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Abstract. In this paper we present a method based on linear program-
ming that facilitates reliable safety verification of hybrid dynamical sys-
tems subject to perturbation inputs over the infinite time horizon. The
verification algorithm applies the probably approximately correct (PAC)
learning framework and consequently can be regarded as statistically
formal verification in the sense that it provides formal safety guarantees
expressed using error probabilities and confidences. The safety of hybrid
systems in this framework is verified via the computation of so-called
PAC barrier certificates, which can be computed by solving a linear pro-
gramming problem. Based on scenario approaches, the linear program is
constructed by a family of independent and identically distributed state
samples. In this way we can conduct verification of hybrid dynamical
systems that existing methods are not capable of dealing with. Some
preliminary experiments demonstrate the performance of our approach.
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1 Introduction

The complexity of today’s technological applications induces a quest for au-
tomation, leading to autonomous cyber-physical systems [9]. Many of these sys-
tems operate in safety-critical contexts and hence become safety-critical systems
themselves. Being safety-critical, they have to reliably sustain safety despite per-
turbations. The propagation of these perturbations however tends to be highly
nonlinear and combine continuous and discrete dynamics. Such combined dy-
namics yield a hybrid dynamical system involving interacting discrete-event and
continuous-variable dynamics. Hybrid dynamical systems are important in ap-
plications such as robotics, manufacturing systems and bio-molecular networks,
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and have been at the center of intense research activity in computer-aided veri-
fication, control theory, and applied mathematics [2].

The process of verifying with mathematical rigor that a hybrid dynamical
system behaves correctly is a well-established branch of formal methods in com-
puter science [1]. Unfortunately, many decision problems underlying formal veri-
fication of hybrid systems are undecidable [17]. Even surprisingly simple dynam-
ical systems combining discrete and continuous dynamics feature undecidable
state-reachability problems, like multi-priced timed automata with stopwatch
prices [13] or three-dimensional piecewise constant derivative systems [3]. Gen-
eral undecidability renders sound yet incomplete automatic verification meth-
ods as well as methods providing a controlled approximation error attractive,
e.g. [10,14,26], which nevertheless are computationally expensive. Although so-
phisticated heuristics have been developed to improve scalability of the tech-
niques, automatic key-press formal verification of real-world systems is still con-
sidered to be impractical [30]. Techniques for simulation-based verification can
prove fruitful in this regard for systems over finite time horizons, as they combine
the scalability of simulation with rigorous coverage criteria supporting either a
complete or a statistical verification through generalization from samples [23,38].

In this paper we propose a linear programming based method that facilitates
reliable, in the sense of featuring a rigorously quantified confidence in the ver-
ification verdict, safety verification of hybrid systems subject to perturbations
over the infinite time horizon. Akin to [11], the verification algorithm applies the
framework of PAC learning theory [15] to adjust the effort invested in generating
samples to a desired confidence in the verification verdict. Given a confidence
β ∈ (0, 1), the objective is to compute a probability ε ∈ (0, 1) such that the prob-
ability of initial continuous states leading to the satisfiability of safety properties
is larger than 1−ε, with at least 1−β confidence. Such verification in our method
is studied by learning a so-called PAC barrier certificate with respect to ε and β,
which withat least 1− β confidence is indeed a barrier certificate with probabil-
ity larger than 1 − ε. The computation is based on scenario approaches [6] and
linear interval inequalities [28], which encodes as a linear programming problem.
The linear program is constructed using linear interval inequalities and a family
of independent and identically distributed state samples extracted from the ini-
tial set. Based on the computed solution to this linear program, confidence level
β ∈ (0, 1) and number of samples, we compute a probability measure ε based
on scenario approaches such that the computed solution to the linear program
forms a PAC barrier certificate with respect to ε and β. Consequently we con-
clude that the probability of initial continuous states leading to the satisfiability
of safety properties is larger than 1− ε, with confidence higher than 1−β. Some
examples demonstrate the performance and merits of our approach.

2 Preliminaries

In this section we introduce hybrid systems, the safety verification problem,
scenario approaches and linear interval inequalities. The following notations are
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used throughout this paper: C1(Rn) is the set of continuously differentiable func-
tions from Rn to R. R≥0 denotes the set of nonnegative real values and R>0

denotes the set of positive reals. Vectors are denoted by boldface letters.

2.1 Hybrid Systems

A hybrid system is a tuple H = (X , L,X,X0, Inv,F , T ) [24]:

- X ⊆ Rn is the continuous state space;
- L is a finite set of locations and we will in the sequel denote its cardinality

by M = |L| with L = {1, . . . ,M};
- The overall state space of the system is X = L×X , and a state of the system

is denoted by (l,x) ∈ L×X ;
- X0 ⊆ X is the set of initial states;
- Inv : L→ 2X is the invariant, which assigns to each location l a set Inv(l) ⊆
X that contains all possible continuous states while at location l;

- F : X → 2R
n

is a set of vector fields. F assigns to each (l,x) ∈ X a
set F (l,x) ⊆ Rn which constrains the evolution of the continuous state
according to the differential inclusion ẋ ∈ F (l,x);

- T ⊆ X×X is a relation capturing discrete transitions between two locations.
Here a transition ((l′,x′), (l,x)) ∈ T indicates that from the state (l′,x′) the
system can undergo a discrete jump to the state (l,x).

We assume that the uncertainty in the continuous flow is caused by some per-
turbation inputs in the manner: F (l,x) = {ẋ ∈ Rn | ẋ = fl(x,d), for some d ∈
D(l)}, where fl(x,d) is a vector field that governs the flow of the system at lo-
cation l, and d is a vector of perturbation inputs that takes value in D(l) ⊂ Rr.

Trajectories of the hybrid system H starting from some initial state (l0,x0) ∈
X0 are concatenations of steps, with each step either being a continuous flow
or a discrete transition, with the endpoint of each step matching the startpoint
of the next step, and with the first step starting in (l0,x0) ∈ X0. During a
continuous flow, the discrete location l is maintained and the continuous state
evolves according to the differential inclusion ẋ ∈ F (l,x), as long as x remains
inside the invariant set Inv(l). At a state (l1,x1) a discrete transition to (l2,x2)
can occur iff ((l1,x1), (l2,x2)) ∈ T . We then say that x1 ∈ Gl1,l2 = {x1 ∈ X |
((l1,x1), (l2,x)) ∈ T for some x ∈ X} and x2 ∈ Rl1,l2(x1), where Rl1,l2 : x1 →
{x ∈ X | ((l1,x1), (l2,x)) ∈ T}. If Gl′,l is empty then no discrete transition
from location l′ to location l is possible and the associated reset map undefined.
Although not explicitly stated, it is assumed that the description of the hybrid
system given above is well-posed. For example, (l,x) ∈ X0 automatically implies
that x ∈ Inv(l), and ((l′,x′), (l,x)) ∈ T implies that x′ ∈ Inv(l′) and x ∈ Inv(l).

Given a system H and a set of unsafe states Xu ⊆ X, the classical safety
verification problem is concerned with proving that no trajectory of the hybrid
system H originating from the set X0 of initial states can ever enter the unsafe
region Xu. If this property holds, the hybrid system H is safe. Unfortunately,
such safety verification problem is undecidable generally and consequently is
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challenging, even for systems with simple dynamics. In this paper we relax the
notion of safety, replacing qualitative safety(no trajectory may ever reach an un-
safe state) by quantitative safety (the probability of unsafe behaviors stays below
a quantitative safety target with some specified confidence). We call a system
satisfying the latter property probably approximately safe. Its concept is formally
introduced in Definition 1. The probably approximate safety verification applies
the PAC learning framework [15] and consequently can be regarded as statisti-
cally formal verification in the sense that it provides formal safety guarantees
expressed using error probabilities and confidence.

Suppose Ini(l) = {x | (l,x) ∈ X0} is endowed with a σ−algebra Dl and
that a probability Prl over Ini(l) is assigned, where l ∈ L. In addition, we
assume Ini = Ini(1)× . . .× Ini(M) is endowed with a σ−algebra D′ and that
a probability Pr over D′ is assigned. Obviously, Pr = Pr1 × . . .× PrM .

Definition 1. A hybrid system H is probably approximately safe with respect
to the set Ini, ε ∈ (0, 1) and β ∈ (0, 1) (or, PAS(ε, β)) if with at least 1 − β
confidence, Pr(C) ≥ 1− ε, where C = Ini′(1)× . . .× Ini′(M) is a subset of the
set Ini and Ini′(l) ⊆ Ini(l) is a set of continuous states xs in the location l ∈ L
such that trajectories of H starting from (l,x) never enter the unsafe region Xu.

Besides, we in this paper restrict the invariant set Inv(l), disturbance set
D(l), unsafe set Uns(l), guard set Gl′,l and initial set Ini(l) to the interval form
for l ∈ L, where Uns(l) = {x | (l,x) ∈ Xu}. The probability distribution Prl is
assumed to be uniform distribution over Ini(l) for l ∈ L. We need to point out
here that our method is not limited to this particular probability distribution.
This feature is reflected in scenario approaches, which will be introduced in Sub-
section 2.2. To some extent, the assumption of uniform distribution over Ini(l)
for l ∈ L is reasonable since every continuous state in Ini(l) is of equal impor-
tance especially for safety-critical systems. Any state leading to a violation of the
safety property will result in a systems failure. Ideally, we wish that the hybrid
system is safe for every initial state. As mentioned before, this is challenging to
verify with mathematical rigor. Inspired by machine learning theory, we attempt
to use a family of random finite states in Ini(l) to learn safety information of
hybrid systems in the PAC framework and would expect to verify systems that
existing verification methods are not capable of dealing with.

2.2 Scenario Approaches

The scenario optimization has been shown as an intuitive and effective way to
deal with chance-constrained optimization [4,5] based on finite randomization of
the constraints at the expense of giving probabilistic guarantees on the robust-
ness of the solution. Concretely, consider the chance-constrained optimization:

min
x∈Rm

J(x)

s.t. P
(
{δ ∈ ∆ | max

j=1,...,nm

gj(x, δ) ≤ 0}
)
≥ 1− ε,

(1)
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where δ ∈ ∆ ⊆ Rr, J : Rm → R is a convex function and gj : Rm × Rr → R
for j = 1, . . . , nm. Besides, {x ∈ Rm | maxj=1,...,nm

gj(x, δ) ≤ 0} is convex and
closed for fixed δ. Any x satisfying the chance constraint of (1) is referred to as
an ε−level feasible solution. It is assumed that ∆ is endowed with a σ−algebra
D and that P is a probability measure defined over D.

The scenario approach substitutes the chance constraint in (1) with a finite
number of hard constraints, each corresponding to a different realization δ(k),
k = 1, . . . , N of the uncertain parameter δ, extracted independently according
to the probability distribution P . This leads to the convex optimization:

min
x∈Rm

J(x)

s.t. max
j=1,...,nm

gj(x, δ
(i)) ≤ 0, i = 1, . . . , N.

(2)

Assumption 1 The convex optimization (2) is feasible for all possible multi-
sample extractions (δ(1), . . . , δ(N)) ∈ ∆N and its feasibility region has a non-
empty interior. Moreover, the solution x∗ of (2) exists and is unique.

One can allow for violating part of the sample constraints to improve the
optimal value by removing some sample constraints. Any removal algorithm A
can be used when removing constraints in (2) [4]. The randomized program (2)
where k constraints are removed by A is expressed as

min
x∈Rm

J(x)

s.t. max
j=1,...,nm

gj(x, δ
(i)) ≤ 0, i ∈ {1, . . . , N} \ A(δ(1), . . . , δ(N))

(3)

and its solution is indicated as x∗∗. We assume the following:

Assumption 2 x∗∗ almost surely violates all the k removed constraints.

Theorem 1. [4, 5] Let β ∈ (0, 1) be any small confidence value. If N and k

are such that
(
k+m−1

k

)∑k+m−1
i=0

(
N
i

)
εi(1− ε)N−i ≤ β, where m is the number of

optimization variables, then with probability at least 1− β, we have that P
(
{δ ∈

∆ | maxj=1,...,nm gj(x
∗∗, δ) ≤ 0}

)
≥ 1− ε.

In Theorem 1, 1 − β is the N -fold probability PN in ∆N = ∆ × ∆ × · · · × ∆,
i.e., the set to which the extracted sample

(
δ(1), . . . , δ(N)

)
belongs.

2.3 Linear Interval Inequalities

A system of linear interval inequalities is formulated as AIy ≤ bI , where AI =
{A : A ≤ A ≤ A} (component-wise inequalities) is an m × n interval matrix
and bI = {b : b ≤ b ≤ b}(component-wise inequalities) is an m−dimensional
interval vector. A y0 is called a strong solution to the system of linear interval
inequalities if it satisfies Ay0 ≤ b for each A ∈ AI and b ∈ bI . We denote the
set of all strong solutions by Y , and Y is given as follows.
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Theorem 2. [28] Y = {y1 − y2 : Ay1 −Ay2 ≤ b,y1 ≥ 0,y2 ≥ 0}.
A strong solution can be computed by solving a linear programming problem

based on Theorem 2. Based on this, for a parametric polynomial of the form
B(x, c) =

∑
α∈M cαx

α, where cα’s are parametric coefficients making B(x, c)
non-positive over an interval x ∈ I, can be obtained in the way: 1). For each
monomial xα(α ∈M), we use interval arithmetic to obtain its lower and upper
bounds Iα− and Iα+ respectively over the interval I, and yield a linear interval
inequality

∑
α∈M[Iα−, Iα+]cα ≤ 0. 2). According to Theorem 2, by replacing

each variable cα with a difference of two variables cα1 and cα2, where cα1 ≥ 0
and cα2 ≥ 0, we can replace [Iα−, Iα+]cα by Iα+cα1 − Iα−cα2 and arrive at
a linear inequality

∑
α∈M[Iα+cα1 − Iα−cα2] ≤ 0, denoted as ψ[cα1, cα2]. We

denote the above procedure as linear interval inequalities (B(x, c), I). For
more details, please refer to [27, 29, 35]. If (cα1, cα2)α∈M, where there exists an
α ∈ M such that cα1 − cα2 6= 0, is found, the polynomial B is obtained by
substituting cα with cα1 − cα2.

3 Probably Approximate Safety Verification

In this section we detail our approach for conducting probably approximate
safety verification of hybrid systems via the computation of so-called PAC barrier
certificates. The concept of PAC barrier certificates is introduced in Subsection
2. The computation method is formulated in Subsection 3.2.

3.1 PAC Barrier Certificates

A popular approach to safety verification for hybrid systems employs barrier
certificates, which partition the state space X into two regions containing for-
ward reachable states of the initial states and backward reachable states of the
unsafe states, respectively. There are several variants of barrier certificates and
accordingly diverse methods for computing them, e.g., [7, 20–22, 24, 32, 37]. In
this paper we employ exponential-condition-based barrier certificates from [21]
as an instance serving to illustrate our method, which however is not confined to
this particular variant of barrier certificates. Exponential-condition-based barrier
certificates form the core of Theorem 3 underneath.

Theorem 3 ( [21]). Let H = (X , L,X,X0, Inv,F , T ) be a hybrid system.
Given Sλ = {λl ∈ R | l ∈ L} and Sσ = {σl′,l ∈ R≥0 | ((l, ·), (l′, ·)) ∈ T}, if
there exists a family of functions (Bl(x) ∈ C1(Rn))l∈L such that for all l ∈ L,
the following constraints hold

1).Bl(x) > 0,∀x ∈ Uns(l), 2).Bl(x) ≤ 0,∀x ∈ Ini(l),

3).
∂Bl
∂x

(x)fl(x,d) + λlBl(x) ≤ 0,∀(x,d) ∈ Inv(l)×D(l),

4).Bl(x)− σl′,lBl′(x′) ≤ 0,∀(x′,x) ∈ Gl′,l × Rl′,l(x
′),

(4)

then the safety of the hybrid system H is guaranteed, i.e., no trajectories starting
from (l,x) for l ∈ L and x ∈ Ini(l) will enter the unsafe state set Xu.
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Based on Theorem 3, semi-definite programming based methods were pro-
posed in [21] to synthesize barrier certificates for polynomial hybrid systems. In
order to be able to automatically compute similar certificates for a much wider
class of systems, we verify probably approximate safety of hybrid systems and
provide a proof of this property via the computation of PAC barrier certificates.
The concept of PAC barrier certificates is formally presented in Definition 2.

Definition 2. Let H = (X , L,X,X0, Inv,F , T ) be a hybrid system. Given Sλ =
{λl ∈ R | l ∈ L} and Sσ = {σl′,l ∈ R≥0 | ((l, ·), (l′, ·)) ∈ T}, a family of functions
(Bl(x) ∈ C1(Rn))l∈L is a family of PAC barrier certificates with respect to ε ∈
(0, 1) and β ∈ (0, 1) (or, PACBC(ε, β)), if they satisfy the following constraints:

1. for each l ∈ L and l′ ∈ L,

1).Bl(x) > 0,∀x ∈ Uns(l), 2).Bl(x)− σl′,lBl′(x′) ≤ 0,∀(x′,x) ∈ Gl′,l × Rl′,l(x
′),

3).
∂Bl
∂x

(x)fl(x,d) + λlBl(x) ≤ 0,∀(x,d) ∈ Inv(l)×D(l).

(5)

2. with confidence of at least 1 − β, Pr(C) ≥ 1 − ε, where C = {y ∈ Ini |
Bl(xl) ≤ 0, l ∈ L} with y = (x1, . . . ,xM ) and xl ∈ Ini(l).

The PACBC(ε, β) is an exact barrier certificate for the system H with the
initial set ∪l∈L{(l,x) | x ∈ Ini(l)∧Bl(x) ≤ 0}. That is, no trajectories starting
from ∪l∈L{(l,x) | x ∈ Ini(l)∧Bl(x) ≤ 0} will enter Xu, and the set ∪l∈L{(l,x) |
x ∈ Ini(l) ∧ Bl(x) ≤ 0} is an under-approximation of the set of initial states
rendering H safe, e.g., [33, 34, 36]. However, it is just a PAC barrier certificate
for the system H with the initial set X0.

Theorem 4. If (Bl(x) ∈ C1(Rn))l∈L is PACBC(ε, β), the system H is PAS(ε, β).

Proof. Let C = {y ∈ Ini | Bl(xl) ≤ 0, l ∈ L}, where y = (x1, . . . ,xM ) with xl ∈
Ini(l). From constraint (5) in Definition 2, we have that trajectories starting
from ∪l∈L{(l,x) | x ∈ Ini(l)∧Bl(x) ≤ 0} cannot enter Xu. Also, since Pr(C) ≥
1− ε with at least 1− β confidence, H is PAS(ε, β) from Definition 1. ut

Corollary 1 is an immediate consequence of Definition 2 and Theorem 3.

Corollary 1. Suppose that (Bl(x) ∈ C1(Rn))l∈L is PACBC(ε, β). If Ini(l) ⊆
{x ∈ Ini(l) | Bl(x) ≤ 0} for l ∈ L, the hybrid system H is safe.

Another benefit of computing PACBC(ε, β) is to conduct probabilistic safety
verification of hybrid systems.

Corollary 2. Suppose that (Bl(x) ∈ C1(Rn))l∈L is PACBC(ε, β). If Pr(C) ≥ 1−ε,
where C = {y ∈ Ini | Bl(xl) ≤ 0 for l ∈ L} with y = (x1, . . . ,xM ) and
xl ∈ Ini(l), then Prl(Cl) ≥ 1 − ε for l ∈ L, where Cl is a set of states xs in
Ini(l) such that trajectories starting from (l,x) never enter Xu.

Proof. Since Pr = Pr1 × . . . × Prl, we have that Prl(C
′
l) ≥ 1 − ε, where C ′l =

{x ∈ Ini(l) | Bl(x) ≤ 0}. Also, since C ′l ⊆ Cl, we have the conclusion. ut
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[31] developed a tool ProbReach to address the probabilistic safety verifica-
tion problem in Corollary 2 for hybrid systems. Since reachable set computation
based techniques are used in [31], it is limited to safety verification of hybrid sys-
tems over finite time horizons. [19] proposed a bilinear semidefinite programming
based method to compute probabilistic barrier certificates for polynomial hybrid
systems. Unfortunately, the bilinear semidefinite program falls within nonlinear
programming framework and is notoriously hard to solve.

3.2 Probably Approximate Safety Verification

In this section we present our linear programming based method for synthesiz-
ing PACBC(ε, β) and thus conducting probably approximate safety verification
of hybrid systems. The linear program is constructed based on linear interval
inequalities and scenario approaches.

We first select barrier certificate templates (Bl(cl,1, . . . , cl,il ,x))l∈L such that
1.) Bl(cl,1, . . . , cl,il ,x) ∈ C1(Rn) is a linear function in cl,1, . . . , cl,il for x ∈ Rn,
where (cl,j)

il
j=1 are unknown parameters and il ≥ 1 is a positive integer. For

convenience cl is used to denote (cl,1, . . . , cl,il) in the rest of this paper. 2.) Let
Cr = {x ∈ Ini(l) | Bl(cl,x) = r} for r ∈ R,

Prl(Cr) = 0,∀l ∈ L,∀r ∈ R. (6)

This requirement is to ensure that the solution computed by scenario approaches
satisfies Assumption 2, which will be reflected in Lemma 1. Generally, polynomial
functions satisfy the requirement (6).

Under the assumption that ε is given (later, we will introduce how to give
an appropriate ε), we try to compute (cl)l∈L by solving the following chance-
constrained optimization:

min
cl,l∈L,θ

θ +

M∑
l=1

wl

∫
Ini(l)

B(cl,x)dx, (7)

s.t.Pr({y ∈ Ini | max
l∈L

B(cl,xl) ≤ θ}) ≥ 1− ε, (8)

0 ≤ θ ≤ Uθ, (9)

for each l ∈ L and l ∈ L′ : (10)

Bl(x)− ζl ≥ 0,∀x ∈ Uns(l), (11)

∂Bl
∂x

(x)fl(x,d) + λlBl(x) ≤ 0,∀(x,d) ∈ Inv(l)×D(l), (12)

Bl(x)− σl′,lBl′(x′) ≤ 0,∀(x′,x) ∈ Gl′,l × Rl′,l(x
′), (13)

where y = (x1, . . . ,xM ) with xl ∈ Ini(l), σl′,l ∈ R≥0, ζl ∈ R>0 and λl ∈ R are
given, and Uθ is a user-defined positive bound for θ. wls, l = 1, . . . ,M , are given
positive values such that

∑M
l=1 wl = 1. In (7), wl for l ∈ L represents the relative

significance of the lth set Ini(l). The minimum operator on
∫
Ini(l)

B(cl,x)dx

aims to find cl such that {x ∈ Ini(l) | B(cl,x) ≤ 0}, which is a set of states xs
such that trajectories starting from (l,x) never enter Xu, is as large as possible.
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Solving the chance-constrained optimization (7)∼(13) directly is notoriously
hard. It generally falls within the nonlinear programming framework and is an
NP-hard problem. Below we show the use of scenario approaches and linear
interval inequalities to encode (7)∼(13) as a linear programming problem, whose
solution provides a family of PAC barrier certificates with respect to ε and β.

We first relax constraints (11)∼(13) to linear constraints over cl using linear
interval inequalities. For this sake, we first construct a family of interval boxes

(IiU(l))
k1,l
i=1, (IiInv(l))

k2,l
i=1 and (IiGl′,l)

k3,l
i=1 such that Uns(l) ⊆ ∪k1,li=1I

i
U(l), Inv(l)×D(l) ⊆

∪k2,li=1I
i
Inv(l) and Gl′,l ⊆ ∪

k3,l
i=1I

i
Gl′,l

, respectively. Then, for i = 1, . . . , k1,l, we ob-

tain a linear relaxation ψ1,i[c1,l, c2,l] of the constraint −Bl(cl,x) + ζl ≤ 0 for
x ∈ Uns(l) based on linear interval inequalities(−Bl(cl,x) + ζl, I

i
U(l)),

where ζl ∈ R>0 is a user-defined small positive value. If (c1,l, c2,l) satisfies

∧k1,li=1ψ1,i[c1,l, c2,l], −Bl(c1,l− c2,l,x) < 0 for x ∈ Uns(l). Analogously, we obtain

linear relaxations ∧k2,li=1ψ2,i[c1,l, c2,l] and ∧k3,li=1ψ3,i[c1,l, c2,l] of constraints (12) and
(13), respectively. Therefore, if (c1,l, c2,l)l∈L satisfies

∧k1,li=1 ψ1,i[c1,l, c2,l]
∧
∧k2,li=1ψ2,i[c1,l, c2,l]

∧
∧k3,li=1ψ3,i[c1,l, c2,l], (14)

(Bl(c1,l − c2,l,x))l∈L satisfies constraints (11), (12) and (13). For ease of expo-
sition, we denote (14) by ψl[c1,l, c2,l].

Next, we substitute the chance constraint (8) with N hard constraints, which
are constructed based on N independent and identically distributed samples
(yi)

N
i=1 with yi =

(
x1,i, . . . ,xM,i

)
extracted from the set Ini according to the

probabilistic distribution Pr, where xl,i ∈ Ini(l) for l = 1, . . . ,M . The N hard
constraints over cl and θ are maxl∈LBl(cl,xl,i) ≤ θ, i = 1, . . . , N. Obviously,
Bl(cl,xl,i) ≤ θ is a linear function in cl and θ.

Finally, we obtain a linear relaxation (15) over (ci,l) and θ for solving (7)∼(13),

min
ci,l,i=1,2,l∈L,θ

θ +

M∑
l=1

wl

∫
Ini(l)

B(c1,l − c2,l,x)dx

s.t. for each i = 1, . . . , N : max
l∈L

Bl(c1,l − c2,l,xl,i) ≤ θ,

for each l ∈ L : 1).ψl[c1,l, c2,l], 2).0 ≤ θ ≤ Uθ, ci,l ≤ Uc, i = 1, 2,

(15)

where Uc ∈ R>0 is a pre-specified upper bound for ci,l for l ∈ L and i = 1, 2, and
Uθ ∈ R>0 is pre-specified upper bound for θ. Let (c∗1,1, c

∗
2,1, . . . , c

∗
1,M , c

∗
2,M , θ

∗)
be an optimal solution to the linear program (15).

Remark 1. After obtaining (c∗1,1, c
∗
2,1, . . . , c

∗
1,M , c

∗
2,M , θ

∗), Pr(C) can be estimated
based on the Chernoff-Hoeffding Bound [18] in the statistical context. The
Chernoff-Hoeffding Bound formulates that with a confidence of at least 1 −
e−2Nε

′2
, Pr(C) ≥ p− ε′ with p = N ′

N , where C is defined in Definition 1 and N ′

is the number of sample states yis such that maxl∈LBl(c
∗
1,l − c∗2,l,xl,i) ≤ 0. In

the following we give a different estimation based on scenario approaches. The
difference between these two estimations will be presented in examples.
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Based on the computed solution (c∗1,1, c
∗
2,1, . . . , c

∗
1,M , c

∗
2,M ), we further relax

the linear program (15) as a new linear program over the single variable θ:

min
θ
θ +

M∑
l=1

wl

∫
Ini(l)

B(c∗1,l − c∗2,l,x)dx

s.t. for each i = 1, . . . , N : max
l∈L

Bl(c
∗
1,l − c∗2,l,xl,i) ≤ θ,

for each l ∈ L : 1).ψl[c
∗
1,l, c

∗
2,l], 2).0 ≤ θ ≤ Uθ, c∗i,l ≤ Uc, i = 1, 2.

(16)

Obviously, (16) is feasible. Also, the optimal value of θ is unique and equal to
θ∗. Assumption 1 is satisfied.

Then we remove samples from (x1,i, . . . ,xM,i)
N
i=1 such that maxl∈LBl(c

∗
1,l−

c∗2,l,xl,i) > 0, and denote the indexes of removed constraints by {i1, . . . , ik},
leading eventually to the following linear program,

min
θ
θ +

M∑
l=1

wl

∫
Ini(l)

B(c∗1,l − c∗2,l,x)dx

s.t. for each i = 1, . . . , N \ {i1, . . . , ik} : max
l∈L

Bl(c
∗
1,l − c∗2,l,xl,i) ≤ θ,

for each l ∈ L : 1).ψl[c
∗
1,l, c

∗
2,l], 2).0 ≤ θ ≤ Uθ, c∗i,l ≤ Uc, i = 1, 2.

(17)

Let θ∗∗ be an optimal solution to the linear program (17). Obviously, θ∗∗ = 0.

Remark 2. Although the removed sample (x1,j , . . . , xM,j) satisfies maxi∈LBl(c
∗
1,i−

c∗2,i,xl,j) > 0, where j ∈ {i1, . . . , ik}, it does not indicate that the hybrid system
H starting from (l,xl,j) will enter Xu, since the existence of barrier certificates
satisfying (4) is just a sufficient condition for justifying the safety of the system.

The constraint removal algorithm A for obtaining (17) can be chosen as

A(y1, . . . ,yN ) = {i1, . . . , ik}, where
(

maxl∈LBl(c
∗
1,l−c∗2,l,xl,ij )

)k
j=1

are the first

k largest values in
(

maxl∈LBl(c
∗
1,l − c∗2,l,xl,i)

)N
i=1

. Let z = (y1, . . . ,yN ). Ac-

cording to (6), PrN ({z ∈ IniN |θ∗∗(z) violates the k removed constraints}) = 1,
satisfying Assumption 2. This is formally stated in Lemma 1. Obviously, θ∗∗(z) =
maxl∈L maxi∈{1,...,N}\{i1,...,ik}Bl(c

∗
1,i − c∗2,i,xl,i). Herein, we shall write the op-

timal solutions to (17) as θ∗∗(z) to emphasize its stochastic nature.

Lemma 1. Let A(y1, . . . ,yN ) = {i1, . . . , ik} in (17) and
(

maxl∈LBl(c
∗
1,l(z)−

c∗2,l(z),xl,ij )
)k
j=1

be the first k largest values in the family
(

maxl∈LBl(c
∗
1,l(z)−

c∗2,l(z),xl,i)
)N
i=1

. Then PrN (S) = 1, where

S =
{
z ∈ IniN | θ∗∗(z) violates the k removed constraints

}
and z = (y1, . . . ,yN ), yi = (x1,i, . . . ,xM,i) with xl,i ∈ Ini(l) for l ∈ L and
i ∈ {1, . . . , N}.
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Proof. Let A =
{
z ∈ IniN |θ∗∗(z) does not violate the k removed constraints

}
.

LetM = {1, . . . , N}, z0 = (y1,0, . . . ,yN,0) ∈ A with yi,0 = (x1,i,0, . . . ,xM,i,0)
and xl,i,0 ∈ Ini(l) for l ∈ L and i ∈M, and M′ = {i1, . . . , ik}. Consequently,

max
i∈M\M′

max
l∈L

Bl(c
∗
1,l(z0)−c∗2,l(z0),xl,i,0) = min

j∈M′
max
l∈L

Bl(c
∗
1,l(z0)−c∗2,l(z0),xl,j,0).

Let B =

z ∈ IniN

∣∣∣∣∣∣
max

i∈M\M′
max
l∈L

Bl(c
∗
1,l(z)− c∗2,l(z),xl,i)

= min
j∈M′

max
l∈L

Bl(c
∗
1,l(z)− c∗2,l(z),xl,j)

 . Obviously,

A = B. Also, since Prl
(
{x ∈ Ini(l) | Bl(c∗1,l − c∗2,l,x) = r}

)
= 0 for r ∈ R

according to (6), we have that Pr
(
{y ∈ Ini | maxl∈LBl(c

∗
1,l−c∗2,l,xl) = r}

)
= 0

for r ∈ R. Therefore, PrN (B)=0 and consequently PrN (A) = 0. ut

Therefore, according to Theorem 1, if ε satisfies
∑k
i=0

(
N
i

)
εi(1 − ε)N−i ≤ β,

(Bl(c
∗
1,l − c∗2,l,x))l∈L is PACBC(ε, β).

Theorem 5. If ε satisfies
∑k
i=0

(
N
i

)
εi(1−ε)N−i ≤ β, the system H is PAS(ε, β).

Proof. We reformulate (16) equivalently as the following linear program over θ,

min
θ
θ +

M∑
l=1

wl

∫
Ini(l)

B(c∗1,l − c∗2,l,x)dx

s.t. for each i = 1, . . . , N : max
l∈L

Bl(c
∗
1,l − c∗2,l,yi) ≤ θ,

for each l ∈ L : 1).ψl[c
∗
1,l, c

∗
2,l], 2).0 ≤ θ ≤ Uθ, c∗i,l ≤ Uc, i = 1, 2,

(18)

where Bl(c
∗
1,l − c∗2,l,yi) = Bl(c

∗
1,l − c∗2,l,xl,i) and yi = (x1,i, . . . ,xM,i) with

xl,i ∈ Ini(l) and l ∈ L. The number of variables in (18) is 1.
Optimal solutions to (18) are optimal solutions to (17), and vice versa. Ob-

viously, (18) is feasible and has unique solution. Also, according to Lemma 1,
Assumption 2 holds. Thus, according to Definition 2 and Theorem 1, (Bl(c

∗
1,l −

c∗2,l,x))l∈L is PACBC(ε, β). Thus, the system H is PAS(ε, β) from Theorem 4. ut
If k > 0, ε satisfying Theorem 5 can be explicitly relaxed as the following

constraint according to inequation (8) in [5]:

ε ≥ min{1, 1

N
[k + ln

1

β
+

√
ln2 1

β
+ 2k ln

1

β
]}. (19)

If k = 0, ε satisfying Theorem 5 can be explicitly relaxed as the following con-
straint according to inequation (4) in [6]:

ε ≥ 1− β 1
N . (20)

Remark 3. One may compute the probability of continuous states leading to the
satisfiability of safety properties via calculating

∫
C
dPr, where C = {x ∈ Ini(1) |

B1(c∗1,l − c∗2,l,x) ≤ 0} × . . .× {x ∈ Ini(M) | BM (c∗1,l − c∗2,l,x) ≤ 0}. Although

there are methods, e.g. [16], to compute
∫
C
dPr, we have to point out that this

computation is nontrivial generally, especially for high-dimensional systems.
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4 Experiments

In this section we evaluate our method on some examples. Parameters that deter-
mine the performance of our method are presented in Table 1. All computations
were performed on MATLAB installed on an i7-7500U 2.70GHz CPU with 32G
RAM running Windows 10. In our following computations, we adopt uniform
grid spacings when partitioning continuous state spaces.

Dimension Parameter Time

Benchmarks dimv dimp M ε β N k m ζ σ γ w U T

Ex.3 2 2 1 0.05 10−12 104 180 9 10−3 – 1 1 10 19.10

Ex.4 2 0 2 0.47 10−12 104 3559 25 10−3 1 1 1
2

10 140.73

Ex.4 2 0 2 0.02 10−12 104 9 25 10−3 1 1 1
2

10 39.79

Ex.4 2 0 2 0.008 10−12 104 0 25 10−3 1 1 1
2

10 36.65

Ex.5 101 1 1 0.05 10−12 104 0 203 10−3 – 1 1 10 148.25

Table 1. dimv : dimension of the state space; dimp : dimension of the perturbation
space; k: number of removed samples; ε : error level; β : confidence level; N : number
of extracted samples; m : number of variables in (15); ζ: ζls in (7)∼(13); σ : σl′,ls in
(7)∼(13); γ : γls in (7)∼(13); w : weights wl in (15); U : upper bounds Uc and Uθ in
(15); T : computation times (seconds)

Example 1. Consider a pendulum described by differential equations

ẋ = y, ẏ = −d0 sin(x)− d1y,

where Inv(1) = [−10, 10]×[−10, 10], Ini(1) = [−10, 5]×[8, 10], Uns(1) = [9, 10]×
[7, 8] and D(1) = {(d0, d1) | d0 ∈ [0.9, 1.1], d1 ∈ [0.9, 1.1]}.

The PAC barrier certificate template is c0 + c1x+ c2y + c3x
2 + c4xy + c5y

2.
We first try to find a barrier certificate to verify whether this system is safe.
The sets Inv(1), Uns(1) and Ini(1) are partitioned into 104, 1 and 104 inter-
val boxes, respectively. The system of linear constraints constructed by using
linear interval inequalities(·, ·) to encode the constraints in Theorem 3 is
infeasible and consequently we have no knowledge of the safety of this system.

However, if we partition Inv(1) and Uns(1) into 400 and 1 interval boxes re-
spectively, and then sample 104 states from Ini(1), we obtain a PAC barrier cer-
tificate B(x, y). {(x, y) ∈ Ini(1) | B(x, y) ≤ 0} is illustrated in Fig. 1. The num-
ber of removed samples is 180. Thus, the system is PAS(0.021, 10−12). Note that
the Chernoff-Hoeffding Bound indicates that the system is PAS(0.052, 10−12).

This example also demonstrates that our approach can reduce the computa-
tional burden in safety verification of systems, albeit at the price of the computed
barrier certificate being only probably approximately correct.

Example 2. We consider a hybrid model of a two-tank system, taken from [8].
The hybrid model has a continuous component of the state-space of dimension
n = 2. It consists of 2 locations. The flow for each location is described by

f1

(
x1
x2

)
=

(
1−√x1√
x1 −

√
x2

)
,f2

(
x1
x2

)
=

(
1−
√
x1 − x2 + 1√

x1 − x2 + 1−√x2

)
.
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Fig. 1. An illustration of probably approximate safety verification for Example 1.
Green, red and gray regions denote Ini(1), Uns(1) and {(x, y) ∈ Inv(1) | B(x, y) ≤ 0},
respectively. Blue curves denote vector fields when (d0, d1) = (1, 1).

The other parts of the hybrid automaton are:

1. Initial conditions: Ini(1) = [5.25, 5.75]× [0, 0.5] and Ini(2) = [4, 6]× [1, 1]
2. Unsafe regions: Uns(1) = [4, 4.5]× [0, 0.5] and Uns(2) = ∅
3. Invariants: Inv(1) = [4, 6]× [0, 1] and Inv(2) = [4, 6]× [1, 2]

4. Guards and resets: (a). G1,2 = [4, 6] × [0.99, 1] and R1,2

(
x1
x2

)
=

(
x1
1

)
(b).

G2,1 = ∅ and R2,1

(
x1
x2

)
=

(
x1
x2

)
.

The PAC barrier certificate templates are polynomials of this form c0 +c1x+
c2y+ c3x

2 + c4xy+ c5y
2. The sets Inv(1), Inv(2), G1,2 are partitioned into 100, 1

and 1 interval boxes, respectively.
1. When no partition operator is implemented on Uns(1), the number k of re-

moved samples is 3559. According to (19), the system is PAS(0.359, 10−12). Note
that the Chernoff-Hoeffding Bound indicates that the system is PAS(0.394, 10−12).

2. When the unsafe set Uns(1) is partitioned into 25 interval boxes, the num-
ber k of removed samples is 9. According to (19), the system is PAS(0.004, 10−12).
The Chernoff-Hoeffding Bound indicates that the system is PAS(0.039, 10−12).

3. When the unsafe set Uns(1) is partitioned into 100 interval boxes, the num-
ber k of removed samples is 0. According to (20), the system is PAS(0.003, 10−12).
The Chernoff-Hoeffding Bound indicates that the system is PAS(0.038, 10−12).
For this case we use the satisfiability checker iSAT3 [12] to obtain that the com-
puted PAC barrier certificate actually is a true barrier certificate satisfying (4),
indicating that this system is safe.

The zero sublevel sets of the computed PACBC(ε, β) for these three cases are
illustrated in Fig. 2. From this example we observe that the size of linear program
(15) depends on these two probability measures ε and β.

Example 3. To demonstrate applicability of our approach to high-dimensional
systems, we consider a scalable non-polynomial example adapted from [25],
which we instantiate with a rather high continuous dimension of 101.

ẋ1 = d0 +
1

100
(
∑

i∈{1,...,l}

xi+1 + xi+2),

ẋ2 = x3, ẋ3 = −10 sinx2 − x2,
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Fig. 2. An illustration of probably approximate safety verification for Example 2 with
Case 1∼3 (from left to right). Above: Gray region, Green region an Red region denote
{(x, y) ∈ Inv(1) | B1(x, y) ≤ 0}, Ini(1) and Uns(1), respectively. Below: Gray region
and Green region denote {(x, y) ∈ Inv(2) | B2(x, y) ≤ 0} and Ini(2), respectively.

· · ·

ẋ2l = x2l+1, ẋ2l+1 = −10 sinx2l − x2,

where l = 50, D(1) = {d0 | d0 ∈ [0.9, 1.1]}, Inv(1) = [−0.3, 0.3]2l+1, Ini(1) =
[−0.30, 0.00]× [−0.2, 0.30]2l and Uns(1) = [−0.20,−0.15]× [−0.30,−0.25]2l.

The PAC barrier certificate template is chosen as c0 +
∑101
i=1 cixi. When no

partition operator is implemented on the invariant set Inv(1), unsafe set Uns(1)
and initial set Ini(1), the system of linear constraints constructed by using
linear interval inequalities(·, ·) to encode the constraints in Theorem 3 is
infeasible. However, our method verifies that the system is PAS(0.003, 10−12)
when no partition operator is implemented on Inv(1) and Uns(1). Note that the
Chernoff-Hoeffding Bound indicates that the system is PAS(0.038, 10−12).

The dimensionality of this example demonstrates that our approach has great
potential to open up a promising prospect for formal verification of industrial-
scale (hybrid) systems by selecting appropriate ε, β and barrier certificate tem-
plates. In order to further enhance the scalability of our approach, we will encode
constraint (5) using the scenario approach in our future work.

5 Conclusion

We have successfully leveraged the idea of scenario optimization to conduct
safety verification of hybrid systems over the infinite time horizon in the frame-
work of PAC learning theory. Based on scenario approaches and linear interval
inequalities, a linear programming based method was proposed to compute PAC
barrier functions and thus conduct probably approximate safety verification of
hybrid systems in the sense that with at least 1− β confidence, the probability
that the system is safe is larger than 1 − ε. We have demonstrated the perfor-
mance and merits of our approach on some benchmark examples.
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