
Information and Computation 289 (2022) 104965
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Encoding inductive invariants as barrier certificates:
Synthesis via difference-of-convex programming ✩

Qiuye Wang a,b, Mingshuai Chen c,∗, Bai Xue a,b, Naijun Zhan a,b,d,∗∗,
Joost-Pieter Katoen c

a State Key Laboratory of Computer Science, Institute of Software, CAS, Beijing, China
b University of Chinese Academy of Sciences, Beijing, China
c RWTH Aachen University, Aachen, Germany
d Science and Technology on Integrated Information System Laboratory, Institute of Software, CAS, Beijing, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 September 2021
Received in revised form 17 April 2022
Accepted 18 September 2022
Available online 22 September 2022

Keywords:
Barrier certificates
Inductive invariants
Bilinear matrix inequalities
Difference-of-convex programming
Semidefinite programming

We present the invariant barrier-certificate condition that witnesses unbounded-time safety
of differential dynamical systems. The proposed condition is the weakest possible one
to attain inductive invariance. We show that discharging the invariant barrier-certificate
condition —thereby synthesizing invariant barrier certificates— can be encoded as solving
an optimization problem subject to bilinear matrix inequalities (BMIs). We further propose
a synthesis algorithm based on difference-of-convex programming, which approaches a
local optimum of the BMI problem via solving a series of convex optimization problems.
This algorithm is incorporated in a branch-and-bound framework that searches for the
global optimum in a divide-and-conquer fashion. We present a weak completeness result
of our method, namely, a barrier certificate is guaranteed to be found (under some
mild assumptions) whenever there exists an inductive invariant (in the form of a given
template) that suffices to certify safety. Experimental results on benchmarks demonstrate
the effectiveness and efficiency of our approach.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Hybrid systems are mathematical models that capture the interaction between continuous physical dynamics and dis-
crete switching behaviors, and hence are widely used in modeling cyber-physical systems (CPS). These CPS may be complex
and safety-critical, with sensitive variables of the environment in its sphere of control. Everyday examples include process
control at all scales, ranging from household appliances to nuclear power plants, or embedded systems in transportation do-
main, such as autonomous driving maneuvers in automotive, aircraft collision-avoidance protocols in avionics, or automatic
train control applications, as well as a broad range of devices in health technologies, such as cardiac pacemakers.

✩ This work has been partially funded by the NSFC under grant No. 62192732, 61625206, 61732001, 61872341, and 61836005, by the ERC Advanced
Project FRAPPANT under grant No. 787914, by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No. 101008233, and by the CAS Pioneer Hundred Talents Program.

* Corresponding author.

** Corresponding author at: State Key Laboratory of Computer Science, Institute of Software, CAS, Beijing, China.
E-mail addresses: wangqye@ios.ac.cn (Q. Wang), chenms@cs.rwth-aachen.de (M. Chen), xuebai@ios.ac.cn (B. Xue), znj@ios.ac.cn (N. Zhan),

katoen@cs.rwth-aachen.de (J.-P. Katoen).
https://doi.org/10.1016/j.ic.2022.104965
0890-5401/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2022.104965
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2022.104965&domain=pdf
mailto:wangqye@ios.ac.cn
mailto:chenms@cs.rwth-aachen.de
mailto:xuebai@ios.ac.cn
mailto:znj@ios.ac.cn
mailto:katoen@cs.rwth-aachen.de
https://doi.org/10.1016/j.ic.2022.104965

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
The safety-critical feature of these CPS, with increasingly complex behaviors, has initiated automatic safety or, dually,
reachability verification of hybrid systems [1,2]. The problem of reachability verification is undecidable in general [1], albeit
with decidable families of sub-classes (see, e.g., [3–7]) identified in the literature. The hard core of the verification problem
lies in reasoning about the continuous dynamics, which are often characterized by ordinary differential equations (ODEs).
In particular, when nonlinearity arises in the ODEs, the explicit computation of the exact reachable set is usually intractable
even for purely continuous dynamics [8].

Therefore in the literature, a plethora of approximation schemes, as surveyed in [2], for reachability analysis of hybrid
systems has been developed, including an invariant-style reasoning scheme known as barrier certificate [9]. A barrier certifi-
cate often serves as an inductive invariant that isolates an unsafe region from the reachable set, thereby witnessing safety
of hybrid (polynomial) systems possibly over an infinite time horizon. A common way to synthesize barrier certificates is to
reduce the condition defining barrier certificates to a numerical optimization or constraint solving problem. There is, how-
ever, a trade-off between the expressiveness of the barrier-certificate condition and the efficiency in discharging the reduced
constraints. Hence, to enable efficient algorithmic synthesis of barrier certificates via, e.g., linear programming (LP), second-
order cone programming (SOCP), semidefinite programming (SDP) and interval analysis [10,11], the general condition on
inductive invariance (that a barrier certificate defines an invariant, see [12,13]) has been strengthened into a spectrum of
different shapes, e.g., [14–16,13,12]. It has been, nevertheless, a long-standing challenge to find a barrier-certificate condition
that is as weak as possible while admitting efficient synthesis algorithms.

In this paper, we present a new condition on barrier certificates, termed the invariant barrier-certificate condition, based
on the sufficient and necessary condition on being an inductive invariant [17]. Our invariant barrier-certificate condition
is the weakest possible condition on barrier certificates to attain inductive invariance. We show, by leveraging Putinar’s
Positivstellensatz [18], that discharging the invariant barrier-certificate condition —thereby synthesizing invariant barrier
certificates— can be encoded as solving an optimization problem subject to bilinear matrix inequalities (BMIs). It is known
that general BMI problems are NP-hard and non-convex [19]. Existing solvers for BMI problems, e.g., [20,21], are thus
considerably less efficient than solvers for (linear) SDP problems. We show that general bilinear matrix-valued functions
can be decomposed as a difference of two convex (matrix-valued) functions using matrix decomposition, thus resulting in a
synthesis algorithm as per difference-of-convex programming (DCP) [22,23], which solves a series of convex sub-problems (in
the form of linear matrix inequalities (LMIs)) that approaches (arbitrarily close to) a local optimum of the BMI problem. This
algorithm is incorporated in a branch-and-bound framework that searches for the global optimum in a divide-and-conquer
fashion. We present a weak completeness result of our method: a barrier certificate is guaranteed to be found (under some
mild assumptions) whenever there exists an inductive invariant (in the form of a given template) that suffices to certify the
system’s safety. A similar result on completeness is previously provided only by symbolic approaches, yet to the best of our
knowledge, not by methods based on numerical constraint solving, e.g., [15,24,25]. Experiments on a collection of examples
suggested that our invariant barrier-certificate condition recognizes more barrier certificates than existing conditions, and
that our DCP-based algorithm is more efficient than directly solving the BMIs via off-the-shelf solvers.

Our main contributions in this paper can be summarized as follows.

• We present the invariant barrier-certificate condition, which is the weakest possible condition on barrier certificates to
attain inductive invariance.

• We show that synthesizing invariant barrier certificates can be encoded as solving a BMI optimization problem.
• We propose a locally-convergent synthesis algorithm based on difference-of-convex programming.
• We present a weak completeness result by augmenting the local algorithm with a branch-and-bound framework.
• Experimental results suggested that our condition recognizes more barrier certificates than existing ones, and that our

DCP-based algorithm is more efficient than directly solving the BMIs.

This article is an extended version of the conference paper [26]. Major extensions include

• two alternative matrix decomposition methods (besides eigendecomposition, cf. Section 5.1) that better exploit matrix
sparsity to accelerate various matrix operations;

• a convex relaxation-based method for pruning branches in the branch-and-bound framework (see Algorithm 2 and
Section 6.2) to mitigate the effect of exponential blow-up;

• complexity analysis of the DCP iterative procedure (cf. Section 5.3) and potential solutions to circumvent numerical
errors in SDP solving (cf. Section 5.5); and

• generalization to hybrid systems (in Section 4.1), additional experimental results, and all the technical proofs.

Paper structure The rest of this paper is structured as follows. Section 2 gives an overview of our approach through a
simple example. Section 3 introduces the necessary mathematical preliminaries. Section 4 presents the invariant barrier-
certificate condition and shows how to encode it as a BMI optimization problem. Section 5 elucidates an algorithm for
solving general BMI optimizations via DCP. Section 6 shows how to incorporate the BMI-solving algorithm into a branch-
and-bound framework to attain weak completeness. Section 7 demonstrates our method on a collection of examples. After
discussing related work in Section 8, we conclude the paper in Section 9.
2

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Fig. 1. A sketch of our method for unbounded-time safety verification via invariant barrier certificates (iBC, for short).

2. A bird’s-eye perspective

The diagram in Fig. 1 sketches out a bird’s-eye view of our method for the unbounded-time safety verification of differ-
ential dynamical systems. We use the following example to demonstrate several core steps underneath.

Example 1 (overview [10]). Consider the following continuous-time dynamical system modeled by an ordinary differential
equation:

ẋ =
(

ẋ1
ẋ2

)
=

(
x1 + x2

x1x2 − 0.5x2
2 + 0.1

)
.

The verification obligation is to show that the system trajectory originating from any state in the initial set X0 = {x | I(x) ≤
0} with I(x) = x2

1 + (x2 − 2)2 − 1 will never enter the unsafe set Xu = {x | U(x) ≤ 0} with U(x) = x2 + 1. �
A barrier certificate satisfying our invariant barrier-certificate condition (cf. Definition 4) serves as an inductive invariant

that suffices to isolate the unsafe region Xu from the set of reachable states from X0, thereby proving safety of the system
over an infinite time horizon. To this end, we proceed in the following steps.

1) Encode as sum-of-squares (SOS) constraints We first set a (polynomial) barrier-certificate template, for example,
B(a, x) = ax2 with unknown coefficient a ∈ R. According to Theorem 1, we only need to consider Lie derivatives up to
order NB, f = 1, i.e., L0

f B(a, x) = ax2 and L1
f B(a, x) = a(x1x2 − 0.5x2

2 + 0.1).
We show that B(a, x) is an invariant barrier certificate if there exists a polynomial v(x), SOS polynomials (i.e., polyno-

mials that can be written as a finite sum of squares of polynomials) σ(x), σ ′(x) and a constant ε > 0 such that

− ax2︸︷︷︸
B

+ σ(x)
(

x2
1 + (x2 − 2)2 − 1

)
︸ ︷︷ ︸

I

, (1.1, initial)

−a
(

x1x2 − 0.5x2
2 + 0.1

)
︸ ︷︷ ︸

L1
f B

+ v(x) ax2︸︷︷︸
L0

f B

, (1.2, Lie consecution)

ax2︸︷︷︸
B

+ σ ′(x) (x2 + 1)︸ ︷︷ ︸
U

−ε (1.3, separation)

are SOS polynomials.

2) Reduce to a BMI optimization problem Observe that the above SOS constraints can be formulated as BMI constraints
(via the Gram matrix representation, as formalized later). For instance, let us assume that (1.2) is an SOS polynomial of
degree at most 2 and v(s, x) = s0 + s1x1 + s2x2 is a template polynomial with unknown coefficients s. Then constraint (1.2)
is equivalent to the BMI constraint

F2(a, s) = −
⎛
⎝−0.1a 0 0.5as0

0 0 0.5(as1 − a)

0.5as0 0.5(as1 − a) as2 + 0.5a

⎞
⎠ � 0

meaning that the bilinear matrix (the LHS of �) is negative semidefinite. Note that the bilinearity arises due to the coupling
of the unknown coefficients a and s.
3

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Constraints (1.1) and (1.3) can be reduced to BMI constraints in an analogous way,1 yielding F1 and F3. It then follows
that, to solve the SOS constraints, we need to find a feasible solution (a, s) such that2

F1(a, s) � 0 ∧ F2(a, s) � 0 ∧ F3(a, s) � 0 . (2)

To exploit well-developed optimization techniques, the feasibility problem (2) is transformed to an optimization problem
subject to BMI constraints:

maximize
λ,a, s

λ

subject to Bi(λ,a, s) =̂ Fi(a, s) + λI � 0, i = 1,2,3
(3)

where I is the identity matrix with compatible dimensions. Note that problem (2) has a feasible solution if and only if the
optimal value λ∗ in (3) is non-negative.

3) Decompose as difference-of-convex problems The problem (3) contains non-convex constraints and hence does not ad-
mit efficient (polynomial-time) algorithms tailored for convex optimizations. However, using our DCP-based technique, a
non-convex function Bi(λ, a, s) can be decomposed as the difference of two (positive semidefinite) convex matrix-valued
functions:

Bi(λ,a, s) = B+
i (λ,a, s) − B−

i (λ,a, s) . (4)

The decomposition of B2(λ, a, s) (via eigendecomposition), for instance, gives

B+
2 (λ,a, s)

= 1

8

⎛
⎝8λ + 0.08a + a2 + 0.408s2

0 0.408s0s1 −2as0 + 0.816s0s2

0.408s0s1 8λ + a2 + 0.408s2
1 4a − 2as1 + 0.816s1s2

−2as0 + 0.816s0s2 4a − 2as1 + 0.816s1s2 8λ − 4a + 2.449a2 − 4as2 + s2
0 + s2

1 + 1.632s2
2

⎞
⎠

B−
2 (λ,a, s) = 1

8

⎛
⎝ a2 + 0.408s2

0 0.408s0s1 2as0 + 0.816s0s2

0.408s0s1 a2 + 0.408s2
1 2as1 + 0.816s1s2

2as0 + 0.816s0s2 2as1 + 0.816s1s2 2.449a2 + 4as2 + s2
0 + s2

1 + 1.632s2
2

⎞
⎠ .

4) Solve a series of convex sub-problems Now, we apply a standard iterative procedure in difference-of-convex program-
ming [27] as follows. Given a feasible solution zk = (λk, ak, sk) to the BMI optimization problem (3), the concave part
−B−

i (λ, a, s) in (4) is linearized around zk , thus yielding a series of convex programs (k = 0, 1, . . .):

maximize
λ,a, s

λ

subject to B+
i (z) − B−

i

(
zk

)
−DB−

i

(
zk

)(
z − zk

)
� 0, i = 1,2,3

(5)

where DB−
i (zk)(·) denotes the derivative of the matrix-valued function B−

i (·) at zk .
The soundness of our approach asserts that the feasible set of the linearized program (5) under-approximates the feasible set

of the original BMI program (3). Therefore, if λk ≥ 0 after iteration k, we can safely claim that (ak, sk) is a feasible solution to
(2). A barrier certificate B(x) is then obtained by substituting ak in B(a, x). Moreover, if we take the optimum z∗,k of (5) to
be the next linearization point zk+1, the solution sequence {zk}k∈N converges to a local optimum of (3).

We show that the linearized program (5) is equivalent to an LMI optimization problem admitting polynomial-time algo-
rithms [28], say the well-known interior-point methods supported by most off-the-shelf SDP solvers. Our iterative procedure
starts with a strictly feasible initial solution z0 to program (3) and terminates after iteration k = 2 with λ2 ≥ 0 (subject to
numerical round-off) and a2 = −0.00363421, yielding the barrier certificate

B(a2,x) = −0.00363421x2 ≤ 0 .

Fig. 2 depicts the system dynamics and the synthesized barrier certificate.
We remark that the aforementioned iterative procedure on solving a series of convex optimizations converges only to

a local optimum of the BMI problem (3). This means that, in some cases, it may miss the global optimum that induces a
non-negative λ∗ . We will present in Section 6 a solution to this problem by incorporating our iterative procedure into a
branch-and-bound framework that searches for the global optimum in a divide-and-conquer fashion.

1 Despite that no bilinearity is involved in constraints (1.1) and (1.3), they can be processed in the same way as (1.2), yielding LMI constraints.
2 Extra constraints on σ(x) and σ ′(x) being SOS polynomials can be encoded analogously in the feasibility problem, yet are omitted here for the sake of

simplicity.
4

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Fig. 2. Phase portrait of the system in Example 1. The arrows indicate the vector field and the solid curves are randomly sampled trajectories.

3. Mathematical foundations

Notations Let N , N+ , R, R+ and R+
0 be respectively the set of natural, positive natural, real, positive real and non-

negative real numbers. For a vector x ∈Rn , xi refers to its i-th component and ‖x‖ denotes the �2-norm; we write diag(x) ∈
Rn×n for a diagonal matrix with xi being the i-th diagonal element. For a matrix A ∈ Rn×m , A(i, j) refers to its (i, j)-th
element; for a square matrix A ∈ Rn×n , its trace is tr(A) = ∑n

i=1 A(i, i). Given two matrices A ∈ Ra×b and B ∈ Rc×d , their
Kronecker product is A ⊗ B =̂ [A(1, 1)B, . . . , A(1, b)B; · · · ; A(a, 1)B, . . . , A(a, b)B] ∈ Rac×bd . Sn denotes the space of n × n
real, symmetric matrices. For A ∈ Sn , A � 0 means that A is positive semidefinite (PSD, for short), i.e., ∀x ∈ Rn : xTAx ≥ 0.
More generally, for A, B ∈ Sn , A � B indicates that B − A is positive semidefinite. A matrix-valued function B : Rn → Sm is
PSD-convex on a convex set C ⊆Rn if ∀x1, x2 ∈ C. ∀μ ∈ (0, 1) : B(μx1 + (1 − μ)x2) � μB(x1) + (1 − μ)B(x2).

SOS, LMIs, and BMIs Let R[x] be the polynomial ring in x over the field R. A polynomial h ∈R[x] is sum-of-squares (SOS)
iff there exist polynomials g1, . . . , gk ∈R[x] such that h = ∑k

i=1 g2
i . We denote by �[x] ⊂R[x] the set of SOS polynomials

over x. A linear matrix inequality (LMI) is a constraint of the form L(x) =̂ F + ∑m
i=1 xi Hi � 0, where x ∈ Rm is a vector of

variables and F , Hi ∈ S p are constant symmetric matrices. LMIs are convex and hence admit polynomial-time algorithms
to find feasible solutions (or prove the infeasibility) given the desired precision [28]. A bilinear matrix inequality (BMI) is
a constraint of the form B(x, y) =̂ F + ∑m

i=1 xi Hi + ∑n
j=1 y j G j + ∑m

i=1
∑n

j=1 xi y j Fi, j � 0, where x, y ∈ Rm are vectors of
variables and F , Hi, G j, Fi, j ∈ S p are constant symmetric matrices. Solving general BMIs is NP-hard due to the non-convex
nature of the constraints [19].

Differential dynamical systems We consider a class of continuous dynamical systems modeled by ordinary differential
equations of the autonomous type:

ẋ = f (x) (6)

where x ∈Rn is the state vector, ẋ denotes its temporal derivative dx/dt , with t ∈R+
0 modeling time, and f : Rn →Rn is

a polynomial flow field (or vector field) that governs the evolution of the system. A polynomial vector field is local Lipschitz,
and hence for some T ∈R+ ∪{∞}, there exists a unique solution (or trajectory) ζ x0

: [0, T) →Rn originating from any initial

state x0 ∈ Rn such that (1) ζ x0
(0) = x0, and (2) ∀τ ∈ [0, T) : dζ x0

dt

∣∣
t=τ

= f (ζ x0
(τ)). We assume in the sequel that T is the

maximal instant up to which ζ x0
exists for all x0.

Remark 1. Our techniques on synthesizing barrier certificates in this paper focus on differential dynamics of the form (6).
However, we will show that there is no substantial difficulty in extending the results to multi-mode hybrid systems where
extra constraints on the system evolution, e.g., guards, are present.

Safety verification problem Given a domain set D ⊆Rn and an initial set X0 ⊆D, the reachable set of a dynamical system
of the form (6) at time instant t ∈ [0, T) is defined as RX (t) =̂ {ζ x (t) | x0 ∈ X0}. We denote by RX the aggregated
0 0 0

5

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
reachable set, i.e., the union of RX0 (t) over t ∈ [0, T). Given an unsafe set Xu ⊆ D, the system is said to be safe iff RX0 ∩
Xu = ∅, and unsafe otherwise. For simplicity, we consider D =Rn unless explicitly stated otherwise.

To avoid the explicit computation of the exact reachable set, which is usually intractable for nonlinear hybrid systems
(cf., e.g., [2]), barrier-certificate methods make use of a partial differential operator, termed the Lie derivative, to capture the
evolution of a barrier function along the vector field:

Definition 1 (Lie derivative [29]). Given a vector field f : Rn → Rn over x, the Lie derivative of a polynomial B ∈ R[x] along
f , Lk

f B : Rn →R of order k ∈N , is

Lk
f B(x) =̂

{
B(x), k = 0 ,〈

∂
∂xL

k−1
f B(x), f (x)

〉
, k > 0

where 〈·, ·〉 is the inner product of vectors, i.e., 〈u, v〉 =̂ ∑n
i=1 ui vi for u, v ∈Rn .

The Lie derivative Lk
f B(x) is essentially the k-th temporal derivative of the (barrier) function B(x), and thus captures the

change of B(x) over time. In fact, given a polynomial vector field, one can use (high-order) Lie derivatives to identify the
tendency of its trajectories in terms of a polynomial function B(x), as exemplified in Appendix A.

An inductive invariant 	 ⊆Rn of a dynamical system is a set of states such that all the trajectories starting from within
	 remain in 	:

Definition 2 (Inductive invariant [30]). Given a system (6), a set 	 ⊆Rn is an inductive invariant of system (6) if and only if

∀x0 ∈ 	. ∀t ∈ [0, T) : ζ x0
(t) ∈ 	 . (7)

In the sequel, we refer to inductive invariants simply as invariants. In [17], a sufficient and necessary condition on being
a polynomial invariant is proposed:

Theorem 1 (Invariant condition [17]). Given a polynomial B ∈ R[x], its zero sub-level set {x | B(x) ≤ 0} is an invariant of system
(6) if and only if3

B ≤ 0 =⇒
∨NB, f

i=0

((∧i−1

j=0
L j

f B = 0

)
∧ Li

f B < 0

)
∨

∧NB, f

i=0
Li

f B = 0 (8)

where NB, f ∈N+ is the completeness threshold, i.e., a positive integer that bounds the order of Lie derivatives.

Remark 2. NB, f is the minimal index i such that Li+1
f B is in the polynomial ideal generated by L0

f B, . . . , Li
f B . The ideal

membership can be decided by computing the Gröbner basis of this ideal [17]. The complexity of computing NB, f will be
discussed in the complexity analysis of our approach (see Section 5.3).

In contrast, a barrier certificate is a function whose zero sub-level set isolates an unsafe region Xu from the reachable set
RX0 w.r.t. some initial set X0 (the sub-level set can be non-zero in general):

Definition 3 (Semantic barrier certificate [12]). Given a system (6), an initial set X0 and an unsafe set Xu , a barrier certificate
of (6) is a differentiable function B : Rn →R satisfying

∀x0 ∈ X0. ∀t ∈ [0, T) : B
(
ζ x0

(t)
) ≤ 0 and ∀x ∈ Xu : B(x) > 0 . (9)

The existence of such a barrier certificate trivially implies safety of the system. Moreover, one may readily verify that if
some set 	 = {x | B(x) ≤ 0} is an invariant and satisfies (X0 ⊆) ∧ (∩Xu = ∅), then B(x) is a barrier certificate.

As observed in [12], however, the semantic statement in Definition 3 encodes merely the general principle of barrier
certificates [13], yet in itself is not that useful for safety verification because it explicitly involves the system solutions.
Therefore, in order to enable efficient synthesis, the semantic condition on barrier certificates has been strengthened into
a handful of different shapes (see, e.g., [9,14,15,13]) which all imply inductive invariance.4 It has been yet a long-standing
challenge to find a barrier-certificate condition that is as weak as possible while admitting efficient synthesis algorithms.

Our BMI encoding of the invariant barrier-certificate condition roots in Putinar’s Positivstellensatz, which characterizes
positivity of polynomials on a semi-algebraic set defined by a system of polynomial inequalities:

3 In (8), ∧i−1
j=0 L

j
f B = 0 is true for i = 0 by default. This applies in the sequel. Moreover, the sub-level set of B can be non-zero in general.

4 An exception is known as the t-barrier certificate condition [31], which is a continuous analogy to k-induction, thus more general than (classical)
inductive invariance. However, this condition also explicitly involves the system solutions, and hence does not admit efficient synthesis.
6

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Theorem 2 (Putinar’s Positivstellensatz [18]). Let K = {x | ∧m
i=1 gi(x) ≥ 0} be a compact semi-algebraic set defined by g1, . . . , gm ∈

R[x]. Assume the Archimedean condition holds, i.e., there exists L ∈ R+ such that L − ‖x‖2 = η0(x) + ∑m
i=1 ηi(x)gi(x) for some

η0, . . . , ηm ∈ �[x]. If h ∈R[x] is strictly positive on K, then

h(x) = σ0(x) +
∑m

i=1
σi(x)gi(x)

holds for some SOS polynomials σ0, . . . , σm ∈ �[x].

Remark 3. The Archimedean condition can be met by adding a (redundant) constraint gm+1(x) = L0 − ‖x‖2 ≤ 0, provided
that a bound L0 ∈R+ is known such that ∀x ∈ K : L0 − ‖x‖2 ≥ 0. See [18, Chapter 2] for more details on the Archimedean
condition.

We now recall a key technique used in our reduction to semidefinite optimizations. Given a symmetric matrix X ∈ Sn

partitioned as X =
(

A C
CT D

)
with invertible A, the Schur complement of A in X is defined as X/A =̂ D − CT A−1C . An

important property of the Schur complement X/A is that it characterizes the positive semidefiniteness of the block matrix
X (which will be used later to transform nonlinear convex constraints into linear constraints):

Theorem 3 (Schur complement [32]). If A � 0, then X � 0 iff X/A � 0.

4. Invariant barrier-certificate condition as BMIs

In this section, we present our invariant barrier-certificate condition based on the necessary and sufficient condition on
being an inductive invariant (cf. Theorem 1), and show how to encode it as BMI constraints.

4.1. Invariant barrier-certificate condition

Definition 4 (Invariant barrier certificate). Given a system (6), an initial set X0 and an unsafe set Xu , a polynomial function
B : Rn →R is an invariant barrier certificate of system (6) if and only if

1. (initial): ∀x ∈X0 : B(x) ≤ 0 ;

2. (consecution): ∀x ∈Rn : ∧NB, f
i=1

((∧i−1
j=0 L

j
f B(x) = 0

)
=⇒ Li

f B(x) ≤ 0
)

;

3. (separation): ∀x ∈Xu : B(x) > 0.

Notice that the consecution constraint in Definition 4 involves Lie derivatives of orders up to NB, f ∈ N+ , as is the case
in Theorem 1. Our invariant barrier-certificate condition hence generalizes existing conditions on barrier certificates, e.g.,
[15,33,25], which consider Lie derivatives only up to the first order.

The following lemma states that the consecution condition in Definition 4 is in fact equivalent to the invariant condition (8) in
Theorem 1.

Lemma 1 (Equivalence of Lie consecution). The consecution condition in Definition 4 holds if and only if the invariant condition (8) in
Theorem 1 holds.

Proof. We prove both the “if” and the “only if” part by contradiction.
For the “if” part, suppose that the invariant condition (8) holds but the consecution condition is invalid. The latter implies

that for some x0 ∈Rn and 1 ≤ i0 ≤ NB, f ,(∧i0−1

j=0
L j

f (x0) = 0

)
∧ Li0

f B(x0) > 0 . (10)

Note that (10) implies B(x0) = 0. From (8), it follows that either∧NB, f

i=0
Li

f B(x0) = 0 (11)

holds, or there exists 0 ≤ i1 ≤ NB, f such that(∧i1−1

j=0
L j

f B(x0) = 0

)
∧ Li1

f B(x0) < 0 (12)

holds. However,
7

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Fig. 3. A simple (symbolic) hybrid automaton.

• (11) cannot hold as Li0
f B(x0) = 0 in (11) but Li0

f B(x0) > 0 in (10);

• for i1 ≤ i0, (12) cannot hold as Li1
f B(x0) < 0 in (12) but Li1

f B(x0) ≥ 0 in (10);

• for i1 > i0, (12) cannot hold as Li0
f B(x0) = 0 in (12) but Li0

f B(x0) > 0 in (10).

For the “only if” direction, suppose that the consecution condition in Definition 4 holds but the invariant condition (8)
is invalid. The latter implies that there exists x0 such that B(x0) ≤ 0 and

¬
((∧i−1

j=0
L j

f B(x0) = 0

)
∧ Li

f B(x0) < 0

)
(13)

holds for any 0 ≤ i ≤ NB, f .
For i = 0, (13) yields that B(x0) ≥ 0. Together with the premise B(x0) ≤ 0, we have B(x0) =L0

f B(x0) = 0. Now, by taking
the case i = 1 in the consecution condition, we deduce L1

f B(x0) ≤ 0. Meanwhile, for i = 1, (13) yields L1
f B(x0) ≥ 0. It

thus follows that L1
f B(x0) = 0. Analogously, by taking i = 2, . . . , NB, f , we conclude Li

f B(x0) = 0 for all 0 ≤ i ≤ NB, f . This is
exactly encoded in (8) (the rightmost conjunctive clause) and hence contradicts the assumption that (8) is invalid. Therefore,
the consecution condition implies (8). �

Lemma 1 reveals the relation between an inductive invariant and an invariant barrier certificate:

Theorem 4 (Inductive invariance). Given a system (6), an initial set X0 and an unsafe set Xu . (1) If polynomial B(x) is an invariant
barrier certificate, then 	 = {x | B(x) ≤ 0} is an invariant. Conversely, (2) if 	 = {x | B(x) ≤ 0} is an invariant satisfying X0 ⊆ 	 and
	 ∩Xu = ∅, then B(x) is an invariant barrier certificate.

Proof. The claim is an immediate consequence of Lemma 1. �
It follows from Theorem 4 that our invariant barrier-certificate condition is the least conservative (and in fact the weakest

possible) one on barrier certificates to attain inductive invariance.

Remark 4. We do not employ the invariant condition (8) in Theorem 1 as the constraint on the consecution of Lie
derivatives. This is because our consecution condition in Definition 4 is simpler, and in particular, amenable to more straight-
forward transformations to SOS constraints via Putinar’s Positivstellensatz, as shown later in Section 4.2.

Remark 5. For a fixed 0 < N < NB, f , the consecution condition in Definition 4 can be strengthened in the following way
while preserving inductive invariance:

∀x ∈ Rn :
∧N−1

i=1

((∧i−1

j=0
L j

f B(x) = 0

)
=⇒ Li

f B(x) ≤ 0

)
∧

((∧N−1

j=0
L j

f B(x) = 0

)
=⇒ LN

f B(x) < 0

)
where for the N-th Lie derivative, one needs LN

f B(x) < 0 (rather than LN
f B(x) ≤ 0). In practice, using such a strengthened

consecution condition —with less sub-constraints to solve— may yield more efficient synthesis.

Generalization to hybrid systems Our invariant barrier-certificate condition can be readily generalized to multi-mode hybrid
systems exhibiting both continuous dynamics and discrete transitions in the same vein as in [9,25]. We illustrate such
generalization by a simple (symbolic) hybrid automaton [2] as depicted in Fig. 3. The system has two modes q0 (initial
mode) and q1 governed respectively by polynomial flow fields f 0(x) and f 1(x) and mode domains D0 and D1. The system
may evolve continuously in mode qk (for k = 0, 1) within Dk or jump to mode q1−k when guardk(x) ≤ 0 is satisfied. In
the latter case, the system state will be set to x′ = resetk(x) ∈ D1−k after the jump. We aim to verify that no trajectory
originating from an initial set X0 ⊆D0 will ever visit states in the unsafe sets Xu,k ⊆Dk . To this end, our invariant barrier-
certificate condition (cf. Definition 4) can be augmented to recognize an invariant barrier certificate Bk(x) for each mode
qk:
8

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
1. (initial): ∀x ∈X0 : B0(x) ≤ 0 ;

2. (consecution): ∀k ∈ {0, 1}. ∀x ∈Dk : ∧NBk, fk
i=1

((∧i−1
j=0 L

j
fk

Bk(x) = 0
)

=⇒ Li
fk

Bk(x) ≤ 0
)

;

3. (transition): ∀k ∈ {0, 1}. ∀x ∈Dk : (
Bk(x) ≤ 0 ∧ guardk(x) ≤ 0

) =⇒ B1−k(resetk(x)) ≤ 0 ;
4. (separation): ∀k ∈ {0, 1}. ∀x ∈Xu,k : Bk(x) > 0.

The existence of Bk(x) satisfying the above constraints ensures safety of the hybrid system model. In fact, all these con-
straints (with polynomial guards and resets as well as domains described by polynomials) can be encoded in a BMI
optimization problem and thereby solved by our DCP-based algorithm without substantial changes. For simplicity, how-
ever, we present our techniques for single-mode dynamical systems based on the invariant barrier-certificate condition
given in Definition 4.

4.2. Encoding as BMI optimizations

Next, we show how to encode the synthesis of an invariant barrier certificate as an optimization problem subject to BMIs.
To this end, we first recast the invariant barrier-certificate condition into a collection of SOS constraints. For simplicity, we
assume that X0 and Xu are both captured by a single polynomial. Our formulations, however, apply also to cases with basic
semi-algebraic X0 or Xu .

Theorem 5 (Sufficient condition for invariant barrier certificate). Given a system (6), an initial set X0 = {x | I(x) ≤ 0} and an unsafe
set Xu = {x | U(x) ≤ 0}. A polynomial B ∈ R[x] is an invariant barrier certificate of (6) if for some ε ∈ R+ , there exist polynomials
vi, j ∈R[x] and SOS polynomials σ(x), σ ′(x) ∈ �[x] s.t.

1. −B(x) + σ(x)I(x),
2. for all 1 ≤ i ≤ NB, f , −Li

f B(x) + ∑i−1
j=0 vi, j(x)L j

f B(x),

3. B(x) + σ ′(x)U(x) − ε

are SOS polynomials in �[x].

Proof. It can be shown that the k-th condition in Theorem 5 implies the k-th condition in Definition 4, for k = 1, 2, 3. For
instance, the second condition in Theorem 5 requires that −Li

f B(x) + ∑i−1
j=0 vi, j(x)L j

f B(x) is an SOS polynomial (and thus

non-negative) for all 1 ≤ i ≤ NB, f , we therefore have Li
f B(x) ≤ ∑i−1

j=0 vi, j(x)L j
f B(x) for all 1 ≤ i ≤ NB, f . It follows that for

all x, when L j
f B(x) = 0 with 0 ≤ j ≤ i − 1, we have Li

f B(x) ≤ 0, which is the consecution condition in Definition 4. A
similar argument applies to the other two conditions. �

By enforcing the Archimedean condition and applying Putinar’s Positivstellensatz, we further derive a necessary condition
of invariant barrier certificate:

Theorem 6 (Necessary condition for invariant barrier certificate). Given a system (6), an initial set X0 = {x | I(x) ≤ 0} and an unsafe
set Xu = {x | U(x) ≤ 0}. If B ∈R[x] is an invariant barrier certificate of (6), then for some ε ∈R+ , there exist polynomials vi, j ∈R[x]
and SOS polynomials σ(x), σ ′(x), ρ(x), ρ ′(x), ρ ′′

i (x) ∈ �[x] s.t. for any L ∈R+ ,

1. −B(x) + ρ(x)(‖x‖2 − L) + σ(x)I(x) + ε ,

2. for all 1 ≤ i ≤ NB, f , −Li
f B(x) + ρ ′′

i (x)(‖x‖2 − L) + ∑i−1
j=0 vi, j(x)L j

f B(x) + ε ,

3. B(x) + ρ ′(x)(‖x‖2 − L) + σ ′(x)U(x)

are SOS polynomials in �[x].

Proof. The invariant barrier-certificate condition in Definition 4 characterizes positivity of polynomials over certain sets. By
adding a “ball” constraint ‖x‖2 − L ≤ 0 to those sets (thus achieving the Archimedean condition), we can apply Putinar’s
Positivstellensatz to rewrite those polynomials into SOS forms.

For instance, the consecution condition in Definition 4 implies that −Li
f B(x) + ε is strictly positive on K = {x |

(
∧i−1

j=0 L0
f B(x) = 0) ∧ −(‖x‖2 − L) ≥ 0} for all 1 ≤ i ≤ NB, f . Putinar’s Positivstellensatz can then be applied to show that

−Li
f B(x) + ε = σi(x) − ρ ′′

i (x)(‖x‖2 − L) − ∑i−1
j=0 vi, j(x)L j

f B(x) holds for some SOS polynomials σi(x), ρ ′′
i (x) and some

polynomials vi, j(x) for 1 ≤ i ≤ NB, f and 0 ≤ j ≤ i − 1. The second condition in Theorem 6 then follows immediately.
A similar argument applies to the other two conditions. �
9

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Notice that a polynomial B(x) satisfying the sufficient condition in Theorem 5 suffices as an invariant barrier certificate
that witnesses safety of the system. In contrast, a polynomial B(x) satisfying the necessary condition in Theorem 6 may
serve as a candidate invariant barrier certificate, and safety of the system can be concluded via a posterior check of B(x)

per Definition 4. Such a check inherits decidability of the first-order theory over real-closed fields [34].
Next we show how to encode an SOS constraint of the shape “h(x) ∈ �[x]” in Theorems 5 and 6 as a BMI constraint. To this end,

we first set a template polynomial B(a, x) parameterized by unknown real coefficients a as the barrier certificate (required to
be linear in its parameters a). We then proceed by setting templates for the remaining unknown polynomials (e.g., vi, j(x))
and SOS polynomials (e.g., σ(x) and ρ(x)) in h(x), with all the parameters in these templates grouped in s. Observe that
the parameterized SOS polynomial h(a, s, x) is of a bilinear form on the parameter spaces, i.e., h(a, s, x) is linear in a and
s separately. However, nonlinearity arises in the combined parameter space (a, s) due to the product couplings of a and s,
i.e., vi, j(si, j, x)L j

f B(a, x) in the consecution constraint.
Now the problem of synthesizing an invariant barrier certificate boils down to searching for an instantiation of the

parameters a and s such that the sufficient condition in Theorem 5 holds (or alternatively, the necessary condition in
Theorem 6 holds and the posterior check of Definition 4 passed). Such an instantiation of a (making B(a, x) an invariant
barrier certificate) will be called valid in the sequel.

Suppose that a parameterized SOS polynomial h(a, s, x) is of degree at most 2d, with user-specified d ∈N . Then h(a, s, x)

can always be written in quadratic form as h(a, s, x) = bT Q (a, s)b, where b = (1, x1, x2, x1x2, . . . , xd
n) is the basis vector of size

p = (n+d
n

)
containing all monomials of degree up to d, and Q (a, s) ∈ S p is a parameterized real symmetric matrix known as

the Gram matrix [35].5 An important fact states that h(a, s, x) is SOS if and only if Q (a, s) � 0.
Let F(a, s) = −Q (a, s). As per h(a, s, x), the matrix-valued function F(a, s) is bilinear in (a, s). Observe that h(a, s, x) is

SOS if and only if the BMI constraint F(a, s) � 0 holds. See Example 1 for an illustration of this BMI encoding.
In general, F(a, s) can be flattened in an expanded bilinear form as

F(a, s) = F +
∑m

i=1
ai Hi +

∑n

j=1
s j G j +

∑m

i=1

∑n

j=1
ai s j Fi, j

where m and n are the size of a and s, respectively; F , Hi, G j, Fi, j ∈ S p are constant matrices. Discharging the conditions
of invariant barrier certificates hence amounts to solving the BMI feasibility problem of finding a and s s.t.

Fι(a, s) � 0, ι = 1,2, . . . , l . (14)

Here F(a, s) is indexed by ι and l is the number of SOS constraints involved.
To exploit well-developed techniques in optimization, the feasibility problem (14) is transformed to an optimization

problem subject to BMI constraints:

maximize
λ,a, s

λ

subject to Fι(a, s) + λI � 0, ι = 1,2, . . . , l .

(15)

A solution (λ, a, s) to (15) is feasible if it satisfies the BMIs in (15), and strictly feasible if all the BMIs are satisfied with
strict inequalities. We sometimes drop the λ component in the solution when it is clear from the context. Notice that
problem (14) has a feasible solution if and only if the optimal value λ∗ in the BMI optimization problem (15) is non-negative.

To achieve (weak) completeness of our method in subsequent sections on solving the BMI optimization problem, we
make the following assumption on the boundedness of the search space (a, s) of the optimization.

Assumption 1 (Boundedness on the parameters). Every feasible solution (a, s) to the BMI problem (15) is in a compact set
with non-empty interior, i.e.,

(a, s) ∈ Ca × Cs =
{
(a, s)

∣∣ ‖a‖2 ≤ La,‖s‖2 ≤ Ls

}
for some known bounds La, Ls ∈R+ .

Remark 6. The boundedness on a in Assumption 1 makes sense in practice since we usually prefer barrier certificates with
bounded coefficients. Moreover, when the bilinear functions Fι(a, s) in (15) are affine in a and s, i.e., with a zero constant
matrix F , the parameters a and s can be scaled independently by any positive factor. Therefore in this case, w.l.o.g., one
may simply set La = Ls = 1.

5 Extracting the Gram matrix amounts to solving a system of linear equations resulting from coefficient matching. The derived Gram matrix may contain
extra unknowns if the system of linear equations admits multiple solutions, which nevertheless can be encoded in our subsequent workflow by enumerating
the basis of its null space.
10

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
5. Solving BMI optimizations via DCP

The BMI optimization problem (15), derived from the synthesis problem, is known to be NP-hard and contains non-
convex constraints [19], and hence is not amenable to efficient (polynomial-time) algorithms in contrast to convex opti-
mization. In this section, we present an algorithm for solving general BMI optimizations via difference-of-convex program-
ming [22,23], which solves a series of convex sub-problems that approaches a local optimum of (15).

For brevity, we consider optimization problems with a single BMI constraint (whereas multiple BMI constraints can be
joined as a single BMI in a block-diagonal fashion):

maximize
z = (x,y)

g(z)

subject to B(x,y) =̂ F +
m∑

i=1

xi Hi +
n∑

j=1

y j G j +
m∑

i=1

n∑
j=1

xi y j Fi, j � 0
(16)

where the objective function g : Rm+n →R is linear in z = (x, y); F , Hi, G j, Fi, j ∈ S p are constant symmetric matrices.

5.1. Difference-of-convex decomposition

The key challenge in solving the BMI problem (16) is its non-convexity, that is, the matrix-valued function B(x, y) is, in
general, not PSD-convex.

There have been attempts, most pertinently in [27], to decompose a bilinear function as a difference between two PSD-
convex functions, known as the difference-of-convex (DC) decomposition, such that the optimization in its decomposed form
enjoys well-established techniques in difference-of-convex programming [22,23]. The DC decomposition in [27], however, is
confined to BMIs of a specific structure, namely, XTY + Y T X � 0, where X and Y are matrix variables containing variables xi
and y j , respectively. The more general bilinear function B(x, y) in (16) does unfortunately not admit straightforward forms
of decomposition such as those in [27, Lemma 3.1].

In this subsection, we first show how to formulate a difference-of-convex decomposition of the matrix-valued function
B(x, y) using matrix decomposition (inspired by [36]), and then present three different ways to obtain such a matrix de-
composition. These decomposition methods compete with each other in terms of theoretical simplicity, generality, and the
exploitation of matrix sparsity.

First, observe that the function B(x, y) can be written as

B(x,y) =
(

x ⊗ I
y ⊗ I

)T (
0

T 0

)(
x ⊗ I
y ⊗ I

)
+ (

�1 �2
)(

x ⊗ I
y ⊗ I

)
+ F (17)

where 0 represents the zero matrices with compatible dimensions and

 = 1

2

⎛
⎜⎝

F1,1 . . . F1,n
...

. . .
...

Fm,1 . . . Fm,n

⎞
⎟⎠ , �1 = (

H1 . . . Hm
)
, �2 = (

G1 . . . Gn
)

.

The form of (17) implies that B(x, y) is PSD-convex if the matrix M =
(

0

T 0

)
is positive semidefinite. Unfortunately, as

[36, Theorem 1] points out, for a non-trivial bilinear function B(x, y), M may not be positive semidefinite.
Nevertheless, the matrix M can always be decomposed as M = M1 − M2 with M1, M2 � 0, i.e., a difference between two

PSD-matrices. This, in turn, leads to a DC decomposition of B(x, y):

Theorem 7 (DC decomposition by matrix decomposition). Suppose M = M1 − M2 with M1, M2 � 0. Then, the form

B(x,y) = B+(x,y) − B−(x,y) (18)

where

B+(x,y) =
(

x ⊗ I
y ⊗ I

)T

M1

(
x ⊗ I
y ⊗ I

)
+ (

�1 �2
)(

x ⊗ I
y ⊗ I

)
+ F

B−(x,y) =
(

x ⊗ I
y ⊗ I

)T

M2

(
x ⊗ I
y ⊗ I

)
is a difference-of-convex decomposition of B(x, y), i.e., the matrix-valued functions B+(x, y) and B−(x, y) are PSD-convex on Rm+n.
11

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Proof. We first show the PSD-convexity of B+(x, y). Let z = (x, y) ∈ Rm+n . According to [37, Proposition 1], B+(z) =
B+(x, y) is PSD-convex if (and only if) for any v ∈Rp , the function φv(z) = vTB+(z)v is convex. Note that

φv(z) = vT (
z ⊗ I

)T
M1

(
z ⊗ I

)
v + vT (

�1 �2
) (

z ⊗ I
)

v + vT F v

= (z ⊗ v)TM1(z ⊗ v) + vT (
�1 �2

)
(z ⊗ v) + vT F v .

Then, for any μ1 ∈ (0, 1) and μ2 = 1 − μ1, we have, for any z1, z2 ∈Rm+n ,

φv(μ1z1 + μ2z2) − (μ1φv(z1) + μ2φv(z2))

= (μ1(z1 ⊗ v) + μ2(z2 ⊗ v))TM1(μ1(z1 ⊗ v) + μ2(z2 ⊗ v)) − μ1(z1 ⊗ v)TM1(z1 ⊗ v) − μ2(z2 ⊗ v)TM1(z2 ⊗ v)

= μ1μ2(z2 ⊗ v)TM1(z1 ⊗ v) + μ1μ2(z1 ⊗ v)TM1(z2 ⊗ v) − μ1μ2(z1 ⊗ v)TM1(z1 ⊗ v)

− μ1μ2(z1 ⊗ v)TM1(z1 ⊗ v)

= − μ1μ2((z1 − z2) ⊗ v)TM1((z1 − z2) ⊗ v)

≤ 0 (positive semidefiniteness of M1)

which means that φv(z) is convex. Thus, B+(x, y) is PSD-convex.
The PSD-convexity of B−(x, y) can be shown in an analogous way. �
It remains to find a matrix decomposition of M . In what follows, we present three different ways to decompose the

matrix M ∈ S(m+n)p as a difference between two PSD-matrices. Notice that M is a real symmetric matrix and thus only has
real eigenvalues.

5.1.1. Decompose M via eigendecomposition
A (real symmetric) matrix is positive semidefinite if and only if all of its eigenvalues are non-negative. Although the

matrix M may have both non-negative and negative eigenvalues, we can “group” them respectively in PSD-matrices M1 and
M2 such that M = M1 − M2.

One way to do so is to use the eigendecomposition of M . That is, M = V T D V , where the orthogonal matrix V contains
the eigenvectors of M , and D is a diagonal matrix whose diagonal elements are the eigenvalues of M .

Let D+ be the matrix obtained by setting all negative elements of D to zero, and D− = D+ − D . Then,

M = V T D+V︸ ︷︷ ︸
M1

− V T D−V︸ ︷︷ ︸
M2

. (19)

It follows from construction that M1, M2 � 0, and therefore, by Theorem 7, we obtain a DC decomposition of B(x, y).

5.1.2. Decompose M via bounds on eigenvalues
The eigendecomposition-based DC decomposition is theoretically simple, yet does not benefit from the sparsity nature of

M: The matrix M =
(

0

T 0

)
∈ S(m+n)p in (17) is often highly sparse, which is potentially a useful feature in accelerating

many matrix operations. However, sparsity is of little value when all of the eigenvalues and eigenvectors are needed, which
typically takes time cubic in the matrix size [38]. In particular, the decomposed matrices M1 and M2 may not be as sparse
as M is, thus slowing down almost all the subsequent matrix manipulations.

The key observation here is that, to obtain a DC decomposition, one does not need to compute all the eigenvalues. In fact, it
suffices to find a bound on the eigenvalues: Let λu ∈ R+

0 be an upper-bound on all the eigenvalues of M (the symbol λ shall
not be confused with those used in optimization problems). We have

M = λu I︸︷︷︸
M1

− (λu I − M)︸ ︷︷ ︸
M2

. (20)

Here, M1 � 0 trivially holds as λu ≥ 0. The positive semidefiniteness of M2 = λu I − M can be shown by considering the
eigendecomposition of M:

M2 = λu I − V T D V = V T (λu I − D) V

where the diagonal matrix λu I − D contains the eigenvalues of M2. Since λu upper-bounds all the eigenvalues of M (diagonal
elements in D), λu I − D contains only non-negative values, and thus we conclude that M2 � 0.

In order to obtain the upper-bound λu , it suffices to compute only the largest eigenvalue of M , which can be done
substantially more efficient than conducting the full eigendecomposition, especially for sparse M [39, Chapter VI]. Moreover,
the decomposed matrices M1 and M2 given in (20) are guaranteed to be as sparse as M is.
12

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
We remark, however, that the derived matrices M1 and M2 in (20) have inevitably larger entries than those built from
eigendecomposition. In practice, larger entries in M2 may increase the linearization error (in the transformation to convex
sub-problems, cf. Section 5.2), thereby slowing down the convergence of the iterative DCP procedure.

Remark 7. Apart from using an upper-bound λu ≥ 0 on the eigenvalues of M , a DC decomposition can also be obtained by
using a lower bound λl ≤ 0 on the eigenvalues of M . In that case, we have M1 = M − λl I and M2 = −λl I .

5.1.3. Decompose M via SDP
The problem of decomposing the matrix M as a difference between two PSD-matrices can alternatively be modeled as

an SDP problem:

minimize
M2

tr (M2)

subject to M + M2 � 0 ,

M2 � 0 .

(21)

A feasible solution to (21) clearly induces a matrix decomposition (with M1 = M + M2) as required in Theorem 7.
The objective function (i.e., the trace of M2) in (21) intuitively measures the magnitude of the (undesired) “concave part”
−B−(x, y) in (18). As argued previously, minimizing such an objective may reduce the linearization error and thus expedite
the DCP procedure.6

Although it would seem to be more time-consuming to solve an SDP problem than to perform the eigendecomposition,
the specific SDP instance (21) can often be solved rather efficiently by exploiting the sparsity pattern of M , e.g., the chordal
sparsity [42]. Alternatively, one can improve the performance by imposing a certain sparsity structure (e.g., to be diagonal)
on M1 or M2. For instance, one possible formulation using diagonal matrix M1 = diag(c) is

minimize
c

tr (diag (c) − M)

subject to ci ≥ 0, i = 1,2, . . . , (m + n)p ,

diag(c) − M � 0

which can be further rewritten as a (sparse) LMI problem:

minimize
c

∑
i
ci

subject to ci ≥ 0, i = 1,2, . . . , (m + n)p ,∑
i
ci eT

i ei − M � 0

(22)

where ei denotes a row vector with 1 in its i-th column and 0’s elsewhere. When M admits a specific sparsity pattern,
the LMI problem (22) can be solved extremely efficiently (see, e.g., [43], for solving LMIs with thousands of variables in
minutes).

In a nutshell, the eigendecomposition-based method is theoretically simple, yet does not benefit from the sparsity na-
ture of M . Decomposing M via bounds on eigenvalues exploits the sparsity nature of M —thereby yielding considerably
faster matrix operations, but may slow down the convergence of the iterative DCP procedure. The SDP-based decomposition
may expedite the DCP procedure, but is theoretically more involved and stands out only when M admits specific sparsity
patterns. We will compare these different DC decomposition methods empirically in Section 7.

5.2. Reduction to LMIs

On top of a DC decomposition (cf. Theorem 7), we can now apply a standard iterative procedure in difference-of-convex
programming [27] to solve the BMIs.

The core idea of the procedure is to iteratively solve a series of convex sub-problems. More specifically, given a feasible
solution zk = (xk, yk) to the BMI optimization problem (16), the “concave part” −B−(x, y) in (18) is linearized around zk ,
thereby yielding a series of convex programs (k = 0, 1, . . .):

maximize
z = (x,y)

g(z) + 1

2
δ

∥∥∥z − zk
∥∥∥2

subject to B+(z) − B− (
zk

)
−DB− (

zk
)(

z − zk
)

� 0

(23)

6 A good DC decomposition should make the concave part (locally) “as affine as possible”. Such “affineness” can be measured by the Hessian matrix for
scalar-valued functions (see [40]). For matrix-valued functions, the Hessian is in fact a 4-th rank tensor, but its norm can still be bounded by the norm of
a certain matrix (cf. [41]). That matrix, in our case, is exactly the matrix M2.
13

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Algorithm 1: BMI-DC: solving BMIs based on DC decomposition.

input: A BMI optimization problem (16) with a strictly feasible initial solution z0.
output : A sequence of feasible solutions S = {

z0, . . . , zk
}

to the BMI optimization.
1 k ← 0; S ← {

z0
}

;
2 M ← reformulation of (16) as (17);
3 (M1, M2) ← matrix decomposition of M as in Theorem 7;
4 repeat
5 Construct the convex sub-problem (23) out of (M1, M2) linearized around zk;

6 zk+1 ← optimum of the program (23);

7 S ← S ∪ {
zk+1

}
; � S keeps track of visited points

8 k ← k + 1;

9 until
∥∥zk − zk−1

∥∥ < ε for a given tolerance ε ∈R+
0 ;

10 return S;

where DB−(z) : Rm+n → S p is the derivative of the matrix-valued function B− at z, i.e., a linear mapping from a vector
u ∈Rm+n to a matrix in S p :

DB−(z)(u) =̂
∑n+m

i=1
ui

∂B−

∂zi
(z) .

An extra regularization term 1
2 δ‖z − zk‖2 with δ < 0 is added in (23) to enforce that g(z) strictly increases after each

iteration until it stabilizes, which can be encoded as a second-order cone constraint and embedded in SDP solving.
Note that the linearized problem (23) is convex and therefore can be solved efficiently (see, e.g., [44]). Furthermore,

Theorem 3 can also be used to reformulate (23) as an LMI problem:

Theorem 8 (Reduction to LMIs). The quadratic matrix inequality (QMI) constraint

B+(z) − B− (
zk

)
−DB− (

zk
)(

z − zk
)

� 0

in (23) is equivalent to the LMI constraint (of the size (m + n + 1)p)(−I N(z ⊗ I)
(z ⊗ I)TNT −B− (

zk
) −DB− (

zk
) (

z − zk
) + �(z ⊗ I) + F

)
� 0

where N is the square root matrix of M1, i.e., M1 = NTN, and � = (
�1 �2

)
.

Proof. Note that the square root matrix N of M1 exists since M1 � 0.7 The claim then follows immediately by applying the
Schur complement in Theorem 3. �

Theorem 8 entails that the series of linearized convex sub-problems of the form (23) can be solved alternatively by
most off-the-shelf SDP solvers designated for discharging LMIs via polynomial-time algorithms [28], say the interior-point
methods. Furthermore, by taking the optimum of the k-th sub-problem to be the next linearization point zk+1, we obtain
an iterative procedure for solving general BMIs, as depicted in Algorithm 1.

Algorithm 1 falls into the DCP framework [27] and thus enjoys useful properties, e.g., soundness, termination and con-
vergence as follows.

Theorem 9 (Soundness). Every solution zi = (xi, yi) ∈ S with i = 0, . . . , k returned by Algorithm 1 is a feasible solution to the original
BMI problem (16).

Proof. We prove by induction on i. The base case holds as z0 is assumed to be a feasible solution to (16). For the induction
step, we show that zi+1 is a feasible solution to (16) if zi is a feasible solution to (16). Since zi+1 is a feasible solution
to (23) linearized at zi , it suffices to show that the feasible set of (23) is a subset (or, an under-approximation) of the
feasible set of (16).

Theorem 7 shows that B−(z) is PSD-convex, then by [27, Lemma 2.2 (b)], we have

B−(z) − B− (
zi

)
� DB− (

zi
)(

z − zi
)

. (24)

In the meantime, zi is a feasible solution to (23) and thus fulfills

7 In case we have M1 = V T D+V (with only non-negative eigenvalues in D+) from the eigendecomposition of M , the matrix N can be computed as
N = V T(D+)1/2 V , where (D+)1/2 is the diagonal matrix whose diagonal elements are square roots of those in D+ . For the other decomposition methods
as presented in Section 5.1, N can be obtained via Cholesky decomposition of M1.
14

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
B+(z) − B− (
zi

)
−DB− (

zi
)(

z − zi
)

� 0 . (25)

Combining (24) and (25), we have B(x, y) = B+(z) − B−(z) � 0 which is exactly the BMI constraint of (16). This com-
pletes the proof. �

The result below states termination and convergence of Algorithm 1 in terms of KKT points of (16), i.e., solutions fulfilling
the KKT conditions [32] of (16). The KKT conditions, short for Karush-Kuhn-Tucker conditions, are used to determine the
optimality of a solution to a constrained nonlinear optimization problem. Addressing these conditions in detail falls outside
the scope of this paper.

Theorem 10 (Termination and convergence). If (16) has finitely many KKT points, then (1) for ε ∈R+ , Algorithm 1 terminates; (2) for
ε = 0, Algorithm 1 visits an infinite sequence of solutions converging to a KKT point.

Proof. Let S̄ = {zi}i∈N be the infinite sequence of visited points for ε = 0.
We first show that (2) implies (1). Assume that (2) holds, i.e., S̄ converges (to a KKT point of (16)), then by Cauchy’s

criterion for convergence, we have ∀ε ∈R+. ∃k ∈N+ : ‖zk − zk−1‖ < ε (with zk, zk−1 ∈ S̄). Algorithm 1 thus terminates.
It then remains to show that S̄ converges to a KKT point of (16) if the set of KKT points of (16) is finite. This is in

fact a straightforward corollary of [27, Theorem 4.3], by noticing that the assumptions thereof can be readily verified. For
simplicity, we highlight the validity of only a few of these assumptions: Since z0 in Algorithm 1 is a strictly feasible solution
to (16), the relative interior of the feasible set of (16) is non-empty and thus Assumption A1 in [27] holds; Our Assumption 1
on the boundedness of the search space ensures that g(z) in (16) is bounded from above over a bounded feasible set, and
therefore the boundedness assumptions in [27, Theorem 4.3] hold. �

We remark that, under some sufficient KKT conditions and regularity conditions [32], a KKT point suffices as a local
optimum. In this case, the infinite sequence {zi}i∈N of points visited by Algorithm 1 (for ε = 0) converges to a local
optimum of (16).

It is also worth noting that, in [45], the authors presented a DC-based approach to synthesizing parameters in parametric
Markov decision processes, which integrates (probabilistic) model checking into the DCP procedure, thereby yielding possibly
earlier termination and numerically more stable results in practice. It is our future interest to investigate a similar idea in
the context of barrier-certificate synthesis for hybrid systems.

5.3. Complexity of Algorithm 1

We discuss ingredients for establishing the time complexity of Algorithm 1, which concerns (1) computing the DC de-
composition; (2) performing a single iteration; and (3) conducting a number of iterations (up to a desired precision).

Recall that the matrix M to be decomposed (cf. Theorem 7) is of the size (m + n)p, where m and n are the number of
parameters in the template barrier certificate (i.e., size of a) and other template polynomials (i.e., size of s), respectively;
p = (r+d

r

)
bounds the size of the basis vector b (where r is the system dimension and the SOS polynomial is of degree at

most 2d). All the three DC decomposition methods in Section 5.1 can be done in polynomial time, e.g., O ((m + n)3 p3) for
the eigendecomposition of M [38].

Performing a single iteration in Algorithm 1 amounts to solving an LMI instance with k + 2 constraints (derived from
Definition 4) where k is the order of Lie derivatives considered (bounded by NB, f). Computing NB, f is non-elementary
in theory (described in terms of the fast-growing hierarchy [46] or an explicit Ackermannian function [47,48]), yet it is
relatively small in practice and can be obtained offline. Each LMI constraint involves matrices in S(m+n+1)p (see Theorem 8),
which can be solved in O (((m + n)p)6.5) [49]. Note that, in practice, the computation time is often significantly less than
this theoretical bound especially when the matrices in the LMI instance admit specific sparsity patterns (see, e.g., [43], for
solving LMIs with thousands of variables in minutes).

Bounding or even estimating the number of iterations required to achieve a desired precision is non-trivial: one needs
to determine the rate of convergence of the sequence of solutions produced by the iterative procedure. Since Algorithm 1
essentially builds first-order approximations of the original BMI optimization problem, one may reasonably assume that it
is at least linearly convergent. However, to the best of our knowledge, proving linear convergence for general difference-of-
convex algorithms remains an open problem [50], albeit with some known results on typical subclasses [51]. In practice,
nonetheless, difference-of-convex algorithms often converge to a local optimum within a few iterations, as can be observed
in our experiments in Section 7.

5.4. Finding the initial solution

The iterative procedure in Algorithm 1 starts with a fed-by-oracle strictly feasible initial solution z0 to the BMI prob-
lem (16). Finding such an initial solution, however, is non-trivial in general due to the non-convexity of (16). We argue
though, that a strictly feasible initial solution can be obtained for the BMI problem of the form (15) induced by the barrier-
certificate synthesis problem.
15

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Recall that in the BMI problem (15), bilinearity arises from the multiplication of B(a, x) with some unknown multiplier
polynomials parameterized by s. One way to reduce the BMI constraints to LMIs is to fix every multiplier polynomial to be
a non-negative constant, thereby yielding a linear program:

maximize
λ,a

λ

subject to Fι(a, s)
∣∣
s=(cι,0,...,0)

+ λI � 0, ι = 1,2, . . . , l
(26)

where s in Fι(a, s) is substituted by (cι, 0, . . . , 0) with cι ∈ R+
0 , which encodes a non-negative constant multiplier polyno-

mial. Observe that no s-variable is involved in (26) and the constraints therein are linear in a.
Evidently, a strictly feasible solution (λ, a) to (26) induces a strictly feasible solution (λ, a, (cι, 0, . . . , 0)) to (15) as well.

Moreover, we have

Lemma 2. The LMI program (26) always has a strictly feasible solution.

Proof. Let �a =̂ min1≤ι≤l −ρ
(
Fι(a, s)

∣∣
s=(cι,0,...,0)

)
, where ρ(A) denotes the spectral radius of matrix A, i.e., the largest

absolute value of the eigenvalues of A. It follows that program (26) has a strictly feasible solution if λ < �a .
Furthermore, under Assumption 1 on the boundedness of parameter a ∈ Ca , �a can be shown to be bounded by the

well-known Gershgorin circle theorem.
Therefore, by taking an interior point of Ca as ã, and λ̃ = �ã − ε for some ε ∈R+ , we obtain a strictly feasible solution

(λ̃, ̃a) to program (26). �
As a consequence, a strictly feasible solution to the BMI problem (15) can be obtained by solving the LMI problem (26). In

fact, when considering Lie derivatives only up to the first order, solving (the feasibility counterpart of) (26) is exactly
the procedure to synthesize either an exponential barrier certificate [14] (with cι ∈ R+) or a convex barrier certificate [9]
(with cι = 0). Algorithm 1 therefore subsumes existing synthesis techniques in the sense that any valid barrier certificate
synthesized by methods in [14,9] can also be discovered by Algorithm 1. Moreover, an alternative way to reduce the BMI
constraints to LMIs is to fix the multipliers to be some given non-trivial (SOS) polynomials [16].

Remark 8. Different choices of the multiplier constants cι in (26) may lead to different initial solutions fed to Algorithm 1,
thereby considerably different numbers of iterations until termination. In practice, techniques like randomization are worth
exploring when choosing these multiplier constants.

5.5. Numerical errors in SDP solving and potential solutions

Most of the existing off-the-shelf SDP solvers are based on numerical computations. The underlying numerical errors
caused by, e.g., floating-point computations, may hence lead to unsound results in SDP-based verification or synthesis. To
circumvent this issue, three different types of solution have been presented in the literature:

• Validated SDP solving: In [52], Roux et al. presented verified SDPs, where the basic idea is to compute a suitable bound
ε ∈ R+ and replace all matrix-inequality constraints of the form A � 0 by the corresponding ε-strengthened versions
A + ε I � 0. In [53], the authors further developed this idea to guarantee the soundness of SDP-based synthesis of
nonlinear Craig interpolants.

• Posterior check by symbolic methods: The soundness of numerical SDP-based approaches can be retrieved by perform-
ing a posterior check via symbolic methods, e.g., quantifier elimination [54] and SMT solving [55].

• Exact SDP solving: Henrion et al. presented in [56] an exact algorithm based on symbolic homotopy for solving SDP
problems. This algorithm, as noted by the authors, can solve SDP instances only of small sizes.

In this article, we exploit the second approach to perform a posterior verification of the synthesized candidate barrier
certificates via both the quantifier-elimination procedure in Wolfram Mathematica and the SMT solver Z3 [57].

6. Incorporating in a branch-and-bound framework

The aforementioned iterative procedure on solving a series of convex optimizations converges only to a local optimum
of the BMI problem (15) (or more generally, (16)). This means that, in some cases, it may miss the global optimum that
induces a non-negative λ∗ . We present in this section a solution to this problem by incorporating the iterative procedure
into a branch-and-bound framework that searches for the global optimum in a divide-and-conquer fashion, as is a common
technique in non-convex optimizations.
16

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Algorithm 2: Branch-and-Bound: searching for a valid parameter ā.

input: A BMI optimization problem of the form (15) with Ca = {a | ‖a‖2 ≤ La}.
output : A valid parameter ā, or otherwise ⊥ indicating a failure.

1 if La < η then return ⊥; � abort on fine-enough partitions (η ∈R+)

2 λ̂ ← an upper-bound on the objective value λ of (15) over (Ca, Cs);

3 if λ̂ < 0 then � skip branches inducing only negative objective values
4 return ⊥ � if Theorem 6 is used
5 ‖ goto Line 12; � if Theorem 5 is used

/* sample-and-check (Line 6−7) is not necessary if Theorem 6 is used */
6 ā ← a randomly-sampled point in Ca;
7 if ā is valid then return ā; � check validity (inductive invariance)

8 if proja(Sglb) ∩ Ca = ∅ then � Sglb contains a global set of visited points
9 S ← apply BMI-DC in Algorithm 1 to (15) with initial solution in (Ca, Cs);

10 Sglb ← Sglb ∪ S;
/* checking validity is not necessary if Theorem 5 is used */

11 if a valid parameter ā ∈ proja(S) is found then return ā;

12 (C1
a , C2

a) ← bisect(Ca); � partition the parameter space

13 ā ← Branch-and-Bound(C1
a);

14 if ā �= ⊥ then return ā;
15 else return Branch-and-Bound(C2

a);

6.1. The branch-and-bound algorithm

The basic idea is as follows. We first try to solve the BMI problem (15) by Algorithm 1 over the compact parameter space
(Ca, Cs). If a valid solution, (i.e., a solution that contains a valid parameter ā ∈ Ca such that B(ā, x) is an invariant barrier
certificate) is found, then the corresponding barrier certificate can be obtained. Otherwise, we keep bisecting Ca and apply
Algorithm 1 over each bisection (note that the validity of ā ∈ Ca does not depend on s, thus we do not partition Cs). The
procedure, as depicted in Algorithm 2 in a recursive manner, terminates when a valid parameter is found or the partition is
fine enough.

Algorithm 2 takes as input a BMI problem of the form (15) that encodes either the sufficient condition in Theorem 5
or the necessary condition in Theorem 6 for invariant barrier certificates. In the former case, a sample-and-check process
(Line 6–7) is necessary to attain (weak) completeness (see Theorem 11). The conditional statement in Line 8 rules out
parameter (sub-)spaces that have already been explored, which is the case when the projection of some visited point in Sglb
(a global set that keeps track of visited points by Algorithm 1, initialized as ∅) onto a is in the current parameter space.

To further improve the performance, Algorithm 2 is complemented by an operation (Line 2–5) that prunes branches
inducing only negative objective values. This is witnessed by a negative upper-bound on the objective value of (15) over
the current parameter space. We defer the computation of such an upper-bound to Section 6.2. When Theorem 5 is used to
form (15), however, the partition of the parameter space (Line 12–15) is still necessary to attain completeness, as a negative
objective value of (15) encoding the sufficient condition for invariant barrier certificate may still induce a valid parameter.
In practice, one may choose to preferentially explore (partition) branches with larger λ̂.

The following theorem claims a weak completeness result: our method guarantees to find a barrier certificate when
there exists an inductive invariant (in the form of a given template) that suffices to certify safety of the system.

Theorem 11 (Weak completeness). Algorithm 2 returns a valid parameter ā ∈ Ca , if (1) the partition granularity is fine enough (i.e.,
small enough η ∈ R+), (2) the degrees of multiplier polynomials and SOS polynomials used to form (15) are large enough, and (3)
there exists, for the given template B(a, x), a strictly valid parameter â ∈ Ca (i.e., any parameter in some neighborhood of â is valid).

Proof. When the assumptions (1)–(3) hold, Algorithm 2 will eventually visit a branch wherein any parameter is valid
(in case a valid parameter has not been found yet). If the necessary condition in Theorem 6 is used to form the BMI
problem (15), Line 11 ensures to return a valid parameter ā ∈ Ca; Otherwise if the BMI problem (15) encodes the sufficient
condition in Theorem 5 which strengthens the invariant barrier-certificate condition in Definition 4, a valid parameter ā may
not induce a non-negative objective value of (15). In this case, however, any parameter sampled and returned by Line 6–7
in the branch is valid, as it contains only valid parameters. �
6.2. Computing an upper-bound λ̂ by convex relaxation

The bisection operation in Algorithm 2 incurs —in the worst case— an exponential blow-up in the number of branches.
In practice, however, one can prune branches inducing only negative objective values, which can be evidenced by a negative
upper-bound λ̂ on the objective value of (15) over the current parameter space (Line 2–5 in Algorithm 2). Such an upper-
bound can be computed by over-approximating the BMI problem (in contrast to under-approximations pursued by Algorithm 1)
via, e.g., convex relaxation [58]. Moreover, the efficiency of Algorithm 2 greatly depends on the tightness of the upper-bound.
17

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
In this subsection, we show how to obtain a preferably tight upper-bound (on the objective value) of a BMI program by
a classical semidefinite relaxation. Interested readers may refer to [58] for more established results on this topic.

To better illustrate the idea, we stick to the BMI optimization problem of the general form (16). As the non-convexity
comes from the quadratic terms xi yi Fi, j , a straightforward convex relaxation is

maximize
z=(x,y),

Z=(Z(i, j))m×n

g(z)

subject to F +
m∑

i=1

xi Hi +
n∑

j=1

y j G j +
m∑

i=1

n∑
j=1

Z(i, j)Fi, j � 0 .

(27)

That is, we replace each quadratic term xi yi with a new variable Z(i, j), which constitutes a matrix Z = (Z(i, j))m×n of
fresh variables. The resulting constraint in (27) becomes an LMI that can be solved by SDP.

Notice that the convex program (27) may lead to excessively coarse over-approximations, as the relation Z(i, j) = xi y j

is completely abstracted away in the relaxation. However, by adding extra convex constraints, one can obtain better over-
approximations of the feasible set and thereby tighter upper-bounds (despite the fact that finitely many convex constraints
can never precisely capture a non-convex constraint): The classical SDP relaxation replaces the non-convex constraints
Z(i, j) = xi y j , with i = 1, . . . , m; j = 1, . . . , n by(

0 Z
Z T 0

)
− zTz � 0 . (28)

Schur complement in Theorem 3 implies that constraint (28) is equivalent to the LMI constraint⎛
⎝ 1 x y

xT 0 Z
yT Z T 0

⎞
⎠ � 0 . (29)

By adding the LMI (29) as an additional constraint to (27) and solving the consequent LMI optimization problem, one obtains
an upper-bound (on the objective value) of the BMI program (16).

7. Experimental results

We have carried out a prototypical implementation8 of our synthesis techniques in Wolfram Mathematica, which was
selected due to its built-in primitives for SDP, polynomial algebra and matrix operations. Given a safety verification problem
as input, our implementation works toward discovering an invariant barrier certificate (in the form of a given template) that
witnesses unbounded-time safety of the system. A collection of benchmark examples (detailed in Appendix B) has been
evaluated on a 2.10 GHz Xeon processor with 376 GB RAM running 64-bit CentOS Linux 7.

Table 1 reports the empirical results. BMI-DC concerns our locally-convergent Algorithm 1 for solving BMIs (encoding
the sufficient condition in Theorem 5) via the eigendecomposition-based DC decomposition (a comparison to other decom-
position methods will be presented later). We compare our approach with PENLAB [69] —an off-the-shelf solver in Matlab

for directly discharging the same BMI problems (with no guarantee on convergence)— and SOSTOOLS [70] —for solving
LMIs derived from Prajna and Jadbabaie’s original barrier-certificate condition [9]. The comparison is performed under the
same problem configurations.9 Due to numerical errors caused by floating-point computations and the fact that reaching
the local/global optimum does not necessarily yield a valid barrier certificate, we additionally perform a posterior check, via
both the quantifier-elimination procedure in Mathematica and the SMT solver Z3 [57], of the synthesized candidate barrier
certificate per Definition 4.

Table 1 shows that BMI-DC suffices to synthesize valid barrier certificates in most of the examples within a reasonable
number of iterations (i.e., the number of convex sub-problems solved by SDP). This however does not cover all the cases:
(1) For the focus example, the solution is close enough to a local optimum (after 100 iterations) but yields still an invalid
barrier certificate. This problem can be solved (if there exists an invariant barrier certificate as specified) by enforcing
the branch-and-bound framework as presented in Section 6; (2) For examples sys-bio1, sys-bio2, and quadcopter, neither
quantifier elimination in Mathematica nor nonlinear reasoning in Z3 can conclude the validity of the synthesized barrier
certificates within 15 minutes due to the relatively high system dimensionality (thus marked as ?; the same applies to
PENLAB and SOSTOOLS). The validity for all the other examples is either verified (✓) or refuted (✗) within 10 seconds.
The phase portraits of a selected set of examples and the synthesized invariant barrier certificates are depicted in Fig. 4.

8 Available at https://github .com /Chenms404 /BMI -DC.
9 For PENLAB and SOSTOOLS, we use their optimized, built-in criteria for termination and finding initial solutions.
18

https://github.com/Chenms404/BMI-DC

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Table 1
Empirical results on benchmark examples (time in seconds).

Example name nsys dflow dBC
BMI-DC PENLAB SOSTOOLS

#iter. time validity time validity time validity

overview [10] 2 2 1 2 0.03 ✓ 0.31 ✓ 0.07 ✓

contrived 2 1 2 0 0.01 ✓ 0.48 ✓ 0.75 ✓

lie-der [17] 2 2 1 0 0.01 ✓ 0.22 ✓ 0.04 ✓

lorenz [10] 3 2 2 8 2.37 ✓ 75.11 ✗ 1.47 ✗

lti-stable [59] 2 1 2 0 0.01 ✓ 0.23 ✓ 0.14 ✓

lotka-volterra [60] 3 2 1 3 0.07 ✓ 0.36 ✓ 0.21 ✓

clock [61] 2 3 1 0 0.01 ✓ 0.88 ✗ 0.18 ✗

lyapunov [62] 3 3 2 4 1.25 ✓ 56.98 ✗ 0.35 ✓

arch1 [63] 2 5 2 0 0.01 ✓ 33.76 ✗ 0.31 ✓

arch2 [63] 2 2 2 5 0.37 ✓ 0.38 ✗ 0.17 ✗

arch3 [63] 2 3 2 1 0.07 ✓ 0.54 ✓ 0.18 ✓

arch4 [63] 2 2 1 2 0.09 ✓ 0.49 ✗ 0.06 ✓

barr-cert1 [9] 2 3 2 12 0.85 ✓ 2.53 ✗ 0.09 ✗

barr-cert2 [10] 2 2 2 6 1.57 ✓ 1.16 ✗ 0.15 ✓

barr-cert3 [33] 2 2 1 0 0.01 ✓ 0.20 ✓ 0.11 ✗

barr-cert4 [33] 2 3 2 13 0.96 ✓ 0.89 ✗ 0.23 ✗

fitzhugh-nagumo [64] 2 3 2 2 0.16 ✓ 1.24 ✓ 0.25 ✗

stabilization [65] 3 2 2 9 2.88 ✓ 55.22 ✓ 0.11 ✓

lie-high-order 2 1 2 32 4.12 ✓ 1.56 ✗ 0.25 ✗

raychaudhuri [66] 4 2 2 34 9.51 ✓ 33.64 ✗ 0.14 ✗

focus [67] 2 1 4 100 54.89 ✗ 0.95 ✗ 0.48 ✗

sys-bio1 [68] 7 2 2 2 73.22 ? 101.95 ? 1.35 ?
sys-bio2 [68] 9 2 1 1 1.03 ? 15.54 ? 0.16 ?
quadcopter [59] 12 1 1 0 0.03 ? 65.42 ? 0.36 ?

nsys: system dimension; dflow: maximal flow-field degree; dBC: degree of the template barrier certificate.
#iter.: number of DCP iterations. 0 means that the initial solution (cf. Section 5.4) is valid.
validity: the synthesized barrier certificate is valid (✓), invalid (✗), or inconclusive within 15 minutes (?, beyond the capability of quantifier elimination in
Mathematica and nonlinear reasoning in Z3).
time: CPU-time, excluding that for casting the BMIs/LMIs. Boldface marks the winner among ✓’s.

Causes of invalid results (✗) by PENLAB and SOSTOOLS Numerical issues are a common (yet minor) cause of invalid
results produced by all the tools in Table 1. Whereas the major causes we observed in PENLAB and SOSTOOLS are (1)
PENLAB employs non-convex optimization techniques that yield no guarantee on the convergence to local optimums; and
(2) SOSTOOLS solves Prajna and Jadbabaie’s original, convex barrier-certificate condition [9] which is too conservative to
recognize the otherwise valid barrier certificates. In fact, most of the invalid results returned by SOSTOOLS have a rather
low “feasibility ratio” (reported by the underlying SDP solver SeDuMi [71]) indicating that SOSTOOLS fails to find barrier
certificates adhering to the convex barrier-certificate condition.

Comparison to SOSTOOLS and PENLAB10 The comparison in Table 1 suggests that (1) Our invariant barrier-certificate condi-
tion recognizes more barrier certificates than the original (more conservative) condition as implemented in SOSTOOLS. In particular,
the lie-high-order example does admit an inductive invariant in the form of the given template, but none of the existing
barrier-certificate conditions [15,33,25] —concerning Lie derivatives only up to the first order— recognizes it, since we have
L1

f B(x) = 0 for some x on the boundary of B and hence it requires to exploit the second-order Lie derivative11; (2) Our
DCP-based synthesis algorithm finds more barrier certificates in less time than directly solving the BMI problems via non-convex opti-
mization techniques as implemented in PENLAB.

Note that, in our setting, the volumes of the invariant sets identified by different approaches are not of primal concern:
our goal is to find an invariant that suffices to prove safety of the system instead of a set that “best” over-/under-
approximates the reachable set (cf. [72,73]). However, it would be an interesting future step to investigate the connection
between, e.g., robustness, and the volumes of the synthesized invariant sets à la [74,75].

We remark that symbolic, monolithic methods based on, e.g., quantifier elimination [17] or nonlinear reasoning in SMT,
can hardly deal with any of the examples listed in Table 1 due to the prohibitively high computation complexity. Moreover,
it would be desirable to pursue a comparison with the augmented Lagrangian method for solving BMIs as proposed in [25],
which unfortunately is not yet possible due to the unavailability of the implementation thereof. We will discuss crucial
differences to [25] in Section 8.

10 We remark that, even though we perform the comparison under the same problem configurations, it is arguably not a fair comparison in terms of the
computation time, as the tools are implemented in different platforms (e.g., Mathematica, Matlab) and rely on different SDP solvers.
11 In fact, we have NB, f = 2 for the lie-high-order example. For all the other examples in Table 1, we either have NB, f = 1 or apply the strengthened

consecution condition as described in Remark 5 with R = 1 < NB, f for efficient synthesis.
19

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Fig. 4. Phase portraits of a selected set of examples with the synthesized invariant barrier certificates. The arrows indicate the vector field (hidden in
3D-graphics for a clear presentation) and the solid curves are randomly sampled trajectories.

Comparison between different DC decompositions Fig. 5 depicts a comparison of a naive implementation of the three
different DC decomposition methods presented in Section 5.1. We observe that, in general, (1) the method based on largest
eigenvalues enables faster matrix decompositions, but needs more iterations to achieve the desired precisions and yields
valid barrier certificates only for 13 out of 24 benchmark examples; (2) the SDP-based method needs a mild amount of
iterations (yielding 14/24 valid barrier certificates), but slows down the matrix decompositions (potentially due to the lack
of specific sparsity patterns); and (3) the eigendecomposition-based method leads to less number of iterations (yielding
20/24 valid barrier certificates) within a reasonable amount of decomposition time. In summary, there is no clear winner
amongst these DC decomposition methods and the implementation can be improved by carefully exploiting the underlying
sparsity patterns of the matrices.

8. Related work

As surveyed in [2], the research community has, over the past three decades, extensively addressed the automatic verifi-
cation of safety-critical hybrid systems. The almost universal undecidability of the unbounded-time reachability problem [1],
however, confines the sound key-press routines to either semi-decision procedures or approximation schemes, most of
which address bounded-time verification by, e.g., computing the finite-time image of a set of initial states.
20

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Fig. 5. Comparison of the three different DC decomposition methods (see Section 5.1) in terms of the decomposition time and the number of DCP iterations
induced by the decomposition.

Invariant generation [9,17], amongst others, is a well-established approximation scheme that provides a reliable witness
for safety (or equivalently, unreachability) of dynamical systems over an infinite time horizon. Invariants can be constructed
in various forms, e.g., barrier certificates [9,12] and differential invariants [30,17]. With a priori specified templates, the
invariant synthesis problem can be reduced to numerical optimizations or constraint solving, as in, e.g., [76–79].

Most pertinently, Prajna and Jadbabaie proposed in their seminal work [9] a concept coined barrier certificate to encode
invariants. To enable efficient synthesis using semidefinite programming, the barrier-certificate condition in [9] strengthens
the general condition encoding inductive invariance. Since then, significant efforts have been investigated in developing
more relaxed (i.e., weaker) forms of barrier-certificate condition that still admit efficient synthesis, thereby leading to,
e.g., exponential-type barrier certificates [14], Darboux-type barrier certificates [16], general barrier certificates [13] and
vector barrier certificates [12]. Similar barrier-certificate conditions have been explored to verify systems that address con-
trol inputs [80,81], disturbances [47], and stochastic dynamics [82,83]. To attain efficient synthesis, these barrier-certificate
conditions share a common property on convexity. That is, if for some a1, a2 ∈ Rm , B(a1, x) and B(a2, x) both satisfy the
barrier-certificate condition, then for any 0 < μ < 1, B(μa1 + (1 −μ)a2, x) must also satisfy the barrier-certificate condition.

However, neither the semantic barrier-certificate condition (9) encoding the general principle of barrier certifi-
cates [12,13] nor the inductive invariant condition (8) is convex. This means, when resorting to convex barrier-certificate
conditions, one may miss some potential barrier certificates that suffice as inductive invariants witnessing safety. Therefore,
non-convex conditions were suggested [15], for which the synthesis problem can be reduced to BMI problems solvable
via customized schemes, e.g., the augmented Lagrangian method [25] and the alternating minimization algorithm [33]. Our
synthesis techniques also exploit a BMI reduction, with three crucial differences: (1) our invariant barrier-certificate con-
dition is equivalent to the inductive invariant condition in the sense of Theorem 4, and thus is less conservative than all
the aforementioned conditions which consider Lie derivatives only up to the first order; (2) our DCP-based techniques for
solving BMIs naturally inherit appealing results on convergence and (weak) completeness, which are not (and can hardly be)
provided by the approaches in [15,25,33]; (3) our DCP-based iterative procedure visits only feasible solutions to the original
BMI problem, and hence whenever a solution that induces a non-negative objective value is found, we can safely terminate
the algorithm and claim a feasible solution to the original BMI problem, which may yield a valid barrier certificate. This is
not the case for the approaches in [15,25,33].

There are recent efforts in synthesizing barrier certificates via machine learning techniques. Instead of choosing a (poly-
nomial) template and determining the unknown parameters thereof, Zhao et al. [84] proposes to learn a neural network
—using generated samples from the target system— as a candidate barrier certificate and do posterior verification via, e.g.,
SMT or interval analysis. This idea has been further incorporated in a counter-example guided inductive synthesis (CEGIS)
framework in [85,86]. Neural networks in these approaches act as implicit template barrier certificates (with a-priori fixed
network structures and activation functions whereas the unknown parameters are the weights to be learnt) which can rec-
ognize more complex barrier certificates beyond polynomials. Moreover, applying non-convex barrier-certificate conditions
in synthesis does not bring extra overheads to these learning-based approaches. On the contrary, these approaches cannot
guarantee to find a barrier certificate even if there exists one (recognizable by the neural network). Consequently, when
the verification fails, one can only resort to supplying the synthesizer with more samples (or heuristically fine-tuning the
network and/or the loss function) but no conclusion about the existence of barrier certificates can be drawn.

Beyond barrier certificates, Wang and Rajamani [36] investigated the feasibility problem of general BMI problems with
an application to multi-objective nonlinear observer design. The technique of eigendecomposition was also used therein to
21

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Fig. 6. An illustration of how Lie derivatives capture the tendency of trajectories in terms of a polynomial function B(x). ζ : the system trajectory passing
through (−1, 1); v: the evolution direction per the vector field at (−1, 1); u: the gradient of B(x) at (−1, 1).

conduct the DC decomposition. The decomposed concave part, however, is simply ignored and no iterative procedure that
exhibits convergence to a local optimum can be provided.

The idea of augmenting a locally-convergent algorithm with a branch-and-bound framework to find the global optimum
has been exploited in the realm of optimization [87] and control [88]. In contrast, our method is designed for the specific
problem of barrier-certificate synthesis, and hence our branch-and-bound algorithm concerns only the parameter space of
a, i.e., coefficients of the template barrier certificate.

Finally, we refer interested readers to other approaches to solving BMI problems, e.g., rank minimization [89–91], sequen-
tial SDP [92,93], as well as methods committed to general non-convex optimizations, e.g., interior point trust-region [94–96],
successive linearization [97] and primal-dual interior point [98].

9. Conclusion

Barrier certificates are a powerful tool to prove time-unbounded safety of hybrid systems. We have presented a new
condition on barrier certificates —the invariant barrier-certificate condition, which has been shown as the weakest possible
condition on barrier certificates to attain inductive invariance. We showed that our invariant barrier-certificate condition
can be reformulated as an optimization problem subject to bilinear matrix inequalities, which can be solved by our locally-
convergent algorithm based on difference-of-convex programming. By incorporating this algorithm into a branch-and-bound
framework, we obtained a weak completeness result. Experiments on benchmark examples suggested that our invariant
barrier-certificate condition recognizes more barrier certificates than existing conditions, and that our DCP-based algorithm
is more efficient than directly solving the BMIs via off-the-shelf solvers.

We stress that our techniques for solving BMIs are of a general nature rather than being confined to barrier-certificate
synthesis. Interesting future directions include to extend our method to other synthesis problems, e.g., discovering invariants
and/or termination proofs of deterministic/probabilistic programs.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Hengjun Zhao for the fruitful discussion on differential dynamics requiring high-order
Lie derivatives.

Appendix A. Lie derivatives and the trajectory tendency

Example 2 (Lie derivatives [17]). Let B(x) = x1 + x2
2. Consider the vector field f = (−x1, x2) as depicted in Fig. 6a. By Def-

inition 1, we have L0
f B(x) = x1 + x2

2 and L1
f B(x) = −x1 + 2x2

2. We exemplify with the point x = (−1, 1) on the parabola
B(x) = x1 + x2

2 that L1
f B

∣∣
(−1,1)

= 3 > 0 reveals the fact that the system trajectory ζ passing through (−1, 1) will escape
from the region B(x) ≤ 0. In Fig. 6a, the vector v = (1, 1) points to the evolution direction per f = (−x1, x2), and the vector
22

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
u = ∂
∂x B

∣∣
(−1,1)

= (1, 2) denotes the gradient of B(x) at (−1, 1). These two vectors together assert that the trajectory ζ will
enter the region B(x) > 0 immediately after passing through (−1, 1) since the angle formed by u and v is less than π/2,
that is, the first-order Lie derivative L1

f B
∣∣
(−1,1)

= 3 is positive. Dually, a negative first-order Lie derivative will witness the
crossings of a trajectory from the region B(x) > 0 to the region B(x) ≤ 0.

However, if the angle between the evolution direction v and the gradient u is π/2 or the gradient is a zero vector,
then it is impossible to read off the trajectory tendency via the consequent zero first-order Lie derivative. In this case, we
resort to non-zero higher-order Lie derivatives: Consider another vector field f ′ = (−2x2, x2

1) as depicted in Fig. 6b with
the same function B(x). We have L0

f ′ B(x) = x1 + x2
2 and L1

f ′ B(x) = 2x2
1x2 − 2x2, where L1

f ′ B
∣∣
(−1,1)

= 0 as the evolution
direction v is perpendicular to the gradient u. However, since the second-order Lie derivative L2

f ′ B(x) = 2x4
1 − 2x2

1 − 8x1x2
2

at (−1, 1) is positive, we can conclude that the trajectory passing through (−1, 1) will enter the region B(x) > 0. Notice
that, to determine the trajectory tendency, we need to consider Lie derivatives only up to a certain order (as asserted by
Theorem 1), e.g., 2 in this example. �
Appendix B. Benchmark examples

Example 3 (contrived). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + x2
−x2

)
.

• X0 = {x ∈R2 | (x1 − 1.125)2 + (x2 − 0.625)2 − 0.0125 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 0.875)2 + (x2 − 0.125)2 − 0.0125 ≤ 0}.
• D = {x ∈R2 | 0 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 4 (lie-der [17]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−2x2

x2
1

)
.

• X0 = {x ∈R2 | (x1 + 1)2 + (x2 − 0.5)2 − 0.16 ≤ 0}.
• Xu = {x ∈R2 | (x1 + 1)2 + (x2 + 0.5)2 − 0.16 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 1.

Example 5 (lorenz [10]). The vector flow field is:

ẋ =
⎛
⎝ ẋ1

ẋ2
ẋ3

⎞
⎠ =

⎛
⎝ 10.0(−x1 + x2)

−x2 + x1(28.0 − x3)

x1x2 − 8
3 x3

⎞
⎠ .

• X0 = {x ∈R3 | (x1 + 14.5)2 + (x2 + 14.5)2 + (x3 − 12.5)2 − 0.25 ≤ 0}.
• Xu = {x ∈R3 | (x1 + 16.5)2 + (x2 + 14.5)2 + (x3 − 2.5)2 − 0.25 ≤ 0}.
• D = {x ∈R3 | −20 ≤ x1, x2, x3 ≤ 20}.
• B(a, x) includes all monomials up to degree 2.

Example 6 (lti-stable [59]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−0.1x1 − 10x2
4x1 − 2x2

)
.

• X0 = {x ∈R2 | (x1 − 1.125)2 + (x2 − 0.625)2 − 0.1252 ≤ 0}.
• Xu = {x ∈R2 | (x1 + 1.5)2 + (x2 + 1.25)2 − 0.252 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 7 (lotka-volterra [60]). The vector flow field is:

ẋ =
⎛
⎝ ẋ1

ẋ2
ẋ

⎞
⎠ =

⎛
⎝ x1(1 − x3)

x2(1 − 2x3)

x (−1 + x + x)

⎞
⎠ .
3 3 1 2

23

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
• X0 = {x ∈R3 | (x1 − 1)2 + (x2 − 1)2 + x2
3 − 0.64 ≤ 0}.

• Xu = {x ∈R3 | x2
1 + (x2 + 1)2 − 0.25 ≤ 0}.

• D = {x ∈R3 | −2 ≤ x1, x2, x3 ≤ 2}.
• B(a, x) = ax2.

Example 8 (clock [61]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + 2x2
1x2

−x2

)
.

• X0 = {x ∈R2 | (8x1 − 33)2 + x2
2 − 1 ≤ 0}.

• Xu = {x ∈R2 | (x1 − 1.5)2 + (x2 − 2.5)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −1.5 ≤ x1, x2 ≤ 5.5}.
• B(a, x) includes all monomials up to degree 1.

Example 9 (lyapunov [62]). The vector flow field is:

ẋ =
⎛
⎝ ẋ1

ẋ2
ẋ3

⎞
⎠ =

⎛
⎝ −x2

−x3

−x1 − 2x2 − x3 + x3
1

⎞
⎠ .

• X0 = {x ∈R3 | (x1 − 0.25)2 + (x2 − 0.25)2 + (x3 − 0.25)2 − 0.25 ≤ 0}.
• Xu = {x ∈R3 | (x1 − 1.5)2 + (x2 + 1.5)2 + (x3 + 1.5)2 − 0.25 ≤ 0}.
• D = {x ∈R3 | −2 ≤ x1, x2, x3 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 10 (arch1 [63]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + 2x3
1x2

2−x2

)
.

• X0 = {x ∈R2 | x2
1 + (x2 − 0.5)2 − 0.04 ≤ 0}.

• Xu = {x ∈R2 | (x1 + 1.5)2 + (x2 + 1.5)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 11 (arch2 [63]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x2

1 + x2
2 − 1

5(x1x2 − 1)

)
.

• X0 = {x ∈R2 | (x1 + 0.5)2 + (x2 + 0.5)2 − 0.25 ≤ 0}.
• Xu = {x ∈R2 | (x1 + 1.5)2 + (x2 + 1.5)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 12 (arch3 [63]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x1 − x3

1 + x2 − x1x2
2−x1 + x2 − x2

1x2 − x3
2

)
.

• X0 = {x ∈R2 | x2
1 + x2

2 − 0.04 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 2.5)2 + (x2 − 2.5)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −3 ≤ x1, x2 ≤ 3}.
• B(a, x) includes all monomials up to degree 2.

Example 13 (arch4 [63]). The vector flow field is:

ẋ =
(

ẋ1
ẋ

)
=

(−2x1 + x2
1 + x2

x − 2x + x2

)
.

2 1 2 2

24

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
• X0 = {x ∈R2 | x2
1 + x2

2 − 0.12 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 0.75)2 + (x2 − 0.75)2 − 0.252 ≤ 0}.
• D = {x ∈R2 | −0.5 ≤ x1, x2 ≤ 1}.
• B(a, x) includes all monomials up to degree 1.

Example 14 (barr-cert1 [9]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x2

−x1 + 1
3 x3

1 − x2

)
.

• X0 = {x ∈R2 | (x1 − 1.5)2 + x2
2 − 0.25 ≤ 0}.

• Xu = {x ∈R2 | (x1 + 1)2 + (x2 + 1)2 − 0.16 ≤ 0}.
• D = {x ∈R2 | −4 ≤ x1, x2 ≤ 4}.
• B(a, x) includes all monomials up to degree 2.

Example 15 (barr-cert2 [10]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + x1x2
−x2

)
.

• X0 = {x ∈R2 | (x1 − 1.125)2 + (x2 − 0.625)2 − 0.1252 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 0.875)2 + (x2 − 0.125)2 − 0.0752 ≤ 0}.
• D = {x ∈R2 | 0 ≤ x1, x2 ≤ 1.5}.
• B(a, x) includes all monomials up to degree 2.

Example 16 (barr-cert3 [33]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + x1x2
−x2

)
.

• X0 = {x ∈R2 | (x1 + 1)2 + (x2 + 1)2 − 0.25 ≤ 0}.
• Xu = {x ∈R2 | x2

1 + (x2 − 1)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 1.

Example 17 (barr-cert4 [33]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + 2x2
1x2

−x2

)
.

• X0 = {x ∈R2 | 9x2
1 + (2x2 − 2.25)2 − 0.752 ≤ 0}.

• Xu = {x ∈R2 | (x1 − 2)2 + (x2 − 2)2 − 0.52 ≤ 0}.
• D = {x ∈R2 | −1 ≤ x1, x2 ≤ 3}.
• B(a, x) includes all monomials up to degree 2.

Example 18 (fitzhugh-nagumo [64]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−1/3x3
1 + x1 − x2 + 0.875

0.08(x1 − 0.8x2 + 0.7)

)
.

• X0 = {x ∈R2 | (x1 + 0.75)2 + (x2 − 1.25)2 − 0.252 ≤ 0}.
• Xu = {x ∈R2 | (x1 + 2.25)2 + (x2 + 1.75)2 − 0.252 ≤ 0}.
• D = {x ∈R2 | −5 ≤ x1, x2 ≤ 5}.
• B(a, x) includes all monomials up to degree 2.

Example 19 (stabilization [65]). The vector flow field is:

ẋ =
⎛
⎝ ẋ1

ẋ2
ẋ

⎞
⎠ =

⎛
⎝ −x1 + x2 − x3

−x1(x3 + 1) − x2
0.76524x − 4.7037x

⎞
⎠ .
3 1 3

25

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
• X0 = {x ∈R3 | x2
1 + x2

2 + x2
3 − 1 ≤ 0}.

• Xu = {x ∈R3 | −x2
1 − x2

2 + 3 ≤ 0}.
• D = {x ∈R3 | −2 ≤ x1, x2, x3 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 20 (lie-high-order). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x1
x2

)
.

• X0 = {x ∈R2 | (x1 − 1.125)2 + (x2 − 0.625)2 − 0.0125 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 0.875)2 + (x2 − 0.125)2 − 0.0125 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) = x2

1 + a1x2
2 + a2x1 + a3x2 + a4.

Example 21 (raychaudhuri [66]). The vector flow field is:

ẋ =

⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−0.5x2
1 − 2(x2

2 + x2
3 − x2

4)−x1x2 − 1
−x1x3
−x1x4

⎞
⎟⎟⎠ .

• X0 = {x ∈R4 | x2
1 + (x2 + 1)2 − 0.1 ≤ 0}.

• Xu = {x ∈R4 | (x1 + 1)2 + x2
2 − 0.1 ≤ 0}.

• D = {x ∈R4 | −1.5 ≤ x1, . . . , x4 ≤ 1.5}.
• B(a, x) = a1x2

1 + a2x1x2 + a3x2
2 + a4x1 + a5x2 + a6.

Example 22 (focus [67]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x1 − x2
x1 + x2

)
.

• X0 = {x ∈R2 | (x1 − 2.75)2 + (5x2 − 10)2 − 0.252 ≤ 0}.
• Xu = {x ∈R2 | x1 − 2 ≤ 0}.
• D = {x ∈R2 | 1.5 ≤ x1, x2 ≤ 3.5}.
• B(a, x) includes all monomials up to degree 4.

Example 23 (sys-bio1 [68]). The vector flow field is:

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−0.4x1 + 5x3x4
0.4x1 − x2
x2 − 5x3x4

5x5x6 − 5x3x4
−5x5x6 + 5x3x4
0.5x7 − 5x5x6

−0.5x7 + 5x5x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

• X0 = {x ∈R7 | ∑7
i=1(xi − 1)2 − 0.012 ≤ 0}.

• Xu = {x ∈R7 | ∑7
i=1(xi − 1.9)2 − 0.12 ≤ 0}.

• D = {x ∈R7 | −2 ≤ x1, . . . , x7 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.
26

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
Example 24 (sys-bio2 [68]). The vector flow field is:

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3x3 − x1x6
x4 − x2x6

x1x6 − 3x3
x2x6 − x4

3x3 + 5x1 − x5
5x5 + 3x3 + x4 − x6(x1 + x2 + 2x8 + 1)

5x4 + x2 − 0.5x7
5x7 − 2x6x8 + x9 − 0.2x8

2x6x8 − x9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• X0 = {x ∈R9 | ∑9
i=1(xi − 1)2 − 0.012 ≤ 0}.

• Xu = {x ∈R9 | ∑9
i=1(xi − 1.9)2 − 0.12 ≤ 0}.

• D = {x ∈R9 | −2 ≤ x1, . . . , x9 ≤ 2}.
• B(a, x) includes all monomials up to degree 1.

Example 25 (quadcopter [59]). The vector flow field is:

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9
ẋ10
ẋ11
ẋ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x4
x5
x6

−7253.4927x1 + 1936.3639x11 − 1338.7624x4 + 1333.3333x8
−1936.3639x10 − 7253.4927x2 − 1338.7624x5 − 1333.3333x7

−769.2308x3 − 770.2301x6
x10
x11
x12

9.81x2
−9.81x1

−16.3541x12 − 15.3846x9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• X0 = {x ∈R12 | ∑12
i=1 x2

i − 0.01 ≤ 0}.
• Xu = {x ∈R12 | (2x1 − 0.5)2 + (2x2 − 0.5)2 + (2x3 − 0.5)2 + (x4 − 1)2

+ (x5 − 1)2 + (x6 − 1)2 + (x7 − 1)2 + (x8 + 1)2 + (x9 − 1)2

+ (x10 − 1)2 + (x11 + 1)2 + (x12 − 1)2 − 0.25 ≤ 0}.
• D = {x ∈R12 | −2 ≤ x1, . . . , x12 ≤ 2}.
• B(a, x) includes all monomials up to degree 1.

References

[1] R. Alur, et al., The algorithmic analysis of hybrid systems, Theor. Comput. Sci. 138 (1) (1995) 3–34.
[2] M. Fränzle, M. Chen, P. Kröger, In memory of Oded Maler: automatic reachability analysis of hybrid-state automata, ACM SIGLOG News 6 (1) (2019)

19–39.
[3] G. Lafferriere, G.J. Pappas, S. Yovine, Symbolic reachability computation for families of linear vector fields, J. Symb. Comput. 32 (3) (2001) 231–253.
[4] H. Anai, V. Weispfenning, Reach set computations using real quantifier elimination, in: HSCC, in: LNCS, vol. 2034, Springer, 2001, pp. 63–76.
[5] T. Gan, M. Chen, L. Dai, B. Xia, N. Zhan, Decidability of the reachability for a family of linear vector fields, in: ATVA, in: LNCS, vol. 9364, Springer, 2015,

pp. 482–499.
[6] T. Gan, M. Chen, Y. Li, B. Xia, N. Zhan, Computing reachable sets of linear vector fields revisited, in: ECC, IEEE, 2016, pp. 419–426.
[7] T. Gan, M. Chen, Y. Li, B. Xia, N. Zhan, Reachability analysis for solvable dynamical systems, IEEE Trans. Autom. Control 63 (7) (2018) 2003–2018.
[8] W.D. Smith, Church’s thesis meets the N-body problem, Appl. Math. Comput. 178 (1) (2006) 154–183.
[9] S. Prajna, A. Jadbabaie, Safety verification of hybrid systems using barrier certificates, in: HSCC, in: LNCS, vol. 2993, Springer, 2004, pp. 477–492.

[10] A. Djaballah, A. Chapoutot, M. Kieffer, O. Bouissou, Construction of parametric barrier functions for dynamical systems using interval analysis, Auto-
matica 78 (2017) 287–296.

[11] S. Kong, A. Solar-Lezama, S. Gao, Delta-decision procedures for exists-forall problems over the reals, in: CAV, in: LNCS, vol. 10982, Springer, 2018,
pp. 219–235.

[12] A. Sogokon, K. Ghorbal, Y.K. Tan, A. Platzer, Vector barrier certificates and comparison systems, in: FM, in: LNCS, vol. 10951, Springer, 2018, pp. 418–437.
[13] L. Dai, T. Gan, B. Xia, N. Zhan, Barrier certificates revisited, J. Symb. Comput. 80 (2017) 62–86.
[14] H. Kong, F. He, X. Song, W.N.N. Hung, M. Gu, Exponential-condition-based barrier certificate generation for safety verification of hybrid systems, in:

CAV, in: LNCS, vol. 8044, Springer, 2013, pp. 242–257.
[15] Z. Yang, W. Lin, M. Wu, Exact safety verification of hybrid systems based on bilinear SOS representation, ACM Trans. Embed. Comput. Syst. 14 (1)

(2015) 1–19.
27

http://refhub.elsevier.com/S0890-5401(22)00120-1/bib670FFA38EAF9F5E072B94822BFD42EA6s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib851B26E78BC1C319AC1CE9E63108620Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib851B26E78BC1C319AC1CE9E63108620Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibAF49456F75F0416B372EAED37C8B9624s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibADFFDA87CD32EA8CD43335274E11A802s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibAD8443E6BE41042296CDE05041EDC2ACs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibAD8443E6BE41042296CDE05041EDC2ACs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibE15394168733EA8DC7EE8C8C31544447s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib123DFA820EFF56A3938043631C178595s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibCB82F455D23C7661CB93B5BFCA9E024Es1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib2BDF690DB886E69BEB80BE3F0DFB3D25s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib70038A6BA65A30AA88D92186C687E7C0s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib70038A6BA65A30AA88D92186C687E7C0s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib4D4DAE2545D1E871362E24BB3F05DD0Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib4D4DAE2545D1E871362E24BB3F05DD0Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF019D74A9AD1D34D60A9ACBA0FCBE7F2s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib5705DCB2270FD2E62F2E2EE30DA6BB56s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib52EC7A6EDC9E5A3E6AFB4F20A0786738s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib52EC7A6EDC9E5A3E6AFB4F20A0786738s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib8D944A021728AD101BB1F735B933201Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib8D944A021728AD101BB1F735B933201Ds1

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
[16] X. Zeng, W. Lin, Z. Yang, X. Chen, L. Wang, Darboux-type barrier certificates for safety verification of nonlinear hybrid systems, in: EMSOFT, ACM, 2016,
pp. 1–10.

[17] J. Liu, N. Zhan, H. Zhao, Computing semi-algebraic invariants for polynomial dynamical systems, in: EMSOFT, ACM, 2011, pp. 97–106.
[18] J.-B. Lasserre, Moments, Positive Polynomials and Their Applications, vol. 1, World Scientific, 2010.
[19] O. Toker, H. Ozbay, On the NP-Hardness of Solving Bilinear Matrix Inequalities and Simultaneous Stabilization with Static Output Feedback, ACC, vol. 4,

IEEE, 1995, pp. 2525–2526.
[20] M. Kocvara, M. Stingl, P. GbR, PENBMI user’s guide (version 2.0), in: Software Manual, PENOPT GbRSoftware Manual, PENOPT GbR, in: Hauptstrasse A,

vol. 31, 2005, 91338.
[21] R. Orsi, LMIRank: software for rank constrained LMI problems, http://users .cecs .anu .edu .au /~robert /lmirank/, 2005, retrieved: April 9, 2022.
[22] P.D. Tao, E.B. Souad, Algorithms for Solving a Class of Nonconvex Optimization Problems. Methods of Subgradients, North-Holland Mathematics Studies,

vol. 129, Elsevier, 1986, pp. 249–271.
[23] H.A. Le Thi, T.P. Dinh, DC programming and DCA: thirty years of developments, Math. Program. 169 (1) (2018) 5–68.
[24] Z. Yang, C. Huang, X. Chen, W. Lin, Z. Liu, A linear programming relaxation based approach for generating barrier certificates of hybrid systems, in: FM,

in: LNCS, vol. 9995, Springer, 2016, pp. 721–738.
[25] X. Chen, C. Peng, W. Lin, Z. Yang, Y. Zhang, X. Li, A novel approach for solving the BMI problem in barrier certificates generation, in: CAV, in: LNCS,

vol. 12224, Springer, 2020, pp. 582–603.
[26] Q. Wang, M. Chen, B. Xue, N. Zhan, J.-P. Katoen, Synthesizing invariant barrier certificates via difference-of-convex programming, in: CAV (I), in: LNCS,

vol. 12759, Springer, 2021, pp. 443–466.
[27] Q.T. Dinh, S. Gumussoy, W. Michiels, M. Diehl, Combining convex–concave decompositions and linearization approaches for solving BMIs, with appli-

cation to static output feedback, IEEE Trans. Autom. Control 57 (6) (2011) 1377–1390.
[28] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, 1994.
[29] I. Kolár̆, P.W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, 1993.
[30] A. Platzer, E.M. Clarke, Computing differential invariants of hybrid systems as fixedpoints, in: CAV, in: LNCS, vol. 5123, Springer, 2008, pp. 176–189.
[31] S. Bak, t-Barrier Certificates: A Continuous Analogy to K-Induction, ADHS, vol. 51, Elsevier, 2018, pp. 145–150.
[32] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[33] Y. Zhang, Z. Yang, W. Lin, H. Zhu, X. Chen, X. Li, Safety verification of nonlinear hybrid systems based on bilinear programming, IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst. 37 (11) (2018) 2768–2778.
[34] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California Press, Berkeley, 1951.
[35] M.-D. Choi, T.Y. Lam, B. Reznick, Sums of Squares of Real Polynomials, Proceedings of Symposia in Pure Mathematics, vol. 58, American Mathematical

Society, 1995, pp. 103–126.
[36] Y. Wang, R. Rajamani, Feasibility analysis of the bilinear matrix inequalities with an application to multi-objective nonlinear observer design, in: CDC,

IEEE, 2016, pp. 3252–3257.
[37] A. Shapiro, First and second order analysis of nonlinear semidefinite programs, Math. Program. 77 (1997) 301–320.
[38] V.Y. Pan, Z.Q. Chen, The complexity of the matrix eigenproblem, in: STOC, 1999, pp. 507–516.
[39] L.N. Trefethen, D. Bau III, Numerical Linear Algebra, SIAM, 1997.
[40] A.A. Ahmadi, G. Hall, DC decomposition of nonconvex polynomials with algebraic techniques, Math. Program. 169 (1) (2018) 69–94.
[41] Y. Wang, L. Qi, X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra

Appl. 16 (7) (2009) 589–601.
[42] R.Y. Zhang, J. Lavaei, Sparse semidefinite programs with near-linear time complexity, in: CDC, IEEE, 2018, pp. 1624–1631.
[43] R.Y. Zhang, J. Lavaei, Efficient algorithm for large-and-sparse LMI feasibility problems, in: CDC, IEEE, 2018, pp. 6868–6875.
[44] S. Zhang, J. Ang, J. Sun, An alternating direction method for solving convex nonlinear semidefinite programming problems, Optimization 62 (4) (2013)

527–543.
[45] M. Cubuktepe, N. Jansen, S. Junges, J.-P. Katoen, U. Topcu, Synthesis in pMDPs: a tale of 1001 parameters, in: ATVA, in: LNCS, vol. 11138, Springer,

2018, pp. 160–176.
[46] D. Figueira, S. Figueira, S. Schmitz, P. Schnoebelen, Ackermannian and primitive-recursive bounds with Dickson’s lemma, in: LICS, IEEE, 2011,

pp. 269–278.
[47] Q. Wang, Y. Li, B. Xia, N. Zhan, Generating semi-algebraic invariants for non-autonomous polynomial hybrid systems, J. Syst. Sci. Complex. 30 (1) (2017)

234–252.
[48] Y. Li, N. Zhan, M. Chen, H. Lu, G. Wu, J.-P. Katoen, On termination of polynomial programs with equality conditions, CoRR, arXiv:1510 .05201 [abs].
[49] A. Nemirovski, Interior point polynomial time methods in convex programming, Lect. Notes 42 (16) (2004) 3215–3224.
[50] B.K. Sriperumbudur, G.R.G. Lanckriet, On the convergence of the concave-convex procedure, in: NIPS, vol. 9, Curran Associates, Inc., 2009,

pp. 1759–1767.
[51] H.A. Le Thi, V.N. Huynh, T. Pham Dinh, Convergence analysis of difference-of-convex algorithm with subanalytic data, J. Optim. Theory Appl. 179 (1)

(2018) 103–126.
[52] P. Roux, Y.-L. Voronin, S. Sankaranarayanan, Validating numerical semidefinite programming solvers for polynomial invariants, Form. Methods Syst. Des.

53 (2) (2018) 286–312.
[53] T. Gan, B. Xia, B. Xue, N. Zhan, L. Dai, Nonlinear Craig interpolant generation, in: CAV, in: LNCS, vol. 12224, Springer, 2020, pp. 415–438.
[54] G.E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, in: Automata Theory and Formal Languages 2nd GI

Conference Kaiserslautern, Springer Berlin Heidelberg, 1975, pp. 134–183.
[55] C.W. Barrett, R. Sebastiani, S.A. Seshia, C. Tinelli, Satisfiability modulo theories, in: Handbook of Satisfiability, in: FAIA, vol. 185, IOS Press, 2009,

pp. 825–885.
[56] D. Henrion, S. Naldi, M.S.E. Din, Exact algorithms for semidefinite programs with degenerate feasible set, J. Symb. Comput. 104 (2021) 942–959.
[57] L.M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: TACAS, in: LNCS, vol. 4963, Springer, 2008, pp. 337–340.
[58] M. Kheirandishfard, F. Zohrizadeh, R. Madani, Convex relaxation of bilinear matrix inequalities part I: theoretical results, in: CDC, IEEE, 2018, pp. 67–74.
[59] S. Gao, et al., Numerically-robust inductive proof rules for continuous dynamical systems, in: CAV, in: LNCS, vol. 11562, Springer, 2019, pp. 137–154.
[60] E. Goubault, J.-H. Jourdan, S. Putot, S. Sankaranarayanan, Finding non-polynomial positive invariants and Lyapunov functions for polynomial systems

through Darboux polynomials, in: ACC, IEEE, 2014, pp. 3571–3578.
[61] S. Ratschan, Z. She, Safety verification of hybrid systems by constraint propagation-based abstraction refinement, ACM Trans. Embed. Comput. Syst.

6 (1) (2007) 8.
[62] S. Ratschan, Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions, SIAM J. Control

Optim. 48 (7) (2010) 4377–4394.
[63] A. Sogokon, K. Ghorbal, T.T. Johnson, Non-linear continuous systems for safety verification (benchmark proposal), in: ARCH @ CPSWeek, in: EPiC Series

in Computing, EasyChair, vol. 43, 2016, pp. 42–51.
[64] M.A.B. Sassi, A. Girard, S. Sankaranarayanan, Iterative computation of polyhedral invariants sets for polynomial dynamical systems, in: CDC, IEEE, 2014,

pp. 6348–6353.
28

http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF52EA3F532CD822E369318B1878912C6s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF52EA3F532CD822E369318B1878912C6s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibAE78A417377E5EC3104EEC5664F43213s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib5291E7E83D790212909245906732A1DDs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF224C14ACA11AD9AE578D42D36B9BC90s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF224C14ACA11AD9AE578D42D36B9BC90s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib3998493121AF9D69444395C153F22EFCs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib3998493121AF9D69444395C153F22EFCs1
http://users.cecs.anu.edu.au/~robert/lmirank/
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib0431B93A403F58B6640669A1F25608D9s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib0431B93A403F58B6640669A1F25608D9s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibEBB65B5B8A92A0BB7C325D03544AEF3Es1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibA0ADBEEA673465C468303B85CB058B86s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibA0ADBEEA673465C468303B85CB058B86s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibEFE2D42C5D0568A5B673BEFB86934907s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibEFE2D42C5D0568A5B673BEFB86934907s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib15393785F22FDB242F3B8F9FCF049935s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib15393785F22FDB242F3B8F9FCF049935s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib1F61FFD6B57B13B074F34845036F866Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib1F61FFD6B57B13B074F34845036F866Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibCE21B4E36D439411B9205D601DBEF186s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibE514F52B284F258C90571ED1310718ECs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib922154998C6E781487C3F09C343673EAs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib3F43EC98107B2A517F0A5187689EE477s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib29ECE81C7C29BEDCCE09034E13B43071s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib4838EF984F6CFF067AACA97B8D24DD00s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib4838EF984F6CFF067AACA97B8D24DD00s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibBD700A8D8CF14D7891021159279961B0s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib3B51E221E631A2192FC1B4ED470BEA02s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib3B51E221E631A2192FC1B4ED470BEA02s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibAC18280642B7D750DC72387C5FC40E0Es1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibAC18280642B7D750DC72387C5FC40E0Es1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib53E1DB7497A6056B9F8BAE38F3C9324Cs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib206A2ADC4ABDF97BEC655457C82EB4D0s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib2C395532C38FFE0F894C10C6705B72A6s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib86352EB40025515445BFE34B3D12422Es1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibCECD2A0FAFC8849639056935B114D005s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibCECD2A0FAFC8849639056935B114D005s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibBF06F422F0812E3C3B305948A6A2E6D5s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib624AE8E017116350B277103D07D6E233s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF38C005EF5E6AE61BF0BE9F4A933FF13s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF38C005EF5E6AE61BF0BE9F4A933FF13s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF33CC311AF65A3313518D0BE4549D570s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF33CC311AF65A3313518D0BE4549D570s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib157CB12E50294EBF07A5CD0D8494F3C4s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib157CB12E50294EBF07A5CD0D8494F3C4s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib140C0489702E30D08E26E82F63211E41s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib140C0489702E30D08E26E82F63211E41s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib01860C5AF07451835564979CDAA01AC8s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib09F1DCB3197F60345B8F02A1B1EC9FC2s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib93D86DE10C793A17522A7214CF8E2033s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib93D86DE10C793A17522A7214CF8E2033s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib49DF192A3EA1A4045AC17B90DCE8A30Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib49DF192A3EA1A4045AC17B90DCE8A30Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF532654705443792E526D5557F7D6896s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibF532654705443792E526D5557F7D6896s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib06E9073154E9C362F633652531AF20FEs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibE5A7DBD9A15BE0DA3BA1916EF3E4301Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibE5A7DBD9A15BE0DA3BA1916EF3E4301Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib7CF43A8CCCBEC1B97B6BA70D0D73670Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib7CF43A8CCCBEC1B97B6BA70D0D73670Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibA43C32EE8168FE42EB4F0B66E75C0679s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibA61D1457BEB4684E254CE60379C8AE7Bs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibAB2B833A2DF20E8DEF541C8D1E93FF3Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibA67035D5B1C19A79891B9BA9F36E776Cs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib01AF0790564268640128A77E3CDDA39Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib01AF0790564268640128A77E3CDDA39Ds1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib84CC05E1FF4D7B65284F42B12B6DF840s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib84CC05E1FF4D7B65284F42B12B6DF840s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib951F39C75214965439BDF2B051B29B25s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib951F39C75214965439BDF2B051B29B25s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibDFFDE782DDE16D5A6A495477F9583538s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibDFFDE782DDE16D5A6A495477F9583538s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibB4FD8860CF17A8D4DFAAA8D2FA598626s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibB4FD8860CF17A8D4DFAAA8D2FA598626s1

Q. Wang, M. Chen, B. Xue et al. Information and Computation 289 (2022) 104965
[65] M.A.B. Sassi, S. Sankaranarayanan, Stability and stabilization of polynomial dynamical systems using Bernstein polynomials, in: HSCC, ACM, 2015,
pp. 291–292.

[66] A. Ferragut, A. Gasull, Seeking Darboux polynomials, Acta Appl. Math. 139 (1) (2015) 167–186.
[67] S. Ratschan, Z. She, Constraints for continuous reachability in the verification of hybrid systems, in: AISC, Springer, 2006, pp. 196–210.
[68] E. Klipp, R. Herwig, A. Kowald, C. Wierling, H. Lehrach, Systems Biology in Practice: Concepts, Implementation and Application, Wiley, 2008.
[69] J. Fiala, M. Kočvara, M. Stingl, PENLAB: a MATLAB solver for nonlinear semidefinite optimization, CoRR, arXiv:1311.5240 [abs].
[70] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P.A. Parrilo, SOSTOOLS version 3.00 sum of squares optimization toolbox for

MATLAB, CoRR, arXiv:1310 .4716 [abs].
[71] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw. 11 (1–4) (1999) 625–653.
[72] M. Korda, D. Henrion, I. Mezic, Convex computation of extremal invariant measures of nonlinear dynamical systems and Markov processes, J. Nonlinear

Sci. 31 (1) (2021) 14.
[73] V. Magron, P. Garoche, D. Henrion, X. Thirioux, Semidefinite approximations of reachable sets for discrete-time polynomial systems, SIAM J. Control

Optim. 57 (4) (2019) 2799–2820.
[74] D. Henrion, J.B. Lasserre, C. Savorgnan, Approximate volume and integration for basic semialgebraic sets, SIAM Rev. 51 (4) (2009) 722–743.
[75] F. Dabbene, D. Henrion, C.M. Lagoa, Simple approximations of semialgebraic sets and their applications to control, Automatica 78 (2017) 110–118.
[76] A. Tiwari, Approximate reachability for linear systems, in: HSCC, in: LNCS, vol. 2623, Springer, 2003, pp. 514–525.
[77] S. Sankaranarayanan, H.B. Sipma, Z. Manna, Constructing invariants for hybrid systems, in: HSCC, in: LNCS, vol. 2993, Springer, 2004, pp. 539–554.
[78] S. Gulwani, A. Tiwari, Constraint-based approach for analysis of hybrid systems, in: CAV, Springer, 2008, pp. 190–203.
[79] J. Kapinski, J.V. Deshmukh, S. Sankaranarayanan, N. Arechiga, Simulation-guided Lyapunov analysis for hybrid dynamical systems, in: HSCC, ACM, 2014,

pp. 133–142.
[80] X. Xu, P. Tabuada, J.W. Grizzle, A.D. Ames, Robustness of control barrier functions for safety critical control, in: ADHS, in: IFAC-PapersOnLine, vol. 48,

Elsevier, 2015, pp. 54–61.
[81] A.D. Ames, X. Xu, J.W. Grizzle, P. Tabuada, Control barrier function based quadratic programs for safety critical systems, IEEE Trans. Autom. Control

62 (8) (2016) 3861–3876.
[82] C. Huang, X. Chen, W. Lin, Z. Yang, X. Li, Probabilistic safety verification of stochastic hybrid systems using barrier certificates, ACM Trans. Embed.

Comput. Syst. 16 (5s) (2017) 186:1–186:19.
[83] P. Jagtap, S. Soudjani, M. Zamani, Formal synthesis of stochastic systems via control barrier certificates, IEEE Trans. Autom. Control 66 (7) (2020)

3097–3110.
[84] H. Zhao, X. Zeng, T. Chen, Z. Liu, Synthesizing barrier certificates using neural networks, in: HSCC, ACM, 2020, pp. 25:1–25:11.
[85] A. Peruffo, D. Ahmed, A. Abate, Automated and formal synthesis of neural barrier certificates for dynamical models, in: TACAS (I), in: LNCS, vol. 12651,

Springer, 2021, pp. 370–388.
[86] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, A. Peruffo, FOSSIL: a software tool for the formal synthesis of Lyapunov functions and barrier certificates

using neural networks, in: HSCC, ACM, 2021, pp. 24:1–24:11.
[87] K.-C. Goh, M.G. Safonov, G.P. Papavassilopoulos, Global optimization for the biaffine matrix inequality problem, J. Glob. Optim. 7 (4) (1995) 365–380.
[88] H.D. Tuan, P. Apkarian, Y. Nakashima, A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities, Int. J. Robust

Nonlinear Control: IFAC-Affil. J. 10 (7) (2000) 561–578.
[89] S. Ibaraki, M. Tomizuka, Rank Minimization Approach for Solving BMI Problems with Random Search, ACC, vol. 3, IEEE, 2001, pp. 1870–1875.
[90] R. Orsi, U. Helmke, J.B. Moore, A Newton-like method for solving rank constrained linear matrix inequalities, Automatica 42 (11) (2006) 1875–1882.
[91] B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev. 52 (3) (2010)

471–501.
[92] R. Correa, A global algorithm for nonlinear semidefinite programming, SIAM J. Optim. 15 (1) (2004) 303–318.
[93] A. Eggers, N. Ramdani, N.S. Nedialkov, M. Fränzle, Improving the SAT modulo ODE approach to hybrid systems analysis by combining different enclosure

methods, Softw. Syst. Model. (2012) 1–28.
[94] J.E. Dennis, M. Heinkenschloss, L.N. Vicente, Trust-region interior-point SQP algorithms for a class of nonlinear programming problems, SIAM J. Control

Optim. 36 (5) (1998) 1750–1794.
[95] F. Leibfritz, E.M.E. Mostafa, An interior point constrained trust region method for a special class of nonlinear semidefinite programming problems,

SIAM J. Optim. 12 (4) (2002) 1048–1074.
[96] W.-Y. Chiu, Method of reduction of variables for bilinear matrix inequality problems in system and control designs, IEEE Trans. Syst. Man Cybern. Syst.

47 (7) (2016) 1241–1256.
[97] C. Kanzow, C. Nagel, H. Kato, M. Fukushima, Successive linearization methods for nonlinear semidefinite programs, Comput. Optim. Appl. 31 (3) (2005)

251–273.
[98] H. Yamashita, H. Yabe, Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming, Math.

Program. 132 (1–2) (2012) 1–30.
29

http://refhub.elsevier.com/S0890-5401(22)00120-1/bib370E96F3343C0FACA3E1E62FB6DC7BC9s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib370E96F3343C0FACA3E1E62FB6DC7BC9s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib96C8A2F7B7EF84A6573792BC12249CFBs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibEEA440C70E152FB01A27349E0022C8B0s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib308285A12AA8BD596E17B06835F45271s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibB531BFAD77A7479CCFC832432E80011Bs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibC1A8CB0B1C47E4410BF78C81947B1C57s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibC1A8CB0B1C47E4410BF78C81947B1C57s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibD59C0A82070159A91F1EADAE3C7B2EACs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibCDA9B7493252D8D3C145587C1B7E9746s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibCDA9B7493252D8D3C145587C1B7E9746s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibD4EE93CD3333ACAC30920D2999801542s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibD4EE93CD3333ACAC30920D2999801542s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib4D82491A1F33233EE08D5B2EB73CBF76s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib949C6F4E32096E2803182291A9F97818s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib3B8DD18E214CC0539FDDE64F0F8F4731s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib734A9349D1A0AB27B9AD290E57E8B727s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib0C5975114A7FCAD813BCAB460B9E611As1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib51F59C29D265D31A3D91E968126A2F51s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib51F59C29D265D31A3D91E968126A2F51s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib3827B475DAEF455BB7F593FB83254629s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib3827B475DAEF455BB7F593FB83254629s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib1ED8932B6473F7D346B3531F5445B489s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib1ED8932B6473F7D346B3531F5445B489s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib6158805E6B600853C89B180E535AB342s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib6158805E6B600853C89B180E535AB342s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibBB4955EDB56BC788995D8512FB6BBCFFs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibBB4955EDB56BC788995D8512FB6BBCFFs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibE00E4E7022905B4875CAC82487E093EDs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibDBE9E161ED8E3485BEFECBB19F14EB44s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibDBE9E161ED8E3485BEFECBB19F14EB44s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibB331DCA583F9691B49D2380B26DAFD33s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibB331DCA583F9691B49D2380B26DAFD33s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib893DF4A1D9E85E26C4B176684C47F8BDs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib16B8A99E02706B01396EED828494475Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib16B8A99E02706B01396EED828494475Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibCA53826AAA06838013A99EE9EDDC4DD2s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib9934064BA305E9BE6F379269E61C6B5Es1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibCFB72C90A71BD01E727620F5B4DE4653s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibCFB72C90A71BD01E727620F5B4DE4653s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib5FE05BACDE39436083B543F5B4F6D6C0s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib98FAA1FEA22619ED8C7E9A99769CF3D2s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib98FAA1FEA22619ED8C7E9A99769CF3D2s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib1DCC4B8AD17FCBB8535FFF562062EB8Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib1DCC4B8AD17FCBB8535FFF562062EB8Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibD3D902411CB457109007174500F4834Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibD3D902411CB457109007174500F4834Fs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib35538DD110AA487455DDB489E2A8D6FAs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib35538DD110AA487455DDB489E2A8D6FAs1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibBE59F25E36A100B7F93E5E7E6F22C703s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bibBE59F25E36A100B7F93E5E7E6F22C703s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib98BD0A36A6EAE349B0913BFC26D90949s1
http://refhub.elsevier.com/S0890-5401(22)00120-1/bib98BD0A36A6EAE349B0913BFC26D90949s1

	Synthesis via difference-of-convex programming
	1 Introduction
	2 A bird’s-eye perspective
	3 Mathematical foundations
	4 Invariant barrier-certificate condition as BMIs
	4.1 Invariant barrier-certificate condition
	4.2 Encoding as BMI optimizations

	5 Solving BMI optimizations via DCP
	5.1 Difference-of-convex decomposition
	5.1.1 Decompose M via eigendecomposition
	5.1.2 Decompose M via bounds on eigenvalues
	5.1.3 Decompose M via SDP

	5.2 Reduction to LMIs
	5.3 Complexity of Algorithm 1
	5.4 Finding the initial solution
	5.5 Numerical errors in SDP solving and potential solutions

	6 Incorporating in a branch-and-bound framework
	6.1 The branch-and-bound algorithm
	6.2 Computing an upper-bound by convex relaxation

	7 Experimental results
	8 Related work
	9 Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A Lie derivatives and the trajectory tendency
	Appendix B Benchmark examples
	References

