, ∀𝑥 ∈ R𝑛,∀𝛼 ∈ [0,∞). (6)

The following theorem shows the relation between the
value function 𝑉 and the maximal robust invariant set ℛ0.

Theorem 3.3. ℛ0 = {𝑥 ∈ R𝑛 | 𝑉 (𝑥) ≤ 0}, where ℛ0 is
the maximal robust invariant set. Especially, when 𝛼 > 0,
𝑉 (𝑥) ≥ 0 for 𝑥 ∈ R𝑛 and thus ℛ0 = {𝑥 ∈ R𝑛 | 𝑉 (𝑥) = 0}.

Proof. Assume 𝑦0 ∈ ℛ0. According to Proposition 3.2,
we have that for 𝑗 ∈ {1, . . . , 𝑛𝑋},

ℎ𝑗(𝜓
𝑑
𝑦0
(𝑡)) ≤ 0,∀𝑡 ∈ [0,∞), ∀𝑑 ∈ 𝒟 (7)

holds, implying that

ℎ′
𝑗(𝜓

𝑑
𝑦0
(𝑡)) ≤ 0, ∀𝑡 ∈ [0,∞), ∀𝑑 ∈ 𝒟,∀𝑗 ∈ {1, . . . , 𝑛𝑋}.

Thus, 𝑉 (𝑦0) ≤ 0. Therefore 𝑦0 ∈ {𝑥 | 𝑉 (𝑥) ≤ 0}. On the
other hand, if 𝑦0 ∈ {𝑥 ∈ R𝑛 | 𝑉 (𝑥) ≤ 0}, then 𝑉 (𝑦0) ≤ 0,
implying that (7) holds. Therefore, 𝑦0 ∈ ℛ0. This implies
that ℛ0 = {𝑥 ∈ R𝑛 | 𝑉 (𝑥) ≤ 0}.

When 𝛼 > 0, lim𝑡→∞ max{𝑒−𝛼𝑡ℎ′
𝑗(𝜓

𝑑
𝑥(𝑡))} = 0, ∀𝑥 ∈

R𝑛, ∀𝑑 ∈ 𝒟. Thus, 𝑉 (𝑥) ≥ 0 over 𝑥 ∈ R𝑛. This implies
that ℛ0 = {𝑥 ∈ R𝑛 | 𝑉 (𝑥) = 0}. �

From Theorem 3.3, ℛ0 can be constructed by computing
𝑉 (𝑥), which is Lipschitz-continuous when 𝛼 > 0 and is lower
semi-continuous when 𝛼 = 0. We just present the formal
statement for 𝛼 > 0 in Lemma 3.4. The lower semicontinuity
statement for 𝛼 = 0 is guaranteed by Lemma 4 in [14].

Lemma 3.4. If 𝛼 > 0, 𝑉 (𝑥) in (5) is locally Lipschitz-
continuous over R𝑛.

Proof. First, for 𝑥0 ∈ R𝑛 and 𝑦0 ∈ 𝐵, where 𝐵 = {𝑥 ∈
R𝑛 | ‖𝑥− 𝑥0‖ ≤ 𝛿} with 𝛿 > 0, we have

|𝑉 (𝑥0)− 𝑉 (𝑦0)| ≤

sup
𝑑∈𝒟

sup
𝑡∈[0,∞)

max
𝑗∈{1,...,𝑛𝑋}

𝑒−𝛼𝑡|ℎ′
𝑗(𝜓

𝑑
𝑥0

(𝑡))− ℎ′
𝑗(𝜓

𝑑
𝑦0
(𝑡))|. (8)

Since −1 < ℎ′
𝑗(𝑥) < 1 over R𝑛 for 𝑗 = 1, . . . , 𝑛𝑋 and

lim𝑡→∞ 𝑒−𝛼𝑡 = 0, this implies that the supremum

sup
𝑑∈𝒟

sup
𝑡∈[0,∞)

max
𝑗∈{1,...,𝑛𝑋}

𝑒−𝛼𝑡|ℎ′
𝑗(𝜓

𝑑
𝑥0

(𝑡))− ℎ′
𝑗(𝜓

𝑑
𝑦0
(𝑡))| (9)

is attained on a finite time interval [0,𝐾]. This conclusion
can be obtained as follows: If the supremum (9) is equal to 0,
then max𝑗∈{1,...,𝑛𝑋} |𝑒−𝛼𝑡ℎ′

𝑗(𝜓
𝑑
𝑥0
(𝑡)) − 𝑒−𝛼𝑡ℎ′

𝑗(𝜓
𝑑
𝑦0
(𝑡))| ≡ 0

for 𝑡 ∈ [0,∞) and 𝑑 ∈ 𝒟, implying that the supremum can be
attained on any finite time interval [0,𝐾]. Otherwise, assume
that the supremum equals a positive value 𝜖1. Since

max
𝑗∈{1,...,𝑛𝑋}

𝑒−𝛼𝑡|ℎ′
𝑗(𝜓

𝑑
𝑥0

(𝑡))− ℎ′
𝑗(𝜓

𝑑
𝑦0
(𝑡))| ≤ 2𝑒−𝛼𝑡,∀𝑑 ∈ 𝒟,

there exists a finite value 𝐾 > 0 such that

sup
𝑑∈𝒟

sup
𝑡∈(𝐾,∞)

max
𝑗∈{1,...,𝑛𝑋}

|𝑒−𝛼𝑡ℎ′
𝑗(𝜓

𝑑
𝑥0

(𝑡))− 𝑒−𝛼𝑡ℎ′
𝑗(𝜓

𝑑
𝑦0
(𝑡))|

≤ 2𝑒−𝛼𝐾 ≤ 𝜖1
2
.

Therefore, 𝜖1 is attained on the time interval [0,𝐾], i.e.

sup
𝑑∈𝒟

sup
𝑡∈[0,∞)

max
𝑗∈{1,...,𝑛𝑋}

|𝑒−𝛼𝑡ℎ′
𝑗(𝜓

𝑑
𝑥0

(𝑡))− 𝑒−𝛼𝑡ℎ′
𝑗(𝜓

𝑑
𝑦0
(𝑡))|

= sup
𝑑∈𝒟

sup
𝑡∈[0,𝐾]

max
𝑗∈{1,...,𝑛𝑋}

𝑒−𝛼𝑡|ℎ′
𝑗(𝜓

𝑑
𝑥0

(𝑡))− ℎ′
𝑗(𝜓

𝑑
𝑦0
(𝑡))|.
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ℎ′
𝑗(𝑥) is locally Lipschitz-continuous over 𝑥 ∈ R𝑛 since

ℎ𝑗(𝑥) is locally Lipschitz-continuous over 𝑥 ∈ R𝑛 for 𝑗 ∈
{1, . . . , 𝑛𝑋}. Therefore,

|𝑉 (𝑥0)− 𝑉 (𝑦0)|

= sup
𝑑∈𝒟

sup
𝑡∈[0,𝐾]

max
𝑗∈{1,...,𝑛𝑋}

𝑒−𝛼𝑡|ℎ′
𝑗(𝜓

𝑑
𝑥0

(𝑡))− ℎ′
𝑗(𝜓

𝑑
𝑦0
(𝑡))|

≤ sup
𝑑∈𝒟

sup
𝑡∈[0,𝐾]

max
𝑗∈{1,...,𝑛𝑋}

|ℎ′
𝑗(𝜓

𝑑
𝑥0

(𝑡))− ℎ′
𝑗(𝜓

𝑑
𝑦0
(𝑡))|

≤ sup
𝑑∈𝒟

sup
𝑡∈[0,𝐾]

𝐿ℎ′‖𝜓𝑑𝑥0
(𝑡)−𝜓𝑑𝑦0

(𝑡)‖

≤ 𝐿ℎ′ sup
𝑡∈[0,𝐾]

𝑒𝐿𝐹 𝑡‖𝑥0 − 𝑦0‖

≤ 𝐿ℎ′𝑒𝐿𝐹𝐾‖𝑥0 − 𝑦0‖,
(10)

where 𝐿ℎ′ is the Lipschitz constant of max𝑗∈{1,...,𝑛𝑋} ℎ
′
𝑗(𝑥)

over a compact set covering the set Ω(𝐵,𝐾), Ω(𝐵,𝐾) = {𝑥 |
𝑥 = 𝜓𝑑𝑥′

0
(𝑡), 𝑡 ∈ [0,𝐾], 𝑑 ∈ 𝒟,𝑥′

0 ∈ 𝒳} is the reachable set

of 𝐵 within the time interval [0,𝐾] and 𝐿𝐹 is the Lipschitz
constant of the vector field 𝐹 . The second-to-last inequality
in (10) is obtained by applying Grönwall’s inequality [17] to

‖𝜓𝑑𝑥0
(𝑡)−𝜓𝑑𝑦0

(𝑡)‖

= ‖𝑥0 − 𝑦0 +
∫︁ 𝑡

0

(︀
𝐹 (𝜓𝑑𝑥0

(𝑠),𝑑(𝑠))− 𝐹 (𝜓𝑑𝑦0
(𝑠),𝑑(𝑠))

)︀
𝑑𝑠‖

≤ ‖𝑥0 − 𝑦0‖+ 𝐿𝐹

∫︁ 𝑡

0

‖𝜓𝑑𝑥0
(𝑠)−𝜓𝑑𝑦0

(𝑠)‖𝑑𝑠.

This shows the desired Lipschitz-continuity of 𝑉 (𝑥). �

Next we show that 𝑉 (𝑥) in (5) satisfies the dynamic pro-
gramming principle.

Lemma 3.5. For 𝑥 ∈ R𝑛 and 𝑡 ∈ [0,∞), we have

𝑉 (𝑥) = sup
𝑑∈𝒟

max
{︀
𝑒−𝛼𝑡𝑉 (𝜓𝑑𝑥(𝑡)),

sup
𝜏∈[0,𝑡]

max
𝑗∈{1,...,𝑛𝑋}

𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑
𝑥(𝜏))

}︀
.

(11)

Proof. Let

𝑊 (𝑡,𝑥) : = sup
𝑑∈𝒟

max
{︀
𝑒−𝛼𝑡𝑉 (𝜓𝑑𝑥(𝑡)),

sup
𝜏∈[0,𝑡]

max
𝑗∈{1,...,𝑛𝑋}

𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑
𝑥(𝜏))

}︀
.

We will prove that for any 𝜖 > 0, |𝑊 (𝑡,𝑥)− 𝑉 (𝑥)| < 𝜖.
According to (5), for any 𝜖1, there exists a perturbation

policy 𝑑′ such that

𝑉 (𝑥) ≤ sup
𝑡∈[0,∞)

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝑡ℎ′
𝑗(𝜓

𝑑′
𝑥 (𝑡))}+ 𝜖1.

We introduce two perturbation policies 𝑑1 and 𝑑2 such that
𝑑1(𝜏) = 𝑑′(𝜏) for 𝜏 ∈ [0, 𝑡] and 𝑑2(𝜏) = 𝑑′(𝑡 + 𝜏) for 𝜏 ∈

[0,∞), and let 𝑦 = 𝜓𝑑1𝑥 (𝑡). We have

𝑊 (𝑡,𝑥) ≥ max
{︀
𝑒−𝛼𝑡𝑉 (𝑦), sup

𝜏∈[0,𝑡]

max
𝑗∈{1,...,𝑛𝑋}

𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑1
𝑥 (𝜏))

}︀
≥ max

{︀
sup

𝜏∈[𝑡,+∞)

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑2
𝑦 (𝜏 − 𝑡))},

sup
𝜏∈[0,𝑡]

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑1
𝑥 (𝜏))}

}︀
= max

{︀
sup

𝜏∈[𝑡,+∞)

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑′
𝑥 (𝜏))},

sup
𝜏∈[0,𝑡]

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑′
𝑥0

(𝜏))}
}︀

= sup
𝜏∈[0,∞)

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑′
𝑥 (𝜏))} ≥ 𝑉 (𝑥)− 𝜖1.

Therefore, 𝑉 (𝑥) ≤𝑊 (𝑡,𝑥) + 𝜖1.
On the other hand, for any 𝜖1 > 0, there exists 𝑑1 ∈ 𝒟

such that

𝑊 (𝑡,𝑥) ≤ max
{︀
𝑒−𝛼𝑡𝑉 (𝜓𝑑1𝑥 (𝑡)),

sup
𝜏∈[0,𝑡]

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑1
𝑥 (𝜏))}

}︀
+ 𝜖1.

(12)

Also, for any 𝜖1 > 0, there exists 𝑑2 such that

𝑉 (𝑦) ≤ sup
𝜏∈[0,∞)

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑2
𝑦 (𝜏))}+ 𝜖1,

where 𝑦 = 𝜓𝑑1𝑥 (𝑡). We define 𝑑 ∈ 𝒟 such that 𝑑(𝜏) = 𝑑1(𝜏)
for 𝜏 ∈ [0, 𝑡] and 𝑑(𝑡+ 𝜏) = 𝑑2(𝜏) for 𝜏 ∈ (0,∞). Then,

𝑊 (𝑡,𝑥) ≤ max{ sup
𝜏∈[𝑡,∞)

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑2
𝑦 (𝜏 − 𝑡))},

sup
𝜏∈[0,𝑡]

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑1
𝑥 (𝜏))}}+ 2𝜖1

≤ sup
𝜏∈[0,+∞)

max
𝑗∈{1,...,𝑛𝑋}

{𝑒−𝛼𝜏ℎ′
𝑗(𝜓

𝑑
𝑥(𝜏))}+ 2𝜖1

≤ 𝑉 (𝑥) + 2𝜖1.

(13)

Consequently, |𝑉 (𝑥)−𝑊 (𝑡,𝑥)| ≤ 𝜖 = 2𝜖1, implying 𝑉 (𝑥) =
𝑊 (𝑡,𝑥) since 𝜖1 is arbitrary. �

In the following we show that 𝑉 (𝑥) in (5) is a viscosity
solution to the HJB partial differential equation (14):

min
{︀

inf
𝑑∈𝐷

(𝛼𝑉 (𝑥)− 𝜕𝑉

𝜕𝑥
𝐹 (𝑥,𝑑)),

𝑉 (𝑥)− max
𝑗∈{1,...,𝑛𝑋}

ℎ′
𝑗(𝑥)

}︀
= 0.

(14)

The concept of a viscosity solution to (14) is given below.

Definition 3.6. [14] A locally bounded function 𝑉 (𝑥) on
R𝑛 is a viscosity solution to (14), if 1) for any continuously
differentiable function 𝑣(𝑥) such that 𝑉* − 𝑣 attains a local
minimum at 𝑥0 ∈ R𝑛,

min
{︀

inf
𝑑∈𝐷

(𝛼𝑉*(𝑥0)−
𝜕𝑣

𝜕𝑥
|𝑥=𝑥0 𝐹 (𝑥0,𝑑)),

𝑉*(𝑥0)− max
𝑗∈{1,...,𝑛𝑋}

ℎ′
𝑗(𝑥0)

}︀
≥ 0.

(15)

holds (i.e., 𝑉* is a viscosity super-solution); 2) for any con-
tinuously differentiable function 𝑣(𝑥) such that 𝑉 *−𝑣 attains
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a local maximum at 𝑥0 ∈ R𝑛,

min
{︀

inf
𝑑∈𝐷

(𝛼𝑉 *(𝑥0)−
𝜕𝑣

𝜕𝑥
|𝑥=𝑥0 𝐹 (𝑥0,𝑑)),

𝑉 *(𝑥0)− max
𝑗∈{1,...,𝑛𝑋}

ℎ′
𝑗(𝑥0)

}︀
≤ 0.

(16)

holds (i.e., 𝑉 * is a viscosity sub-solution), where 𝑉* (re-
spectively, 𝑉 *) denotes the lower (respectively, upper) semi-
continuous envelope of 𝑉 . Note that if 𝑉 is continuous,
𝑉 = 𝑉* = 𝑉 *.

When 𝛼 = 0, 𝑉 (𝑥) is lower semi-continuous and conse-
quently the uniqueness of viscosity solutions to (14) is not
expected generally. According to Proposition 4 and 5 in [14],
𝑉 (𝑥) is the minimal lower semi-continuous viscosity solution
to (14). In contrast, when 𝛼 > 0, 𝑉 (𝑥) provides a unique
continuous viscosity solution to (14):

Theorem 3.7. If 𝛼 > 0, 𝑉 (𝑥) in (5) is the unique bounded
and Lipschitz-continuous viscosity solution to (14).

Proof. 1. The continuity and boundedness of 𝑉 (𝑥) are
assured by Lemma 3.4 and (6) respectively. From Definition
3.6, a continuous function is a viscosity solution to (14) if it is
both a viscosity sub-solution and a viscosity super-solution.

First we prove that 𝑉 (𝑥) is a sub-solution to (14). Let 𝑣 be
a continuously differentiable function such that 𝑉 − 𝑣 attains
a local maximum at 𝑦0. Without loss of generality, assume
that this maximum is 0, i.e. 𝑉 (𝑦0) = 𝑣(𝑦0). Thus, there

exists 𝛿 > 0 such that 𝑉 (𝑥)− 𝑣(𝑥) ≤ 0 for 𝑥 satisfying ‖𝑥−
𝑦0‖ ≤ 𝛿. Suppose (16) in Definition 3.6 is false. Then there
exists 𝜖1 > 0 such that max𝑖∈{1,...,𝑛𝑋}{ℎ′

𝑖(𝑦0)} ≤ 𝑣(𝑦0)− 𝜖1.

Thus, there exists a positive value 𝛿′ satisfying 𝛿′ ≤ 𝛿 such
that max𝑖∈{1,...,𝑛𝑋} 𝑒

−𝛼𝑡{ℎ′
𝑖(𝑥)} ≤ 𝑣(𝑦0) − 𝜖1

2
for 𝑥 and 𝑡

satisfying ‖𝑥 − 𝑦0‖ ≤ 𝛿′ and 0 ≤ 𝑡 ≤ 𝛿′. Also, there exists
𝜖2 > 0 such that

𝜕𝑣

𝜕𝑥
|𝑥=𝑦0 𝐹 (𝑦0,𝑑) ≤ 𝛼𝑣(𝑦0)− 𝜖2, ∀𝑑 ∈ 𝐷. (17)

Since 𝑣 is continuously differentiable, there exists a positive
value 𝛿′′ satisfying 𝛿′′ ≤ 𝛿′ such that

𝜕𝑣

𝜕𝑥
𝐹 (𝑥,𝑑) ≤ 𝛼𝑣(𝑥)− 𝜖2

2
(18)

for 𝑥 satisfying ‖𝑥−𝑦0‖ ≤ 𝛿′′ and 𝑑 ∈ 𝐷. Moreover, let Ω be
a compact set which covers all states traversed by trajectories
starting from 𝑦0 within the time interval [0, 𝛿′], and let 𝑀
be the upper bound of 𝐹 (𝑥,𝑑) over Ω×𝐷. We have

‖𝜓𝑑𝑦0
(𝑡)−𝑦0‖ = ‖

∫︁ 𝑡

𝜏=0

𝐹 (𝑥(𝜏),𝑑(𝜏))𝑑𝜏‖ ≤𝑀 |𝑡−0|,∀𝑑 ∈ 𝒟,

where 𝑡 ∈ [0, 𝛿′]. Therefore there exists 𝛿 > 0 such that
‖𝜓𝑑𝑦0

(𝜏)− 𝑦0‖ ≤ 𝛿′′ for all 𝜏 ∈ [0, 𝛿] and 𝑑 ∈ 𝒟. By applying
Grönwall’s inequality [17] to (18) with the time interval [0, 𝛿],
we have

𝑣(𝜓𝑑𝑦0
(𝛿)) ≤ 𝑒𝛿𝛼𝑣(𝑦0) +

𝜖2
2𝛼

(1− 𝑒𝛿𝛼),∀𝑑 ∈ 𝒟. (19)

Therefore, 𝑒−𝛼𝛿𝑣(𝜓𝑑𝑦0
(𝛿)) ≤ 𝑣(𝑦0)− 𝜖2

2𝛼
(1− 𝑒−𝛿𝛼). Further,

since 𝑉 − 𝑣 has a local maximum of 0 at 𝑦0,

𝑒−𝛼𝛿𝑉 (𝜓𝑑𝑦0
(𝛿)) ≤ 𝑉 (𝑦0)− 𝜖3

holds, where 𝜖3 = 𝜖2
2𝛼

(1− 𝑒−𝛿𝛼) > 0. Therefore, according to
(11) in Lemma 3.5, we finally have

𝑉 (𝑦0) = sup
𝑑∈𝒟

max{𝑒−𝛼𝛿𝑉 (𝜓𝑑𝑦0
(𝛿)),

max
𝑖∈{1,...,𝑛𝑋}

{ sup
𝑠∈[0,𝛿]

𝑒−𝛼𝑠ℎ′
𝑖(𝜓

𝑑
𝑦0
(𝑠))}}

≤ 𝑉 (𝑦0)−min{ 𝜖1
2
, 𝜖3}.

(20)

This is a contradiction, since 𝜖1 and 𝜖3 are positive. Thus 𝑉
is a sub-solution to (14).

Next we prove 𝑉 is also a viscosity super-solution to (14).
Let 𝑣 be a continuously differentiable function such that
𝑉 − 𝑣 attains a local minimum at 𝑦0. We assume that this
minimum is 0, i.e. 𝑉 (𝑦0) = 𝑣(𝑦0). Thus, there exists 𝛿 > 0

such that 𝑉 (𝑥)− 𝑣(𝑥) ≥ 0 for 𝑥 satisfying ‖𝑥− 𝑦0‖ ≤ 𝛿.
If (15) is false, then either

max
𝑖∈{1,...,𝑛𝑋}

{ℎ′
𝑖(𝑦0)} ≥ 𝑣(𝑦0) + 𝜖1 or (21)

sup
𝑑∈𝐷

𝜕𝑣

𝜕𝑥
|𝑥=𝑦0 𝐹 (𝑦0,𝑑)− 𝛼𝑣(𝑦0) ≥ 𝜖2 (22)

holds for some 𝜖1, 𝜖2 > 0.
If (21) holds then max𝑖∈{1,...,𝑛𝑋} 𝑒

−𝛼𝑡{ℎ′
𝑖(𝑦0)} ≥ 𝑣(𝑦0) +

𝜖1 when 𝑡 = 0. Therefore there is 𝛿′ > 0 with 𝛿′ ≤ 𝛿 such that
max𝑖∈{1,...,𝑛𝑋} 𝑒

−𝛼𝑡{ℎ′
𝑖(𝑥)} ≥ 𝑣(𝑦0)+

𝜖1
2

= 𝑉 (𝑦0)+
𝜖1
2

for 𝑥
and 𝑡 satisfying ‖𝑥−𝑦0‖ ≤ 𝛿′ and 0 ≤ 𝑡 ≤ 𝛿′. Moreover, there
exists a sufficiently small 𝛿 > 0 such that ‖𝜓𝑑𝑦0

(𝜏)−𝑦0‖ ≤ 𝛿′

for 𝜏 ∈ [0, 𝛿] and 𝑑 ∈ 𝒟.
Then according to (11) in Lemma 3.5, we obtain

𝑉 (𝑦0) = sup
𝑑∈𝒟

max{𝑒−𝛼𝛿𝑉 (𝜓𝑑𝑦0
(𝛿)),

max
𝑖∈{1,...,𝑛𝑋}

{ sup
𝑠∈[0,𝛿]

𝑒−𝛼𝑠ℎ′
𝑖(𝜓

𝑑
𝑦0
(𝑠))}}

≥ 𝑉 (𝑦0) +
𝜖1
2
.

(23)

This is a contradiction since 𝜖1 > 0.
However, if (22) holds then there is 𝛿1 > 0 with 𝛿1 ≤ 𝛿

such that there exists a strategy 𝑑 ∈ 𝒟 such that

𝜖2
2

≤ 𝜕𝑣

𝜕𝑥
𝐹 (𝑥,𝑑)− 𝛼𝑣(𝑥) (24)

for 𝑥 satisfying ‖𝑥 − 𝑦0‖ ≤ 𝛿1. By applying Grönwall’s
inequality [17] to (24) with the time interval [0, 𝛿], where 𝛿
is a positive value such that ‖𝜓𝑑𝑦0

(𝜏)−𝑦0‖ ≤ 𝛿1 for 𝜏 ∈ [0, 𝛿]
and 𝑑 ∈ 𝒟, we have

𝑒−𝛼𝛿𝑣(𝜓𝑑𝑦0
(𝛿))− 𝑣(𝑦0) ≥

𝜖2
2𝛼

(1− 𝑒−𝛿𝛼). (25)

Further, since 𝑉 − 𝑣 attains a local minimum at 𝑦0 and
𝑉 (𝑦0) = 𝑣(𝑦0), we have

𝑒−𝛼𝛿𝑉 (𝜓𝑑𝑦0
(𝛿))− 𝑉 (𝑦0) ≥

𝜖2
2𝛼

(1− 𝑒−𝛿𝛼). (26)

Therefore, the following contradiction is obtained:

𝑉 (𝑦0) = sup
𝑑∈𝒟

{max(𝑒−𝛼𝛿𝑉 (𝜓𝑑𝑦0
(𝛿)),

max
𝑖∈{1,...,𝑛𝑋}

{ max
𝑠∈[0,𝛿]

𝑒−𝛼𝑠ℎ′
𝑖(𝜓

𝑑
𝑦0
(𝑠)))}}

≥ 𝑉 (𝑦0) +
𝜖2
2𝛼

(1− 𝑒−𝛿𝛼).

(27)
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We thus conclude that (15) holds and 𝑉 is a super-solution
to (14). Therefore, 𝑉 is a bounded and Lipschitz-continuous
viscosity solution to (14).

2. We show the uniqueness of 𝑉 (𝑥). We first prove a
comparison principle: If 𝑉1 and 𝑉2 are bounded Lipschitz-
continuous functions over 𝑥 ∈ R𝑛, and they are respectively a
viscosity sub- and super-solution to (14), then 𝑉1 ≤ 𝑉2 in R𝑛.
For ease of exposition, we define𝐻(𝑥,𝑝) = sup𝑑∈𝐷 𝑝·𝐹 (𝑥,𝑑),

𝐻(𝑥) = 𝐻(𝑥, 𝜕𝜑(𝑥)
𝜕𝑥

|𝑥=𝑥) and 𝐻(𝑦) = 𝐻(𝑦, 𝜕𝜓(𝑦)
𝜕𝑦

|𝑦=𝑦).,

where · denotes the inner product between 𝑝 and 𝐹 (𝑥,𝑑).
Let

Φ(𝑥,𝑦) = 𝑉1(𝑥)− 𝑉2(𝑦)−
‖𝑥− 𝑦‖2

2𝜖
− 𝛿(⟨𝑥⟩𝑚 + ⟨𝑦⟩𝑚),

where ⟨𝑥⟩ = (1+ ‖𝑥‖2)
1
2 , and 𝜖, 𝛿,𝑚 are positive parameters

to be chosen conveniently. Let us prove by contradiction that
there is 𝛽 > 0 and 𝑧 such that 𝑉1(𝑧)− 𝑉2(𝑧) = 𝛽. Choosing

𝛿 > 0 such that 2𝛿⟨𝑧⟩ ≤ 𝛽
2
, we have for 0 < 𝑚 ≤ 1,

𝛽

2
< 𝛽 − 2𝛿⟨𝑥⟩𝑚 = Φ(𝑧,𝑧) ≤ sup

𝑥,𝑦
Φ(𝑥,𝑦). (28)

Since Φ is continuous and lim‖𝑥‖+‖𝑦‖→∞ Φ(𝑥,𝑦) = −∞,
there exist 𝑥, 𝑦 such that

Φ(𝑥, 𝑦) = sup
𝑥,𝑦

Φ(𝑥,𝑦). (29)

From Φ(𝑥,𝑥) + Φ(𝑦,𝑦) ≤ 2Φ(𝑥,𝑦) we easily get

‖𝑥− 𝑦‖2

𝜖
≤ 𝑉1(𝑥)− 𝑉1(𝑦) + 𝑉2(𝑥)− 𝑉2(𝑦). (30)

Then the boundedness of 𝑉1 and 𝑉2 implies that

‖𝑥− 𝑦‖ ≤ 𝑐
√
𝜖 (31)

for a suitable constant 𝑐. By plugging (31) into (30) and
using the Lipschitz-continuity of 𝑉1 and 𝑉2 we get

‖𝑥− 𝑦‖
𝜖

≤ 𝑤
√
𝜖 (32)

for some constant 𝑤.
Next, define the continuously differentiable functions

𝜑(𝑥) := 𝑉2(𝑦) +
‖𝑥− 𝑦‖2

2𝜖
+ 𝛿(⟨𝑥⟩𝑚 + ⟨𝑦⟩𝑚),

𝜓(𝑦) := 𝑉1(𝑥)−
‖𝑥− 𝑦‖2

2𝜖
− 𝛿(⟨𝑥⟩𝑚 + ⟨𝑦⟩𝑚),

(33)

and observe that 𝑉1−𝜑 attains its maximum at 𝑥 and 𝑉2−𝜓
attains its minimum at 𝑦. It is easy to compute

𝜕𝜑(𝑥)

𝜕𝑥
|𝑥=𝑥=

𝑥− 𝑦
𝜖

+ 𝛾𝑥, 𝛾 = 𝛿𝑚⟨𝑥⟩𝑚−2

𝜕𝜓(𝑦)

𝜕𝑦
|𝑦=𝑦=

𝑥− 𝑦
𝜖

− 𝜏𝑦, 𝜏 = 𝛿𝑚⟨𝑦⟩𝑚−2.

(34)

According to Definition 3.6, we have

min
{︀
𝛼𝑉1(𝑥)−𝐻(𝑥), 𝑉1(𝑥)− max

𝑗∈{1,...,𝑛𝑋}
ℎ′
𝑗(𝑥)

}︀
≤ min

{︀
𝛼𝑉2(𝑦)−𝐻(𝑦), 𝑉2(𝑦)− max

𝑗∈{1,...,𝑛𝑋}
ℎ′
𝑗(𝑦)

}︀
,

(35)

implying that

min
{︀
𝛼𝑉1(𝑥)−𝐻(𝑥)− (𝛼𝑉2(𝑦)−𝐻(𝑦)), 𝑉1(𝑥)−

max
𝑗∈{1,...,𝑛𝑋}

ℎ′
𝑗(𝑥)− (𝑉2(𝑦)− max

𝑗∈{1,...,𝑛𝑋}
ℎ′
𝑗(𝑦))

}︀
≤ 0.

(36)

Obviously, either

𝛼𝑉1(𝑥)−𝐻(𝑥)− (𝛼𝑉2(𝑦)−𝐻(𝑦)) ≤ 0 or (37)

𝑉1(𝑥)− max
𝑗∈{1,...,𝑛𝑋}

ℎ′
𝑗(𝑥)− 𝑉2(𝑦) + max

𝑗∈{1,...,𝑛𝑋}
ℎ′
𝑗(𝑦) ≤ 0.

(38)
If (37) holds, 𝑉1(𝑥)− 𝑉2(𝑦) ≤ 1

𝛼
(𝐻(𝑥)−𝐻(𝑦)) ≤ 1

𝛼
(𝜖+

𝐿𝐹𝑤
√
𝜖+𝛿𝑚𝐾(⟨𝑦⟩𝑚+⟨𝑥⟩𝑚) with𝐾 = 𝐿𝐹+sup𝑑∈𝐷{‖𝐹 (0,𝑑)‖}

and the last inequality can be obtained as follows:

𝐻−(𝑥)−𝐻−(𝑦)

≤ sup
𝑑∈𝐷

(︀𝜕𝜑(𝑥)
𝜕𝑥

|𝑥=𝑥 ·𝐹 (𝑥,𝑑)− 𝜕𝜓(𝑦)

𝜕𝑦
|𝑦=𝑦 ·𝐹 (𝑦,𝑑)

)︀
≤ 𝜕𝜑(𝑥)

𝜕𝑥
|𝑥=𝑥 ·𝐹 (𝑥,𝑑1)−

𝜕𝜓(𝑦)

𝜕𝑦
|𝑦=𝑦 ·𝐹 (𝑦,𝑑1) + 𝜖

≤ ‖𝑥− 𝑦‖2

𝜖
𝐿𝐹 + 𝛾𝑥 · 𝐹 (𝑥,𝑑1) + 𝜏𝑦 · 𝐹 (𝑦,𝑑1) + 𝜖

≤ ‖𝑥− 𝑦‖2

𝜖
𝐿𝐹 + 𝛾𝑥 · (𝐹 (𝑥,𝑑1)− 𝐹 (0,𝑑1) + 𝐹 (0,𝑑1))

+ 𝜏𝑦 · (𝐹 (𝑦,𝑑1)− 𝐹 (0,𝑑1) + 𝐹 (0,𝑑1)) + 𝜖

≤ ‖𝑥− 𝑦‖2

𝜖
𝐿𝐹 + 𝛾𝐿𝐹 ‖𝑥‖2 + 𝛾‖𝑥‖‖𝐹 (0,𝑑1)‖

+ 𝜏𝐿𝐹 ‖𝑦‖2 + 𝜏‖𝑦‖‖𝐹 (0,𝑑1)‖+ 𝜖

≤ ‖𝑥− 𝑦‖2

𝜖
𝐿𝐹 + 𝛾𝐾(1 + ‖𝑥‖2) + 𝜏𝐾(1 + ‖𝑦‖2) + 𝜖

≤ 𝐿𝐹𝑤
√
𝜖+ 𝛿𝑚𝐾(⟨𝑦⟩𝑚 + ⟨𝑥⟩𝑚) + 𝜖,

(39)

where 𝑑1 satisfies

sup
𝑑∈𝐷

(︀𝜕𝜑(𝑥)
𝜕𝑥

|𝑥=𝑥 ·𝐹 (𝑥,𝑑)− 𝜕𝜓(𝑦)

𝜕𝑦
|𝑦=𝑦 ·𝐹 (𝑦,𝑑)

)︀
≤ 𝜕𝜑(𝑥)

𝜕𝑥
|𝑥=𝑥 ·𝐹 (𝑥,𝑑1)−

𝜕𝜓(𝑦)

𝜕𝑦
|𝑦=𝑦 ·𝐹 (𝑦,𝑑1) + 𝜖.

Therefore, choosing 0 < 𝑚 ≤ 𝛼
𝐾
, we obtain Φ(𝑥,𝑦) ≤ 𝑉1(𝑥)−

𝑉2(𝑦) − 𝛿(⟨𝑥⟩𝑚 + ⟨𝑦⟩𝑚) ≤ 1
𝛼
(𝐿𝐹𝑤

√
𝜖 + 𝜖). Φ(𝑥,𝑦) can be

smaller than 𝛽
2
for 𝜖 small enough, contradicting (28).

If (38) holds, 𝑉1(𝑥) − 𝑉2(𝑦) ≤ max𝑗∈{1,...,𝑛𝑋} ℎ
′
𝑗(𝑥) −

max𝑗∈{1,...,𝑛𝑋} ℎ
′
𝑗(𝑦) ≤ 𝐿ℎ′𝑐

√
𝜖, where 𝐿ℎ′ is the Lipschitz

constant over a set covering 𝑥 and 𝑦. Thus, Φ(𝑥,𝑦) can be

made smaller than 𝛽
2
for 𝜖 small enough, contradicting (28).

Therefore, 𝑉1 ≤ 𝑉2 over 𝑥 ∈ R𝑛. It is obvious that if 𝑈(𝑥)
is a bounded Lipschitz-continuous viscosity solution to (14),
𝑈(𝑥) and 𝑉 (𝑥) are both sub- and super-viscosity solutions
and consequently 𝑈(𝑥) = 𝑉 (𝑥). Therefore, the uniqueness
of bounded Lipschitz solutions to (14) is guaranteed. �

If 𝛼 > 0 then 𝑉 (𝑥) is the unique bounded and Lipschitz-
continuous solution to (14) according to Theorem 3.7. This
is the main contribution of this paper. Such continuity fa-
cilitates the use of existing numerical methods (e.g., [34])
and tools (e.g., [9]) to solve equation (14) for an appropriate
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number of state and perturbation variables and consequently
provides a practical method for computing an approximation
of the maximal robust invariant set. For 𝛼 = 0, it is howev-
er nontrivial to compute its minimal lower semi-continuous
solution. In the sequel we propose a novel semi-definite pro-
gramming formulation based on (14) with 𝛼 = 0 to synthesize
robust invariant sets.

3.3 Semi-definite Programming
Implementation

In this subsection we present a method based on semi-definite
programming to compute robust invariant sets.

From (14) we observe that if a continuously differentiable
function 𝑢(𝑥) : R𝑛 → R satisfies (14), then 𝑢(𝑥) satisfies for
𝑥 ∈ R𝑛 and 𝑑 ∈ 𝐷 the constraints:{︂

𝛼𝑢(𝑥)− 𝜕𝑢
𝜕𝑥
𝐹 (𝑥,𝑑) ≥ 0, ∀𝑥 ∈ R𝑛,𝑑 ∈ 𝐷,

𝑢(𝑥)− ℎ′
𝑗(𝑥) ≥ 0,∀𝑥 ∈ R𝑛, ∀𝑗 ∈ {1, . . . , 𝑛𝑋}. (40)

Corollary 3.8. If a continuously differentiable function
𝑢(𝑥) : R𝑛 → R is a solution to (40), {𝑥 | 𝑢(𝑥) ≤ 0} is a
robust invariant set for 𝛼 = 0 and {𝑥 | 𝑢(𝑥) = 0} a robust
invariant set for 𝛼 > 0.

Proof. Assume 𝑥0 ∈ {𝑥 ∈ R𝑛 | 𝑢(𝑥) ≤ 0}. According to
(40), we have that 𝑢(𝜓𝑑𝑥0

(𝑡)) ≤ 𝑒𝛼𝑡𝑢(𝑥0) ≤ 0 for 𝑑 ∈ 𝒟 and

𝑡 ∈ [0,∞). This implies that 𝜓𝑑𝑥0
(𝑡) ∈ {𝑥 ∈ R𝑛 | 𝑢(𝑥) ≤ 0}

for 𝑡 ∈ [0,∞) and 𝑑 ∈ 𝒟.
Since 𝑢(𝑥) − ℎ′

𝑗(𝑥) ≥ 0 for 𝑥 ∈ R𝑛 and 𝑗 ∈ {1, . . . , 𝑛𝑋},
𝑢(𝑥) ≤ 0 implies ℎ𝑗(𝑥) ≤ 0 for 𝑥 ∈ R𝑛 and 𝑗 ∈ {1, . . . , 𝑛𝑋}.
Consequently, {𝑥 ∈ R𝑛 | 𝑢(𝑥) ≤ 0} ⊂ 𝑋. Thus, {𝑥 ∈ R𝑛 |
𝑢(𝑥) ≤ 0} ⊂ ℛ0 is a robust invariant set.

In the following we prove that 𝑢(𝑥) is positive semi-definite
when 𝛼 > 0, i.e. that 𝑢(𝑥) ≥ 0 for 𝑥 ∈ R𝑛. Suppose that
there exists a state 𝑥0 ∈ R𝑛 such that 𝑢(𝑥0) < 0. According
to the first constraint in (40), we obtain that 𝑢(𝜓𝑑𝑥0

(𝑡)) ≤
𝑒𝛼𝑡𝑢(𝑥0) holds for 𝑡 ≥ 0. Thus, lim𝑡→∞ 𝑢(𝜓𝑑𝑥0

(𝑡)) = −∞,
which contradicts the fact that 𝑢(𝑥) ≥ max𝑗{ℎ′

𝑗(𝑥)} > −1
for 𝑥 ∈ R𝑛. Therefore, 𝑢(𝑥) ≥ 0 over R𝑛 and consequently
{𝑥 | 𝑢(𝑥) = 0} is a robust invariant set for 𝛼 > 0. �

From Corollary 3.8 we observe that a robust invariant set
could be found by solving (40) rather than (14). Aspired by
𝐹 (𝑥,𝑑) = 𝑓(𝑥,𝑑) for (𝑥,𝑑) ∈ 𝒳 ×𝐷, where 𝒳 is defined in
(3), we construct a semi-definite program to compute robust
invariant sets when 𝑢(𝑥) in (40) is a polynomial function and
is restricted in 𝒳 , i.e.{︂

𝛼𝑢(𝑥)− 𝜕𝑢
𝜕𝑥
𝐹 (𝑥,𝑑) ≥ 0, ∀𝑥 ∈ 𝒳 , ∀𝑑 ∈ 𝐷,

𝑢(𝑥)− ℎ′
𝑗(𝑥) ≥ 0, ∀𝑥 ∈ 𝒳 ,∀𝑗 ∈ {1, . . . , 𝑛𝑋}. (41)

Denote the set of sum-of-squares polynomials over 𝑦 by
SOS(𝑦), i.e.

SOS(𝑦) := {𝑝 ∈ R[𝑦] | 𝑝 =
𝑟∑︁
𝑖=1

𝑞2𝑖 , 𝑞𝑖 ∈ R[𝑦], 𝑖 = 1, . . . , 𝑟}.

The constructed semi-definite program is formulated below:

Theorem 3.9. If 𝑢(𝑥) ∈ R[𝑥] is a solution to (42) then
the sets {𝑥 ∈ 𝒳 | 𝑢(𝑥) ≤ 0} and {𝑥 ∈ 𝒳 | 𝑢(𝑥) = 0} are
robust invariant sets for 𝛼 = 0 and 𝛼 > 0, respectively.

min
𝑢,𝑠𝑖,𝑠

𝑋
𝑖

𝑐 ·𝑤

𝛼𝑢(𝑥)− 𝜕𝑢

𝜕𝑥
𝑓(𝑥,𝑑) +

𝑛𝐷∑︁
𝑖=1

𝑠𝑖ℎ
𝐷
𝑖 (𝑑)− 𝑠0ℎ(𝑥) ∈ SOS(𝑥,𝑑),

(1 + ℎ2
𝑗 )𝑢(𝑥)− ℎ𝑗(𝑥)− 𝑠𝑋𝑗 ℎ(𝑥) ∈ SOS(𝑥),

𝑗 = 1, . . . , 𝑛𝑋 ,

(42)

where 𝑐 · 𝑤 =
∫︀
𝒳 𝑢𝑑𝑥, 𝑐 is the vector composed of un-

known coefficients in 𝑢(𝑥) ∈ R𝑘[𝑥], 𝑤 is the constant
vector computed by integrating the monomials in 𝑢(𝑥)
over 𝒳 , 𝑠𝑖 ∈ SOS[𝑥,𝑑], 𝑖 = 0, . . . , 𝑛𝐷, and 𝑠𝑋𝑗 ∈ SOS[𝑥],
𝑗 = 1, . . . , 𝑛𝑋 . The constraints that polynomials are sum-
of-squares can be written explicitly as linear matrix in-
equalities, and the objective is linear in the coefficients of
𝑢(𝑥). Therefore problem (42) is a semi-definite program.

Proof. Since 𝑢(𝑥) satisfies the constraint in (42), we
obtain that 𝑢(𝑥) satisfies according to the 𝒮− procedure
presented in [10] the inequations

𝛼𝑢(𝑥)− 𝜕𝑢

𝜕𝑥
𝑓(𝑥,𝑑) ≥ 0,∀𝑑 ∈ 𝐷,∀𝑥 ∈ 𝒳 and (43)

(1 + ℎ2
𝑗 (𝑥))𝑢(𝑥)− ℎ𝑗(𝑥) ≥ 0, ∀𝑥 ∈ 𝒳 ,∀𝑗 ∈ {1, . . . , 𝑛𝑋}.

(44)

Assume that there exist a state 𝑦0 ∈ {𝑥 ∈ 𝒳 | 𝑢(𝑥) ≤ 0},
a policy 𝑑′, and a time instant 𝜏 > 0 such that 𝜑𝑑

′
𝑦0
(𝜏) /∈ 𝑋.

Inequation (44) implies {𝑥 ∈ 𝒳 | 𝑢(𝑥) ≤ 0} ⊂ 𝑋 and

thus 𝑦0 ∈ 𝑋. Let 𝑡0 be the time instant such that 𝜑𝑑
′

𝑦0
(𝑡0)

belongs to the boundary of 𝑋 and 𝜑𝑑
′

𝑦0
(𝑠) ∈ 𝒳 ∖ 𝑋 for

𝑠 ∈ (𝑡0, 𝜏 ]. 𝑡0 exists since 𝑋 ⊂ 𝒳 and 𝜕𝑋 ∩ 𝜕𝒳 = ∅. Also,
since 𝑋 ⊂ 𝒳 with 𝜕𝑋 ∩ 𝜕𝒳 = ∅ as well as (44), we obtain

that 𝜑𝑑
′

𝑦0
(𝑡0) ∈ {𝑥 ∈ 𝒳 | 𝑢(𝑥) ≤ 0} and 𝑢(𝜑𝑑

′
𝑦0
(𝑠) > 0 for

𝑠 ∈ (𝑡0, 𝜏 ]. However, according to (43) we get 𝑢(𝜑𝑑
′

𝑦0
(𝑠) ≤ 0

for 𝑠 ∈ (𝑡0, 𝜏 ]. This is a contradiction. Thus, all trajectories
of system (1) initialized in {𝑥 ∈ 𝒳 | 𝑢(𝑥) ≤ 0} live in
{𝑥 ∈ 𝒳 | 𝑢(𝑥) ≤ 0} and thus stay inside 𝑋 always.

A similar argument as in the proof of Corollary 3.8 can be
used to prove that 𝑢(𝑥) ≥ 0 over {𝑥 ∈ 𝒳 | 𝑢(𝑥) ≤ 0} when
𝛼 > 0. Therefore, Theorem 3.9 is justified. �

Remark 1. From Theorem 3.9, we observe that a robust
invariant set is described by the zero set of a polynomial func-
tion when applying (42) with 𝛼 > 0. Extremely conservative
robust invariant sets could thus be returned by solving (42),
thus potentially rendering the application of the semi-definite
program (42) useless in practice. This effect is shown on
some examples in Section 4. Therefore we generally assign
0 to 𝛼 when employing the semi-definite program (42) for
synthesizing robust invariant sets.

4 EXPERIMENTS

In this section we evaluate the performance of grid-based
numerical methods for solving (14) with 𝛼 > 0 and of the
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semi-definite programming method (42) on three illustrative
examples. All computations were performed on an i7-8550U
1.80GHz CPU with 4GB RAM running Fedora 29. We employ
the ROC-HJ1 solver [8] to solve (14) with 𝛼 > 0, and use
YALMIP 2 [23] and Mosek3 [29] to implement (42). The pa-
rameters that control the performance of these two methods
are presented in Table 1. Note that in solving (14), unifor-
m grids of 5002 on the state space [−1.1, 1.1] × [−1.1, 1.1],
4002 on [−0.25, 0.25]× [−0.25, 0.25] and 207 on [−1, 1]7 are
respectively adopted for Examples 4.1, 4.2 and 4.3.

SDP HJB

Ex. 𝑑𝑢 𝑑𝑠𝑖 𝑑𝑋𝑗 𝛼 𝑇SDP 𝛼 𝑇HJB

1
10 10 12 0 1.48

1 628.3314 14 16 0 6.84
16 16 18 0 16.05

2
10 12 12 0 3.61

1 110.93
18 20 20 0 32.46

3
2 2 4 0 4.25

1 –
4 4 6 0 156.03

Table 1: Parameters and the performance of our im-
plementations of solving (42) and (14) on the examples
presented in this section. 𝑑𝑢, 𝑑𝑠𝑖 , 𝑑𝑠𝑋𝑗

: the degree of the

polynomials 𝑢, 𝑠𝑖, 𝑠
𝑋
𝑗 in (42), respectively, 𝑖 = 1, . . . , 𝑛𝐷,

𝑗 = 1, . . . , 𝑛𝑋 ; 𝛼: the scalar value 𝛼 in (42) and (14);
𝑇SDP and 𝑇HJB: computation times (seconds) for solving
(42) and (14) respectively.

Example 4.1. Consider a two-dimensional system

𝑥̇ = −0.5𝑥, 𝑦̇ = 10𝑥2 − (0.5 + 𝑑)𝑦,

where 𝑋 = {(𝑥, 𝑦) | 𝑥2+𝑦2−1 ≤ 0}, 𝐷 = {𝑑 | 𝑑2−0.01 ≤ 0},
and 𝒳 = {(𝑥, 𝑦) | 1.1− 𝑥2 − 𝑦2 ≥ 0}.

The estimated maximal robust invariant set, which is com-
puted by solving (14) with 𝛼 = 1, is displayed in Fig. 1. The
level sets of the corresponding computed viscosity solution
are shown in Fig. 2. Plots of robust invariant sets computed
by solving (42) when 𝑑𝑢 = 10, 12, 16 are presented in Fig. 1.

Example 4.2. Consider a two-dimensional system, corre-
sponding to a Moore-Greitzer model of a jet engine with the
controller 𝑢 = 0.8076𝑥− 0.9424𝑦 from [33],

𝑥̇ = −𝑦 − 3

2
𝑥2 − 1

2
𝑥3 + 𝑑, 𝑦̇ = 𝑢,

where 𝑋 = {(𝑥, 𝑦) | 𝑥2+𝑦2−0.04 ≤ 0}, 𝐷 = {𝑑 | 𝑑2−0.022 ≤
0}, and 𝒳 = {(𝑥, 𝑦) | 0.041− 𝑥2 − 𝑦2 ≥ 0}.

The estimated maximal robust invariant set, which is com-
puted by solving (14) with 𝛼 = 1, is displayed in Fig. 3. The
level sets of the corresponding computed viscosity solution
are shown in Fig. 4. Plots of robust invariant sets computed
by solving (42) when 𝑑𝑢 = 10, 18 are presented in Fig. 3.

1Download from https://uma.ensta-paristech.fr/soft/ROC-HJ/.
2Download from https://yalmip.github.io/.
3Mosek for academic use can be obtained free of charge from https:
//www.mosek.com/.
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Figure 1: Computed robust invariant sets for Ex. 4.1.
Black, blue and red curves represent boundaries of
robust invariant sets computed by solving (42) when
𝑑𝑢 = 10, 14, and 16, respectively. Gray region is an es-
timate of the maximal robust invariant set obtained
by numerically solving (14).

Figure 2: Level sets of the computed viscosity solu-
tion to (14) for Ex. 4.1 with 𝛼 = 1.
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Figure 3: Computed robust invariant sets for Ex. 4.2.
Black and red curves represent boundaries of robust
invariant sets computed by solving (42) when 𝑑𝑢 = 10
and 18, respectively. Gray region is an estimate of the
maximal robust invariant set obtained by numerical-
ly solving (14).

The level sets displayed in Fig. 2 and Fig. 4 further confirm
that the viscosity solution 𝑉 (𝑥) to HJB (14) with 𝛼 > 0 is
non-negative, as stated in Theorem 3.3. We apply the semi-
definite program (42) with 𝛼 = 1 to Examples 4.1 and 4.2 as

https://uma.ensta-paristech.fr/soft/ROC-HJ/
https://yalmip.github.io/
https://www.mosek.com/
https://www.mosek.com/
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Figure 4: Level sets of the computed viscosity solu-
tion to (14) for Ex. 4.2 with 𝛼 = 1.

well. However, we did not obtain non-empty robust invariant
sets for both examples based on the parameters in Table 1.
This justifies Remark 1.

Although grid-based numerical methods can be employed
to solve HJB equation (14) with 𝛼 > 0 and thus produce an
estimate of the maximal robust invariant set, they general-
ly require gridding state and perturbation spaces, thereby
exhibiting exponential growth in computational complexity
with the number of state and perturbation variables and pre-
venting their application to higher dimensional problems. As
opposed to grid-based numerical methods, the semi-definite
programming based method (42) trades off accuracy for com-
puting speed. It falls within the convex programming frame-
work and can be applied to systems with moderately high
dimensionality. We illustrate this issue through an example
with seven state variables.

Example 4.3. Consider a seven-dimensional system

𝑥̇1 = −𝑥1 + 0.5𝑥2, 𝑥̇2 = −𝑥2 + 0.4𝑥3,
𝑥̇3 = −𝑥3 + 0.5𝑥4, 𝑥̇4 = −𝑥4 + 0.7𝑥5,
𝑥̇5 = −𝑥5 + 0.5𝑥6, 𝑥̇6 = −𝑥6 + 0.8𝑥7,
𝑥̇7 = −𝑥7 + 10𝑥21 + 𝑥22 − 𝑥23 − 𝑥24 + 𝑥25 + 𝑥6𝑑,

(45)

where 𝑋 = {𝑥 | ‖𝑥‖2 − 1 ≤ 0}, 𝐷 = {𝑑 | 𝑑2 − 0.25 ≤ 0}, and
𝒳 = {𝑥 | −‖𝑥‖2 + 1.01 ≤ 0}.

Unlike for the low-dimensional Examples 4.1 and 4.2, the
grid-based numerical method for solving (14) here runs out
of memory and thus does not return an estimate. The semi-
definite programming based method (42), however, is still
able to compute robust invariant sets, which are illustrated in
Fig. 5. In order to shed light on the accuracy of the computed
robust invariant sets, we employ the first-order Euler method
to synthesize coarse estimates of the maximal robust invariant
sets on planes 𝑥1 − 𝑥2 with 𝑥3 = 𝑥4 = 𝑥5 = 𝑥6 = 𝑥7 = 0 and
𝑥5−𝑥6 with 𝑥1 = 𝑥2 = 𝑥3 = 𝑥4 = 𝑥7 = 0 respectively. These
estimates are also depicted in Fig. 5.

Although the size of the program (42) grows extremely
fast with the number of state and perturbation variables and
the degree of the polynomials in (42), engineering insight can
further enhance the computational efficiency and scalability
advantages of the semi-definite programming based method
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Figure 5: Projections of computed robust invariant
sets for Ex. 4.3. White and black curves represen-
t boundaries of robust invariant sets computed by
solving (42) when 𝑑𝑢 = 2 and 4, respectively. Gray re-
gion is an estimate of the maximal robust invariant
set obtained via simulation techniques.

(42) over the grid-based numerical method. Some options are
the use of template polynomials such as diagonally dominant
sum-of-squares (DSOS) and scaled diagonally dominant-sum-
of-squares (SDSOS) polynomials [1, 25]. DSOS and SDSOS
result in converting the semi-definite programming based
relaxations into linear programs and second-order cone pro-
grams with lower complexity than the semi-definite programs.

Finally, it is worth remarking that the semi-definite pro-
gramming based method (42) is limited to polynomial sys-
tems, while the HJB method (14) is capable of dealing with
more general nonlinear systems, which are however not the
focus of this paper.

5 CONCLUSION AND FUTURE WORK

In this paper we studied the computation of robust invari-
ant sets for state-constrained perturbed polynomial systems
within the Hamilton-Jacobi reachability framework. We for-
mulated the maximal robust invariant set as the zero level
set of the unique Lipschitz viscosity solution to a HJB equa-
tion. Existing numerical methods were employed to solve this
HJB equation for an appropriate number of variables and
thus produce an estimate of the maximal robust invariant
set. Moreover, based on the derived HJB equation a novel
semi-definite programming method was proposed such that
a robust invariant set could be computed by solving a single
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semi-definite program, which provides for better scalabili-
ty than the numeric method. Three illustrative examples
demonstrated the performance of the approaches.

In future work we will compare the methods in this paper
with other existing methods [31, 39]. Additionally, we will
address two open problems for the program (42), namely con-
ditions for existence of a solution and how well the computed
robust invariant sets approximate the maximal robust invari-
ant set with the degree of polynomials tending to infinity.
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