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Abstract. Compositionality plays an important role in designing reac-
tive systems as it allows one to compose/decompose a complex system
from/to several simpler components. Generally speaking, it is hard to de-
sign a complex system in a logical frame in a compositional way because
it is difficult to find a connection between the structure of a system to
be developed and that of its specification given by the logic. In this pa-
per, we investigate the compositionality of the Fixpoint Logic with Chop
(FLC for short). To this end, we extend FLC with the nondeterministic
choice “+” (FLC+ for the extension) and then establish a correspondence
between the logic and the basic process algebra with deadlock and termi-
nation (abbreviated BPAε

δ). Subsequently, we show that the choice “+”
is definable in FLC.
As an application of the compositionality of FLC, an algorithm is given
to construct characteristic formulae of BPAε

δ up to strong bisimulation
directly from the syntax of processes in a compositional manner.

Key words: FLC, compositionality, verification, bisimulation, characteristic for-
mula, basic process algebra

1 Introduction

As argued in [2], compositionality is very important in developing reactive sys-
tems for at least the following reasons. Firstly, it allows modular design and
verification of complex systems so that the complexity is tractable. Secondly,
during re-designing a verified system only the verification concerning the modi-
fied parts should be re-done rather than verifying the whole system from scratch.
Thirdly, compositionality makes it possible to partially specify a large system.
When designing a system or synthesizing a process, it is possible to have un-
defined parts of a process and still to be able to reason about it. For example,
this technique can be applied for revealing inconsistencies in the specification or
proving that with the choices already taken in the design no component supplied
for the missing parts will ever be able to make the overall system satisfy the orig-
inal specification. Finally, it can make possible the reuse of verified components;
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their previous verification can be used to show that they meet the requirements
on the components of a large system.

The μ-calculus [15] is a popular modal logic as most of modal and temporal
logics can be defined in it. However, [8] proved that only “regular” properties can
be defined in the μ-calculus, meanwhile [14] proved that all bisimulation invari-
ant properties of Monadic Second Order Logic can be defined in the modal μ-
calculus. In order to specify non-regular properties, [21] extended the μ-calculus
with the chop operator (denoted by “;”). It seems that the chop operator “;” was
first introduced in process logics [12, 6], then adopted as the unique primitive
modality in interval-based logics, see [11, 28, 7], for example. In an interval-based
logic, it is easy to interpret a formula like φ;ψ by partitioning the given interval
into two parts such that φ is satisfied in the first segment and ψ is held in the
second one. But it is hard to interpret the operator in modal logics. Therefore,
in [21] the meaning of FLC is interpreted in second-order. [21] proved that FLC
is strictly more expressive than the μ-calculus as non-regular properties can be
expressed in FLC by showing that characteristic formulae of context-free pro-
cesses can be defined in FLC. Since then, FLC has attracted more attentions in
computer science because of its expressiveness. For example, [16, 17] investigated
the issues of FLC model checking on finite-state processes.

Let us assume a setting in which the behavior of systems are modeled by
some process algebra and behavioral properties of systems are specified by some
specification logic. In order to exploit the compositionality inherent in the process
algebra it is desirable to be able to mimic the process algebra operators in the
logic (see [10]). That is, for any program constructor cons there should be an
operator cons of the logic such that

(a) Pi |= φi for i = 1, · · · , n implies cons(P1, · · · , Pn) |= cons(φ1, · · · , φn);
(b) cons(P1, · · · , Pn) |= cons(φ1, · · · , φn) is the strongest assertion which can

be deduced from Pi |= φi for i = 1, · · · , n.

It seems that FLC does not meet the above conditions. For example, the +
operator of process algebra has no counterpart in FLC and in addition it is still
an open problem if it is possible to derive a property from φ and ψ that holds
in P +Q in FLC, where P |= φ and Q |= ψ.

To achieve the goal, we first introduce the non-deterministic choice “+” that
was proposed in [10, 18] as a primitive and denote the extension of FLC by
FLC+ . Intuitively, P |= φ + ψ means that there exist P1 and P2 such that
P ∼ P1 + P2, P1 |= φ and P2 |= ψ. Thus, it is easy to see that we can use
φ+ψ as a specification for the combined system P +Q. Then we show that the
constructors of the basic process algebra with termination and deadlock (BPAε

δ

for short) correspond to the connectives of FLC+ . Subsequently, we prove that
the choice “+” can be defined essentially by conjunction and disjunction in FLC.

As a result, we can use FLC to specify systems modeled by BPAε
δ in an

algebraical way, typically, this may allow much more concise descriptions of
concurrent systems and more easy composing/decomposing the verification of
a large systems from/to some similar and simpler ones of the subsystems. As



an example, we now show that using “+” as an auxiliary operator could make
senses in practice:

i) It means one more step to the goal to exploit the structure of process terms
for model checking.

ii) It enables a precise and compact specification of certain nondeterministic
systems.

iii) It is very easy to modify the specification of a system when additional
alternatives for the behavior of the system should be admitted.

iv) It enhances the possibility of modularity in model checking which is useful
in redesigning of systems.

i) depends on if it is possible to work out a syntax-directed model checker for
FLC on finite-state processes. In fact, we believe that it may be done exploiting
the connection between FLC+ and BPAε

δ that is presented in this paper. To
explain the issues ii), iii) and iv), we present the following example: Consider a
car factory that wants to establish an assembly line shown in the Fig. 1.,

mount_windscreenadjust
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control

mount_windscreen

adjust control

put_car
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Fig. 1. The Process P

which we denote by the process P , for one production step. If there is a car
available for P then P will either get the car, adjust the motor, mount the
windscreen, control the car, and then put the car on the conveyer belt or P will
get the car, mount the windscreen, adjust the motor, control the car, and then
put it back. Afterwards P may start again. The first option can be specified by

Spec1 =̂ [get car]; 〈adjust〉; 〈mount windscreen〉; 〈control〉; 〈put car〉
∧〈get car〉; true,

whereas the second is described by

Spec2 =̂ [get car]; 〈mount windscreen〉; 〈adjust〉; 〈control〉; 〈put car〉
∧〈get car〉; true.

We are now looking for a specification that admits only such systems that of-
fer both alternatives and that can be easily constructed from Spec1 and Spec2.
Obviously, Spec1 ∧Spec2 is not suitable whereas Spec1 ∨Spec2 allows for imple-
mentations that exhibit only one of the behavior. Spec1 + Spec2 describes the



behavior we have in mind and a system that offers this behavior repeatedly is
described by Spec =̂ νX.(Spec1 + Spec2);X.

It is easy to show that rec x.(P1 + P2);x |= Spec, where

P1 =̂ get car; adjust;mount windscreen; control; put car
P2 =̂ get car;mount windscreen; adjust; control; put car.

Let us now assume that the system specification should be modified to allow
for a third alternative behavior Spec3, then this specification may be simply
“added” to form

Spec′ =̂ νX.(Spec1 + Spec2 + Spec3);X.

If we establish P3 |= Spec3 then we obtain immediately that

rec x.(P1 + P2 + P3);x |= Spec′.

In addition, if we have to modify Spec1 to Spec′1 such that P ′
1 |= Spec′1, and

obtain

rec x.(P ′
1 + P2 + P3);x |= νX.(Spec′1 + Spec2 + Spec3);X.

Some preliminary results of this paper have been reported in [27].
The remainder of this paper is structured as follows: Section 2 briefly reviews

BPAε
δ. In Section 3, FLC+ is established and some preliminary results are given.

Section 4 establishes a connection between the constructors of BPAε
δ and the

connectives of FLC+ . Section 5 is devoted to showing that the choice “+” can
be defined in FLC. In Section 6, we sketch how to construct a formula ΨP for
each process P ∈ BPAε

δ according to its syntax and then show the formula
obtained by eliminating “+” in ΨP is the characteristic formula of P . Finally, a
brief conclusion is provided in Section 7.

2 Basic Process Algebra with Termination and Deadlock

Let Act = {a, b, c, · · · } be a set of (atomic) actions, and X = {x, y, z, ...} a
countable set of process variables. Sequential process terms, written Ps, are those
which do not involve parallelism and communication, which are generated by the
following grammar:

E ::= δ | ε | x | a | E1;E2 | E1 + E2 | rec x.E

Intuitively, the elements of Ps represent programs: δ stands for a deadlocked
process that cannot execute any action and keeps idle for ever; ε denotes a
terminated process that cannot proceed, but terminates at once; the other con-
structors can be understood as the usual ones.

In order to define an operational semantics for expressions of the form E1;E2,
we need to define a special predicate T over Ps to indicate if a given process
term is terminated or not. Formally, T ⊂ Ps is the least set which contains ε



and is closed under the following rules: (i) if T (E1) and T (E2) then T (E1;E2)
and T (E1 + E2); (ii) if T (E) then T (rec x.E).

An occurrence of a variable x ∈ X is called free in a term E iff it does not
occur within a sub-term of the form rec x.E′, otherwise called bound. We will use
fn(E) to stand for all variables which have some free occurrence in E, and bn(E)
for all variables which have some bound occurrence in E. A variable x ∈ X is
called guarded within a term E iff every occurrence of x is within a sub-term F
where F is prefixed with a subexpression F ∗ via “;” such that ¬T (F ∗). A term E
is called guarded iff all variables occurring in it are guarded. The set of all closed
and guarded terms of Ps essentially corresponds to the basic process algebra
(BPA) with the terminated process ε and the deadlocked process δ, denoted by
BPAε

δ, ranged over by P,Q, · · · , where BPA is a fragment of ACP [5].
An operational semantics of Ps is given in the standard Plotkin’s style, yield-

ing a transition system (Ps,→) with →⊆ Ps×Act×Ps that is the least relation
derived from the rules in the Fig.2.

Act
a

a→ ε
Rec E[rec x.E/x] a→ E′

rec x.E
a→ E′ Seq-1 E1

a→ E′
1

E1;E2
a→ E′

1;E2

Seq-2 E2
a→ E′

2 ∧ T (E1)
E1;E2

a→ E′
2

Nd E1
a→ E′

1

E1 + E2
a→ E′

1, E2 + E1
a→ E′

1

Fig.2. The Operational Semantics of Ps

Definition 1. A binary relation S ⊆ BPAε
δ ×BPAε

δ is called a strong bisimula-
tion if (P,Q) ∈ S implies:
– T (P ) iff T (Q);
– whenever P a→ P ′ then, for some Q′, Q a→ Q′ and (P ′, Q′) ∈ S for any
a ∈ Act;

– whenever Q a→ Q′ then, for some P ′, P a→ P ′ and (P ′, Q′) ∈ S for any
a ∈ Act.

Given two processes P,Q ∈ BPAε
δ, we say that P andQ are strongly bisimilar,

written P ∼ Q, if (P,Q) ∈ S for some strong bisimulation S. We can extend the
definition of ∼ over Ps as: let E1, E2 ∈ Ps and fn(E1)∪ fn(E2) ⊆ {x1, · · · , xn},
if E1{P1/x1, · · · , Pn/xn} ∼ E2{P1/x1, · · · , Pn/xn} for any P1, · · · , Pn ∈ BPAε

δ,
then E1 ∼ E2.
Convention: From now on, we use A op B to stand for {E1 op E2 | E1 ∈
A and E2 ∈ B}, A op E for A op {E}, where E ∈ Ps,A ⊆ Ps,B ⊆ Ps, and
op ∈ {+, ; }.

3 FLC with the Nondeterministic Operator “+” (FLC+ )

FLC, due to Markus Müller-Olm [21], is an extension of the modal μ-calculus
that can express non-regular properties, and is therefore strictly more powerful
than the μ-calculus. In order to study the compositionality of FLC, we extend



FLC with the nondeterministic operator “+”, which is proposed as a primitive
operator in [10, 18].

Let X,Y,Z, · · · range over an infinite set Var of variables, tt and ff be propo-
sitional constants as usual, and

√
another special propositional constant that is

used to indicate if a process is terminated. Formulae of FLC+ are generated by
the following grammar:

φ ::= tt | ff | √ | τ | X | [a] | 〈a〉 | φ1∧φ2 | φ1∨φ2 | φ1;φ2 | φ1+φ2 | μX.φ | νX.φ

where X ∈ Var and a ∈ Act. The fragment of FLC+ without “+” is called FLC
[21]. In what follows, we use a© to stand for 〈a〉 or [a], p for tt , ff or

√
, and σ

for ν or μ.
Some notations can be defined as in the modal μ-calculus, for example free

and bound occurrences of variables, closed and open formulae etc. The two fix-
point operators μX and νX are treated as quantifiers. We will use fn(φ) to stand
for all variables which have some free occurrence in φ and bn(φ) for all variables
that have some bound occurrence in φ.

Definition 2. In the following, we define what it means for a formula to be a
guard:
1. a© and p are guards;
2. if φ and ψ are guards, so are φ ∧ ψ, φ ∨ ψ and φ+ ψ;
3. if φ is a guard, so are φ;ψ and σX.φ, where ψ is any formula of FLC+ .

X is said to be guarded in φ if each occurrence of X is within a subformula
ψ that is a guard. If all variables in fn(φ) ∪ bn(φ) are guarded, then φ is called
guarded. A formula φ is said to be strictly guarded if φ is guarded and for
any X ∈ fn(φ) ∪ bn(φ), there does not exist a subformula of the forms X + ψ,
(X � χ) + ψ, (X;ϕ) + χ or (X;ϕ� χ) + ψ, where � ∈ {∨,∧}.

Intuitively, a variable X is said to be guarded means that each occurrence of
X is within the scope of a modality a© or a propositional letter p.

Example 1. Formulae 〈a〉;X;Y, νX.(〈a〉∨〈b〉);X; (Y +Z), ff ;X are guarded, but
X, 〈a〉 ∧X,μX.(X + Y ) ∨ [a], μX.(〈a〉;X ∨ 〈b〉);μY.(Y + 〈a〉) are not. 〈a〉;X;Y
and ff ;X are strictly guarded, however, νX.(〈a〉 ∨ 〈b〉);X; (Y + Z) is not.

We will use LFLC+ to denote all formulae of FLC+ that are closed and
guarded, and LFLC for the fragment of LFLC+ without +. In the sequel, we
are only interested in closed and guarded formulae.

As in FLC, a formula of FLC+ is interpreted as a predicate transformer
which is a mapping f : 2BPAε

δ → 2BPAε
δ . We use MPTT to represent all these

predicate transformers over BPAε
δ.

The meaning of variables is given by a valuation ρ: Var → (2BPAε
δ → 2BPAε

δ)
that assigns variables to functions from sets to sets. ρ[X � f ] agrees with ρ
except for associating f with X.

Definition 3. The meaning of a formula φ, under a valuation ρ, denoted by
[[φ]]ρ, is inductively defined as follows:



[[tt]]ρ(A) = BPAε
δ

[[ff ]]ρ(A) = ∅
[[
√

]]ρ(A) = {P ∈ BPAε
δ | T (P )}

[[τ ]]ρ(A) = A
[[X]]ρ(A) = ρ(X)(A)

[[[a]]]ρ(A) = {P ∈ BPAε
δ | ¬T (P ) ∧ ∀P ′ ∈ BPAε

δ.P
a→ P ′ ⇒ P ′ ∈ A}

[[〈a〉]]ρ(A) = {P ∈ BPAε
δ | ∃P ′ ∈ BPAε

δ.P
a→ P ′ ∧ P ′ ∈ A}

[[φ1 ∧ φ2]]ρ(A) = [[φ1]]ρ(A) ∩ [[φ2]]ρ(A)
[[φ1 ∨ φ2]]ρ(A) = [[φ1]]ρ(A) ∪ [[φ2]]ρ(A)

[[φ1;φ2]]ρ = [[φ1]]ρ · [[φ2]]ρ
[[φ1 + φ2]]ρ(A) = {P ∈ BPAε

δ | P ∼ P1 + P2 ∧ P1 ∈ [[φ1]]ρ(A) ∧ P2 ∈ [[φ2]]ρ(A)}
[[μX.φ]]ρ = �{f ∈ MPTT | [[φ]]ρ[X�f ] ⊆ f}
[[νX.φ]]ρ = �{f ∈ MPTT | [[φ]]ρ[X�f ] ⊇ f}

where A ⊆ BPAε
δ, and · stands for the composition operator over functions.

Note that because ε and δ have different behaviour in the presence of ;, they
should be distinguished in FLC+ . To this end, we interpret [a] differently from
in [21]. According to our interpretation, P |= [a] only if ¬T (P ), whereas in [21]
it is always valid that P |= [a] for any P ∈ Ps. Thus, it is easy to show that
ε �|=

∧
a∈Act[a]; ff , while

∧
a∈Act[a]; ff is the characteristic formula of δ.

As the meaning of a closed formula φ is independent of any environment,
we sometimes write [[φ]] for [[φ]]ρ, where ρ is an arbitrary environment. We also
abuse φ(A) to stand for [[φ]]ρ(A) if ρ is clear from the context.

The set of processes satisfying a given closed formula φ is φ(BPAε
δ). A process

P is said to satisfy φ iff P ∈ [[φ]]ρ(BPAε
δ) under some valuation ρ, denoted

by P |=ρ φ. If ρ is clear from the context, we directly write P |= φ. φ ⇒ ψ
means that [[φ]]ρ(A) ⊆ [[ψ]]ρ(A) for any A ⊆ BPAε

δ and any ρ. φ ⇔ ψ means
(φ⇒ ψ) ∧ (ψ ⇒ φ). The other notations can be defined in the standard way.

Given a formula φ, the set of the atomic sub-formulae at the end of φ, denoted
by ESub(φ), is: {φ} if φ = p, τ,X or a©; ESub(φ1) ∪ ESub(φ2) if φ = φ1 op φ2

where op ∈ {∧,∨,+}; if φ = φ1;φ2 then if τ �∈ ESub(φ1) then ESub(φ2) else
(ESub(φ2)\{τ})∪ESub(φ1); ESub(φ′) if φ = σX.φ′. It is said that

√
only occurs

at the end of φ if
√

can only be in ESub(φ) as a sub-formula of φ.
As [16] proved that FLC has the tree model property, we can also show that

FLC+ has such property as well, i.e.,

Theorem 1. Given P,Q ∈ BPAε
δ, P ∼ Q iff for any φ ∈ LFLC+ , P |= φ iff

Q |= φ.

4 A Connection Between BPAε
δ and FLC+

In this section, we discuss how to relate the primitives of BPAε
δ to the connectives

of FLC+ .



4.1 Nondeterminism

From Definition 3, it is clear that “+” of BPAε
δ corresponds to “+” of FLC+ .

The connection can be expressed as follows:

Proposition 1. For any P,Q ∈ BPAε
δ, if P |= φ and Q |= ψ then P+Q |= φ+ψ.

4.2 Sequential Composition

In this subsection, we show that under some conditions, the sequential compo-
sition “;” of BPAε

δ can be related to the chop “;” of FLC+ .
From the definition of the semantics of BPAε

δ, it is clear that as far as the
execution of the process P ;Q is concerned, Q starts to be executed only if P
finishes the execution. A similar requirement on properties concerning P must be
considered in order to derive a combined property for P ;Q from the properties
for P and Q. For example, let P = a; b, Q = c; d, and it is therefore clear that
P |= 〈a〉 and Q |= 〈c〉, however P ;Q �|= 〈a〉; 〈c〉. So, we require that the property
about P must specify full executions of P , that is, P |= φ;

√
.

On the other hand, it is easy to see that ε is a neutral element of “;” in BPAε
δ.

However,
√

, the counterpart of ε in FLC, is not the neutral element of the chop
“;”. Thus, we have to replace

√
occurring in properties of P with τ in order to

give a connection between “;” of BPAε
δ and the chop “;” of FLC+ . E.g., let P =

a; ε andQ = b; δ, φ = 〈a〉;√, and ψ = 〈b〉. It’s obvious that P |= φ;
√

andQ |= ψ,
but P ;Q �|= φ;ψ. Furthermore, it is required that

√
can only appear at the end

of properties of P , because from Definition 3
√

as a subformula of φ makes all
subformulae following it with ; no sense during calculating the meaning of φ, but
they will play a nontrivial role in the resulting formula. E.g. ε |= √

; [a]; 〈b〉 and
a; c |= 〈a〉; 〈c〉, but ε; (a; c) �|= (τ ; [a]; 〈b〉); (〈a〉; 〈c〉). In fact, such a requirement
can be always satisfied because all formulae can be transformed to such kind of
the form equivalently.

In summary, the following theorem indicates the connection between the
sequential composition “;” of BPAε

δ and the chop “;” of FLC+ .

Theorem 2. For any φ, ψ ∈ LFLC+ and any P,Q ∈ BPAε
δ, if

√
only occurs at

the end of φ, P |= φ;
√

and Q |= ψ then P ;Q |= φ{τ/√};ψ.

Remark 1. Generally speaking, the converse of Theorem 2 is not valid.

4.3 Recursion

In this subsection, we sketch how to relate rec x to νX. Thus, in the rest of this
sub-section all fixed point operators occurring in formulae will be referred to ν
if not otherwise stated. To this end, we first employ a relation called syntactical
confirmation between processes and formulae, with the type Ps × FLC+ �→
{tt, ff}, denoted by |=sc.



Definition 4. Given a formula φ, we associate a map from 2P
s

to 2P
s

with it,
denoted by φ̂, constructed by the following rules:

√̂
(E) =̂ {E | E ∈ Ps ∧ T (E)}

t̂t(E) =̂ Ps

f̂f (E) =̂ ∅
τ̂(E) =̂ E
X̂(E) =̂ {x;E | E ∈ E}
〈̂a〉(E) =̂ {E | ∃E′ ∈ E .E a→ E′}
[̂a](E) =̂ {E | ¬T (E) ∧ E is guarded ∧ ∀E′.E a→ E′ ⇒ E′ ∈ E}

̂φ1 ∧ φ2(E) =̂ φ̂1(E) ∩ φ̂2(E)
̂φ1 ∨ φ2(E) =̂ φ̂1(E) ∪ φ̂2(E)
̂φ1 + φ2(E) =̂ {E | ∃E1, E2.E = E1 + E2 ∧ E1 ∈ φ̂1(E) ∧ E2 ∈ φ̂2(E)}
̂φ1;φ2(E) =̂ φ̂1 · φ̂2(E)

̂σX.φ(E) =̂ {(rec x.E1);E2 | E1 ∈ φ̂({ε}) ∧ E2 ∈ E}

where E ⊆ Ps.
|=sc (E, φ) = tt iff E ∈ φ̂({ε}); otherwise, |=sc (E, φ) = ff. In what follows,

we denote |=sc (E, φ) = tt by E |=sc φ and |=sc (E, φ) = ff by E �|=sc φ .

Informally, P |=sc φ means that P and φ have a similar syntax, e.g.,

Example 2. Let E1=̂(a;x;x) + d, E2=̂x; (b+ c); y, E3=̂a; b; c, φ=̂〈a〉;X;X,
ψ=̂X; 〈b〉;Y and ϕ=̂[a]; 〈b〉; 〈c〉. We have E1 |=sc φ, E2 |=sc ψ, E3 |=sc ϕ.

The following theorem states that |=sc itself is compositional as well.

Theorem 3. Let
√

only appear at the end of φ1, φ2 and φ. Then,
i) if E1 |=sc φ1 and E2 |=sc φ2 then E1 +E2 |=sc φ1 + φ2;
ii) if E1 |=sc φ1 and E2 |=sc φ2 then E1;E2 |=sc φ1{τ/

√};φ2;
iii) if E |=sc φ then rec x.E |=sc σX.φ{τ/

√}.

Example 3. In Example 2, according to Theorem 3, we obtain E1+E2 |=sc φ+ψ,
E3; (E1 +E2) |=sc ϕ; (φ+ψ) and rec x. rec y.E3; (E1 +E3) |=sc νX.νY.(ϕ; (φ+
ψ)).

Theorem 4 establishes a connection between |=sc and |=, so that rec x is
related to νX.

Theorem 4. If P ∈ BPAε
δ,

√
only occurs at the end of φ and P |=sc φ, then

P |= φ;
√

.

Theorem 4 provides the possibility to compositionally verify a complex sys-
tem and even this can be done syntactically.



Example 4. For instance, let E1, E2, E3 and φ, ψ, ϕ be as defined in Example 2.
In order to verify rec x. rec y.E3; (E1 +E3) |= νX.νY.(ϕ; (φ+ψ)), we only need
to prove E1 + E2 |=sc φ + ψ and E3; (E1 + E2) |=sc ϕ; (φ + ψ). This proof can
further be reduced to E1 |=sc φ, E2 |=sc ψ and E3 |=sc ϕ. From Example 2, this
is true.

5 Reducing LFLC+ to LFLC

In this section, we will show that as far as closed and guarded formulae are
concerned, the + of FLC+ can be defined essentially by conjunction and dis-
junction, that is, for any φ ∈ LFLC+ , there exists a formula φ′ ∈ LFLC such
that φ⇔ φ′. This can be obtained via the following three steps: firstly, we show
that in some special cases “+” can be defined by conjunction and disjunction
essentially; then we prove that the elimination of “+” in a strictly guarded for-
mula φ of FLC+ can be reduced to one of the above special cases; and finally,
we complete the proof by showing that for any φ ∈ LFLC+ there exists a strictly
guarded formula φ′ ∈ LFLC+ such that φ⇔ φ′.

The following lemma claims that in some special cases, “+” can be defined
essentially by conjunction and disjunction.

Lemma 1. Let n, k ≤ m, {a1, · · · , an} and {c1, · · · , ck} be subsets of {b1, · · · , bm},
where bi �= bj if i �= j. Assume < a1, · · · , an >=< b1, · · · , bn > and < c1, · · · , ck >
= < bl1 , · · · , blk >, where lj ∈ {1, · · · ,m} for j = 1 · · · k. Then

(
n∧

i=1

ni∧
j=1

〈ai〉;φi,j ∧
m∧

i=1

[bi];ψi ∧ q1) + (
k∧

i=1

ki∧
j=1

〈ci〉;ϕi,j ∧
m∧

i=1

[bi];χi ∧ q2)

⇔
n∧

i=1

ni∧
j=1

〈ai〉; (φi,j ∧ ψi) ∧
k∧

i=1

ki∧
j=1

〈ci〉; (ϕi,j ∧ χli) ∧
m∧

i=1

[bi]; (ψi ∨ χi) ∧ q1 ∧ q2

where q1 ⇔ tt or q1 ⇔ τ , and q2 ⇔ tt or q2 ⇔ τ.

Proof (Sketch). According to Definition 3, it is easy to see that + and ; both
are monotonic. On the other hand, it is not hard to prove that 1. if P |= 〈a〉;φ,
then P + Q |= 〈a〉;φ for any Q ∈ BPAε

δ; 2. P |= [a];φ and Q |= [a];ψ, then
P +Q |= [a]; (φ ∨ ψ); 3. ([a];φ ∧ 〈a〉;ψ) ⇒ (〈a〉; (φ ∧ ψ) ∧ [a];φ). Thus, it is not
hard to prove the forward direction.

For the converse direction, we first prove that given a P ∈ BPAε
δ, there exists

a Q ∈ BPAε
δ of the form

∑
a∈Act

∑ia

j=1 a;Qa,j or δ such that P ∼ Q; then by
Theorem 1, P satisfies the formula of the right hand in the lemma iff Q also
meets it; subsequently, we design an algorithm to partition all summands of Q
into two parts Q1 and Q2 such that

∑
Q1 satisfies the first operand of “+”

in the left formula of the lemma,
∑

Q2 meets the second operand. Obviously,∑
Q1 +

∑
Q2 ∼ P . Therefore, the converse direction has been proved. �

By applying the above lemma, induction on the given formula φ, we can show
that if φ is strictly guarded, then there exists φ′ such that φ ⇔ φ′ and no +
occurs in φ′, i.e.



Lemma 2. For any φ of FLC+ , if φ is strictly guarded, then there exists φ′ of
FLC such that φ′ ⇔ φ.

In the below, we will apply some rewriting techniques to prove that for any
closed and guarded formula φ of FLC+ , there exists φ′ that is strictly guarded
such that φ⇔ φ′, namely

Lemma 3. For any φ ∈ LFLC+ , there is φ′ ∈ LFLC+ that is strictly guarded
such that φ⇔ φ′.

Proof (Sketch). In order to prove the lemma, we need to show the following
equations:

μX.φ1[ a©; φ2[(X � φ3) + φ4]] ⇔ μX.φ1[ a©; φ2[μY.(φ1[ a©; φ2[Y ]] � φ3) + φ4]] (1)

νX.φ1[ a©; φ2[(X � φ3) + φ4]] ⇔ νX.φ1[ a©; φ2[νY.(φ1[ a©; φ2[Y ]] � φ3) + φ4]] (2)

μX.φ1[ a©; φ2[(X; φ3 � φ4) + φ5]] ⇔ μX.φ1[ a©; φ2[μY.(φ1[ a©; φ2[Y ]]; φ3 � φ4) + φ5]] (3)

νX.φ1[ a©; φ2[(X; φ3 � φ4) + φ5]] ⇔ νX.φ1[ a©; φ2[νY.(φ1[ a©; φ2[Y ]]; φ3 � φ4) + φ5]] (4)

where � ∈ {∧,∨}, φi[ ] stands for a formula with the hole [ ], the formula at
the left side of each equation is guarded.

We will only prove (3) as an example, the others can be proved similarly.
Since φ1[ a©;φ2[(X;φ3 � φ4) + φ5]] is guarded, by Knaster-Tarski Theorem, it
is clear that μX.φ1[ a©;φ2[(X;φ3 � φ4) + φ5]] is the unique least solution of the
equation

X = φ1[ a©;φ2[(X;φ3 � φ4) + φ5]] (5)

Let Y be a fresh variable and Y = (X;φ3 � φ4) + φ5. It is easy to see the
least solution of (5) is equivalent to the X-component of the least solution of the
following equation system:

X = φ1[ a©;φ2[(X;φ3 � φ4) + φ5]]
Y = (X;φ3 � φ4) + φ5

Meanwhile, exploiting some rewriting techniques, it is easy to transform solving
the least solution of the above equation system to the following one equivalently,

X = φ1[ a©;φ2[(X;φ3 � φ4) + φ5]]
Y = (φ1[ a©;φ2[Y ]];φ3 � φ4) + φ5

It is not hard to obtain the least solution of the above equation system as
(μX.φ1[ a©;φ2[μY.(φ1[ a©;φ2[Y ]];φ3 �φ4)+φ5]], μY.(φ1[ a©;φ2[Y ]];φ3 �φ4)+φ5).
Therefore, (3) follows.

Repeatedly applying (1)–(4), for any given formula φ ∈ LFLC+ , we can
rewrite it to φ′ which is strictly guarded such that φ⇔ φ′. �

Remark 2. In the proof for Lemma 3, we only consider the cases that a variable
is guarded by a modality a©, and ignore the cases that a variable is guarded by a
propositional letter p, because according to Definition 3 it is easy to show that
p;φ⇔ p.



From the above lemmas, the following result is immediate.

Theorem 5. For any φ ∈ LFLC+ , there exists φ′ ∈ LFLC such that φ′ ⇔ φ.

We use the following example to demonstrate how to translate a closed and
guarded formula φ of FLC+ into a formula φ′ of FLC by applying the above
procedure.

Example 5. Let φ = μX.νY.〈a〉; (X +Y );X;Y ; 〈b〉 ∨ 〈c〉. Applying (1), it follows

φ⇔ μX.νY.〈a〉; [μZ.(νV.〈a〉;Z;X;V ; 〈b〉 ∨ 〈c〉) + Y ];X;Y ; 〈b〉 ∨ 〈c〉 =̂ φ′

where φ1[ ]=̂νY.[ ];X;Y ; 〈b〉 ∨ 〈c〉, φ2[ ]=̂[ ], φ3=̂
{
tt if � = ∧
ff o.w. , φ4=̂Y . Further-

more, applying (2), we can get

φ′ ⇔ μX.νY.〈a〉; [μZ.νW.(〈a〉;W ;X;Y ; 〈b〉 ∨ 〈c〉) + (νV.〈a〉;Z;X;V ; 〈b〉 ∨ 〈c〉)];
X;Y ; 〈b〉 ∨ 〈c〉 =̂ φ′′

where φ1[ ] =̂ [ ];X;Y ; 〈b〉 ∨ 〈c〉, φ2[ ] =̂ μZ.[ ], φ3 =̂
{
tt if � = ∧
ff o.w. ,

φ4 =̂ νV.〈a〉;Z;X;V ; 〈b〉 ∨ 〈c〉. Thus, using Lemma 2, we can eliminate “+” in
φ′′ as follows:

φ′′ ⇔ μX.νY.〈a〉; [μZ.νW.

⎛
⎜⎜⎜⎜⎝

(〈a〉;W ;X;Y ; 〈b〉 + 〈c〉)∨
(〈a〉;W ;X;Y ; 〈b〉+
νV.〈a〉;Z;X;V ; 〈b〉)∨
(νV.〈a〉;Z;X;V ; 〈b〉 + 〈c〉)∨
(〈c〉 + 〈c〉)

⎞
⎟⎟⎟⎟⎠];X;Y ; 〈b〉 ∨ 〈c〉

⇔ μX.νY.〈a〉; [μZ.νW.

⎛
⎜⎜⎜⎜⎝

((〈a〉;W ;X;Y ; 〈b〉 ∧ 〈c〉)∨
(〈a〉;W ;X;Y ; 〈b〉∧
νV.〈a〉;Z;X;V ; 〈b〉)∨
(νV.〈a〉;Z;X;V ; 〈b〉 ∧ 〈c〉)∨
〈c〉

⎞
⎟⎟⎟⎟⎠ ;X;Y ; 〈b〉 ∨ 〈c〉

=̂ φ∗

It is easy to see that φ⇔ φ∗ and no + occurs in φ∗. �

In what follows, we will use en(φ) to denote the resulting formula by applying
the above procedure to φ in which + is eliminated.

6 Constructing Characteristic Formulae for Context-free
Processes Compositionally

Given a binary relation R over processes, which may be an equivalence or a
preorder, the characteristic formula for a process P up to R is a formula φP such
that for any process Q, Q |= φP if and only if QRP . [21] presented a method to
derive the characteristic formula for a context-free process up to strong (weak)
bisimulation by solving the equation system induced by the rewrite system of



the process in FLC. In this section, we present an algorithm to construct the
characteristic formula for a process of BPAε

δ up to strong bisimulation directly
from its syntax in a compositional manner based on the above results, in contrast
to the semantics-based method given in [21]. We believe that our approach also
works for weak bisimulation, but it is necessary to re-interpret modalities of
FLC.

It is easy to see that
∧

a∈Act[a]; ff (Φδ for short) is the characteristic formula
for δ, and

√
for ε.

For simplicity,
∧

a∈Act−A[a]; ff will be abbreviated as Φ−A from now on.

Definition 5. Given a process term E ∈ Ps, we associate with it a formula
denoted by ΨE derived by the following rules:

Ψδ =̂ Φδ, Ψε =̂
√
,

Ψx =̂ X, Ψa =̂ Φ−{a} ∧ (〈a〉 ∧ [a]),
ΨE1;E2 =̂ ΨE1{τ/

√};ΨE2 , ΨE1+E2 =̂ ΨE1 + ΨE2 ,
Ψrec x.E =̂ νX.ΨE{τ/

√}.
Regards Definition 5, we have

Lemma 4. 1. For any E ∈ Ps,
√

only occurs at the end of ΨE;
2. For any E ∈ Ps, E |=sc ΨE and E |=sc ΨE ;

√
;

3. For any P ∈ BPAε
δ, ΨP ;

√
is closed and guarded.

The following theorem states if two processes are strong bisimilar then the
derived formulae are equivalent.

Theorem 6 (Completeness). If E1 ∼ E2, then ΨE1 ⇔ ΨE2 .

We can show that en(ΨP ;
√

) is the characteristic formula of P up to ∼ for
each P ∈ BPAε

δ.

Theorem 7. For any P ∈ BPAε
δ, en(ΨP ;

√
) is the characteristic formula of P

up to ∼.

Remark 3. In Theorem 7, the condition that P is guarded is essential. Otherwise,
the theorem is not true any more. For instance, νX.(X + (〈a〉 ∧ [a] ∧ Φ−{a}))
is equivalent to Ψrec x.(x+a), nevertheless, (νX.(X + (〈a〉 ∧ [a] ∧ Φ−{a})));

√
is

not the characteristic formula of rec x.(x+ a), since rex x.(x+ b+ a) meets the
formula, but rex x.(x+ b+ a) �∼ rec x.(x+ a).

Example 6. Let P =̂a; ε and Q=̂b; δ. Then, ΨP =̂(〈a〉 ∧ [a] ∧ Φ−{a});
√
, and ,

ΨQ=̂(〈b〉 ∧ [b] ∧ Φ−{b});Φδ by Definition 5.
It’s obvious that en(ΨP ;

√
) = ΨP ;

√
is the characteristic formula of P and

en(ΨQ;
√

) = ΨQ;
√

is the one of Q. Furthermore, by Definition 5,

en(Ψrec x.(P ;x;x;Q+P );
√

)

=̂ en([νX.
(

(〈a〉 ∧ [a] ∧ Φ−{a});X;X; ((〈b〉 ∧ [b] ∧ Φ−{b});Φδ)
+ (〈a〉 ∧ [a] ∧ Φ−{a})

)
];
√

)

⇔ [νX.
(

〈a〉;X;X; (〈b〉 ∧ [b] ∧ Φ−{b});Φδ ∧ 〈a〉∧
[a]; (τ ∨X;X; (〈b〉 ∧ [b] ∧ Φ−{b});Φδ) ∧ Φ−{a}

)
];
√

which is exactly the characteristic formula of rec x.(a;x;x; b; δ + a; ε). �



7 Concluding Remarks

In this paper, we investigated the compositionality of FLC. To this end, inspired
by [10, 18], we first extended FLC with the non-deterministic choice “+” and then
established a connection between the primitives of BPAε

δ and the connectives of
FLC+ , and finally, we proved that as far as closed and guarded formulae are
concerned, “+” can be defined essentially by conjunction and disjunction in
FLC.

Although introducing “+” cannot improve the expressive power of FLC, us-
ing it as an auxiliary can be applied to compositional specification and verifica-
tion of a complex system, some advantages have been argued in the Introduction.
As an application of the compositionality of FLC, we presented an algorithm to
construct the characteristic formula of each process of BPAε

δ directly according
to its syntax in contrast to the method in [21] which derives the characteristic
formula for a process from the transition graph of the process. We believe that
our approach also works for weak bisimulation, but it is necessary to re-interpret
modalities of FLC.

Various work concerning compositionality of modal and temporal logics have
been done, for example, [9, 18] directly introduced the non-deterministic oper-
ator “+” into the modal μ-calculus like logics so that the resulted logics have
compositionality; [3, 4] discussed the compositionality of linear temporal logic
[23] by introducing the chop into the logic, while [24] investigated some logic
properties of the extension; [19, 20] studied the compositionality of μ-calculus;
[26] investigated the compositionality of a fixpoint logic in assume-guarantee
style. Comparing with the previous work, the logics studied in previous work
can only express regular properties, but FLC which is investigated in this pa-
per can define non-regular properties. [9] gave a method to define characteristic
formulae for finite terms of CCS up to observational congruence, [25] furthered
the work by presenting an approach to define characteristic formulae for reg-
ular processes up to some preorders; Moreover, [21] gave a method to define
characteristic formulae for context-free processes up to some preorders based
on the rewriting system of a given process. In contrast to [21], in our approach
characteristic formulae of BPAε

δ are constructed directly from syntax.
As future work, it is worth investigating the parallel operator and establishing

a proof system for FLC.
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