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We present the invariant barrier-certificate condition that witnesses unbounded-time safety 
of differential dynamical systems. The proposed condition is the weakest possible one 
to attain inductive invariance. We show that discharging the invariant barrier-certificate 
condition —thereby synthesizing invariant barrier certificates— can be encoded as solving 
an optimization problem subject to bilinear matrix inequalities (BMIs). We further propose 
a synthesis algorithm based on difference-of-convex programming, which approaches a 
local optimum of the BMI problem via solving a series of convex optimization problems. 
This algorithm is incorporated in a branch-and-bound framework that searches for the 
global optimum in a divide-and-conquer fashion. We present a weak completeness result 
of our method, namely, a barrier certificate is guaranteed to be found (under some 
mild assumptions) whenever there exists an inductive invariant (in the form of a given 
template) that suffices to certify safety. Experimental results on benchmarks demonstrate 
the effectiveness and efficiency of our approach.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Hybrid systems are mathematical models that capture the interaction between continuous physical dynamics and dis-
crete switching behaviors, and hence are widely used in modeling cyber-physical systems (CPS). These CPS may be complex 
and safety-critical, with sensitive variables of the environment in its sphere of control. Everyday examples include process 
control at all scales, ranging from household appliances to nuclear power plants, or embedded systems in transportation do-
main, such as autonomous driving maneuvers in automotive, aircraft collision-avoidance protocols in avionics, or automatic 
train control applications, as well as a broad range of devices in health technologies, such as cardiac pacemakers.
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The safety-critical feature of these CPS, with increasingly complex behaviors, has initiated automatic safety or, dually, 
reachability verification of hybrid systems [1,2]. The problem of reachability verification is undecidable in general [1], albeit 
with decidable families of sub-classes (see, e.g., [3–7]) identified in the literature. The hard core of the verification problem 
lies in reasoning about the continuous dynamics, which are often characterized by ordinary differential equations (ODEs). 
In particular, when nonlinearity arises in the ODEs, the explicit computation of the exact reachable set is usually intractable 
even for purely continuous dynamics [8].

Therefore in the literature, a plethora of approximation schemes, as surveyed in [2], for reachability analysis of hybrid 
systems has been developed, including an invariant-style reasoning scheme known as barrier certificate [9]. A barrier certifi-
cate often serves as an inductive invariant that isolates an unsafe region from the reachable set, thereby witnessing safety 
of hybrid (polynomial) systems possibly over an infinite time horizon. A common way to synthesize barrier certificates is to 
reduce the condition defining barrier certificates to a numerical optimization or constraint solving problem. There is, how-
ever, a trade-off between the expressiveness of the barrier-certificate condition and the efficiency in discharging the reduced 
constraints. Hence, to enable efficient algorithmic synthesis of barrier certificates via, e.g., linear programming (LP), second-
order cone programming (SOCP), semidefinite programming (SDP) and interval analysis [10,11], the general condition on 
inductive invariance (that a barrier certificate defines an invariant, see [12,13]) has been strengthened into a spectrum of 
different shapes, e.g., [14–16,13,12]. It has been, nevertheless, a long-standing challenge to find a barrier-certificate condition 
that is as weak as possible while admitting efficient synthesis algorithms.

In this paper, we present a new condition on barrier certificates, termed the invariant barrier-certificate condition, based 
on the sufficient and necessary condition on being an inductive invariant [17]. Our invariant barrier-certificate condition 
is the weakest possible condition on barrier certificates to attain inductive invariance. We show, by leveraging Putinar’s 
Positivstellensatz [18], that discharging the invariant barrier-certificate condition —thereby synthesizing invariant barrier 
certificates— can be encoded as solving an optimization problem subject to bilinear matrix inequalities (BMIs). It is known 
that general BMI problems are NP-hard and non-convex [19]. Existing solvers for BMI problems, e.g., [20,21], are thus 
considerably less efficient than solvers for (linear) SDP problems. We show that general bilinear matrix-valued functions 
can be decomposed as a difference of two convex (matrix-valued) functions using matrix decomposition, thus resulting in a 
synthesis algorithm as per difference-of-convex programming (DCP) [22,23], which solves a series of convex sub-problems (in 
the form of linear matrix inequalities (LMIs)) that approaches (arbitrarily close to) a local optimum of the BMI problem. This 
algorithm is incorporated in a branch-and-bound framework that searches for the global optimum in a divide-and-conquer 
fashion. We present a weak completeness result of our method: a barrier certificate is guaranteed to be found (under some 
mild assumptions) whenever there exists an inductive invariant (in the form of a given template) that suffices to certify the 
system’s safety. A similar result on completeness is previously provided only by symbolic approaches, yet to the best of our 
knowledge, not by methods based on numerical constraint solving, e.g., [15,24,25]. Experiments on a collection of examples 
suggested that our invariant barrier-certificate condition recognizes more barrier certificates than existing conditions, and 
that our DCP-based algorithm is more efficient than directly solving the BMIs via off-the-shelf solvers.

Our main contributions in this paper can be summarized as follows.

• We present the invariant barrier-certificate condition, which is the weakest possible condition on barrier certificates to 
attain inductive invariance.

• We show that synthesizing invariant barrier certificates can be encoded as solving a BMI optimization problem.
• We propose a locally-convergent synthesis algorithm based on difference-of-convex programming.
• We present a weak completeness result by augmenting the local algorithm with a branch-and-bound framework.
• Experimental results suggested that our condition recognizes more barrier certificates than existing ones, and that our 

DCP-based algorithm is more efficient than directly solving the BMIs.

This article is an extended version of the conference paper [26]. Major extensions include

• two alternative matrix decomposition methods (besides eigendecomposition, cf. Section 5.1) that better exploit matrix 
sparsity to accelerate various matrix operations;

• a convex relaxation-based method for pruning branches in the branch-and-bound framework (see Algorithm 2 and 
Section 6.2) to mitigate the effect of exponential blow-up;

• complexity analysis of the DCP iterative procedure (cf. Section 5.3) and potential solutions to circumvent numerical 
errors in SDP solving (cf. Section 5.5); and

• generalization to hybrid systems (in Section 4.1), additional experimental results, and all the technical proofs.

Paper structure The rest of this paper is structured as follows. Section 2 gives an overview of our approach through a 
simple example. Section 3 introduces the necessary mathematical preliminaries. Section 4 presents the invariant barrier-
certificate condition and shows how to encode it as a BMI optimization problem. Section 5 elucidates an algorithm for 
solving general BMI optimizations via DCP. Section 6 shows how to incorporate the BMI-solving algorithm into a branch-
and-bound framework to attain weak completeness. Section 7 demonstrates our method on a collection of examples. After 
discussing related work in Section 8, we conclude the paper in Section 9.
2
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Fig. 1. A sketch of our method for unbounded-time safety verification via invariant barrier certificates (iBC, for short).

2. A bird’s-eye perspective

The diagram in Fig. 1 sketches out a bird’s-eye view of our method for the unbounded-time safety verification of differ-
ential dynamical systems. We use the following example to demonstrate several core steps underneath.

Example 1 (overview [10]). Consider the following continuous-time dynamical system modeled by an ordinary differential 
equation:

ẋ =
(

ẋ1
ẋ2

)
=

(
x1 + x2

x1x2 − 0.5x2
2 + 0.1

)
.

The verification obligation is to show that the system trajectory originating from any state in the initial set X0 = {x | I(x) ≤
0} with I(x) = x2

1 + (x2 − 2)2 − 1 will never enter the unsafe set Xu = {x | U(x) ≤ 0} with U(x) = x2 + 1. �
A barrier certificate satisfying our invariant barrier-certificate condition (cf. Definition 4) serves as an inductive invariant 

that suffices to isolate the unsafe region Xu from the set of reachable states from X0, thereby proving safety of the system 
over an infinite time horizon. To this end, we proceed in the following steps.

1) Encode as sum-of-squares (SOS) constraints We first set a (polynomial) barrier-certificate template, for example, 
B(a, x) = ax2 with unknown coefficient a ∈ R. According to Theorem 1, we only need to consider Lie derivatives up to 
order NB, f = 1, i.e., L0

f B(a, x) = ax2 and L1
f B(a, x) = a(x1x2 − 0.5x2

2 + 0.1).
We show that B(a, x) is an invariant barrier certificate if there exists a polynomial v(x), SOS polynomials (i.e., polyno-

mials that can be written as a finite sum of squares of polynomials) σ(x), σ ′(x) and a constant ε > 0 such that

− ax2︸︷︷︸
B

+ σ(x)
(

x2
1 + (x2 − 2)2 − 1

)
︸ ︷︷ ︸

I

, (1.1, initial)

−a
(

x1x2 − 0.5x2
2 + 0.1

)
︸ ︷︷ ︸

L1
f B

+ v(x) ax2︸︷︷︸
L0

f B

, (1.2, Lie consecution)

ax2︸︷︷︸
B

+ σ ′(x) (x2 + 1)︸ ︷︷ ︸
U

−ε (1.3, separation)

are SOS polynomials.

2) Reduce to a BMI optimization problem Observe that the above SOS constraints can be formulated as BMI constraints 
(via the Gram matrix representation, as formalized later). For instance, let us assume that (1.2) is an SOS polynomial of 
degree at most 2 and v(s, x) = s0 + s1x1 + s2x2 is a template polynomial with unknown coefficients s. Then constraint (1.2)
is equivalent to the BMI constraint

F2(a, s) = −
⎛
⎝−0.1a 0 0.5as0

0 0 0.5(as1 − a)

0.5as0 0.5(as1 − a) as2 + 0.5a

⎞
⎠ � 0

meaning that the bilinear matrix (the LHS of �) is negative semidefinite. Note that the bilinearity arises due to the coupling 
of the unknown coefficients a and s.
3
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Constraints (1.1) and (1.3) can be reduced to BMI constraints in an analogous way,1 yielding F1 and F3. It then follows 
that, to solve the SOS constraints, we need to find a feasible solution (a, s) such that2

F1(a, s) � 0 ∧ F2(a, s) � 0 ∧ F3(a, s) � 0 . (2)

To exploit well-developed optimization techniques, the feasibility problem (2) is transformed to an optimization problem 
subject to BMI constraints:

maximize
λ,a, s

λ

subject to Bi(λ,a, s) =̂ Fi(a, s) + λI � 0, i = 1,2,3
(3)

where I is the identity matrix with compatible dimensions. Note that problem (2) has a feasible solution if and only if the 
optimal value λ∗ in (3) is non-negative.

3) Decompose as difference-of-convex problems The problem (3) contains non-convex constraints and hence does not ad-
mit efficient (polynomial-time) algorithms tailored for convex optimizations. However, using our DCP-based technique, a 
non-convex function Bi(λ, a, s) can be decomposed as the difference of two (positive semidefinite) convex matrix-valued 
functions:

Bi(λ,a, s) = B+
i (λ,a, s) − B−

i (λ,a, s) . (4)

The decomposition of B2(λ, a, s) (via eigendecomposition), for instance, gives

B+
2 (λ,a, s)

= 1

8

⎛
⎝8λ + 0.08a + a2 + 0.408s2

0 0.408s0s1 −2as0 + 0.816s0s2

0.408s0s1 8λ + a2 + 0.408s2
1 4a − 2as1 + 0.816s1s2

−2as0 + 0.816s0s2 4a − 2as1 + 0.816s1s2 8λ − 4a + 2.449a2 − 4as2 + s2
0 + s2

1 + 1.632s2
2

⎞
⎠

B−
2 (λ,a, s) = 1

8

⎛
⎝ a2 + 0.408s2

0 0.408s0s1 2as0 + 0.816s0s2

0.408s0s1 a2 + 0.408s2
1 2as1 + 0.816s1s2

2as0 + 0.816s0s2 2as1 + 0.816s1s2 2.449a2 + 4as2 + s2
0 + s2

1 + 1.632s2
2

⎞
⎠ .

4) Solve a series of convex sub-problems Now, we apply a standard iterative procedure in difference-of-convex program-
ming [27] as follows. Given a feasible solution zk = (λk, ak, sk) to the BMI optimization problem (3), the concave part 
−B−

i (λ, a, s) in (4) is linearized around zk , thus yielding a series of convex programs (k = 0, 1, . . .):

maximize
λ,a, s

λ

subject to B+
i (z) − B−

i

(
zk

)
−DB−

i

(
zk

)(
z − zk

)
� 0, i = 1,2,3

(5)

where DB−
i (zk)(·) denotes the derivative of the matrix-valued function B−

i (·) at zk .
The soundness of our approach asserts that the feasible set of the linearized program (5) under-approximates the feasible set 

of the original BMI program (3). Therefore, if λk ≥ 0 after iteration k, we can safely claim that (ak, sk) is a feasible solution to 
(2). A barrier certificate B(x) is then obtained by substituting ak in B(a, x). Moreover, if we take the optimum z∗,k of (5) to 
be the next linearization point zk+1, the solution sequence {zk}k∈N converges to a local optimum of (3).

We show that the linearized program (5) is equivalent to an LMI optimization problem admitting polynomial-time algo-
rithms [28], say the well-known interior-point methods supported by most off-the-shelf SDP solvers. Our iterative procedure 
starts with a strictly feasible initial solution z0 to program (3) and terminates after iteration k = 2 with λ2 ≥ 0 (subject to 
numerical round-off) and a2 = −0.00363421, yielding the barrier certificate

B(a2,x) = −0.00363421x2 ≤ 0 .

Fig. 2 depicts the system dynamics and the synthesized barrier certificate.
We remark that the aforementioned iterative procedure on solving a series of convex optimizations converges only to 

a local optimum of the BMI problem (3). This means that, in some cases, it may miss the global optimum that induces a 
non-negative λ∗ . We will present in Section 6 a solution to this problem by incorporating our iterative procedure into a 
branch-and-bound framework that searches for the global optimum in a divide-and-conquer fashion.

1 Despite that no bilinearity is involved in constraints (1.1) and (1.3), they can be processed in the same way as (1.2), yielding LMI constraints.
2 Extra constraints on σ(x) and σ ′(x) being SOS polynomials can be encoded analogously in the feasibility problem, yet are omitted here for the sake of 

simplicity.
4
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Fig. 2. Phase portrait of the system in Example 1. The arrows indicate the vector field and the solid curves are randomly sampled trajectories.

3. Mathematical foundations

Notations Let N , N+ , R, R+ and R+
0 be respectively the set of natural, positive natural, real, positive real and non-

negative real numbers. For a vector x ∈Rn , xi refers to its i-th component and ‖x‖ denotes the �2-norm; we write diag(x) ∈
Rn×n for a diagonal matrix with xi being the i-th diagonal element. For a matrix A ∈ Rn×m , A(i, j) refers to its (i, j)-th 
element; for a square matrix A ∈ Rn×n , its trace is tr(A) = ∑n

i=1 A(i, i). Given two matrices A ∈ Ra×b and B ∈ Rc×d , their 
Kronecker product is A ⊗ B =̂ [A(1, 1)B, . . . , A(1, b)B; · · · ; A(a, 1)B, . . . , A(a, b)B] ∈ Rac×bd . Sn denotes the space of n × n
real, symmetric matrices. For A ∈ Sn , A � 0 means that A is positive semidefinite (PSD, for short), i.e., ∀x ∈ Rn : xTAx ≥ 0. 
More generally, for A, B ∈ Sn , A � B indicates that B − A is positive semidefinite. A matrix-valued function B : Rn → Sm is 
PSD-convex on a convex set C ⊆Rn if ∀x1, x2 ∈ C. ∀μ ∈ (0, 1) : B(μx1 + (1 − μ)x2) � μB(x1) + (1 − μ)B(x2).

SOS, LMIs, and BMIs Let R[x] be the polynomial ring in x over the field R. A polynomial h ∈R[x] is sum-of-squares (SOS) 
iff there exist polynomials g1, . . . , gk ∈R[x] such that h = ∑k

i=1 g2
i . We denote by �[x] ⊂R[x] the set of SOS polynomials 

over x. A linear matrix inequality (LMI) is a constraint of the form L(x) =̂ F + ∑m
i=1 xi Hi � 0, where x ∈ Rm is a vector of 

variables and F , Hi ∈ S p are constant symmetric matrices. LMIs are convex and hence admit polynomial-time algorithms 
to find feasible solutions (or prove the infeasibility) given the desired precision [28]. A bilinear matrix inequality (BMI) is 
a constraint of the form B(x, y) =̂ F + ∑m

i=1 xi Hi + ∑n
j=1 y j G j + ∑m

i=1
∑n

j=1 xi y j Fi, j � 0, where x, y ∈ Rm are vectors of 
variables and F , Hi, G j, Fi, j ∈ S p are constant symmetric matrices. Solving general BMIs is NP-hard due to the non-convex 
nature of the constraints [19].

Differential dynamical systems We consider a class of continuous dynamical systems modeled by ordinary differential 
equations of the autonomous type:

ẋ = f (x) (6)

where x ∈Rn is the state vector, ẋ denotes its temporal derivative dx/dt , with t ∈R+
0 modeling time, and f : Rn →Rn is 

a polynomial flow field (or vector field) that governs the evolution of the system. A polynomial vector field is local Lipschitz, 
and hence for some T ∈R+ ∪{∞}, there exists a unique solution (or trajectory) ζ x0

: [0, T ) →Rn originating from any initial 

state x0 ∈ Rn such that (1) ζ x0
(0) = x0, and (2) ∀τ ∈ [0, T ) : dζ x0

dt

∣∣
t=τ

= f (ζ x0
(τ )). We assume in the sequel that T is the 

maximal instant up to which ζ x0
exists for all x0.

Remark 1. Our techniques on synthesizing barrier certificates in this paper focus on differential dynamics of the form (6). 
However, we will show that there is no substantial difficulty in extending the results to multi-mode hybrid systems where 
extra constraints on the system evolution, e.g., guards, are present.

Safety verification problem Given a domain set D ⊆Rn and an initial set X0 ⊆D, the reachable set of a dynamical system 
of the form (6) at time instant t ∈ [0, T ) is defined as RX (t) =̂ {ζ x (t) | x0 ∈ X0}. We denote by RX the aggregated 
0 0 0

5
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reachable set, i.e., the union of RX0 (t) over t ∈ [0, T ). Given an unsafe set Xu ⊆ D, the system is said to be safe iff RX0 ∩
Xu = ∅, and unsafe otherwise. For simplicity, we consider D =Rn unless explicitly stated otherwise.

To avoid the explicit computation of the exact reachable set, which is usually intractable for nonlinear hybrid systems 
(cf., e.g., [2]), barrier-certificate methods make use of a partial differential operator, termed the Lie derivative, to capture the 
evolution of a barrier function along the vector field:

Definition 1 (Lie derivative [29]). Given a vector field f : Rn → Rn over x, the Lie derivative of a polynomial B ∈ R[x] along 
f , Lk

f B : Rn →R of order k ∈N , is

Lk
f B(x) =̂

{
B(x), k = 0 ,〈

∂
∂xL

k−1
f B(x), f (x)

〉
, k > 0

where 〈·, ·〉 is the inner product of vectors, i.e., 〈u, v〉 =̂ ∑n
i=1 ui vi for u, v ∈Rn .

The Lie derivative Lk
f B(x) is essentially the k-th temporal derivative of the (barrier) function B(x), and thus captures the 

change of B(x) over time. In fact, given a polynomial vector field, one can use (high-order) Lie derivatives to identify the 
tendency of its trajectories in terms of a polynomial function B(x), as exemplified in Appendix A.

An inductive invariant 	 ⊆Rn of a dynamical system is a set of states such that all the trajectories starting from within 
	 remain in 	:

Definition 2 (Inductive invariant [30]). Given a system (6), a set 	 ⊆Rn is an inductive invariant of system (6) if and only if

∀x0 ∈ 	. ∀t ∈ [0, T ) : ζ x0
(t) ∈ 	 . (7)

In the sequel, we refer to inductive invariants simply as invariants. In [17], a sufficient and necessary condition on being 
a polynomial invariant is proposed:

Theorem 1 (Invariant condition [17]). Given a polynomial B ∈ R[x], its zero sub-level set {x | B(x) ≤ 0} is an invariant of system 
(6) if and only if3

B ≤ 0 =⇒
∨NB, f

i=0

((∧i−1

j=0
L j

f B = 0

)
∧ Li

f B < 0

)
∨

∧NB, f

i=0
Li

f B = 0 (8)

where NB, f ∈N+ is the completeness threshold, i.e., a positive integer that bounds the order of Lie derivatives.

Remark 2. NB, f is the minimal index i such that Li+1
f B is in the polynomial ideal generated by L0

f B, . . . , Li
f B . The ideal 

membership can be decided by computing the Gröbner basis of this ideal [17]. The complexity of computing NB, f will be 
discussed in the complexity analysis of our approach (see Section 5.3).

In contrast, a barrier certificate is a function whose zero sub-level set isolates an unsafe region Xu from the reachable set 
RX0 w.r.t. some initial set X0 (the sub-level set can be non-zero in general):

Definition 3 (Semantic barrier certificate [12]). Given a system (6), an initial set X0 and an unsafe set Xu , a barrier certificate
of (6) is a differentiable function B : Rn →R satisfying

∀x0 ∈ X0. ∀t ∈ [0, T ) : B
(
ζ x0

(t)
) ≤ 0 and ∀x ∈ Xu : B(x) > 0 . (9)

The existence of such a barrier certificate trivially implies safety of the system. Moreover, one may readily verify that if 
some set 	 = {x | B(x) ≤ 0} is an invariant and satisfies (X0 ⊆ 	) ∧ (	 ∩Xu = ∅), then B(x) is a barrier certificate.

As observed in [12], however, the semantic statement in Definition 3 encodes merely the general principle of barrier 
certificates [13], yet in itself is not that useful for safety verification because it explicitly involves the system solutions. 
Therefore, in order to enable efficient synthesis, the semantic condition on barrier certificates has been strengthened into 
a handful of different shapes (see, e.g., [9,14,15,13]) which all imply inductive invariance.4 It has been yet a long-standing 
challenge to find a barrier-certificate condition that is as weak as possible while admitting efficient synthesis algorithms.

Our BMI encoding of the invariant barrier-certificate condition roots in Putinar’s Positivstellensatz, which characterizes 
positivity of polynomials on a semi-algebraic set defined by a system of polynomial inequalities:

3 In (8), ∧i−1
j=0 L

j
f B = 0 is true for i = 0 by default. This applies in the sequel. Moreover, the sub-level set of B can be non-zero in general.

4 An exception is known as the t-barrier certificate condition [31], which is a continuous analogy to k-induction, thus more general than (classical) 
inductive invariance. However, this condition also explicitly involves the system solutions, and hence does not admit efficient synthesis.
6
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Theorem 2 (Putinar’s Positivstellensatz [18]). Let K = {x | ∧m
i=1 gi(x) ≥ 0} be a compact semi-algebraic set defined by g1, . . . , gm ∈

R[x]. Assume the Archimedean condition holds, i.e., there exists L ∈ R+ such that L − ‖x‖2 = η0(x) + ∑m
i=1 ηi(x)gi(x) for some 

η0, . . . , ηm ∈ �[x]. If h ∈R[x] is strictly positive on K, then

h(x) = σ0(x) +
∑m

i=1
σi(x)gi(x)

holds for some SOS polynomials σ0, . . . , σm ∈ �[x].

Remark 3. The Archimedean condition can be met by adding a (redundant) constraint gm+1(x) = L0 − ‖x‖2 ≤ 0, provided 
that a bound L0 ∈R+ is known such that ∀x ∈ K : L0 − ‖x‖2 ≥ 0. See [18, Chapter 2] for more details on the Archimedean 
condition.

We now recall a key technique used in our reduction to semidefinite optimizations. Given a symmetric matrix X ∈ Sn

partitioned as X =
(

A C
CT D

)
with invertible A, the Schur complement of A in X is defined as X/A =̂ D − CT A−1C . An 

important property of the Schur complement X/A is that it characterizes the positive semidefiniteness of the block matrix 
X (which will be used later to transform nonlinear convex constraints into linear constraints):

Theorem 3 (Schur complement [32]). If A � 0, then X � 0 iff X/A � 0.

4. Invariant barrier-certificate condition as BMIs

In this section, we present our invariant barrier-certificate condition based on the necessary and sufficient condition on 
being an inductive invariant (cf. Theorem 1), and show how to encode it as BMI constraints.

4.1. Invariant barrier-certificate condition

Definition 4 (Invariant barrier certificate). Given a system (6), an initial set X0 and an unsafe set Xu , a polynomial function 
B : Rn →R is an invariant barrier certificate of system (6) if and only if

1. (initial): ∀x ∈X0 : B(x) ≤ 0 ;

2. (consecution): ∀x ∈Rn : ∧NB, f
i=1

((∧i−1
j=0 L

j
f B(x) = 0

)
=⇒ Li

f B(x) ≤ 0
)

;

3. (separation): ∀x ∈Xu : B(x) > 0.

Notice that the consecution constraint in Definition 4 involves Lie derivatives of orders up to NB, f ∈ N+ , as is the case 
in Theorem 1. Our invariant barrier-certificate condition hence generalizes existing conditions on barrier certificates, e.g., 
[15,33,25], which consider Lie derivatives only up to the first order.

The following lemma states that the consecution condition in Definition 4 is in fact equivalent to the invariant condition (8) in 
Theorem 1.

Lemma 1 (Equivalence of Lie consecution). The consecution condition in Definition 4 holds if and only if the invariant condition (8) in 
Theorem 1 holds.

Proof. We prove both the “if” and the “only if” part by contradiction.
For the “if” part, suppose that the invariant condition (8) holds but the consecution condition is invalid. The latter implies 

that for some x0 ∈Rn and 1 ≤ i0 ≤ NB, f ,(∧i0−1

j=0
L j

f (x0) = 0

)
∧ Li0

f B(x0) > 0 . (10)

Note that (10) implies B(x0) = 0. From (8), it follows that either∧NB, f

i=0
Li

f B(x0) = 0 (11)

holds, or there exists 0 ≤ i1 ≤ NB, f such that(∧i1−1

j=0
L j

f B(x0) = 0

)
∧ Li1

f B(x0) < 0 (12)

holds. However,
7
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Fig. 3. A simple (symbolic) hybrid automaton.

• (11) cannot hold as Li0
f B(x0) = 0 in (11) but Li0

f B(x0) > 0 in (10);

• for i1 ≤ i0, (12) cannot hold as Li1
f B(x0) < 0 in (12) but Li1

f B(x0) ≥ 0 in (10);

• for i1 > i0, (12) cannot hold as Li0
f B(x0) = 0 in (12) but Li0

f B(x0) > 0 in (10).

For the “only if” direction, suppose that the consecution condition in Definition 4 holds but the invariant condition (8)
is invalid. The latter implies that there exists x0 such that B(x0) ≤ 0 and

¬
((∧i−1

j=0
L j

f B(x0) = 0

)
∧ Li

f B(x0) < 0

)
(13)

holds for any 0 ≤ i ≤ NB, f .
For i = 0, (13) yields that B(x0) ≥ 0. Together with the premise B(x0) ≤ 0, we have B(x0) =L0

f B(x0) = 0. Now, by taking 
the case i = 1 in the consecution condition, we deduce L1

f B(x0) ≤ 0. Meanwhile, for i = 1, (13) yields L1
f B(x0) ≥ 0. It 

thus follows that L1
f B(x0) = 0. Analogously, by taking i = 2, . . . , NB, f , we conclude Li

f B(x0) = 0 for all 0 ≤ i ≤ NB, f . This is 
exactly encoded in (8) (the rightmost conjunctive clause) and hence contradicts the assumption that (8) is invalid. Therefore, 
the consecution condition implies (8). �

Lemma 1 reveals the relation between an inductive invariant and an invariant barrier certificate:

Theorem 4 (Inductive invariance). Given a system (6), an initial set X0 and an unsafe set Xu . (1) If polynomial B(x) is an invariant 
barrier certificate, then 	 = {x | B(x) ≤ 0} is an invariant. Conversely, (2) if 	 = {x | B(x) ≤ 0} is an invariant satisfying X0 ⊆ 	 and 
	 ∩Xu = ∅, then B(x) is an invariant barrier certificate.

Proof. The claim is an immediate consequence of Lemma 1. �
It follows from Theorem 4 that our invariant barrier-certificate condition is the least conservative (and in fact the weakest 

possible) one on barrier certificates to attain inductive invariance.

Remark 4. We do not employ the invariant condition (8) in Theorem 1 as the constraint on the consecution of Lie 
derivatives. This is because our consecution condition in Definition 4 is simpler, and in particular, amenable to more straight-
forward transformations to SOS constraints via Putinar’s Positivstellensatz, as shown later in Section 4.2.

Remark 5. For a fixed 0 < N < NB, f , the consecution condition in Definition 4 can be strengthened in the following way 
while preserving inductive invariance:

∀x ∈ Rn :
∧N−1

i=1

((∧i−1

j=0
L j

f B(x) = 0

)
=⇒ Li

f B(x) ≤ 0

)
∧

((∧N−1

j=0
L j

f B(x) = 0

)
=⇒ LN

f B(x) < 0

)
where for the N-th Lie derivative, one needs LN

f B(x) < 0 (rather than LN
f B(x) ≤ 0). In practice, using such a strengthened 

consecution condition —with less sub-constraints to solve— may yield more efficient synthesis.

Generalization to hybrid systems Our invariant barrier-certificate condition can be readily generalized to multi-mode hybrid 
systems exhibiting both continuous dynamics and discrete transitions in the same vein as in [9,25]. We illustrate such 
generalization by a simple (symbolic) hybrid automaton [2] as depicted in Fig. 3. The system has two modes q0 (initial 
mode) and q1 governed respectively by polynomial flow fields f 0(x) and f 1(x) and mode domains D0 and D1. The system 
may evolve continuously in mode qk (for k = 0, 1) within Dk or jump to mode q1−k when guardk(x) ≤ 0 is satisfied. In 
the latter case, the system state will be set to x′ = resetk(x) ∈ D1−k after the jump. We aim to verify that no trajectory 
originating from an initial set X0 ⊆D0 will ever visit states in the unsafe sets Xu,k ⊆Dk . To this end, our invariant barrier-
certificate condition (cf. Definition 4) can be augmented to recognize an invariant barrier certificate Bk(x) for each mode 
qk:
8
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1. (initial): ∀x ∈X0 : B0(x) ≤ 0 ;

2. (consecution): ∀k ∈ {0, 1}. ∀x ∈Dk : ∧NBk, fk
i=1

((∧i−1
j=0 L

j
fk

Bk(x) = 0
)

=⇒ Li
fk

Bk(x) ≤ 0
)

;

3. (transition): ∀k ∈ {0, 1}. ∀x ∈Dk : (
Bk(x) ≤ 0 ∧ guardk(x) ≤ 0

) =⇒ B1−k(resetk(x)) ≤ 0 ;
4. (separation): ∀k ∈ {0, 1}. ∀x ∈Xu,k : Bk(x) > 0.

The existence of Bk(x) satisfying the above constraints ensures safety of the hybrid system model. In fact, all these con-
straints (with polynomial guards and resets as well as domains described by polynomials) can be encoded in a BMI 
optimization problem and thereby solved by our DCP-based algorithm without substantial changes. For simplicity, how-
ever, we present our techniques for single-mode dynamical systems based on the invariant barrier-certificate condition 
given in Definition 4.

4.2. Encoding as BMI optimizations

Next, we show how to encode the synthesis of an invariant barrier certificate as an optimization problem subject to BMIs. 
To this end, we first recast the invariant barrier-certificate condition into a collection of SOS constraints. For simplicity, we 
assume that X0 and Xu are both captured by a single polynomial. Our formulations, however, apply also to cases with basic 
semi-algebraic X0 or Xu .

Theorem 5 (Sufficient condition for invariant barrier certificate). Given a system (6), an initial set X0 = {x | I(x) ≤ 0} and an unsafe 
set Xu = {x | U(x) ≤ 0}. A polynomial B ∈ R[x] is an invariant barrier certificate of (6) if for some ε ∈ R+ , there exist polynomials 
vi, j ∈R[x] and SOS polynomials σ(x), σ ′(x) ∈ �[x] s.t.

1. −B(x) + σ(x)I(x),
2. for all 1 ≤ i ≤ NB, f , −Li

f B(x) + ∑i−1
j=0 vi, j(x)L j

f B(x),

3. B(x) + σ ′(x)U(x) − ε

are SOS polynomials in �[x].

Proof. It can be shown that the k-th condition in Theorem 5 implies the k-th condition in Definition 4, for k = 1, 2, 3. For 
instance, the second condition in Theorem 5 requires that −Li

f B(x) + ∑i−1
j=0 vi, j(x)L j

f B(x) is an SOS polynomial (and thus 

non-negative) for all 1 ≤ i ≤ NB, f , we therefore have Li
f B(x) ≤ ∑i−1

j=0 vi, j(x)L j
f B(x) for all 1 ≤ i ≤ NB, f . It follows that for 

all x, when L j
f B(x) = 0 with 0 ≤ j ≤ i − 1, we have Li

f B(x) ≤ 0, which is the consecution condition in Definition 4. A 
similar argument applies to the other two conditions. �

By enforcing the Archimedean condition and applying Putinar’s Positivstellensatz, we further derive a necessary condition 
of invariant barrier certificate:

Theorem 6 (Necessary condition for invariant barrier certificate). Given a system (6), an initial set X0 = {x | I(x) ≤ 0} and an unsafe 
set Xu = {x | U(x) ≤ 0}. If B ∈R[x] is an invariant barrier certificate of (6), then for some ε ∈R+ , there exist polynomials vi, j ∈R[x]
and SOS polynomials σ(x), σ ′(x), ρ(x), ρ ′(x), ρ ′′

i (x) ∈ �[x] s.t. for any L ∈R+ ,

1. −B(x) + ρ(x)(‖x‖2 − L) + σ(x)I(x) + ε ,

2. for all 1 ≤ i ≤ NB, f , −Li
f B(x) + ρ ′′

i (x)(‖x‖2 − L) + ∑i−1
j=0 vi, j(x)L j

f B(x) + ε ,

3. B(x) + ρ ′(x)(‖x‖2 − L) + σ ′(x)U(x)

are SOS polynomials in �[x].

Proof. The invariant barrier-certificate condition in Definition 4 characterizes positivity of polynomials over certain sets. By 
adding a “ball” constraint ‖x‖2 − L ≤ 0 to those sets (thus achieving the Archimedean condition), we can apply Putinar’s 
Positivstellensatz to rewrite those polynomials into SOS forms.

For instance, the consecution condition in Definition 4 implies that −Li
f B(x) + ε is strictly positive on K = {x |

(
∧i−1

j=0 L0
f B(x) = 0) ∧ −(‖x‖2 − L) ≥ 0} for all 1 ≤ i ≤ NB, f . Putinar’s Positivstellensatz can then be applied to show that 

−Li
f B(x) + ε = σi(x) − ρ ′′

i (x)(‖x‖2 − L) − ∑i−1
j=0 vi, j(x)L j

f B(x) holds for some SOS polynomials σi(x), ρ ′′
i (x) and some 

polynomials vi, j(x) for 1 ≤ i ≤ NB, f and 0 ≤ j ≤ i − 1. The second condition in Theorem 6 then follows immediately.
A similar argument applies to the other two conditions. �
9
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Notice that a polynomial B(x) satisfying the sufficient condition in Theorem 5 suffices as an invariant barrier certificate 
that witnesses safety of the system. In contrast, a polynomial B(x) satisfying the necessary condition in Theorem 6 may 
serve as a candidate invariant barrier certificate, and safety of the system can be concluded via a posterior check of B(x)

per Definition 4. Such a check inherits decidability of the first-order theory over real-closed fields [34].
Next we show how to encode an SOS constraint of the shape “h(x) ∈ �[x]” in Theorems 5 and 6 as a BMI constraint. To this end, 

we first set a template polynomial B(a, x) parameterized by unknown real coefficients a as the barrier certificate (required to 
be linear in its parameters a). We then proceed by setting templates for the remaining unknown polynomials (e.g., vi, j(x)) 
and SOS polynomials (e.g., σ(x) and ρ(x)) in h(x), with all the parameters in these templates grouped in s. Observe that 
the parameterized SOS polynomial h(a, s, x) is of a bilinear form on the parameter spaces, i.e., h(a, s, x) is linear in a and 
s separately. However, nonlinearity arises in the combined parameter space (a, s) due to the product couplings of a and s, 
i.e., vi, j(si, j, x)L j

f B(a, x) in the consecution constraint.
Now the problem of synthesizing an invariant barrier certificate boils down to searching for an instantiation of the 

parameters a and s such that the sufficient condition in Theorem 5 holds (or alternatively, the necessary condition in 
Theorem 6 holds and the posterior check of Definition 4 passed). Such an instantiation of a (making B(a, x) an invariant 
barrier certificate) will be called valid in the sequel.

Suppose that a parameterized SOS polynomial h(a, s, x) is of degree at most 2d, with user-specified d ∈N . Then h(a, s, x)

can always be written in quadratic form as h(a, s, x) = bT Q (a, s)b, where b = (1, x1, x2, x1x2, . . . , xd
n) is the basis vector of size 

p = (n+d
n

)
containing all monomials of degree up to d, and Q (a, s) ∈ S p is a parameterized real symmetric matrix known as 

the Gram matrix [35].5 An important fact states that h(a, s, x) is SOS if and only if Q (a, s) � 0.
Let F(a, s) = −Q (a, s). As per h(a, s, x), the matrix-valued function F(a, s) is bilinear in (a, s). Observe that h(a, s, x) is 

SOS if and only if the BMI constraint F(a, s) � 0 holds. See Example 1 for an illustration of this BMI encoding.
In general, F(a, s) can be flattened in an expanded bilinear form as

F(a, s) = F +
∑m

i=1
ai Hi +

∑n

j=1
s j G j +

∑m

i=1

∑n

j=1
ai s j Fi, j

where m and n are the size of a and s, respectively; F , Hi, G j, Fi, j ∈ S p are constant matrices. Discharging the conditions 
of invariant barrier certificates hence amounts to solving the BMI feasibility problem of finding a and s s.t.

Fι(a, s) � 0, ι = 1,2, . . . , l . (14)

Here F(a, s) is indexed by ι and l is the number of SOS constraints involved.
To exploit well-developed techniques in optimization, the feasibility problem (14) is transformed to an optimization 

problem subject to BMI constraints:

maximize
λ,a, s

λ

subject to Fι(a, s) + λI � 0, ι = 1,2, . . . , l .

(15)

A solution (λ, a, s) to (15) is feasible if it satisfies the BMIs in (15), and strictly feasible if all the BMIs are satisfied with 
strict inequalities. We sometimes drop the λ component in the solution when it is clear from the context. Notice that 
problem (14) has a feasible solution if and only if the optimal value λ∗ in the BMI optimization problem (15) is non-negative.

To achieve (weak) completeness of our method in subsequent sections on solving the BMI optimization problem, we 
make the following assumption on the boundedness of the search space (a, s) of the optimization.

Assumption 1 (Boundedness on the parameters). Every feasible solution (a, s) to the BMI problem (15) is in a compact set 
with non-empty interior, i.e.,

(a, s) ∈ Ca × Cs =
{
(a, s)

∣∣ ‖a‖2 ≤ La,‖s‖2 ≤ Ls

}
for some known bounds La, Ls ∈R+ .

Remark 6. The boundedness on a in Assumption 1 makes sense in practice since we usually prefer barrier certificates with 
bounded coefficients. Moreover, when the bilinear functions Fι(a, s) in (15) are affine in a and s, i.e., with a zero constant 
matrix F , the parameters a and s can be scaled independently by any positive factor. Therefore in this case, w.l.o.g., one 
may simply set La = Ls = 1.

5 Extracting the Gram matrix amounts to solving a system of linear equations resulting from coefficient matching. The derived Gram matrix may contain 
extra unknowns if the system of linear equations admits multiple solutions, which nevertheless can be encoded in our subsequent workflow by enumerating 
the basis of its null space.
10
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5. Solving BMI optimizations via DCP

The BMI optimization problem (15), derived from the synthesis problem, is known to be NP-hard and contains non-
convex constraints [19], and hence is not amenable to efficient (polynomial-time) algorithms in contrast to convex opti-
mization. In this section, we present an algorithm for solving general BMI optimizations via difference-of-convex program-
ming [22,23], which solves a series of convex sub-problems that approaches a local optimum of (15).

For brevity, we consider optimization problems with a single BMI constraint (whereas multiple BMI constraints can be 
joined as a single BMI in a block-diagonal fashion):

maximize
z = (x,y)

g(z)

subject to B(x,y) =̂ F +
m∑

i=1

xi Hi +
n∑

j=1

y j G j +
m∑

i=1

n∑
j=1

xi y j Fi, j � 0
(16)

where the objective function g : Rm+n →R is linear in z = (x, y); F , Hi, G j, Fi, j ∈ S p are constant symmetric matrices.

5.1. Difference-of-convex decomposition

The key challenge in solving the BMI problem (16) is its non-convexity, that is, the matrix-valued function B(x, y) is, in 
general, not PSD-convex.

There have been attempts, most pertinently in [27], to decompose a bilinear function as a difference between two PSD-
convex functions, known as the difference-of-convex (DC) decomposition, such that the optimization in its decomposed form 
enjoys well-established techniques in difference-of-convex programming [22,23]. The DC decomposition in [27], however, is 
confined to BMIs of a specific structure, namely, XTY + Y T X � 0, where X and Y are matrix variables containing variables xi
and y j , respectively. The more general bilinear function B(x, y) in (16) does unfortunately not admit straightforward forms 
of decomposition such as those in [27, Lemma 3.1].

In this subsection, we first show how to formulate a difference-of-convex decomposition of the matrix-valued function 
B(x, y) using matrix decomposition (inspired by [36]), and then present three different ways to obtain such a matrix de-
composition. These decomposition methods compete with each other in terms of theoretical simplicity, generality, and the 
exploitation of matrix sparsity.

First, observe that the function B(x, y) can be written as

B(x,y) =
(

x ⊗ I
y ⊗ I

)T (
0 



T 0

)(
x ⊗ I
y ⊗ I

)
+ (

�1 �2
)(

x ⊗ I
y ⊗ I

)
+ F (17)

where 0 represents the zero matrices with compatible dimensions and


 = 1

2

⎛
⎜⎝

F1,1 . . . F1,n
...

. . .
...

Fm,1 . . . Fm,n

⎞
⎟⎠ , �1 = (

H1 . . . Hm
)
, �2 = (

G1 . . . Gn
)

.

The form of (17) implies that B(x, y) is PSD-convex if the matrix M =
(

0 



T 0

)
is positive semidefinite. Unfortunately, as 

[36, Theorem 1] points out, for a non-trivial bilinear function B(x, y), M may not be positive semidefinite.
Nevertheless, the matrix M can always be decomposed as M = M1 − M2 with M1, M2 � 0, i.e., a difference between two 

PSD-matrices. This, in turn, leads to a DC decomposition of B(x, y):

Theorem 7 (DC decomposition by matrix decomposition). Suppose M = M1 − M2 with M1, M2 � 0. Then, the form

B(x,y) = B+(x,y) − B−(x,y) (18)

where

B+(x,y) =
(

x ⊗ I
y ⊗ I

)T

M1

(
x ⊗ I
y ⊗ I

)
+ (

�1 �2
)(

x ⊗ I
y ⊗ I

)
+ F

B−(x,y) =
(

x ⊗ I
y ⊗ I

)T

M2

(
x ⊗ I
y ⊗ I

)
is a difference-of-convex decomposition of B(x, y), i.e., the matrix-valued functions B+(x, y) and B−(x, y) are PSD-convex on Rm+n.
11
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Proof. We first show the PSD-convexity of B+(x, y). Let z = (x, y) ∈ Rm+n . According to [37, Proposition 1], B+(z) =
B+(x, y) is PSD-convex if (and only if) for any v ∈Rp , the function φv(z) = vTB+(z)v is convex. Note that

φv(z) = vT (
z ⊗ I

)T
M1

(
z ⊗ I

)
v + vT (

�1 �2
) (

z ⊗ I
)

v + vT F v

= (z ⊗ v)TM1(z ⊗ v) + vT (
�1 �2

)
(z ⊗ v) + vT F v .

Then, for any μ1 ∈ (0, 1) and μ2 = 1 − μ1, we have, for any z1, z2 ∈Rm+n ,

φv(μ1z1 + μ2z2) − (μ1φv(z1) + μ2φv(z2))

= (μ1(z1 ⊗ v) + μ2(z2 ⊗ v))TM1(μ1(z1 ⊗ v) + μ2(z2 ⊗ v)) − μ1(z1 ⊗ v)TM1(z1 ⊗ v) − μ2(z2 ⊗ v)TM1(z2 ⊗ v)

= μ1μ2(z2 ⊗ v)TM1(z1 ⊗ v) + μ1μ2(z1 ⊗ v)TM1(z2 ⊗ v) − μ1μ2(z1 ⊗ v)TM1(z1 ⊗ v)

− μ1μ2(z1 ⊗ v)TM1(z1 ⊗ v)

= − μ1μ2((z1 − z2) ⊗ v)TM1((z1 − z2) ⊗ v)

≤ 0 (positive semidefiniteness of M1)

which means that φv(z) is convex. Thus, B+(x, y) is PSD-convex.
The PSD-convexity of B−(x, y) can be shown in an analogous way. �
It remains to find a matrix decomposition of M . In what follows, we present three different ways to decompose the 

matrix M ∈ S(m+n)p as a difference between two PSD-matrices. Notice that M is a real symmetric matrix and thus only has 
real eigenvalues.

5.1.1. Decompose M via eigendecomposition
A (real symmetric) matrix is positive semidefinite if and only if all of its eigenvalues are non-negative. Although the 

matrix M may have both non-negative and negative eigenvalues, we can “group” them respectively in PSD-matrices M1 and 
M2 such that M = M1 − M2.

One way to do so is to use the eigendecomposition of M . That is, M = V T D V , where the orthogonal matrix V contains 
the eigenvectors of M , and D is a diagonal matrix whose diagonal elements are the eigenvalues of M .

Let D+ be the matrix obtained by setting all negative elements of D to zero, and D− = D+ − D . Then,

M = V T D+V︸ ︷︷ ︸
M1

− V T D−V︸ ︷︷ ︸
M2

. (19)

It follows from construction that M1, M2 � 0, and therefore, by Theorem 7, we obtain a DC decomposition of B(x, y).

5.1.2. Decompose M via bounds on eigenvalues
The eigendecomposition-based DC decomposition is theoretically simple, yet does not benefit from the sparsity nature of 

M: The matrix M =
(

0 



T 0

)
∈ S(m+n)p in (17) is often highly sparse, which is potentially a useful feature in accelerating 

many matrix operations. However, sparsity is of little value when all of the eigenvalues and eigenvectors are needed, which 
typically takes time cubic in the matrix size [38]. In particular, the decomposed matrices M1 and M2 may not be as sparse 
as M is, thus slowing down almost all the subsequent matrix manipulations.

The key observation here is that, to obtain a DC decomposition, one does not need to compute all the eigenvalues. In fact, it 
suffices to find a bound on the eigenvalues: Let λu ∈ R+

0 be an upper-bound on all the eigenvalues of M (the symbol λ shall 
not be confused with those used in optimization problems). We have

M = λu I︸︷︷︸
M1

− (λu I − M)︸ ︷︷ ︸
M2

. (20)

Here, M1 � 0 trivially holds as λu ≥ 0. The positive semidefiniteness of M2 = λu I − M can be shown by considering the 
eigendecomposition of M:

M2 = λu I − V T D V = V T (λu I − D) V

where the diagonal matrix λu I − D contains the eigenvalues of M2. Since λu upper-bounds all the eigenvalues of M (diagonal 
elements in D), λu I − D contains only non-negative values, and thus we conclude that M2 � 0.

In order to obtain the upper-bound λu , it suffices to compute only the largest eigenvalue of M , which can be done 
substantially more efficient than conducting the full eigendecomposition, especially for sparse M [39, Chapter VI]. Moreover, 
the decomposed matrices M1 and M2 given in (20) are guaranteed to be as sparse as M is.
12
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We remark, however, that the derived matrices M1 and M2 in (20) have inevitably larger entries than those built from 
eigendecomposition. In practice, larger entries in M2 may increase the linearization error (in the transformation to convex 
sub-problems, cf. Section 5.2), thereby slowing down the convergence of the iterative DCP procedure.

Remark 7. Apart from using an upper-bound λu ≥ 0 on the eigenvalues of M , a DC decomposition can also be obtained by 
using a lower bound λl ≤ 0 on the eigenvalues of M . In that case, we have M1 = M − λl I and M2 = −λl I .

5.1.3. Decompose M via SDP
The problem of decomposing the matrix M as a difference between two PSD-matrices can alternatively be modeled as 

an SDP problem:

minimize
M2

tr (M2)

subject to M + M2 � 0 ,

M2 � 0 .

(21)

A feasible solution to (21) clearly induces a matrix decomposition (with M1 = M + M2) as required in Theorem 7. 
The objective function (i.e., the trace of M2) in (21) intuitively measures the magnitude of the (undesired) “concave part” 
−B−(x, y) in (18). As argued previously, minimizing such an objective may reduce the linearization error and thus expedite 
the DCP procedure.6

Although it would seem to be more time-consuming to solve an SDP problem than to perform the eigendecomposition, 
the specific SDP instance (21) can often be solved rather efficiently by exploiting the sparsity pattern of M , e.g., the chordal 
sparsity [42]. Alternatively, one can improve the performance by imposing a certain sparsity structure (e.g., to be diagonal) 
on M1 or M2. For instance, one possible formulation using diagonal matrix M1 = diag(c) is

minimize
c

tr (diag (c) − M)

subject to ci ≥ 0, i = 1,2, . . . , (m + n)p ,

diag(c) − M � 0

which can be further rewritten as a (sparse) LMI problem:

minimize
c

∑
i
ci

subject to ci ≥ 0, i = 1,2, . . . , (m + n)p ,∑
i
ci eT

i ei − M � 0

(22)

where ei denotes a row vector with 1 in its i-th column and 0’s elsewhere. When M admits a specific sparsity pattern, 
the LMI problem (22) can be solved extremely efficiently (see, e.g., [43], for solving LMIs with thousands of variables in 
minutes).

In a nutshell, the eigendecomposition-based method is theoretically simple, yet does not benefit from the sparsity na-
ture of M . Decomposing M via bounds on eigenvalues exploits the sparsity nature of M —thereby yielding considerably 
faster matrix operations, but may slow down the convergence of the iterative DCP procedure. The SDP-based decomposition 
may expedite the DCP procedure, but is theoretically more involved and stands out only when M admits specific sparsity 
patterns. We will compare these different DC decomposition methods empirically in Section 7.

5.2. Reduction to LMIs

On top of a DC decomposition (cf. Theorem 7), we can now apply a standard iterative procedure in difference-of-convex 
programming [27] to solve the BMIs.

The core idea of the procedure is to iteratively solve a series of convex sub-problems. More specifically, given a feasible 
solution zk = (xk, yk) to the BMI optimization problem (16), the “concave part” −B−(x, y) in (18) is linearized around zk , 
thereby yielding a series of convex programs (k = 0, 1, . . .):

maximize
z = (x,y)

g(z) + 1

2
δ

∥∥∥z − zk
∥∥∥2

subject to B+(z) − B− (
zk

)
−DB− (

zk
)(

z − zk
)

� 0

(23)

6 A good DC decomposition should make the concave part (locally) “as affine as possible”. Such “affineness” can be measured by the Hessian matrix for 
scalar-valued functions (see [40]). For matrix-valued functions, the Hessian is in fact a 4-th rank tensor, but its norm can still be bounded by the norm of 
a certain matrix (cf. [41]). That matrix, in our case, is exactly the matrix M2.
13
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Algorithm 1: BMI-DC: solving BMIs based on DC decomposition.

input: A BMI optimization problem (16) with a strictly feasible initial solution z0.
output : A sequence of feasible solutions S = {

z0, . . . , zk
}

to the BMI optimization.
1 k ← 0; S ← {

z0
}

;
2 M ← reformulation of (16) as (17);
3 (M1, M2) ← matrix decomposition of M as in Theorem 7;
4 repeat
5 Construct the convex sub-problem (23) out of (M1, M2) linearized around zk;

6 zk+1 ← optimum of the program (23);

7 S ← S ∪ {
zk+1

}
; � S keeps track of visited points

8 k ← k + 1;

9 until
∥∥zk − zk−1

∥∥ < ε for a given tolerance ε ∈R+
0 ;

10 return S;

where DB−(z) : Rm+n → S p is the derivative of the matrix-valued function B− at z, i.e., a linear mapping from a vector 
u ∈Rm+n to a matrix in S p :

DB−(z)(u) =̂
∑n+m

i=1
ui

∂B−

∂zi
(z) .

An extra regularization term 1
2 δ‖z − zk‖2 with δ < 0 is added in (23) to enforce that g(z) strictly increases after each 

iteration until it stabilizes, which can be encoded as a second-order cone constraint and embedded in SDP solving.
Note that the linearized problem (23) is convex and therefore can be solved efficiently (see, e.g., [44]). Furthermore, 

Theorem 3 can also be used to reformulate (23) as an LMI problem:

Theorem 8 (Reduction to LMIs). The quadratic matrix inequality (QMI) constraint

B+(z) − B− (
zk

)
−DB− (

zk
)(

z − zk
)

� 0

in (23) is equivalent to the LMI constraint (of the size (m + n + 1)p)( −I N(z ⊗ I)
(z ⊗ I)TNT −B− (

zk
) −DB− (

zk
) (

z − zk
) + �(z ⊗ I) + F

)
� 0

where N is the square root matrix of M1, i.e., M1 = NTN, and � = (
�1 �2

)
.

Proof. Note that the square root matrix N of M1 exists since M1 � 0.7 The claim then follows immediately by applying the 
Schur complement in Theorem 3. �

Theorem 8 entails that the series of linearized convex sub-problems of the form (23) can be solved alternatively by 
most off-the-shelf SDP solvers designated for discharging LMIs via polynomial-time algorithms [28], say the interior-point 
methods. Furthermore, by taking the optimum of the k-th sub-problem to be the next linearization point zk+1, we obtain 
an iterative procedure for solving general BMIs, as depicted in Algorithm 1.

Algorithm 1 falls into the DCP framework [27] and thus enjoys useful properties, e.g., soundness, termination and con-
vergence as follows.

Theorem 9 (Soundness). Every solution zi = (xi, yi) ∈ S with i = 0, . . . , k returned by Algorithm 1 is a feasible solution to the original 
BMI problem (16).

Proof. We prove by induction on i. The base case holds as z0 is assumed to be a feasible solution to (16). For the induction 
step, we show that zi+1 is a feasible solution to (16) if zi is a feasible solution to (16). Since zi+1 is a feasible solution 
to (23) linearized at zi , it suffices to show that the feasible set of (23) is a subset (or, an under-approximation) of the 
feasible set of (16).

Theorem 7 shows that B−(z) is PSD-convex, then by [27, Lemma 2.2 (b)], we have

B−(z) − B− (
zi

)
� DB− (

zi
)(

z − zi
)

. (24)

In the meantime, zi is a feasible solution to (23) and thus fulfills

7 In case we have M1 = V T D+V (with only non-negative eigenvalues in D+) from the eigendecomposition of M , the matrix N can be computed as 
N = V T(D+)1/2 V , where (D+)1/2 is the diagonal matrix whose diagonal elements are square roots of those in D+ . For the other decomposition methods 
as presented in Section 5.1, N can be obtained via Cholesky decomposition of M1.
14
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B+(z) − B− (
zi

)
−DB− (

zi
)(

z − zi
)

� 0 . (25)

Combining (24) and (25), we have B(x, y) = B+(z) − B−(z) � 0 which is exactly the BMI constraint of (16). This com-
pletes the proof. �

The result below states termination and convergence of Algorithm 1 in terms of KKT points of (16), i.e., solutions fulfilling 
the KKT conditions [32] of (16). The KKT conditions, short for Karush-Kuhn-Tucker conditions, are used to determine the 
optimality of a solution to a constrained nonlinear optimization problem. Addressing these conditions in detail falls outside 
the scope of this paper.

Theorem 10 (Termination and convergence). If (16) has finitely many KKT points, then (1) for ε ∈R+ , Algorithm 1 terminates; (2) for 
ε = 0, Algorithm 1 visits an infinite sequence of solutions converging to a KKT point.

Proof. Let S̄ = {zi}i∈N be the infinite sequence of visited points for ε = 0.
We first show that (2) implies (1). Assume that (2) holds, i.e., S̄ converges (to a KKT point of (16)), then by Cauchy’s 

criterion for convergence, we have ∀ε ∈R+. ∃k ∈N+ : ‖zk − zk−1‖ < ε (with zk, zk−1 ∈ S̄). Algorithm 1 thus terminates.
It then remains to show that S̄ converges to a KKT point of (16) if the set of KKT points of (16) is finite. This is in 

fact a straightforward corollary of [27, Theorem 4.3], by noticing that the assumptions thereof can be readily verified. For 
simplicity, we highlight the validity of only a few of these assumptions: Since z0 in Algorithm 1 is a strictly feasible solution 
to (16), the relative interior of the feasible set of (16) is non-empty and thus Assumption A1 in [27] holds; Our Assumption 1
on the boundedness of the search space ensures that g(z) in (16) is bounded from above over a bounded feasible set, and 
therefore the boundedness assumptions in [27, Theorem 4.3] hold. �

We remark that, under some sufficient KKT conditions and regularity conditions [32], a KKT point suffices as a local 
optimum. In this case, the infinite sequence {zi}i∈N of points visited by Algorithm 1 (for ε = 0) converges to a local 
optimum of (16).

It is also worth noting that, in [45], the authors presented a DC-based approach to synthesizing parameters in parametric 
Markov decision processes, which integrates (probabilistic) model checking into the DCP procedure, thereby yielding possibly 
earlier termination and numerically more stable results in practice. It is our future interest to investigate a similar idea in 
the context of barrier-certificate synthesis for hybrid systems.

5.3. Complexity of Algorithm 1

We discuss ingredients for establishing the time complexity of Algorithm 1, which concerns (1) computing the DC de-
composition; (2) performing a single iteration; and (3) conducting a number of iterations (up to a desired precision).

Recall that the matrix M to be decomposed (cf. Theorem 7) is of the size (m + n)p, where m and n are the number of 
parameters in the template barrier certificate (i.e., size of a) and other template polynomials (i.e., size of s), respectively; 
p = (r+d

r

)
bounds the size of the basis vector b (where r is the system dimension and the SOS polynomial is of degree at 

most 2d). All the three DC decomposition methods in Section 5.1 can be done in polynomial time, e.g., O ((m + n)3 p3) for 
the eigendecomposition of M [38].

Performing a single iteration in Algorithm 1 amounts to solving an LMI instance with k + 2 constraints (derived from 
Definition 4) where k is the order of Lie derivatives considered (bounded by NB, f ). Computing NB, f is non-elementary 
in theory (described in terms of the fast-growing hierarchy [46] or an explicit Ackermannian function [47,48]), yet it is 
relatively small in practice and can be obtained offline. Each LMI constraint involves matrices in S(m+n+1)p (see Theorem 8), 
which can be solved in O (((m + n)p)6.5) [49]. Note that, in practice, the computation time is often significantly less than 
this theoretical bound especially when the matrices in the LMI instance admit specific sparsity patterns (see, e.g., [43], for 
solving LMIs with thousands of variables in minutes).

Bounding or even estimating the number of iterations required to achieve a desired precision is non-trivial: one needs 
to determine the rate of convergence of the sequence of solutions produced by the iterative procedure. Since Algorithm 1
essentially builds first-order approximations of the original BMI optimization problem, one may reasonably assume that it 
is at least linearly convergent. However, to the best of our knowledge, proving linear convergence for general difference-of-
convex algorithms remains an open problem [50], albeit with some known results on typical subclasses [51]. In practice, 
nonetheless, difference-of-convex algorithms often converge to a local optimum within a few iterations, as can be observed 
in our experiments in Section 7.

5.4. Finding the initial solution

The iterative procedure in Algorithm 1 starts with a fed-by-oracle strictly feasible initial solution z0 to the BMI prob-
lem (16). Finding such an initial solution, however, is non-trivial in general due to the non-convexity of (16). We argue 
though, that a strictly feasible initial solution can be obtained for the BMI problem of the form (15) induced by the barrier-
certificate synthesis problem.
15
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Recall that in the BMI problem (15), bilinearity arises from the multiplication of B(a, x) with some unknown multiplier 
polynomials parameterized by s. One way to reduce the BMI constraints to LMIs is to fix every multiplier polynomial to be 
a non-negative constant, thereby yielding a linear program:

maximize
λ,a

λ

subject to Fι(a, s)
∣∣
s=(cι,0,...,0)

+ λI � 0, ι = 1,2, . . . , l
(26)

where s in Fι(a, s) is substituted by (cι, 0, . . . , 0) with cι ∈ R+
0 , which encodes a non-negative constant multiplier polyno-

mial. Observe that no s-variable is involved in (26) and the constraints therein are linear in a.
Evidently, a strictly feasible solution (λ, a) to (26) induces a strictly feasible solution (λ, a, (cι, 0, . . . , 0)) to (15) as well. 

Moreover, we have

Lemma 2. The LMI program (26) always has a strictly feasible solution.

Proof. Let �a =̂ min1≤ι≤l −ρ
(
Fι(a, s)

∣∣
s=(cι,0,...,0)

)
, where ρ(A) denotes the spectral radius of matrix A, i.e., the largest 

absolute value of the eigenvalues of A. It follows that program (26) has a strictly feasible solution if λ < �a .
Furthermore, under Assumption 1 on the boundedness of parameter a ∈ Ca , �a can be shown to be bounded by the 

well-known Gershgorin circle theorem.
Therefore, by taking an interior point of Ca as ã, and λ̃ = �ã − ε for some ε ∈R+ , we obtain a strictly feasible solution 

(λ̃, ̃a) to program (26). �
As a consequence, a strictly feasible solution to the BMI problem (15) can be obtained by solving the LMI problem (26). In 

fact, when considering Lie derivatives only up to the first order, solving (the feasibility counterpart of) (26) is exactly 
the procedure to synthesize either an exponential barrier certificate [14] (with cι ∈ R+) or a convex barrier certificate [9]
(with cι = 0). Algorithm 1 therefore subsumes existing synthesis techniques in the sense that any valid barrier certificate 
synthesized by methods in [14,9] can also be discovered by Algorithm 1. Moreover, an alternative way to reduce the BMI 
constraints to LMIs is to fix the multipliers to be some given non-trivial (SOS) polynomials [16].

Remark 8. Different choices of the multiplier constants cι in (26) may lead to different initial solutions fed to Algorithm 1, 
thereby considerably different numbers of iterations until termination. In practice, techniques like randomization are worth 
exploring when choosing these multiplier constants.

5.5. Numerical errors in SDP solving and potential solutions

Most of the existing off-the-shelf SDP solvers are based on numerical computations. The underlying numerical errors 
caused by, e.g., floating-point computations, may hence lead to unsound results in SDP-based verification or synthesis. To 
circumvent this issue, three different types of solution have been presented in the literature:

• Validated SDP solving: In [52], Roux et al. presented verified SDPs, where the basic idea is to compute a suitable bound 
ε ∈ R+ and replace all matrix-inequality constraints of the form A � 0 by the corresponding ε-strengthened versions 
A + ε I � 0. In [53], the authors further developed this idea to guarantee the soundness of SDP-based synthesis of 
nonlinear Craig interpolants.

• Posterior check by symbolic methods: The soundness of numerical SDP-based approaches can be retrieved by perform-
ing a posterior check via symbolic methods, e.g., quantifier elimination [54] and SMT solving [55].

• Exact SDP solving: Henrion et al. presented in [56] an exact algorithm based on symbolic homotopy for solving SDP 
problems. This algorithm, as noted by the authors, can solve SDP instances only of small sizes.

In this article, we exploit the second approach to perform a posterior verification of the synthesized candidate barrier 
certificates via both the quantifier-elimination procedure in Wolfram Mathematica and the SMT solver Z3 [57].

6. Incorporating in a branch-and-bound framework

The aforementioned iterative procedure on solving a series of convex optimizations converges only to a local optimum 
of the BMI problem (15) (or more generally, (16)). This means that, in some cases, it may miss the global optimum that 
induces a non-negative λ∗ . We present in this section a solution to this problem by incorporating the iterative procedure 
into a branch-and-bound framework that searches for the global optimum in a divide-and-conquer fashion, as is a common 
technique in non-convex optimizations.
16
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Algorithm 2: Branch-and-Bound: searching for a valid parameter ā.

input: A BMI optimization problem of the form (15) with Ca = {a | ‖a‖2 ≤ La}.
output : A valid parameter ā, or otherwise ⊥ indicating a failure.

1 if La < η then return ⊥; � abort on fine-enough partitions (η ∈R+)

2 λ̂ ← an upper-bound on the objective value λ of (15) over (Ca, Cs);

3 if λ̂ < 0 then � skip branches inducing only negative objective values
4 return ⊥ � if Theorem 6 is used
5 ‖ goto Line 12; � if Theorem 5 is used

/* sample-and-check (Line 6−7) is not necessary if Theorem 6 is used */
6 ā ← a randomly-sampled point in Ca;
7 if ā is valid then return ā; � check validity (inductive invariance)

8 if proja(Sglb) ∩ Ca = ∅ then � Sglb contains a global set of visited points
9 S ← apply BMI-DC in Algorithm 1 to (15) with initial solution in (Ca, Cs);

10 Sglb ← Sglb ∪ S;
/* checking validity is not necessary if Theorem 5 is used */

11 if a valid parameter ā ∈ proja(S) is found then return ā;

12 (C1
a , C2

a ) ← bisect(Ca); � partition the parameter space

13 ā ← Branch-and-Bound(C1
a );

14 if ā �= ⊥ then return ā;
15 else return Branch-and-Bound(C2

a );

6.1. The branch-and-bound algorithm

The basic idea is as follows. We first try to solve the BMI problem (15) by Algorithm 1 over the compact parameter space 
(Ca, Cs). If a valid solution, (i.e., a solution that contains a valid parameter ā ∈ Ca such that B(ā, x) is an invariant barrier 
certificate) is found, then the corresponding barrier certificate can be obtained. Otherwise, we keep bisecting Ca and apply 
Algorithm 1 over each bisection (note that the validity of ā ∈ Ca does not depend on s, thus we do not partition Cs). The 
procedure, as depicted in Algorithm 2 in a recursive manner, terminates when a valid parameter is found or the partition is 
fine enough.

Algorithm 2 takes as input a BMI problem of the form (15) that encodes either the sufficient condition in Theorem 5
or the necessary condition in Theorem 6 for invariant barrier certificates. In the former case, a sample-and-check process 
(Line 6–7) is necessary to attain (weak) completeness (see Theorem 11). The conditional statement in Line 8 rules out 
parameter (sub-)spaces that have already been explored, which is the case when the projection of some visited point in Sglb
(a global set that keeps track of visited points by Algorithm 1, initialized as ∅) onto a is in the current parameter space.

To further improve the performance, Algorithm 2 is complemented by an operation (Line 2–5) that prunes branches 
inducing only negative objective values. This is witnessed by a negative upper-bound on the objective value of (15) over 
the current parameter space. We defer the computation of such an upper-bound to Section 6.2. When Theorem 5 is used to 
form (15), however, the partition of the parameter space (Line 12–15) is still necessary to attain completeness, as a negative 
objective value of (15) encoding the sufficient condition for invariant barrier certificate may still induce a valid parameter. 
In practice, one may choose to preferentially explore (partition) branches with larger λ̂.

The following theorem claims a weak completeness result: our method guarantees to find a barrier certificate when 
there exists an inductive invariant (in the form of a given template) that suffices to certify safety of the system.

Theorem 11 (Weak completeness). Algorithm 2 returns a valid parameter ā ∈ Ca , if (1) the partition granularity is fine enough (i.e., 
small enough η ∈ R+), (2) the degrees of multiplier polynomials and SOS polynomials used to form (15) are large enough, and (3) 
there exists, for the given template B(a, x), a strictly valid parameter â ∈ Ca (i.e., any parameter in some neighborhood of â is valid).

Proof. When the assumptions (1)–(3) hold, Algorithm 2 will eventually visit a branch wherein any parameter is valid 
(in case a valid parameter has not been found yet). If the necessary condition in Theorem 6 is used to form the BMI 
problem (15), Line 11 ensures to return a valid parameter ā ∈ Ca; Otherwise if the BMI problem (15) encodes the sufficient 
condition in Theorem 5 which strengthens the invariant barrier-certificate condition in Definition 4, a valid parameter ā may 
not induce a non-negative objective value of (15). In this case, however, any parameter sampled and returned by Line 6–7
in the branch is valid, as it contains only valid parameters. �
6.2. Computing an upper-bound λ̂ by convex relaxation

The bisection operation in Algorithm 2 incurs —in the worst case— an exponential blow-up in the number of branches. 
In practice, however, one can prune branches inducing only negative objective values, which can be evidenced by a negative 
upper-bound λ̂ on the objective value of (15) over the current parameter space (Line 2–5 in Algorithm 2). Such an upper-
bound can be computed by over-approximating the BMI problem (in contrast to under-approximations pursued by Algorithm 1) 
via, e.g., convex relaxation [58]. Moreover, the efficiency of Algorithm 2 greatly depends on the tightness of the upper-bound.
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In this subsection, we show how to obtain a preferably tight upper-bound (on the objective value) of a BMI program by 
a classical semidefinite relaxation. Interested readers may refer to [58] for more established results on this topic.

To better illustrate the idea, we stick to the BMI optimization problem of the general form (16). As the non-convexity 
comes from the quadratic terms xi yi Fi, j , a straightforward convex relaxation is

maximize
z=(x,y),

Z=(Z(i, j))m×n

g(z)

subject to F +
m∑

i=1

xi Hi +
n∑

j=1

y j G j +
m∑

i=1

n∑
j=1

Z(i, j)Fi, j � 0 .

(27)

That is, we replace each quadratic term xi yi with a new variable Z(i, j), which constitutes a matrix Z = (Z(i, j))m×n of 
fresh variables. The resulting constraint in (27) becomes an LMI that can be solved by SDP.

Notice that the convex program (27) may lead to excessively coarse over-approximations, as the relation Z(i, j) = xi y j

is completely abstracted away in the relaxation. However, by adding extra convex constraints, one can obtain better over-
approximations of the feasible set and thereby tighter upper-bounds (despite the fact that finitely many convex constraints 
can never precisely capture a non-convex constraint): The classical SDP relaxation replaces the non-convex constraints 
Z(i, j) = xi y j , with i = 1, . . . , m; j = 1, . . . , n by(

0 Z
Z T 0

)
− zTz � 0 . (28)

Schur complement in Theorem 3 implies that constraint (28) is equivalent to the LMI constraint⎛
⎝ 1 x y

xT 0 Z
yT Z T 0

⎞
⎠ � 0 . (29)

By adding the LMI (29) as an additional constraint to (27) and solving the consequent LMI optimization problem, one obtains 
an upper-bound (on the objective value) of the BMI program (16).

7. Experimental results

We have carried out a prototypical implementation8 of our synthesis techniques in Wolfram Mathematica, which was 
selected due to its built-in primitives for SDP, polynomial algebra and matrix operations. Given a safety verification problem 
as input, our implementation works toward discovering an invariant barrier certificate (in the form of a given template) that 
witnesses unbounded-time safety of the system. A collection of benchmark examples (detailed in Appendix B) has been 
evaluated on a 2.10 GHz Xeon processor with 376 GB RAM running 64-bit CentOS Linux 7.

Table 1 reports the empirical results. BMI-DC concerns our locally-convergent Algorithm 1 for solving BMIs (encoding 
the sufficient condition in Theorem 5) via the eigendecomposition-based DC decomposition (a comparison to other decom-
position methods will be presented later). We compare our approach with PENLAB [69] —an off-the-shelf solver in Matlab

for directly discharging the same BMI problems (with no guarantee on convergence)— and SOSTOOLS [70] —for solving 
LMIs derived from Prajna and Jadbabaie’s original barrier-certificate condition [9]. The comparison is performed under the 
same problem configurations.9 Due to numerical errors caused by floating-point computations and the fact that reaching 
the local/global optimum does not necessarily yield a valid barrier certificate, we additionally perform a posterior check, via 
both the quantifier-elimination procedure in Mathematica and the SMT solver Z3 [57], of the synthesized candidate barrier 
certificate per Definition 4.

Table 1 shows that BMI-DC suffices to synthesize valid barrier certificates in most of the examples within a reasonable 
number of iterations (i.e., the number of convex sub-problems solved by SDP). This however does not cover all the cases: 
(1) For the focus example, the solution is close enough to a local optimum (after 100 iterations) but yields still an invalid 
barrier certificate. This problem can be solved (if there exists an invariant barrier certificate as specified) by enforcing 
the branch-and-bound framework as presented in Section 6; (2) For examples sys-bio1, sys-bio2, and quadcopter, neither 
quantifier elimination in Mathematica nor nonlinear reasoning in Z3 can conclude the validity of the synthesized barrier 
certificates within 15 minutes due to the relatively high system dimensionality (thus marked as ?; the same applies to
PENLAB and SOSTOOLS). The validity for all the other examples is either verified (✓) or refuted (✗) within 10 seconds. 
The phase portraits of a selected set of examples and the synthesized invariant barrier certificates are depicted in Fig. 4.

8 Available at https://github .com /Chenms404 /BMI -DC.
9 For PENLAB and SOSTOOLS, we use their optimized, built-in criteria for termination and finding initial solutions.
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Table 1
Empirical results on benchmark examples (time in seconds).

Example name nsys dflow dBC
BMI-DC PENLAB SOSTOOLS

#iter. time validity time validity time validity

overview [10] 2 2 1 2 0.03 ✓ 0.31 ✓ 0.07 ✓

contrived 2 1 2 0 0.01 ✓ 0.48 ✓ 0.75 ✓

lie-der [17] 2 2 1 0 0.01 ✓ 0.22 ✓ 0.04 ✓

lorenz [10] 3 2 2 8 2.37 ✓ 75.11 ✗ 1.47 ✗

lti-stable [59] 2 1 2 0 0.01 ✓ 0.23 ✓ 0.14 ✓

lotka-volterra [60] 3 2 1 3 0.07 ✓ 0.36 ✓ 0.21 ✓

clock [61] 2 3 1 0 0.01 ✓ 0.88 ✗ 0.18 ✗

lyapunov [62] 3 3 2 4 1.25 ✓ 56.98 ✗ 0.35 ✓

arch1 [63] 2 5 2 0 0.01 ✓ 33.76 ✗ 0.31 ✓

arch2 [63] 2 2 2 5 0.37 ✓ 0.38 ✗ 0.17 ✗

arch3 [63] 2 3 2 1 0.07 ✓ 0.54 ✓ 0.18 ✓

arch4 [63] 2 2 1 2 0.09 ✓ 0.49 ✗ 0.06 ✓

barr-cert1 [9] 2 3 2 12 0.85 ✓ 2.53 ✗ 0.09 ✗

barr-cert2 [10] 2 2 2 6 1.57 ✓ 1.16 ✗ 0.15 ✓

barr-cert3 [33] 2 2 1 0 0.01 ✓ 0.20 ✓ 0.11 ✗

barr-cert4 [33] 2 3 2 13 0.96 ✓ 0.89 ✗ 0.23 ✗

fitzhugh-nagumo [64] 2 3 2 2 0.16 ✓ 1.24 ✓ 0.25 ✗

stabilization [65] 3 2 2 9 2.88 ✓ 55.22 ✓ 0.11 ✓

lie-high-order 2 1 2 32 4.12 ✓ 1.56 ✗ 0.25 ✗

raychaudhuri [66] 4 2 2 34 9.51 ✓ 33.64 ✗ 0.14 ✗

focus [67] 2 1 4 100 54.89 ✗ 0.95 ✗ 0.48 ✗

sys-bio1 [68] 7 2 2 2 73.22 ? 101.95 ? 1.35 ?
sys-bio2 [68] 9 2 1 1 1.03 ? 15.54 ? 0.16 ?
quadcopter [59] 12 1 1 0 0.03 ? 65.42 ? 0.36 ?

nsys: system dimension; dflow: maximal flow-field degree; dBC: degree of the template barrier certificate.
#iter.: number of DCP iterations. 0 means that the initial solution (cf. Section 5.4) is valid.
validity: the synthesized barrier certificate is valid (✓), invalid (✗), or inconclusive within 15 minutes (?, beyond the capability of quantifier elimination in
Mathematica and nonlinear reasoning in Z3).
time: CPU-time, excluding that for casting the BMIs/LMIs. Boldface marks the winner among ✓’s.

Causes of invalid results (✗) by PENLAB and SOSTOOLS Numerical issues are a common (yet minor) cause of invalid 
results produced by all the tools in Table 1. Whereas the major causes we observed in PENLAB and SOSTOOLS are (1)
PENLAB employs non-convex optimization techniques that yield no guarantee on the convergence to local optimums; and 
(2) SOSTOOLS solves Prajna and Jadbabaie’s original, convex barrier-certificate condition [9] which is too conservative to 
recognize the otherwise valid barrier certificates. In fact, most of the invalid results returned by SOSTOOLS have a rather 
low “feasibility ratio” (reported by the underlying SDP solver SeDuMi [71]) indicating that SOSTOOLS fails to find barrier 
certificates adhering to the convex barrier-certificate condition.

Comparison to SOSTOOLS and PENLAB10 The comparison in Table 1 suggests that (1) Our invariant barrier-certificate condi-
tion recognizes more barrier certificates than the original (more conservative) condition as implemented in SOSTOOLS. In particular, 
the lie-high-order example does admit an inductive invariant in the form of the given template, but none of the existing 
barrier-certificate conditions [15,33,25] —concerning Lie derivatives only up to the first order— recognizes it, since we have 
L1

f B(x) = 0 for some x on the boundary of B and hence it requires to exploit the second-order Lie derivative11; (2) Our 
DCP-based synthesis algorithm finds more barrier certificates in less time than directly solving the BMI problems via non-convex opti-
mization techniques as implemented in PENLAB.

Note that, in our setting, the volumes of the invariant sets identified by different approaches are not of primal concern: 
our goal is to find an invariant that suffices to prove safety of the system instead of a set that “best” over-/under-
approximates the reachable set (cf. [72,73]). However, it would be an interesting future step to investigate the connection 
between, e.g., robustness, and the volumes of the synthesized invariant sets à la [74,75].

We remark that symbolic, monolithic methods based on, e.g., quantifier elimination [17] or nonlinear reasoning in SMT, 
can hardly deal with any of the examples listed in Table 1 due to the prohibitively high computation complexity. Moreover, 
it would be desirable to pursue a comparison with the augmented Lagrangian method for solving BMIs as proposed in [25], 
which unfortunately is not yet possible due to the unavailability of the implementation thereof. We will discuss crucial 
differences to [25] in Section 8.

10 We remark that, even though we perform the comparison under the same problem configurations, it is arguably not a fair comparison in terms of the 
computation time, as the tools are implemented in different platforms (e.g., Mathematica, Matlab) and rely on different SDP solvers.
11 In fact, we have NB, f = 2 for the lie-high-order example. For all the other examples in Table 1, we either have NB, f = 1 or apply the strengthened 

consecution condition as described in Remark 5 with R = 1 < NB, f for efficient synthesis.
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Fig. 4. Phase portraits of a selected set of examples with the synthesized invariant barrier certificates. The arrows indicate the vector field (hidden in 
3D-graphics for a clear presentation) and the solid curves are randomly sampled trajectories.

Comparison between different DC decompositions Fig. 5 depicts a comparison of a naive implementation of the three 
different DC decomposition methods presented in Section 5.1. We observe that, in general, (1) the method based on largest 
eigenvalues enables faster matrix decompositions, but needs more iterations to achieve the desired precisions and yields 
valid barrier certificates only for 13 out of 24 benchmark examples; (2) the SDP-based method needs a mild amount of 
iterations (yielding 14/24 valid barrier certificates), but slows down the matrix decompositions (potentially due to the lack 
of specific sparsity patterns); and (3) the eigendecomposition-based method leads to less number of iterations (yielding 
20/24 valid barrier certificates) within a reasonable amount of decomposition time. In summary, there is no clear winner 
amongst these DC decomposition methods and the implementation can be improved by carefully exploiting the underlying 
sparsity patterns of the matrices.

8. Related work

As surveyed in [2], the research community has, over the past three decades, extensively addressed the automatic verifi-
cation of safety-critical hybrid systems. The almost universal undecidability of the unbounded-time reachability problem [1], 
however, confines the sound key-press routines to either semi-decision procedures or approximation schemes, most of 
which address bounded-time verification by, e.g., computing the finite-time image of a set of initial states.
20
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Fig. 5. Comparison of the three different DC decomposition methods (see Section 5.1) in terms of the decomposition time and the number of DCP iterations 
induced by the decomposition.

Invariant generation [9,17], amongst others, is a well-established approximation scheme that provides a reliable witness 
for safety (or equivalently, unreachability) of dynamical systems over an infinite time horizon. Invariants can be constructed 
in various forms, e.g., barrier certificates [9,12] and differential invariants [30,17]. With a priori specified templates, the 
invariant synthesis problem can be reduced to numerical optimizations or constraint solving, as in, e.g., [76–79].

Most pertinently, Prajna and Jadbabaie proposed in their seminal work [9] a concept coined barrier certificate to encode 
invariants. To enable efficient synthesis using semidefinite programming, the barrier-certificate condition in [9] strengthens 
the general condition encoding inductive invariance. Since then, significant efforts have been investigated in developing 
more relaxed (i.e., weaker) forms of barrier-certificate condition that still admit efficient synthesis, thereby leading to, 
e.g., exponential-type barrier certificates [14], Darboux-type barrier certificates [16], general barrier certificates [13] and 
vector barrier certificates [12]. Similar barrier-certificate conditions have been explored to verify systems that address con-
trol inputs [80,81], disturbances [47], and stochastic dynamics [82,83]. To attain efficient synthesis, these barrier-certificate 
conditions share a common property on convexity. That is, if for some a1, a2 ∈ Rm , B(a1, x) and B(a2, x) both satisfy the 
barrier-certificate condition, then for any 0 < μ < 1, B(μa1 + (1 −μ)a2, x) must also satisfy the barrier-certificate condition.

However, neither the semantic barrier-certificate condition (9) encoding the general principle of barrier certifi-
cates [12,13] nor the inductive invariant condition (8) is convex. This means, when resorting to convex barrier-certificate 
conditions, one may miss some potential barrier certificates that suffice as inductive invariants witnessing safety. Therefore, 
non-convex conditions were suggested [15], for which the synthesis problem can be reduced to BMI problems solvable 
via customized schemes, e.g., the augmented Lagrangian method [25] and the alternating minimization algorithm [33]. Our 
synthesis techniques also exploit a BMI reduction, with three crucial differences: (1) our invariant barrier-certificate con-
dition is equivalent to the inductive invariant condition in the sense of Theorem 4, and thus is less conservative than all 
the aforementioned conditions which consider Lie derivatives only up to the first order; (2) our DCP-based techniques for 
solving BMIs naturally inherit appealing results on convergence and (weak) completeness, which are not (and can hardly be) 
provided by the approaches in [15,25,33]; (3) our DCP-based iterative procedure visits only feasible solutions to the original 
BMI problem, and hence whenever a solution that induces a non-negative objective value is found, we can safely terminate 
the algorithm and claim a feasible solution to the original BMI problem, which may yield a valid barrier certificate. This is 
not the case for the approaches in [15,25,33].

There are recent efforts in synthesizing barrier certificates via machine learning techniques. Instead of choosing a (poly-
nomial) template and determining the unknown parameters thereof, Zhao et al. [84] proposes to learn a neural network 
—using generated samples from the target system— as a candidate barrier certificate and do posterior verification via, e.g., 
SMT or interval analysis. This idea has been further incorporated in a counter-example guided inductive synthesis (CEGIS) 
framework in [85,86]. Neural networks in these approaches act as implicit template barrier certificates (with a-priori fixed 
network structures and activation functions whereas the unknown parameters are the weights to be learnt) which can rec-
ognize more complex barrier certificates beyond polynomials. Moreover, applying non-convex barrier-certificate conditions 
in synthesis does not bring extra overheads to these learning-based approaches. On the contrary, these approaches cannot 
guarantee to find a barrier certificate even if there exists one (recognizable by the neural network). Consequently, when 
the verification fails, one can only resort to supplying the synthesizer with more samples (or heuristically fine-tuning the 
network and/or the loss function) but no conclusion about the existence of barrier certificates can be drawn.

Beyond barrier certificates, Wang and Rajamani [36] investigated the feasibility problem of general BMI problems with 
an application to multi-objective nonlinear observer design. The technique of eigendecomposition was also used therein to 
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Fig. 6. An illustration of how Lie derivatives capture the tendency of trajectories in terms of a polynomial function B(x). ζ : the system trajectory passing 
through (−1, 1); v: the evolution direction per the vector field at (−1, 1); u: the gradient of B(x) at (−1, 1).

conduct the DC decomposition. The decomposed concave part, however, is simply ignored and no iterative procedure that 
exhibits convergence to a local optimum can be provided.

The idea of augmenting a locally-convergent algorithm with a branch-and-bound framework to find the global optimum 
has been exploited in the realm of optimization [87] and control [88]. In contrast, our method is designed for the specific 
problem of barrier-certificate synthesis, and hence our branch-and-bound algorithm concerns only the parameter space of 
a, i.e., coefficients of the template barrier certificate.

Finally, we refer interested readers to other approaches to solving BMI problems, e.g., rank minimization [89–91], sequen-
tial SDP [92,93], as well as methods committed to general non-convex optimizations, e.g., interior point trust-region [94–96], 
successive linearization [97] and primal-dual interior point [98].

9. Conclusion

Barrier certificates are a powerful tool to prove time-unbounded safety of hybrid systems. We have presented a new 
condition on barrier certificates —the invariant barrier-certificate condition, which has been shown as the weakest possible 
condition on barrier certificates to attain inductive invariance. We showed that our invariant barrier-certificate condition 
can be reformulated as an optimization problem subject to bilinear matrix inequalities, which can be solved by our locally-
convergent algorithm based on difference-of-convex programming. By incorporating this algorithm into a branch-and-bound 
framework, we obtained a weak completeness result. Experiments on benchmark examples suggested that our invariant 
barrier-certificate condition recognizes more barrier certificates than existing conditions, and that our DCP-based algorithm 
is more efficient than directly solving the BMIs via off-the-shelf solvers.

We stress that our techniques for solving BMIs are of a general nature rather than being confined to barrier-certificate 
synthesis. Interesting future directions include to extend our method to other synthesis problems, e.g., discovering invariants 
and/or termination proofs of deterministic/probabilistic programs.
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Appendix A. Lie derivatives and the trajectory tendency

Example 2 (Lie derivatives [17]). Let B(x) = x1 + x2
2. Consider the vector field f = (−x1, x2) as depicted in Fig. 6a. By Def-

inition 1, we have L0
f B(x) = x1 + x2

2 and L1
f B(x) = −x1 + 2x2

2. We exemplify with the point x = (−1, 1) on the parabola 
B(x) = x1 + x2

2 that L1
f B

∣∣
(−1,1)

= 3 > 0 reveals the fact that the system trajectory ζ passing through (−1, 1) will escape 
from the region B(x) ≤ 0. In Fig. 6a, the vector v = (1, 1) points to the evolution direction per f = (−x1, x2), and the vector 
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u = ∂
∂x B

∣∣
(−1,1)

= (1, 2) denotes the gradient of B(x) at (−1, 1). These two vectors together assert that the trajectory ζ will 
enter the region B(x) > 0 immediately after passing through (−1, 1) since the angle formed by u and v is less than π/2, 
that is, the first-order Lie derivative L1

f B
∣∣
(−1,1)

= 3 is positive. Dually, a negative first-order Lie derivative will witness the 
crossings of a trajectory from the region B(x) > 0 to the region B(x) ≤ 0.

However, if the angle between the evolution direction v and the gradient u is π/2 or the gradient is a zero vector, 
then it is impossible to read off the trajectory tendency via the consequent zero first-order Lie derivative. In this case, we 
resort to non-zero higher-order Lie derivatives: Consider another vector field f ′ = (−2x2, x2

1) as depicted in Fig. 6b with 
the same function B(x). We have L0

f ′ B(x) = x1 + x2
2 and L1

f ′ B(x) = 2x2
1x2 − 2x2, where L1

f ′ B
∣∣
(−1,1)

= 0 as the evolution 
direction v is perpendicular to the gradient u. However, since the second-order Lie derivative L2

f ′ B(x) = 2x4
1 − 2x2

1 − 8x1x2
2

at (−1, 1) is positive, we can conclude that the trajectory passing through (−1, 1) will enter the region B(x) > 0. Notice 
that, to determine the trajectory tendency, we need to consider Lie derivatives only up to a certain order (as asserted by 
Theorem 1), e.g., 2 in this example. �
Appendix B. Benchmark examples

Example 3 (contrived). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + x2
−x2

)
.

• X0 = {x ∈R2 | (x1 − 1.125)2 + (x2 − 0.625)2 − 0.0125 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 0.875)2 + (x2 − 0.125)2 − 0.0125 ≤ 0}.
• D = {x ∈R2 | 0 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 4 (lie-der [17]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−2x2

x2
1

)
.

• X0 = {x ∈R2 | (x1 + 1)2 + (x2 − 0.5)2 − 0.16 ≤ 0}.
• Xu = {x ∈R2 | (x1 + 1)2 + (x2 + 0.5)2 − 0.16 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 1.

Example 5 (lorenz [10]). The vector flow field is:

ẋ =
⎛
⎝ ẋ1

ẋ2
ẋ3

⎞
⎠ =

⎛
⎝ 10.0(−x1 + x2)

−x2 + x1(28.0 − x3)

x1x2 − 8
3 x3

⎞
⎠ .

• X0 = {x ∈R3 | (x1 + 14.5)2 + (x2 + 14.5)2 + (x3 − 12.5)2 − 0.25 ≤ 0}.
• Xu = {x ∈R3 | (x1 + 16.5)2 + (x2 + 14.5)2 + (x3 − 2.5)2 − 0.25 ≤ 0}.
• D = {x ∈R3 | −20 ≤ x1, x2, x3 ≤ 20}.
• B(a, x) includes all monomials up to degree 2.

Example 6 (lti-stable [59]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−0.1x1 − 10x2
4x1 − 2x2

)
.

• X0 = {x ∈R2 | (x1 − 1.125)2 + (x2 − 0.625)2 − 0.1252 ≤ 0}.
• Xu = {x ∈R2 | (x1 + 1.5)2 + (x2 + 1.25)2 − 0.252 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 7 (lotka-volterra [60]). The vector flow field is:

ẋ =
⎛
⎝ ẋ1

ẋ2
ẋ

⎞
⎠ =

⎛
⎝ x1(1 − x3)

x2(1 − 2x3)

x (−1 + x + x )

⎞
⎠ .
3 3 1 2
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• X0 = {x ∈R3 | (x1 − 1)2 + (x2 − 1)2 + x2
3 − 0.64 ≤ 0}.

• Xu = {x ∈R3 | x2
1 + (x2 + 1)2 − 0.25 ≤ 0}.

• D = {x ∈R3 | −2 ≤ x1, x2, x3 ≤ 2}.
• B(a, x) = ax2.

Example 8 (clock [61]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + 2x2
1x2

−x2

)
.

• X0 = {x ∈R2 | (8x1 − 33)2 + x2
2 − 1 ≤ 0}.

• Xu = {x ∈R2 | (x1 − 1.5)2 + (x2 − 2.5)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −1.5 ≤ x1, x2 ≤ 5.5}.
• B(a, x) includes all monomials up to degree 1.

Example 9 (lyapunov [62]). The vector flow field is:

ẋ =
⎛
⎝ ẋ1

ẋ2
ẋ3

⎞
⎠ =

⎛
⎝ −x2

−x3

−x1 − 2x2 − x3 + x3
1

⎞
⎠ .

• X0 = {x ∈R3 | (x1 − 0.25)2 + (x2 − 0.25)2 + (x3 − 0.25)2 − 0.25 ≤ 0}.
• Xu = {x ∈R3 | (x1 − 1.5)2 + (x2 + 1.5)2 + (x3 + 1.5)2 − 0.25 ≤ 0}.
• D = {x ∈R3 | −2 ≤ x1, x2, x3 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 10 (arch1 [63]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + 2x3
1x2

2−x2

)
.

• X0 = {x ∈R2 | x2
1 + (x2 − 0.5)2 − 0.04 ≤ 0}.

• Xu = {x ∈R2 | (x1 + 1.5)2 + (x2 + 1.5)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 11 (arch2 [63]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x2

1 + x2
2 − 1

5(x1x2 − 1)

)
.

• X0 = {x ∈R2 | (x1 + 0.5)2 + (x2 + 0.5)2 − 0.25 ≤ 0}.
• Xu = {x ∈R2 | (x1 + 1.5)2 + (x2 + 1.5)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 12 (arch3 [63]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x1 − x3

1 + x2 − x1x2
2−x1 + x2 − x2

1x2 − x3
2

)
.

• X0 = {x ∈R2 | x2
1 + x2

2 − 0.04 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 2.5)2 + (x2 − 2.5)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −3 ≤ x1, x2 ≤ 3}.
• B(a, x) includes all monomials up to degree 2.

Example 13 (arch4 [63]). The vector flow field is:

ẋ =
(

ẋ1
ẋ

)
=

(−2x1 + x2
1 + x2

x − 2x + x2

)
.

2 1 2 2
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• X0 = {x ∈R2 | x2
1 + x2

2 − 0.12 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 0.75)2 + (x2 − 0.75)2 − 0.252 ≤ 0}.
• D = {x ∈R2 | −0.5 ≤ x1, x2 ≤ 1}.
• B(a, x) includes all monomials up to degree 1.

Example 14 (barr-cert1 [9]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x2

−x1 + 1
3 x3

1 − x2

)
.

• X0 = {x ∈R2 | (x1 − 1.5)2 + x2
2 − 0.25 ≤ 0}.

• Xu = {x ∈R2 | (x1 + 1)2 + (x2 + 1)2 − 0.16 ≤ 0}.
• D = {x ∈R2 | −4 ≤ x1, x2 ≤ 4}.
• B(a, x) includes all monomials up to degree 2.

Example 15 (barr-cert2 [10]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + x1x2
−x2

)
.

• X0 = {x ∈R2 | (x1 − 1.125)2 + (x2 − 0.625)2 − 0.1252 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 0.875)2 + (x2 − 0.125)2 − 0.0752 ≤ 0}.
• D = {x ∈R2 | 0 ≤ x1, x2 ≤ 1.5}.
• B(a, x) includes all monomials up to degree 2.

Example 16 (barr-cert3 [33]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + x1x2
−x2

)
.

• X0 = {x ∈R2 | (x1 + 1)2 + (x2 + 1)2 − 0.25 ≤ 0}.
• Xu = {x ∈R2 | x2

1 + (x2 − 1)2 − 0.25 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) includes all monomials up to degree 1.

Example 17 (barr-cert4 [33]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−x1 + 2x2
1x2

−x2

)
.

• X0 = {x ∈R2 | 9x2
1 + (2x2 − 2.25)2 − 0.752 ≤ 0}.

• Xu = {x ∈R2 | (x1 − 2)2 + (x2 − 2)2 − 0.52 ≤ 0}.
• D = {x ∈R2 | −1 ≤ x1, x2 ≤ 3}.
• B(a, x) includes all monomials up to degree 2.

Example 18 (fitzhugh-nagumo [64]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(−1/3x3
1 + x1 − x2 + 0.875

0.08(x1 − 0.8x2 + 0.7)

)
.

• X0 = {x ∈R2 | (x1 + 0.75)2 + (x2 − 1.25)2 − 0.252 ≤ 0}.
• Xu = {x ∈R2 | (x1 + 2.25)2 + (x2 + 1.75)2 − 0.252 ≤ 0}.
• D = {x ∈R2 | −5 ≤ x1, x2 ≤ 5}.
• B(a, x) includes all monomials up to degree 2.

Example 19 (stabilization [65]). The vector flow field is:

ẋ =
⎛
⎝ ẋ1

ẋ2
ẋ

⎞
⎠ =

⎛
⎝ −x1 + x2 − x3

−x1(x3 + 1) − x2
0.76524x − 4.7037x

⎞
⎠ .
3 1 3
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• X0 = {x ∈R3 | x2
1 + x2

2 + x2
3 − 1 ≤ 0}.

• Xu = {x ∈R3 | −x2
1 − x2

2 + 3 ≤ 0}.
• D = {x ∈R3 | −2 ≤ x1, x2, x3 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.

Example 20 (lie-high-order). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x1
x2

)
.

• X0 = {x ∈R2 | (x1 − 1.125)2 + (x2 − 0.625)2 − 0.0125 ≤ 0}.
• Xu = {x ∈R2 | (x1 − 0.875)2 + (x2 − 0.125)2 − 0.0125 ≤ 0}.
• D = {x ∈R2 | −2 ≤ x1, x2 ≤ 2}.
• B(a, x) = x2

1 + a1x2
2 + a2x1 + a3x2 + a4.

Example 21 (raychaudhuri [66]). The vector flow field is:

ẋ =

⎛
⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−0.5x2
1 − 2(x2

2 + x2
3 − x2

4)−x1x2 − 1
−x1x3
−x1x4

⎞
⎟⎟⎠ .

• X0 = {x ∈R4 | x2
1 + (x2 + 1)2 − 0.1 ≤ 0}.

• Xu = {x ∈R4 | (x1 + 1)2 + x2
2 − 0.1 ≤ 0}.

• D = {x ∈R4 | −1.5 ≤ x1, . . . , x4 ≤ 1.5}.
• B(a, x) = a1x2

1 + a2x1x2 + a3x2
2 + a4x1 + a5x2 + a6.

Example 22 (focus [67]). The vector flow field is:

ẋ =
(

ẋ1
ẋ2

)
=

(
x1 − x2
x1 + x2

)
.

• X0 = {x ∈R2 | (x1 − 2.75)2 + (5x2 − 10)2 − 0.252 ≤ 0}.
• Xu = {x ∈R2 | x1 − 2 ≤ 0}.
• D = {x ∈R2 | 1.5 ≤ x1, x2 ≤ 3.5}.
• B(a, x) includes all monomials up to degree 4.

Example 23 (sys-bio1 [68]). The vector flow field is:

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−0.4x1 + 5x3x4
0.4x1 − x2
x2 − 5x3x4

5x5x6 − 5x3x4
−5x5x6 + 5x3x4
0.5x7 − 5x5x6

−0.5x7 + 5x5x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

• X0 = {x ∈R7 | ∑7
i=1(xi − 1)2 − 0.012 ≤ 0}.

• Xu = {x ∈R7 | ∑7
i=1(xi − 1.9)2 − 0.12 ≤ 0}.

• D = {x ∈R7 | −2 ≤ x1, . . . , x7 ≤ 2}.
• B(a, x) includes all monomials up to degree 2.
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Example 24 (sys-bio2 [68]). The vector flow field is:

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3x3 − x1x6
x4 − x2x6

x1x6 − 3x3
x2x6 − x4

3x3 + 5x1 − x5
5x5 + 3x3 + x4 − x6(x1 + x2 + 2x8 + 1)

5x4 + x2 − 0.5x7
5x7 − 2x6x8 + x9 − 0.2x8

2x6x8 − x9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• X0 = {x ∈R9 | ∑9
i=1(xi − 1)2 − 0.012 ≤ 0}.

• Xu = {x ∈R9 | ∑9
i=1(xi − 1.9)2 − 0.12 ≤ 0}.

• D = {x ∈R9 | −2 ≤ x1, . . . , x9 ≤ 2}.
• B(a, x) includes all monomials up to degree 1.

Example 25 (quadcopter [59]). The vector flow field is:

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9
ẋ10
ẋ11
ẋ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x4
x5
x6

−7253.4927x1 + 1936.3639x11 − 1338.7624x4 + 1333.3333x8
−1936.3639x10 − 7253.4927x2 − 1338.7624x5 − 1333.3333x7

−769.2308x3 − 770.2301x6
x10
x11
x12

9.81x2
−9.81x1

−16.3541x12 − 15.3846x9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• X0 = {x ∈R12 | ∑12
i=1 x2

i − 0.01 ≤ 0}.
• Xu = {x ∈R12 | (2x1 − 0.5)2 + (2x2 − 0.5)2 + (2x3 − 0.5)2 + (x4 − 1)2

+ (x5 − 1)2 + (x6 − 1)2 + (x7 − 1)2 + (x8 + 1)2 + (x9 − 1)2

+ (x10 − 1)2 + (x11 + 1)2 + (x12 − 1)2 − 0.25 ≤ 0}.
• D = {x ∈R12 | −2 ≤ x1, . . . , x12 ≤ 2}.
• B(a, x) includes all monomials up to degree 1.
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