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Abstract

A barrier certificate can separate the state space of a considered hybrid system (HS) into safe
and unsafe parts according to the safety property to be verified. Therefore this notion has been
widely used in the verification of HSs. A stronger condition on barrier certificates (BCs) means
that fewer BCs can be synthesized, as the expressiveness of synthesized BCs is weaker. On the
other hand, synthesizing more expressive BCs normally means higher complexity. In [11], Kong
et al. investigated how to relax the condition of BCs while still keeping their convexity so that
one can synthesize more expressive BCs efficiently using semi-definite programming (SDP). In
this paper, we first discuss how to relax the condition of BCs in a general way, while still keeping
their convexity. Thus, one can utilize different weaker conditions flexibly to synthesize different
kinds of BCs with more expressiveness efficiently using SDP, which gives more opportunities to
verify the considered system. We also show how to combine two functions together to form a
combined BC in order to prove a safety property under consideration, whereas neither of them
may be a BC separately. In fact, the notion of combined BCs is strictly more expressive than that
of BCs, so it further brings more chances to verify a considered system. Another contribution
of this paper is to investigate how to avoid the unsoundness of SDP based approaches caused
by numerical error through symbolic checking.

Key words: Hybrid system, barrier certificate, formal verification, invariant, nonlinear system,
semi-definite programming, sum of squares

⋆ This work has been supported partly by “973 Program” under grant No. 2014CB340701, by NSFC un-
der grants 91118007, 91418204, 11290141 and 11271034, by the CAS/SAFEA International Partnership

Program for Creative Research Teams, and by CDZ project CAP (GZ 1023).

Email addresses: {dailiyun,gant}@pku.edu.cn, xbc@math.pku.edu.cn (Liyun Dai, Ting Gan, Bican

Xia), znj@ios.ac.cn (Naijun Zhan).

URL: http://lcs.ios.ac.cn/~znj/ (Naijun Zhan).

Preprint submitted to Journal of Symbolic Computation 17 January 2016



1. Introduction

Embedded systems (ESs) make use of computer units to control physical devices so
that the behavior of the controlled devices meets expected requirements. They have
become ubiquitous in our daily life, e.g. automotive, aerospace, consumer electronics,
communications, medical, manufacturing and so on. ESs are used to carry out highly
complex and often critical functions, e.g. ESs are used to monitor and control industrial
plants, complex transportation equipment, communication infrastructure, etc. The de-
velopment process of ESs is widely recognized as a highly complex and challenging task.
A thorough validation and verification activity is necessary to enhance the quality of the
ESs and, in particular, to fulfill the quality criteria mandated by the relevant standards.
Hybrid systems (HSs) are mathematical models with precise mathematical semantics for
ESs, wherein continuous physical dynamics are combined with discrete transitions. Based
on HSs, rigorous analysis and verification of ESs become feasible, so that errors can be
detected and corrected in the very early stage of the design of ESs.

In the past, analysis and verification of HSs are mainly done through directly comput-
ing reachable sets, either by model-checking (e.g., [1, 25, 8]) or by decision procedures
(e.g., [13]). The basic idea is to partition the state space of a considered system into
finitely many equivalent classes, or represent it by finitely many computable sets accord-
ing to the solutions of the ODE of the system. Since there is only a very small class of
ODEs with closed form solutions, the scalability of these approaches is very restricted,
only applicable to very specific linear HSs. Recently, there are lots of work based on
abstraction and numeric approximation to scale up these approaches, e.g., [4, 2, 5, 26].
In principle, these approaches are quite successful in the falsification of a considered H-
S by debugging bugs using bounded model-checking, but have difficulty in proving the
error-avoidance of the system. As an alternative, deductive methods have been recently
proposed and successfully applied in practice [20, 21, 15]. The most challenging part
of a deductive method is how to discover invariants, which hold at all reachable states
of the system. For technical reasons, people only consider how to synthesize inductive
invariants, which are preserved by all discrete and continuous transitions. In general, a
safety property itself is an invariant, but may not be an inductive invariant. Obviously,
an inductive invariant is an approximation of the reachable set, which may be discovered
according to the ODE, rather than its solutions. The basic idea is as follows: first, prede-
fine a property template (linear or non-linear, depending on the property to be verified);
then, encode the conditions of a property to be inductive (discretely and/or continuously)
into some constraints on state variables and parameters; finally, find out solutions to the
constraints. So, how to define inductive conditions and the power of constraint solving
are essential to these approaches.

Many approaches have been proposed following the line discussed above. E.g., in [9,
27], the authors independently proposed different approaches for constructing inductive
invariants for linear HSs; Sankaranarayanan et al. presented a computational method
to automatically generate algebraic invariants for algebraic HSs in [28, 29], based on
the theory of pseudo-ideals over polynomial rings and quantifier elimination; Prajna in
[22, 23] provided a new notion of inductive invariants called barrier certificates (BC) for
verifying the safety of semi-algebraic HSs in the stochastic setting using the technique
of sum-of-squares (SOS); In [20], Platzer and Clarke extended the idea of BCs by
considering Boolean combinations of multiple polynomial inequalities; In [6, 31], Gulwani

2



et al. investigated how to generate inductive invariants with more expressiveness for semi-
algebraic HSs through relaxing the inductive conditions by considering inductiveness only
on the boundaries of predefined invariant templates; while in [16], Liu et al. considered
how to further relax the inductive condition given in [6, 31] and established a first finite
complete inductive condition to determine if a polynomial formula is an invariant of a
given semi-algebraic HS. In [30], Solth at el. proposed an approach to constructing global
inductive invariants from local differential invariants using optimization techniques.

The aforementioned approaches can be classified into two categories: symbolic com-
putation based like [9, 27, 28, 29, 20, 6, 31, 16], and numeric computation based like
[22, 23, 30]. In general, the former can synthesize more expressive invariants, but their
efficiencies are very low; in contrast, the efficiency of the latter is very high, normally
in polynomial time, which is the complexity of SDP that is used to solve the resulted
constraints derived from the corresponding inductiveness. But the disadvantages of the
latter is twofold : the expressiveness of synthesized invariants is restrictive; what is more,
they may be unsound because of the numerical error caused by SDP, which means that
a synthesized invariant could not be a real one.

In [11], Kong et al. investigated how to synthesize more expressive BCs by proposing
exponential BC condition, which is a relaxed inductive condition, but still keeps the
convexity of barrier certificates. So, more expressive BCs can be synthesized with high
efficiency by SDP.

In this paper, firstly, following Kong et al.’s line, in the prerequisite of keeping the
convexity of the condition of BCs so that SDP is still applicable, we discuss how to relax
the condition of BCs in a general way. Thus, one can utilize different weaker conditions
flexibly to synthesize different kinds of BCs with more expressiveness efficiently, which
gives more opportunities to verify the considered system. In addition, we consider how
to combine two functions together to form a combined BC which can guarantee a safety
property under consideration, whereas neither of them can be used as a BC separately.
In fact, we can prove that the notion of combined BCs is strictly more expressive than
that of BCs. Another contribution of this paper is that we investigate how to avoid
the unsoundness of SDP based approaches caused by numerical errors through symbolic
checking.

The rest of the paper is organized as follows: Section 2 introduces some basic notions;
In Section 3, we discuss how to relax BC conditions, as well as how to combine two
functions to form a combined BC, even when none of them can be used as a BC sep-
arately; Section 4 is devoted to how to synthesize BCs according to relaxed conditions
based on SDP, and how to avoid unsoundness caused by numerical errors through sym-
bolic checking; Section 5 discusses how to extend our approach to more general systems
beyond polynomials and/or with inputs; Section 6 provides some case studies as well as
experimental results. Finally, we conclude this paper in Section 7.

2. Preliminaries

In this section, we first introduce some basic notions, and then explain the basic idea
of barrier certificates (BCs).

In what follows, we use R to stand for the set of reals, Cω[Rn] for the set of analytic
function from Rn to R. A subset A ⊆ Rn is called semi-algebraic if there is a quantifier-
free polynomial formula φ expressed in Tarski’s algebra s.t. A = {x ∈ Rn | φ(x) is true} .
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2.1. Basic notions

An autonomous continuous dynamical system (CDS) is represented by a differential
equation of the form

ẋ = f(x) (1)

where x ∈ Rn, and f is a vector function, called vector field, whose components are in
Cω[Rn], satisfying local Lipschitz condition 1 . In the context of HSs, a CDS is normally
equipped with a domain D ⊆ Rn constraining its state space and an initial set of states
Ξ.

In this paper, we use hybrid automata [1] to model HSs. More models of HSs can be
found in [34].

Definition 1 (Hybrid Automata). A hybrid automaton (HA) is a tuple H =̂ (Q,X, f , D,
E,G,R,Ξ), where
• Q = {q1, . . . , qm} is a finite set of discrete states (or modes);
• X = {x1, . . . , xn} is a finite set of continuous state variables, with x = (x1, . . . , xn)
ranging over Rn;

• f : Q → (Rn → Rn) assigns to each mode q ∈ Q a locally Lipschitz continuous vector
field fq;

• D assigns to each mode q ∈ Q a mode domain Dq ⊆ Rn;
• E ⊆ Q×Q is a finite set of discrete transitions;
• G assigns to each transition e ∈ E a switching guard Ge ⊆ Rn;
• R assigns to each transition e ∈ E a reset function Re: Rn → Rn;
• Ξ assigns to each q ∈ Q a set of initial states Ξq ⊆ Rn.

The state space of H is H =̂Q× Rn, the domain of H is DH =̂
∪
q∈Q({q} ×Dq), and

the set of all initial states is denoted by ΞH =̂
∪
q∈Q({q} × Ξq). The semantics of H can

be characterized by the set of hybrid trajectories accepted by H or the reachable set of
H.

Definition 2 (Hybrid Time Set). A hybrid time set is a sequence of intervals τ = {Ii}Ni=0

(N may be ∞) such that:
• Ii = [τi, τ

′
i ] with τi ≤ τ ′i = τi+1 for all i < N ;

• if N < ∞, then IN = [τN , τ
′
N ⟩ is a right-closed or right-open nonempty interval (τ ′N

may be ∞);
• τ0 = 0 .

Given a hybrid time set, let ⟨τ⟩ = N , and ∥τ∥ =
∑N
i=0(τ

′
i − τi) . Then τ is called

infinite if ⟨τ⟩ = ∞ or ∥τ∥ = ∞, and zeno if ⟨τ⟩ = ∞ but ∥τ∥ <∞ .

Definition 3 (Hybrid Trajectory). A hybrid trajectory of H starting from an initial
point (q0,x0) ∈ ΞH is a triple ω = (τ, α, β), where τ = {Ii}Ni=0 is a hybrid time set,
and α = {αi : Ii → Q}Ni=0 and β = {βi : Ii → Rn}Ni=0 are two sequences of functions
satisfying:
(1) Initial condition: α0[0] = q0 and β0[0] = x0;

1 Local Lipschitz condition guarantees the existence and uniqueness of the solution of (1) from any
initial x0.
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(2) Discrete transition: for all i < ⟨τ⟩, e =
(
αi(τ

′
i), αi+1(τi+1)

)
∈ E, βi(τ

′
i) ∈ Ge and

βi+1(τi+1) = Re(βi(τ
′
i));

(3) Continuous evolution: for all i ≤ ⟨τ⟩ with τi < τ ′i , if q = αi(τi), then
(1) for all t ∈ Ii, αi(t) = q,
(2) βi(t) is the solution to the differential equation ẋ = fq(x) over Ii with initial value

βi(τi), and
(3) for all t ∈ [τi, τ

′
i), βi(t) ∈ Dq .

The set of trajectories starting from an initial state (q0,x0) of H is denoted by
Tr(H)(q0,x0), and the set of all trajectories of H by Tr(H).

A hybrid trajectory ω = (τ, α, β) is called infinite or zeno, if τ is infinite or zeno
respectively. An HA H is called non-blocking if for any (q0,x0) ∈ ΞH there exists an
infinite trajectory in Tr(H)(q0,x0), and blocking otherwise; H is called non-zeno if there
exists no zeno trajectory in Tr(H), and zeno otherwise.

Another way to interpret hybrid automata is using reachability relation.

Definition 4 (Reachable Set). Given an HA H, the reachable set of H, denoted by RH,
consists of those (q,x) for which there exists a finite sequence

(q0,x0), (q1,x1), . . . , (ql,xl)

such that (q0,x0) ∈ ΞH, (ql,xl) = (q,x), and for any 0 ≤ i ≤ l − 1, one of the following
two conditions holds:
• (Discrete Jump): e = (qi, qi+1) ∈ E, xi ∈ Ge and xi+1 = Re(xi); or
• (Continuous Evolution): qi = qi+1, and there exists a δ ≥ 0 s.t. the solution x(xi; t) to
ẋ = fqi satisfies
· x(xi; t) ∈ Dqi for all t ∈ [0, δ]; and
· x(xi; δ) = xi+1 .

Note that there is a subtle difference between Definition 3 and 4 in how to treat a
continuous state x which terminates a piece of continuous evolution and evokes a discrete
jump. Definition 3 is less restrictive because such x is not required to be inside the mode
domain before jump happens. Nevertheless, if all mode domains are assumed to be closed
sets, then the above two definitions are consistent with each other, that is, RH is exactly
the set of states that are covered by Tr(H).

One of the major concerning properties of hybrid systems is safety. Given an HA
H, a safety requirement S assigns to each mode q ∈ Q a safe region Sq ⊆ Rn, i.e.
S =

∪
q∈Q({q} × Sq). We say that H satisfies S if x ∈ Sq for all (q,x) ∈ RH. Dually,

Su =
∪
q∈Q({q} × (Dq − Sq)) is called the unsafe set.

2.2. Barrier certificates

Given an HS H and a safety property S (dually, an unsafe set Su), the problem we
considered is whether RH ⊆ S (dually, RH ∩ Su = ∅). Obviously, it is equivalent to
∀q ∈ Q.RH�q⊆ Sq (dually, ∀q ∈ Q.RH�q ∩Suq = ∅), where RH�q stands for all continuous
states of RH projected onto q. For this problem on CDSs, Prajna et al. in [22, 23] used
the idea of Lyapunov functions for stability analysis in control theory to separate safe
states from unsafe states by a barrier function with convexity, called barrier certificate.
According to their definition, a barrier function φ(x) ∈ Cω[Rn] satisfies the following
conditions:
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i) φ(x) ≤ 0 for any point x ∈ Ξ;
ii) φ(x) > 0 for any point x ∈ Su; and
iii) ∀x ∈ D.Lfφ(x) ≤ 0, where Lfφ(x) =

∂φ
∂x f(x) is the Lie derivative of φ with respect

to the vector field f .
Trivially to see, the existence of a BC is just a sufficient condition to guarantee the

safety property to be verified. Hence, using the approach of Prajna et al., one cannot
claim the property does not hold if he/she fails to discover a polynomial BC. Actually,
as observed in [11] by Kong et al., if condition iii) is relaxed by
iii’) Lfφ(x)− γφ(x) ≤ 0, where γ is a real number,
one can synthesize BCs with more expressiveness. Certainly, it is more likely to prove a
safety property by using a more expressive BC, as it gives a tighter approximation of the
reachable set.

3. Revisiting Barrier Certificate Conditions

In this section, we revisit the condition of BCs so that it can be relaxed in a general
way, while allowing BCs to be efficiently synthesized according to the relaxed condition.

3.1. Relaxed barrier certificate conditions for CDSs

First of all, we consider how to relax the condition i)-iii) of BCs given in [22, 23] for
CDSs in a general way. To that end, we need to have a principle to justify in what sense
a relaxed condition of BCs is reasonable and thus acceptable. An obvious principle is:

Principle of BC (PBC): Given a CDS D equipped with an initial set Ξ and an unsafe
set Su, a BC should be a real-valued function φ(x) such that φ(x) ≤ 0 for any x ∈ RD,
and φ(x) > 0 for any point x ∈ Su.

Certainly, if there exists such a function φ(x), we can assert that RD ∩ Su = ∅, and
ϕ(x) ≤ 0 is therefore an invariant. However, such a principle cannot be effectively checked
in general, so we have to strengthen the condition to make it effectively checkable, like in
[22, 23, 11]. An interesting problem is with which condition more expressive BCs can be
synthesized, but the condition is still effectively checkable and satisfies PBC. We answer
this problem by the following theorem.

Theorem 1 (General Barrier Condition (GBC)). Given a CDS D equipped with a
domain D, an initial set Ξ and an unsafe set Su, if there is a function φ(x) ∈ Cω[Rn], a
function ψ(x) ∈ Cω[R] such that

∀x ∈ Ξ.φ(x) ≤ 0, (2)

∀x ∈ D.Lfφ(x)− ψ(φ(x)) ≤ 0, (3)

∀x ∈ Su.φ(x) > 0, (4)

∀ξ.ξ > 0 ⇒ θ(x(ξ)) ≤ 0,

where θ(x(t)) : R → R is a function such that θ(x(0)) ≤ 0,

Lfθ(x)− ψ(θ(x)) = 0,
(5)

for any solution x(t) with initial value x(0), then RD ∩ Su = ∅.
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Proof. Suppose x0 ∈ Ξ and x(t) is the corresponding solution of (1) starting from x0.
By (4), we only need to prove that for any function φ(x(t)) satisfying (2), (3) and (5),

∀ξ ≥ 0.φ(x(ξ)) ≤ 0. (6)

We will show (6) by contradiction.
Assume φ(x(ξ′)) > 0 for some ξ′ > 0. Let g(x) = Lfφ(x)− ψ(φ(x)), then by (3)

∀x ∈ D.g(x) ≤ 0. (7)

Since dφ(x(t))
dt = ∂φ

∂x
dx
dt = ∂φ

∂xf(x) = Lfφ(x), we have
dφ(x(t))

dt − ψ(φ(x(t)))− g(x(t)) = 0,

φ(x(0)) = φ(x0).
(8)

Let θ(x(t)) be a function such that
dθ(x(t))

dt − ψ(θ(x(t))) = 0,

θ(x(0)) = φ(x0).
(9)

for any solution x(t) with initial value x(0). Then, set

Θ = {ξ | φ(x(ξ)) > θ(x(ξ)), ξ ≥ 0}.

From (5) we have ∀ξ > 0.θ(x(ξ)) ≤ 0. So Θ is nonempty as ξ′ ∈ Θ by the assump-
tion. Then there is a real number µ ≥ 0 s.t. µ = inf(Θ). Obviously, φ(x(t)), θ(x(t)),

g(x(t)), dφ(x(t))dt and dθ(x(t))
dt are analytic functions w.r.t. t. Thus φ(x(µ)) = θ(x(µ)).

If g(x(µ)) < 0, then dφ(x(t))
dt |t=µ < dθ(x(t))

dt |t=µ. Hence,

∃ν. ν > µ ∧ ∀ξ ∈ (µ, ν).
dφ(x(t))

dt
|t=ξ <

dθ(x(t))

dt
|t=ξ.

Thus, ∀ξ ∈ (µ, ν).φ(x(ξ)) < θ(x(ξ)), which contradicts the definition of µ.
So g(x(µ)) = 0 from (7). Since φ(x(µ)) = θ(x(µ)), from (8) and (9), we have

dφ(x(t))

dt
|t=µ =

dθ(x(t))

dt
|t=µ.

Case 1. If ∀k > 1.d
kφ(x(t))
dtk

|t=µ = dkθ(x(t))
dtk

|t=µ, then φ(x(ξ)) = θ(x(ξ)) for any ξ ∈ R+,
since φ, θ are analytic functions. So Θ = ∅, which contradicts the definition of µ.

Case 2. Suppose there is k > 1 such that

dkφ(x(t))

dtk
|t=µ <

dkθ(x(t))

dtk
|t=µ,

diφ(x(t))

dti
|t=µ =

diθ(x(t))

dti
|t=µ, ∀i < k,

then there is ν1 > µ s.t. φ(x(ξ)) < θ(x(ξ)) for any ξ ∈ (µ, ν1), which also contradicts the
definition of µ.

Case 3. Suppose there is k > 1 such that

dkφ(x(t))

dtk
|t=µ >

dkθ(x(t))

dtk
|t=µ,

diφ(x(t))

dti
|t=µ =

diθ(x(t))

dti
|t=µ, ∀i < k.

Since φ(x(µ)) = θ(x(µ)), then

ψ(φ(x(µ))) = ψ(θ(x(µ))).
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Since dφ(x(t))
dt |t=µ = dθ(x(t))

dt |t=µ, then

dψ(φ(x(t)))

dt
|t=µ =

dψ(y)

dy
|y=φ(x(µ))

dφ(x(t))

dt
|t=µ =

dψ(y)

dy
|y=θ(x(µ))

dθ(x(t))

dt
|t=µ

=
dψ(θ(x(t)))

dt
|t=µ,

i.e., dψ(φ(x(t)))dt |t=µ = dψ(θ(x(t)))
dt |t=µ. If d

2φ(x(t))
dt2 |t=µ = d2θ(x(t))

dt2 |t=µ, then

d2ψ(φ(x(t)))

dt2
|t=µ =

d2ψ(y)

dy2
|y=φ(x(µ))(

dφ(x(t))

dt
)2|t=µ +

dψ(y)

dy
|y=φ(x(µ))

d2φ(x(t))

dt2
|t=µ

=
d2ψ(y)

dy2
|y=θ(x(µ))(

dθ(x(t))

dt
)2|t=µ +

dψ(y)

dy
|y=θ(x(µ))

d2θ(x(t))

dt2
|t=µ

=
d2ψ(θ(x(t)))

dt2
|t=µ,

i.e., d
2ψ(φ(x(t)))

dt2 |t=µ = d2ψ(θ(x(t)))
dt2 |t=µ. By induction, for all i < k we have that

diψ(φ(x(t)))

dti
|t=µ =

diψ(θ(x(t)))

dti
|t=µ.

For i < k, computing the (i − 1)-th derivatives of the two sides of the first formulae of
(8) and (9), we have

diφ(x(t))
dti |t=µ − di−1ψ(φ(x(t)))

dti−1 |t=µ − di−1g(x(t))
dti−1 |t=µ = 0,

diθ(x(t))
dti |t=µ − di−1ψ(θ(x(t)))

dti−1 |t=µ = 0.
(10)

Since,

dkφ(x(t))

dtk
|t=µ >

dkθ(x(t))

dtk
|t=µ,

diφ(x(t))

dti
|t=µ =

diθ(x(t))

dti
|t=µ, ∀i < k,

and for all i < k,
diψ(φ(x(t)))

dti
|t=µ =

diψ(θ(x(t)))

dti
|t=µ,

then from (10) we have that

dk−1g(x(t))

dtk−1
|t=µ > 0,

di−1g(x(t))

dti−1
|t=µ = 0, ∀i < k − 1.

Thus, there is a δ > µ s.t. ∀ξ ∈ (µ, δ).g(x(ξ)) > 0, which contradicts the definition of
g(x). This completes the proof. 2

From now on, we call φ in Theorem 1 a barrier certificate of D.

Remark 1. • The application of Theorem 1 includes the following two steps:
i) fix a function ψ which satisfies condition (5) first;
ii) similar to the work in [11], synthesize BC according to the resulting conditions of

(2)-(4) by instantiating ψ with the function obtained in the first step.
• All existing BC conditions can be uniformly represented in our general condition with
specific functions ψ satisfying condition (5). For instance, convex condition in [23] and

8



differential invariant in [20] correspond to ψ(θ) = 0, while exponential condition in
[11] corresponds to ψ(θ) = αθ, where α ∈ R.

The following lemma indicates that we can find so many classes of functions ψ different
from existing ones, satisfying condition (5). Thus, from these we can construct a class
of relaxed conditions of BCs by GBC, that can be used to generate BCs with different
expressiveness.

Lemma 1. Given  θ(0) ≤ 0,

θ̇ − ψ(θ) = 0,
(11)

where ψ is a first order continuous differentiable function with respect to θ such that the
solution θ(t) of (11) is well-defined for all t ≥ 0. If ψ(0) = 0, then for any t ≥ 0, θ(t) ≤ 0.

Proof. (By contradiction). Assume there is a solution θ of (11) with θ(0) ≤ 0, but
θ(t∗) > 0 for some t∗ > 0. It is easy to see θ(t) is continuous at t∗. So, there must exist
t0 > 0, δ > 0, s.t. θ(t0) = 0, and for all t0 < t ≤ t0 + δ, θ(t) > 0.

Fix a real number ϵ > 0. Obviously, ∂ψ(θ)∂θ is bounded whenever θ ∈ [−ϵ, ϵ], since ψ is

a first order continuous differentiable function. Thus, θ̇ = ψ(θ) w.r.t. θ satisfies the local
Lipschitz condition in [t0, t0 + δ] × [−ϵ, ϵ]. Hence, θ̇ = ψ(θ) with θ(t0) = 0 has a unique
solution over [t0, t0 + δ]. On the other hand, it is easy to see that θ(t) = 0 is indeed a
solution of (11) as ψ(0) = 0. This implies that ∀t ∈ [t0, t0+ δ].θ(t) = 0, which contradicts
the assumption. 2

From Lemma 1, in order to find a function ψ satisfying condition (5) in Theorem 1,
we just need to ensure ψ to be a first order continuous differentiable function w.r.t. θ
and ψ(0) = 0. Obviously, ψ(θ) = 0 in [23] and [20] and ψ(θ) = αθ in [11] both satisfy the
conditions. The following lemma clearly indicates that more general ψ do exist.

Lemma 2. Let  θ̇ − αθ − βθ2 = 0,

θ(0) = θ0 ≤ 0.
(12)

If α < 0 ∧ (β > 0 ∨ (β < 0 ∧ α
β + θ0 > 0)), then θ(t) is well defined for t ≥ 0. Besides,

∀t > 0. θ(t) ≤ 0.

Proof. (12) has an explicit solution θ(t) = α
β (

1

1− θ0
α
β

+θ0
eαt

− 1). It is easy to see that if

α < 0 ∧ (β > 0 ∨ (β < 0 ∧ α
β + θ0 > 0)), then 1 − θ0

α
β +θ0

eαt will never vanish for t ≥ 0.

Thus, θ(t) is well defined for t ≥ 0. Since ψ(θ) = αθ + βθ2 is a continuous differentiable
function w.r.t. θ and ψ(0) = 0, by Lemma 1, the conclusion holds. 2

Remark 2. The above lemma tells us that a class of quadratic functions ψ can be used
to construct relaxed BC conditions in Theorem 1. One can flexibly select an appropriate
relaxed condition from the above class by setting suitable values to α and β according
to the following rules, which is illustrated in Fig. 1:
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Fig. 1. Solutions of (12) with θ0 = −1 on different values of α, β.

• the smaller the value of α is, the tighter synthesized BCs are, and vice versa;

• the greater the value of β is, the tighter synthesized BCs are, and vice versa.

The following example clearly indicates that one can synthesize some interesting BCs

with some relaxed condition from the above class, which cannot be discovered using the

existing approaches.

Example 1. Consider a CDS D1 as follows: ẋ1 = x21 − 2x1 + x2,

ẋ2 = x1 + x22 − 2x2,

with Ξ = {(x1, x2) | 0.01− x21 − x22 ≥ 0},Su = {(x1, x2) | x21 + x22 − 0.25 ≥ 0}.
By Theorem 1, we can check whether φ = x21+x

2
2−0.04 is a BC w.r.t. ψ(θ) = −θ+2θ2

as follows: Let g0 = 0.01− x21 − x22, g1 = x21 + x22 − 0.25. Obviously, −φ− g0 = 0.03 > 0,

φ− g1 = 0.21 > 0 and −Lf (φ)−φ+2φ2 = 2x41 − 2x31 +4x21x
2
2 +2.84x21 − 4x1x2 +2x42 −

2x32 + 2.84x22 + 0.0432 is an SOS, so the condition of Theorem 1 is satisfied.

On the other hand, we can show that there is no BC φ with deg(φ) ≤ 2 that can be

synthesized by the condition given in [11]. Suppose there is a BC satisfying the condition

of [11], i.e., with the form

φ = a20x
2
1 + a11x1x2 + a02x

2
2 + a10x1 + a01x2 + a00

w.r.t. ψ(θ) = αθ, where α, a20, a11, a02, a10, a01, a00 ∈ R. Let L = −Lf (φ) + αφ, so L

should be SOS. From Ξ and Su, it follows that not all of a20, a11, a02 are equal to 0.

Suppose a20 ̸= 0, then L has a monomial −2a20x
3
1. Consider the value of L over the set

{(ξ, 0) | a20ξ > 0}, which will become negative when |ξ| becomes large enough. Similarly,

we can derive a contradiction when a02 ̸= 0. If a11 ̸= 0 and a20 = a02 = 0, it is easy

to see that the degree of L is 3, which is impossible to be an SOS, that contradicts the

assumption. 2

The above example indicates that more BCs can be synthesized with GBC.
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3.2. Combined barrier certificates

Given a CDS D equipped withD, Ξ and Su, suppose φ(x) is a BC satisfying Theorem 1
w.r.t. ψ(x). Clearly, {x | φ(x) ≤ 0} is an over-approximation of RD, while {x | φ(x) >
0} is an over-approximation of Su. In many cases we cannot find such a single BC to
over-approximate the reachable set, but it can be achieved by combining several functions
together. We call the combination of these functions a combined BC. Actually, a similar
problem on differential invariants has been discussed in [20, 6, 28, 16]. In the literature,
e.g. in [20], the combination of different differential invariants (BCs) is achieved in a
trivial way, i.e., each of them satisfies BC condition separately. But here, we would like
to consider deep combination that could be more useful in practice, i.e., none of which
could satisfy BC condition, however, their combination can be used as a differential
invariant whenever the given condition is satisfied.

Below, we discuss how to combine two functions together to form a combined BC. For
easing discussion, let us fix the aforementioned CDS D.

Lemma 3. {x | χ(x) ≤ 0} is an over approximation of RD for a CDS D where
χ(x) ∈ Cω[Rn], if there is a function ψ1(x) ∈ Cω[R] such that

∀x ∈ Ξ. χ(x) ≤ 0, (13)

∀x ∈ D. Lfχ(x)− ψ1(χ(x)) ≤ 0, (14)

∀ξ. ξ > 0 ⇒θ(x(ξ)) ≤ 0, where θ(x(t)) : R → R is any function such thatLfθ(x)− ψ1(θ(x)) = 0,

θ(x(0)) ≤ 0.
(15)

Proof. It can be proved similarly to Theorem 1. 2

Lemma 4. If A = {x | χ(x) ≤ 0} is an over approximation of the reachable set RD
and there are functions φ(x) ∈ Cω[Rn], ψ2(x) ∈ Cω[R] such that

∀x ∈ Ξ. φ(x) ≤ 0, (16)

∀x ∈ D ∩ A. Lfφ(x)− ψ2(φ(x)) ≤ 0, (17)

∀x ∈ Su ∩ A. φ(x) > 0, (18)

∀ξ.ξ > 0 ⇒θ(x(ξ)) ≤ 0, where θ(x(t)) : R → R is any function such thatLfθ(x)− ψ2(θ(x)) = 0,

θ(x(0)) ≤ 0,
(19)

for any solution x(t) with initial value x(0), thenRD∩Su = ∅, where φ(x), χ(x) ∈ Cω[Rn]
and ψ2(x) ∈ Cω[R].

Proof. Since A is an over approximation of the reachable set D, we just need to consider
a new CDS whose vector field is the same as D’s, but with the domain D ∩ A and the
unsafe set Su ∩ A. Thus, by Theorem 1, the claim is trivially true. 2

Theorem 2. If there exist χ(x) ∈ Cω[Rn] and ψ1(x) ∈ Cω[R] satisfying (13)-(15) and
there exist φ(x) ∈ Cω[Rn], ψ2(x) ∈ Cω[R] satisfying (16)-(19), then RD ∩ Su = ∅.

11



Proof. It is straightforward by Lemmas 3 and 4. 2

We will call the pair (χ, φ) a combined BC.
Obviously, a single BC defined in Theorem 1 can be seen as a specific combined BC

by letting χ = 0. In addition, actually, it is easy to prove that a combined BC forms a
combined differential invariant.

Corollary 1. χ ≤ 0 ∧ φ ≤ 0 in Theorem 2 is a differential invariant (the definition can
be found in [20]) of D, which can guarantee its safety.

The following example witnesses that the notion of combined BCs does give more
power to the verification of CDSs as well as HSs.

Example 2. Consider the following CDS D2ẋ1
ẋ2

 =

2x1 − x1x2

2x21 − x2


with Ξ = {x ∈ R2 | x21 + (x2 + 2)2 ≤ 1} and Su = {x ∈ R2 | x21 + (x2 − 1)2 ≤ 0.09}.

To prove its safety, by Theorem 2, we can synthesize a combined BC (χ, φ), see Fig.
2, in which χ(x) = 0 is denoted by the dash line and φ(x) = 0 is denoted by the solid
line (their mathematical representations can be found in the appendix). In fact, we can
prove χ(x) ≤ 0 ∧ φ(x) ≤ 0 is indeed a differential invariant according to the definition
given in [20], which can guarantee the unsafe set unreachable.

Moreover, we can prove that neither χ(x) nor φ(x) is a BC in the sense of Theorem 1.
Furthermore, using the same values of α, β and the degree bound as used in synthe-
sizing the combined BC (χ(x), φ(x)), we cannot obtain any single BC in the sense of
Theorem 1. 2

From the above example, the reader may be still skeptical whether to synthesize a
polynomial with higher degree which is a BC of the considered system. But Theorem 3
clearly indicates that the notion of combined BCs is strictly more expressive than that
of BCs. To the end, we need to prove the following lemma first.

Lemma 5. Let S1 = x < 0 ∧ y < 0, S2 = x > 1 ∨ y > 1. Then, there is no f ∈ R[x, y]
such that ∀(a, b) ∈ S1.f(a, b) ≥ 0 and ∀(a, b) ∈ S2.f(a, b) < 0.

Proof. Suppose there is a polynomial f ∈ R[x, y] which satisfies the condition. Obviously,

f ̸≡ 0. Let f(x, y) =
∑N
i=0 x

ihi(y), where hi(y) ∈ R[y], hN ̸≡ 0. For each i ∈ N, obviously,
f(−i, y) is continuous, f(−i, y) < 0 if y > 1, and f(−i, y) ≥ 0 if y < 0. Thus, there is a
0 ≤ bi ≤ 1 such that f(−i, bi) = 0 by the Mean Value Theorem. Thus, there is a sub-
sequence {bik} such that limk→+∞ bik = ξ with 0 ≤ ξ ≤ 1. Let h(x) = f(x, ξ). h(x) is a
univariate polynomial, and limx→−∞ h(x) = limi→+∞ h(−i) = 0, so it follows h(x) ≡ 0.

Hence, hi(ξ) = 0 for 0 ≤ i ≤ N , as h(x) = f(x, ξ) =
∑N
i=0 x

ihi(ξ) ≡ 0. Thus,

f =

N∑
i=0

cix
i(y − ξ)ki(y) = (y − ξ)

N∑
i=0

cix
iki(y),
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Fig. 2. A combined BC for Example 2

where ki(y) is a polynomial in R[y]. It is easy to see that (2, ξ) ∈ S2, then f(2, ξ) < 0,

but f(2, ξ) =
∑N
i=0 ci2

i(ξ − ξ)ki(ξ) = 0, which is a contradiction. 2

Now, we can conclude that

Theorem 3. The notion of combined BCs is more expressive than that of BCs.

Proof. We prove this theorem by considering the following CDS D:ẋ
ẏ

 =

−x
−y


with Ξ = {(x, y) ∈ R2 | x < 0 ∧ y < 0} and Su = {(x, y) ∈ R2 | x > 1 ∨ y > 1}.

From Lemma 5 there is no polynomial which can separate the reachable set RD from
the unsafe set Su, which means that there is no a BC in the sense of Theorem 1. On
the other hand, let χ(x, y) = x,φ(x, y) = y, ψ(θ) = −θ + θ2. It obtains Lfχ(x, y) = −x,
Lfφ(x, y) = −y. Thus, Lfχ(x, y) − ψ(χ(x, y)) = −x2. It’s easy to check that the con-
ditions (13)-(15) are satisfied. Similarly, it is easy to check that the conditions (16),(17)
and (19) hold. Furthermore, from Su ∩ A = {(x, y) | x ≤ 0 ∧ y > 1} and φ(x, y) = y, it
follows that (18) holds. Thus there exists a combined BC.

In fact, for any given 0 ≤ a, b < 1, the pair of χ(x, y) = x− a and φ(x, y) = y − b is a
combined BC. 2

3.3. Relaxed barrier certificate conditions for HSs

As discussed in [11], the principle of the condition of BCs Φ(x) for an HS H =
(Q,X, f,D,E,G,R,Ξ) w.r.t. a given unsafe set Su should satisfy the following condi-
tions:
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• Φ(x) consists of a set of functions {φq(x) | q ∈ Q}, each φq(x) is a BC for CDS ẋ = fq

equipped with the domain Dq, initial set Ξq and unsafe set Suq ;

• all the discrete transitions starting from every mode q ∈ Q have to be taken into

account in the BC condition so that Φ(x) can construct a global inductive invariant

of H.

Based on the discussions about BC conditions for CDSs as well as the above principle,

we can accordingly revisit the condition of BCs for HSs by the following theorem:

Theorem 4. Given an HS H = (Q,X, f,D,E,G,R,Ξ) and an unsafe set Su, if there

exists a set of non-negative real numbers {ce | e ∈ E}, and a set of functions {φq(x) ∈
Cω[Rn] | q ∈ Q} ∪ {ψq(x) ∈ Cω[R] | q ∈ Q} s.t.

∀q ∈ Q ∀x ∈ Ξq. φq(x) ≤ 0, (20)

∀q ∈ Q ∀x ∈ Dq. Lfqφq(x)− ψq(φq(x)) ≤ 0, (21)

∀q ∈ Q ∀x ∈ Suq . φq(x) > 0, (22)

∀q ∈ Q ∀ξ. ξ > 0 ⇒ θq(x(ξ)) ≤ 0,

where θq(x(t)) : R → R is any function such thatLfqθq(x)− ψq(θq(x)) = 0,

θq(x(0)) ≤ 0,
(23)

∀e ∈ E ∀x ∈ G(e). x′ = R(e)(x). ceφS(e)(x)− φT (e)(x
′) ≥ 0, (24)

then RH ∩ Su = ∅, where S(e) and T (e) stand for the source and target modes of jump

e, respectively.

Proof. Suppose RH ∩ Su ̸= ∅, then there must exist a hybrid trajectory (τ, α, β), where

τ = {[ti, ti+1]}m−1
i=0 , α = (q1, q2, · · · , qm), where t0 = 0 and tm = T , s.t. βq1(t0) ∈ Ξq1 and

βm(T ) ∈ Suqm . Since βq1(0) ∈ Ξq1 , we have φq1(βq1(0)) ≤ 0 from condition (20). So, it is

easy to know φq1(βq1(t1)) ≤ 0 from condition (21) and (23). Moreover, from condition

(24), it follows φq2(βq2(t1)) ≤ ceφq1(βq1(t1)) ≤ 0, i.e. φq2(βq2(t1)) ≤ 0. Repeating the

above arguments, we can get φqm(βqm(T )) ≤ 0. On the other hand, φqm(βqm(T )) > 0

because βqm(T ) ∈ Suqm from the assumption, which is a contradiction. 2

Similarly, based on Theorem 2 and Theorem 4, we can define the condition of combined

BCs for HSs as follows:

Theorem 5. Given an HS H = (Q,X, f,D,E,G,R,Ξ) and an unsafe set Su, if there

exists a set of non-negative real numbers {ce,1, ce,2, ce,3, ce,4 | e ∈ E}, a set of SOS

polynomials {δq | q ∈ Q}, and a set of functions {φq(x), χq(x) ∈ Cω[Rn] | q ∈ Q} ∪
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{ψq,1(x), ψq,2(x) ∈ Cω[R] | q ∈ Q} s.t.

∀q ∈ Q ∀x ∈ Ξq. χq(x) ≤ 0, (25)

∀q ∈ Q ∀x ∈ Dq. Lfqχq(x)− ψq,1(χq(x)) ≤ 0, (26)

∀q ∈ Q ∀x ∈ Ξq. φq(x) ≤ 0, (27)

∀q ∈ Q ∀x ∈ Dq. Lfqφq(x)− ψq,2(φq(x))− δqχq ≤ 0, (28)

∀q ∈ Q ∀x ∈ Suq . φq(x) > 0, (29)

∀q ∈ Q ∀ξ. ξ > 0 ⇒ θq(x(ξ)) ≤ 0,

where θq(x(t)) : R → R is any function such thatLfqθq(x)− ψq,1(θq(x)) = 0,

θq(x(0)) ≤ 0,
(30)

∀q ∈ Q ∀ξ. ξ > 0 ⇒ θ′q(x(ξ)) ≤ 0,

where θ′q(x(t)) : R → R is any function such thatLfqθq(x)− ψq,2(θ
′
q(x)) = 0,

θ′q(x(0)) ≤ 0,
(31)

∀e ∈ E ∀x ∈ G(e). x′ = R(e)(x) ⇒ ce,1φS(e)(x) + ce,3χS(e)(x)− φT (e)(x
′) ≥ 0, (32)

∀e ∈ E ∀x ∈ G(e). x′ = R(e)(x) ⇒ ce,2φS(e)(x) + ce,4χS(e)(x)− χT (e)(x
′) ≥ 0, (33)

then RH ∩ Su = ∅, where S(e) and T (e) stand for the source and target modes of the
jump e, respectively.

Proof. The proof is similar to Theorem 4. 2

4. Discovering Relaxed Barrier Certificates by SDP

Theorems 1&2 (resp. Theorems 4&5) provide relaxed conditions which can guarantee
a function (a pair of functions) to be a (combined) BC for a CDS (resp. an HS), but
these theorems do not provide any constructive method for synthesizing (combined)
BCs. However, like in the previous work e.g. [9, 22, 23, 30, 11], (combined) BCs can
be synthesized in a standard way from these conditions by exploiting SDP techniques
[18, 19]. For self-containedness, we introduce SDP and the synthesis algorithm. But we
mainly emphasize on how to apply symbolic checking to avoid the unsoundness of these
approaches based on SDP because of numerical errors. In the literature, some attempts
by using hybrid numeric-symbolic method to avoid the unsoundness of SDP have been
investigated due to Wu, Yang et al. [32, 14, 33].

4.1. Semi-definite programming

We use Symn to denote the set of n × n real symmetric matrices, and deg(f) the
highest total degree of a given polynomial f .

Definition 5 ((Positive) semidefinite matrices). A matrix M ∈ Symn is called positive
definite (semidefinite), denoted by M ≻ 0 ( M ≽ 0), if xTMx > 0 (xTMx ≥ 0) for all
x ∈ Rn.
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Definition 6 (Inner product). The inner product of two matrices A = (aij), B = (bij) ∈
Rn×n, denoted by ⟨A,B⟩, is defined by Tr(ATB) =

∑n
i,j=1 aijbij .

Definition 7 (Semidefinite programming (SDP)). The standard (primal) and dual forms
of a SDP are respectively given in the following:

p∗ = inf
X∈Symn

⟨C,X⟩ s.t. X ≽ 0, ⟨Aj , X⟩ = bj (34)

(j = 1, . . . ,m)

d∗ = sup
y∈Rm

bTy s.t.

m∑
j=1

yjAj + S = C, S ≽ 0, (35)

where C,A1, . . . , Am, S ∈ Symn and b ∈ Rm.

There are many efficient algorithms to solve SDP such as interior-point methods. We
present a basic path-following algorithm to solve (34) in Algorithm 1.

Definition 8 (Interior point for SDP).

intFp = {X : ⟨Ai, X⟩ = bi (i = 1, . . . ,m), X ≻ 0} ,

intFd =

{
(y, S) : S = C −

m∑
i=1

Aiyi ≻ 0

}
,

intF= intFp × intFd.

Obviously, ⟨C,X⟩−bTy = ⟨X,S⟩ ≥ 0 for all (X,y, S) ∈ intF. Especially, we have d∗ ≤
p∗. So the soul of interior-point methods to compute p∗ is to reduce ⟨X,S⟩ incessantly
and meanwhile guarantee (X,y, S) ∈ intF.

Algorithm 1: Interior Point Method

input : C, Aj , bj (j = 1, . . . ,m) as in (34) and a threshold c
output: p∗

1 Given a (X,y, S) ∈ intF with XS = µI;
/* µ is a positive constant and I is the identity matrix. */

2 while µ > c do
3 µ = γµ;

/* γ is a fixed positive constant less than one */

4 use Newton iteration to solve (X,y, S) ∈ intF with XS = µI;

5 end

4.2. Symbolic checking

It should be noted that because of the error caused by numeric computation in SDP,
in particular, a threshold c upon which SDP depends, it may happen that the (combined)
BCs computed by SDP are not real ones, or some real (combined) certificates satisfying

16



−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

x

y

0.31527 x8 − 3.1064e−05 x7 y +...− 40.8538 = 0

x

y

0.24066 x8 − 2.0753e−08 x7 y +...− 35.7521 = 0

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
2

2.5

3

3.5

4

4.5

5

5.5

6

Fig. 3. A false BC of Example 2 due to numerical errors

the condition cannot be computed or are determined as false ones. For example, consid-
ering Example 2, if we encode the condition derived from Theorem 1 as an SDP, then
call SOSTOOLS 2 [24], and obtain the output is:

“ feasratio: 1.0000; pinf: 0; dinf: 0; numerr: 0”.

This indicates that the tool does discover a BC. However, after showing the result in Fig.
3, it is easy to find that the black line in Fig. 3 does not satisfy condition (3), as some
vectors cross it into the area which contains unsafe set.

So, we have to take the numerical error into account when using these SDP tools. Our
experience is:
• The larger the size of matrix X is, the larger the error due to SDP is. Thus, it is more
likely to obtain a false (combined) BC;

• The higher the degree of undetermined polynomials as predefined templates of BCs is,
the larger the error due to SDP is;

• The degree of a combined BC synthesized by Theorem 2 is normally lower than that
of a standard BC by Theorem 1.
It is absolutely necessary to guarantee the soundness of the approaches to the verifica-

tion of HSs. But the approaches based on SDP to synthesizing (combined) BCs according
to these relaxed conditions may be unsound because of the error caused by numeric com-
putation. Below, we advocate to apply symbolic computation techniques to check if the
synthesized (combined) BCs are real ones, which is hinted by our previous work [3].

2 SOSTOOLS is of version v2.04 with MATLAB R2011b.
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Problem 1. For f ∈ R[x], if ∀x ∈ Rn.f(x) ≥ 0 ?

Checking the constraints in Theorems 1&2&4&5 are obviously instances of Problem
1. A lot of work has been done on Problem 1. We proposed an exact method based
on an improved Cylindrical Algebraic Decomposition(CAD) algorithm in [7], and imple-
mented a tool called CADpsd for the checking. The CADpsd returns True when the input
polynomial is positive semidefinite and False otherwise.

Remark 3. One may doubt the efficiency of the above symbolic checking since the com-
plexity of CAD is O(22

n

) in general, where n is the number of variables. However, please
note that Problem 1 is a special case of quantifier elimination. One of the main contri-
butions of [7] is an improved algorithm for solving Problem 1. Although the improved
algorithm cannot be proved with a lower complexity theoretically, it has been shown that
it does avoid many heavy resultant computation. So, in practice, especially in the case
where the number of variables is greater than 2, CADpsd is much faster than any general
CAD tool. Please see [7] for the detail. In our experience, CADpsd can finish checking in
few seconds when deg(f) is no larger than 6 and the number of variables in f is less than
5, which is enough for many problems.

4.3. Algorithms

Now, we can sketch the basic steps of the algorithm to construct (combined) BCs
using SDP as follows:

Step 1: predefine parametric polynomial templates with a degree bound as possible
candidates of (combined) BCs;

Step 2: derive constraints on the parameters of these parametric polynomial templates
according to the considered relaxed barrier condition;

Step 3: reduce all the constraints on the parameters to an SDP;
Step 4 apply some SDP solver to solve the resulting SDP problem and obtain instanti-
ations of these parameters.

In the above procedure, for most of the constraints on parameters, we only need to
consider how to reduce p ≥ 0 (p ≤ 0) to p = δ (−p = δ), where p is a polynomial and
δ is an undetermined SOS polynomial. In the literature, there is a lot of work on this,
please refer to [9, 22, 23, 30, 11, 3] for the detail.

The hardest part is how to reduce the constraints that contain ψ, χ, ψq, ψq,i, or χq, as
they may contain the product of two or more parametric polynomials after replacement,
which result in non-linear expressions on parameters, that cannot be seen as an SDP any
more. For instance, let ψ = θ+θ2, and θ = ax1+bx2 be a template of BCs. By Theorem 1,
the constraint derived from condition (3) will contain expression (ax1+bx2)+(ax1+bx2)

2,
which cannot be reduced to an SDP directly.

To address this issue, we explore the iterative approach proposed in [22] which can
handle a constraint containing the product of two parametric polynomials. Thus, we
implemented Algorithm 2 below based on the idea of the iterative approach for dealing
with the following problem.

Problem 2. Suppose Ξ,Su, f , ψ are given, where ψ satisfies (5). Our goal is to find a φ
which satisfies (2)- (4).
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Algorithm 2: Iterative Algorithm for Problem 2

input : Ξ,Su, f , ψ(θ) =
∑s
i=0 aiθ

i, where ψ(θ) satisfies (5) and an iteration step
number N

output: θ′ a possible solution for the Problem 2

1 θ′ = 0;
2 j = 0;
3 while j ≤ N do
4 ψ′ =

∑s
i=0 aiθθ

′i−1;
5 Use an SDP tool to solve the resulting Problem 2 by replacing ψ with ψ′;
6 if the SDP solver returns a result then
7 Denote the result by θ′;
8 end
9 else

10 break;
11 end
12 j = j + 1;

13 end
14 return θ′;

The basic idea of Algorithm 2 is as follows: In order to avoid occurrences of non-
linear expressions in the parameters contained in the template of θ, which is caused as ψ
contains non-linear expressions in θ, we first initialize θ′ = 0, and use ψ′ =

∑s
i=0 aiθθ

′i−1

to approximate ψ. Thus, ψ′ has no non-linear expression in θ any more. Then we can call
an SDP solver to the resulted SDP problem. If the solver gives an answer, we repeat the
procedure by refining the approximation of ψ′ in order to obtain a more likely correct
solution to Problem 2. The refining procedure (the while loop) terminates whenever
either the number of iteration reaches the upper bound N or no solution to Problem
2 can be found using the refined ψ′. For example, in case the while loop terminates
just after the first iteration, the returned solution is θ′ = 0, which is impossible to be a
solution to Problem 2.

5. Beyond polynomials and with inputs

In this section, we discuss how to extend our approach to more general systems in-
cluding non-polynomial vector fields and/or CDSs with inputs.

5.1. Beyond polynomials

Hybrid systems with non-polynomial functions such as reciprocal function 1
x , expo-

nential function ex, logarithm function ln(x), trigonometric functions sin(x) and cos(x),
and their compositions are very common in practice, e.g., in [35], a real-world example of
a lunar lander is given. How to verify such systems is a challenge. By combining with the
approach in [17], it is easy to extend our approach to the verification of these systems.
We will show the idea by the following example.
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Example 3. Consider a CDS D3 with elementary function as follows:ẋ
ẏ

 =

exp−x2

+y − 1

− sin2(x)− 1

 (36)

with Ξ = {(x, y) ∈ R2|(x+1)2+y2−0.09 ≤ 0}, D = {(x, y) ∈ R2|−2 ≤ x ≤ 2∧−2 ≤ y ≤
2}, Su = {(x, y) ∈ R2|(x− 1.5)2 + (y+1)2 − 0.09 ≤ 0}. This is no longer a semialgebraic

system as the ODE contains transcendental expressions exp−x
2

and sin2(x). According

to the approach given in [17], we can abstract D3 to a polynomial one D̃3 by variable

transformation, so that the safety verification of D3 is reduced to the corresponding one

of D̃3, via the following two steps:

Step 1: Reduction of an elementary ODE to a polynomial ODE by variable transfor-

mation. In this example, for e−x
2

and sin2(x), we respectively introduce two fresh

variables v1 and v2, and establish a replacement equation v1 = exp−x
2

,

v2 = sin(x).
(37)

Then, to differentiate the two sides of (37) and simplify it, we obtain v̇1 = −2x exp−x
2

ẋ = −2xv1ẋ = −2xv1(v1 + y − 1),

v̇2 = cos(x)ẋ,
(38)

which still contains non-polynomial expression cos(x). So, we have to introduce another

fresh variable v3, and put v3 = cos(x) into the replacement equation and obtain
v1 = exp−x

2

,

v2 = sin(x),

v3 = cos(x).

(39)

To differentiate the two sides of (39) and simplify it again, we obtain a new additional

ODE, which only contains polynomial expressions. By merging the new ODE into that

of D3, we establish the vector field of D̃3 as follows:

ẋ

ẏ

v̇1

v̇2

v̇3


=



v1 + y − 1

v22 − 1

−2xv1(v1 + y − 1)

v3(v1 + y − 1)

−v2(v1 + y − 1)


. (40)

Step 2: Deriving the initial, domain and unsafe sets of D̃3 from the respective initial,

domain and unsafe sets of D3 by using the replacement equation. In this example, we
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can derive the following additional constraints on v1, v2, v3 from known ranges of the

functions, trigonometric relations and Taylor expansions:

const(v1, v2, v3) = 0 ≤ v1 ≤ 1 ∧ −1 ≤ v2 ≤ 1 ∧ −1 ≤ v3 ≤ 1 ∧ x2 − 1

6
x4 ≤ xv2 ≤ x2

∧ 1− 1

2
x2 ≤ v3 ≤ 1− 1

2
x2 +

1

24
x4 ∧ 1− x2 ≤ v1 ≤ 1− x2 +

1

2
x4.

Thus, the initial, domain and unsafe sets of D̃3 can be given as follow:

Ξ̃0 = {(x, y, v1, v2, v3) ∈ R5 | const(v1, v2, v3) ∧ (x, y) ∈ Ξ0},
D̃= {(x, y, v1, v2, v3) ∈ R5 | const(v1, v2, v3) ∧ (x, y) ∈ D},
S̃u = {(x, y, v1, v2, v3) ∈ R5 | const(v1, v2, v3) ∧ (x, y) ∈ Su}.

To verify RD̃3
∩ S̃u = ∅, we apply the results reported in the previous sections and

obtain a BC φ = 0.32873x3+0.74066x2y− 1.5285x2− 1.8105xy2− 2.3281xy+5.7603x+

3.0577y3 + 8.9834y2 + 7.193y − 3.1476. On the other hand, according to the results

in [17], we have that φ(x, y, v1, v2, v3) ∈ R[x, y, v1, v2, v3] is a BC of D̃3 implies that

φ(x, y, exp−x
2

, sin(x), cos(x)) is a BC of D3, which guarantees the safety of D3.

Obviously, the above idea can be easily extended to hybrid systems with non-polynomial

expressions.

5.2. With inputs

In the previous subsection, we discussed how to extend our approach to elementary

systems. In this subsection, we shall argue that the same idea can be applied to extend

our approach to systems with inputs. Here, we just consider CDSs with inputs, as hybrid

systems with inputs can be handled similarly. Actually, a similar idea has been used in

synthesizing the standard BCs for CDSs with inputs, see [30].

Definition 9. A CDS with input can be represented by the following form:

ẋ = f(x,u),

where x ∈ Rn is a vector of variables, u ∈ U ⊆ Rm is an input, and f ∈ R[x,u] is a vector

of polynomials over x,u, in which, U ⊆ Rm is called an input set, which is compact.

Suppose u(t) = (u1(t), · · · , um(t)), then for every ui(t) there is a lower bound uli and

a upper bound upi since U is a compact set. Then regard each component of u as a fresh

variable, and the constraint for ui, i = 1, · · · ,m is uli ≤ ui ≤ upi. Thus, the problem of

relaxed BCs of a CDS with inputs is naturally reduced to that of an autonomous CDS.

6. Experimental Results

In this section, we demonstrate our approach with some examples.
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Example 4 (Adapted from [12]). Consider a CDS D4 as follows:ẋ1
ẋ2

 =

2x1 − x1x2

2x21 − x2


with Ξ = {x ∈ R2 | x21 + (x2 + 2)2 ≤ 1} and Su = {x ∈ R2 | x21 + (x2 − 5.2)2 ≤ 0.81}.

No polynomial BCs can be discovered using the existing approaches in the verification

of D4, except for the one in [12] with which a polynomial BC with degree 8 was discovered.

By setting α = −4 and β = 1.5, using the corresponding relaxed condition GBC, it is

easy to synthesize a polynomial barrier certificate with degree 6, see Fig. 4 (also see

the appendix for its mathematical representation). Furthermore, let β = 0, the relaxed

condition is degenerated to the case considered in [12]. But unfortunately, we can not

synthesize any BC from the conditions, see Fig. 5. 2
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Fig. 5. α = −4, β = 0

Example 5. Consider the following CDS D5{
ẋ1 = x2

ẋ2 = 2x1 − x2 − x21x2 − x31

with Ξ = {x ∈ R2 | (x1+1)2+(x2−2)2 ≤ 0.16} and Su = {x ∈ R2 | (x1−1)2+x22 ≤ 0.04}.
Let g0 = 0.16 − (x1 + 1)2 − (x2 − 2)2, g1 = 0.04 − (x1 − 1)2 − x22. In order to prove

RD5 ∩ Su = ∅, according to Theorem 1, using the above procedure, we can obtain the

following polynomials:
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φ = −0.91253x21 + 0.40176x1x2 + 1.3603x1 + 0.13922x22 − 1.0308x2 − 0.27657,

χ = 0.19394x41 + 0.29363x31x2 − 0.1696x31 + 0.091674x21x
2
2 − 0.2317x21x2 − 1.3805x21

+0.056453x1x
3
2 − 0.14904x1x

2
2 + 0.096278x1x2 + 1.7932x1 + 0.070488x42

−0.063002x32 + 0.48804x22 − 1.1726x2 − 0.38201

δ = 0.1956x41 + 0.23674x31x2 − 0.13109x31 + 0.14603x21x
2
2 − 0.16935x21x2 + 1.0686x21

+0.35005x1x
3
2 − 0.29307x1x

2
2 − 0.5897x1x2 − 1.8943x1 + 0.26073x42 − 0.23047x32

+0.027813x22 + 0.64131x2 + 1.7118,

u1 = 0.47292x41 + 0.03761x31x2 − 0.15676x31 + 0.45935x21x
2
2 + 0.13126x21x2 + 0.26007x21

+0.0766x1x
3
2 − 0.02395x1x

2
2 + 0.045239x1x2 + 0.068505x1 + 0.33983x42 + 0.17729x32

+0.4338x22 + 0.054172x2 + 0.37428

u2 = 0.45008x41 + 0.0064431x31x2 − 0.14066x31 + 0.48519x21x
2
2 + 0.18081x21x2 + 0.31882x21

+0.045636x1x
3
2 − 0.030792x1x

2
2 + 0.0463x1x2 + 0.022898x1 + 0.3829x42 + 0.24085x32

+0.48187x22 + 0.10909x2 + 0.37734

u3 = 0.5497x41 − 0.035471x31x2 + 0.073809x31 + 0.66023x21x
2
2 − 0.085302x21x2 + 0.34888x21

−0.020016x1x
3
2 + 0.55526x1x

2
2 + 0.032773x1x2 − 0.10637x1 + 0.81332x42 − 0.055596x32

+0.49761x22 + 0.25765x2 + 0.93038

ψ1(θ) = ψ2(θ) = −4θ + 2θ2,

where δ,u1,u2, u3−χ−u1g0, −Lf (χ)+ψ1(χ), −φ−u2g0, −Lf (φ)+ψ2(φ)+δχ, φ−u2g1
are positive polynomials. 2

Example 6. Consider an HS with two modes in Fig. 6, in which the CDSs at q1 and q2
are respectively ẋ = f1(x) and ẋ = f2(x), where

f1(x) =


x2

−x1 − x3

x1 + (2x2 + 3x3)(1 + x23),

f2(x) =


x2

−x1 − x3

−x1 − 2x2 − 3x3,

Ξq1 = {x ∈ R3 | x21 + x22 + x23 ≤ 0.01}, Ξq2 = ∅, Dq1 = x21 + 0.01x22 + 0.01x23 ≤ 1.01,
Dq2 = x21 + x22 + x23 ≥ 0.03 ∧ x21 ≤ 5.12, g1 = 0.99 ≤ x21 + 0.01x22 + 0.01x23 ≤ 1.01, and
g2 = 0.03 ≤ x21 + x22 + x23 ≤ 0.05. All resets are identity.

The proof obligation is to verify |x1| ≤ 3.2 at q2. To the end, we synthesize BCs at
each mode first (their mathematical representations are given in the appendix). Setting
ψ(θ) = −0.2θ + θ2, we need to verify the following five conditions :

c1 = −φ2 − u23g11 − u24g12 ≥ 0,

c2 = −χ2 − u21g11 − u22g12 ≥ 0,

c3 = −Lf (χ2) + ψ(χ2)− u41D2 − u41D21 ≥ 0,

c4 = −Lf (φ2) + ψ(φ2)− δ2χ2 − u51D2 − u52D21 ≥ 0,

c5 = φ2 − U2 − 0.00001 ≥ 0,
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q1 q2

g1

g2

Fig. 6. An HS with two modes

Exp. cond. Our method

Degree Time(s) Degree Time(s)

Synthesis Symb. checking

E.g. 2 × × 8 36.023 10.766

E.g. 4 8 1.132 6 2.717 0.226

E.g. 5 6 1.516 4 4.658 0.180

E.g. 6 4 1.387 2 4.260 20.472

Fig. 7. Experimental data.

by SDP. In which, g11 = 1.01− x21 − 0.01x22 − 0.01x23, g12 = x21 + 0.01x22 + 0.01x23 − 0.99,

D2 = x21 + x22 + x23 − 0.03, D21 = 26.01− x21, U2 = x21 − 10.24, and u21, u22, u23, u24, u41,

u42, u51, u52, δ2 are SOS synthesized in the first step. 2

All the experimental results on all examples given in this paper are summarised as in

Table 7, in which the label×means that no BC can be synthesized with the corresponding

method. All the results listed are computed on a 64-bit Intel(R) Core(TM) i5 CPU 650

@ 3.20GHz with 4GB RAM memory and Ubuntu 12.04 GNU/Linux.

By comparing with the approach reported in [11] (see Table 7), our approach can

synthesize more BCs, in particular, with lower degree, but our approach takes a little

more time. However, our approach is still very efficient. In addition, symbolic checking can

make our approach to avoid unsoundness caused by the error due to numeric computation

in SDP.

7. Concluding Remarks

To summarize, the contributions of this paper include:

• relaxation of the condition of BCs in a general way, so that one can utilize weaker

conditions flexibly to synthesize various kinds of BCs with more expressiveness, which

gives more opportunities to verify the considered system;

• a method to combining two functions together to form a combined BC in order to

prove a safety property under consideration, whereas neither of them could be used as

a BC separately;
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• an approach to synthesizing certificates according to the general relaxed condition
by SDP. In particular, we discussed how to apply symbolic checking to avoid the
unsoundness of our approach caused by the error of numeric computation in SDP;

• extension of our approach to non-polynomials and/or with inputs;
• experimental results indicating that our approach can indeed discover more certificates
and give more opportunities to verify a considered HS.
For future work, we plan to combine more than two functions to form a combined

BC in a general way, and give more functions ψ satisfying condition (5) and establish a
library for them. In addition, it deserves to investigate how to recover the error caused
by the numeric computation in SDP by some symbolic computation techniques, and how
to combine with SMT solvers for non-linear arithmetic [10].

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. O-
livero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theo-
retical Computer Science, 138(1):3–34, 1995.
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A. The details of Examples

The polynomials synthesized in Example 2 are:
φ = 0.030317x81 + (6.9115e− 05)x71x2 − (3.6889e− 05)x71 + 0.090347x61x

2
2 − 0.11095x61x2 − 0.75683x61 −

(9.0598e−05)x51x
3
2−0.00017438x51x

2
2−(5.4845e−05)x51x2+(7.291e−05)x51−0.30715x41x

4
2+1.0445x41x

3
2−

1.5458x41x
2
2 + 0.57141x41x2 − 0.26344x41 − (6.3369e − 05)x31x

5
2 + 0.00010503x31x

4
2 + 0.00038237x31x

3
2 −

0.00036159x31x
2
2 − 0.00010184x31x2 + (9.2214e − 05)x31 + 0.03383x21x

6
2 + 0.33103x21x

5
2 − 2.9864x21x

4
2 +

2.0938x21x
3
2−0.12636x21x

2
2+0.79519x21x2−0.62237x21+1.4962e−05x1x72−0.00014241x1x62+0.00048485x1x52−

0.00065416x1x42+0.00014521x1x32+0.00040002x1x22−0.00031516x1x2+(6.343e−05)x1−0.0043261x82+

0.05803x72 − 0.29525x62 + 0.80728x52 − 1.2538x42 + 1.2862x32 − 0.76567x22 + 0.29172x2 − 0.072688,

χ = 9.8484x61+0.001271x51x2+13.4422x41x
2
2−31.2496x41x2−85.8767x41−0.0031705x31x

2
2−0.012227x31x2−

0.0042103x31 + 5.396x21x
4
2 − 28.4976x21x

3
2 − 46.3212x21x

2
2 + 87.5486x21x2 − 44.1755x21 + 0.0049683x1x22 −

0.0058767x1x2−0.0020784x1+0.46783x62−4.0071x52+6.1875x42+37.296x32−100x22+2.0932x2−12.8904,

δ = 0.014034x81+(3.0608e−06)x71x2− (5.813e−06)x71+0.0021473x61x
2
2−0.013483x61x2−0.0064165x61+

(2.5531e − 06)x51x
3
2 + (2.7689e − 05)x51x

2
2 − (1.0371e − 05)x51x2 − (2.9253e − 06)x51 + 0.02322x41x

4
2 −

0.008259x41x
3
2 +0.0095319x41x

2
2 +0.014437x41x2 +0.02625x41 + (1.126e− 05)x31x

5
2 − (3.9758e− 05)x31x

4
2 +

(3.4426e− 05)x31x
3
2 − (1.2647e− 05)x31x

2
2 + (8.5785e− 06)x31x2 − (5.7495e− 07)x31 + 0.00051658x21x

6
2 −

0.010421x21x
5
2+0.032928x21x

4
2−0.041062x21x

3
2+0.030059x21x

2
2−0.030394x21x2+0.013862x21+(5.2631e−

07)x1x72−(4.7302e−06)x1x62+(1.3673e−05)x1x52−(1.3654e−05)x1x42+(8.3569e−07)x1x32−(1.6543e−
06)x1x22+(1.3272e−05)x1x2−(8.3958e−06)x1+0.00013121x82−0.0015345x72+0.0076214x62−0.019749x52+

0.02836x42 − 0.023961x32 + 0.01575x22 − 0.010837x2 + 0.0044092,

u1 = 33.1703x41−0.0080558x31x2−0.014014x31+31.8846x21x
2
2−22.7751x21x2+33.5594x21+0.002164x1x32−

0.0059715x1x22 − 0.037073x1x2 + 0.020061x1 + 10.479x42 + 6.0815x32 + 19.5851x22 − 18.8795x2 + 24.5699,

u2 = 0.579x81 + (7.0204e − 06)x71x2 − (1.8771e − 05)x71 + 0.61572x61x
2
2 − 0.43594x61x2 + 0.39633x61 +

(4.0635e−06)x51x
3
2+(5.4444e−06)x51x

2
2−(9.0679e−06)x51x2+(4.1779e−05)x51+0.5972x41x

4
2−0.446x41x

3
2+

0.8667x41x
2
2−0.48811x41x2+0.57967x41+(2.0738e−06)x31x

5
2+(4.4963e−06)x31x

4
2− (3.9037e−06)x31x

3
2−

(1.5008e−05)x31x
2
2−(6.0762e−05)x31x2+(3.4303e−05)x31+0.42761x21x

6
2−0.20453x21x

5
2+0.45199x21x

4
2−

0.55762x21x
3
2+0.80255x21x

2
2−0.18571x21x2+0.36852x21+(5.1943e−06)x1x72−(5.229e−06)x1x62+(4.0646e−

06)x1x52−(8.2704e−06)x1x42+(1.2324e−05)x1x32−(3.1593e−06)x1x22−(8.7493e−06)x1x2+(3.0456e−
06)x1+0.18043x82+0.1527x72+0.11373x62+0.090147x52+0.40667x42−0.26137x32+0.68588x22−0.38649x2+

0.50807,

u3 = 0.82691x81+(6.8463e−06)x71x2+(7.824e−06)x71+0.66339x61x
2
2+0.69976x61x2+0.71112x61+(2.8381e−

06)x51x
3
2 + (2.1678e − 05)x51x

2
2 − (2.269e − 05)x51x2 − (2.7155e − 05)x51 + 0.67426x41x

4
2 + 0.31337x41x

3
2 +

1.0011x41x
2
2 +0.41117x41x2 +0.94169x41 +(5.177e− 06)x31x

5
2 +(2.4687e− 05)x31x

4
2 +(4.9193e− 05)x31x

3
2 −

(8.5264e− 05)x31x
2
2 − (9.261e− 05)x31x2 − 0.00018356x31 + 0.55287x21x

6
2 + 0.26734x21x

5
2 + 0.43798x21x

4
2 −

0.42762x21x
3
2 + 0.90269x21x

2
2 + 0.47337x21x2 + 0.73082x21 + (6.4342e − 06)x1x72 + (1.7535e − 05)x1x62 +

(3.191e−05)x1x52+(2.9182e−05)x1x42+(7.677e−05)x1x32+(2.0006e−05)x1x22− (3.1684e−05)x1x2−
(6.6486e−06)x1+0.45107x82−0.15576x72+0.12208x62−0.29031x52+0.39853x42−0.57126x32+0.29347x22−
0.33244x2 + 0.43254,

ψ1(θ) = ψ2(θ) = −4θ + 2θ2.

The polynomials synthesized in Example 4 are :
φ = 9.8484x61+0.001271x51x2+13.4422x41x

2
2−31.2496x41x2−85.8767x41−0.0031705x31x

2
2−0.012227x31x2−

0.0042103x31 + 5.396x21x
4
2 − 28.4976x21x

3
2 − 46.3212x21x

2
2 + 87.5486x21x2 − 44.1755x21 + 0.0049683x1x22 −

0.0058767x1x2−0.0020784x1+0.46783x62−4.0071x52+6.1875x42+37.296x32−100x22+2.0932x2−12.8904,

χ = 0, δ = 0, u1 = 0,

u2 = 9.8484x61+0.001271x51x2+13.4422x41x
2
2−31.2496x41x2−85.8767x41−0.0031705x31x

2
2−0.012227x31x2−

0.0042103x31 + 5.396x21x
4
2 − 28.4976x21x

3
2 − 46.3212x21x

2
2 + 87.5486x21x2 − 44.1755x21 + 0.0049683x1x22 −

27



0.0058767x1x2−0.0020784x1+0.46783x62−4.0071x52+6.1875x42+37.296x32−100x22+2.0932x2−12.8904,

u3 = 9.8484x61+0.001271x51x2+13.4422x41x
2
2−31.2496x41x2−85.8767x41−0.0031705x31x

2
2−0.012227x31x2−

0.0042103x31 + 5.396x21x
4
2 − 28.4976x21x

3
2 − 46.3212x21x

2
2 + 87.5486x21x2 − 44.1755x21 + 0.0049683x1x22 −

0.0058767x1x2−0.0020784x1+0.46783x62−4.0071x52+6.1875x42+37.296x32−100x22+2.0932x2−12.8904,

ψ1 = 0, ψ2(θ) = −4θ + 1.5θ2.
The polynomials synthesized in Example 6 are: φ2 = 1.6165x21 − 0.20569x1x2 + (0.19824e−

1)x1x3+(0.95436e−5)x1+(0.54446e−1)x22+(0.69996e−3)x2x3− (0.16916e−6)x2+(0.9101e−1)x23+

(0.1511e− 7)x3 − 9.6424

χ2 = (0.89818e−1)x21− (0.82739e−1)x1x2+(0.21192e−1)x1x3− (0.15224e−8)x1+(0.54928e−2)x22+

(0.84123e− 2)x2x3 + (0.1277e− 8)x2 + (0.35173e− 1)x23 + (0.27238e− 9)x3 − 5.3973

δ2 = 5.5914x21−0.21067x1x2− (0.24733e−1)x1x3+(0.87702e−5)x1+0.20573x22− (0.52174e−1)x2x3+

(0.28769e− 6)x2 + 0.22449x23 + (0.87144e− 7)x3 + 0.29484

u21 = 1.5356x21 +(0.13731e− 1)x1x2 − (0.19249e− 2)x1x3 − (0.10079e− 6)x1 +0.66295x22 − (0.64549e−
1)x2x3 − (0.63485e− 7)x2 + 0.39611x23 − (0.66953e− 8)x3 + 2.6867

u22 = 0.73288x21− (0.22775e−2)x1x2+(0.27401e−2)x1x3− (0.51154e−7)x1+0.59472x22− (0.55279e−
1)x2x3 − (0.48206e− 7)x2 + 0.34978x23 − (0.74061e− 8)x3 + 0.60632

u23 = 2.0821x21 + (0.40593e− 1)x1x2 − (0.50855e− 2)x1x3 − (0.8427e− 4)x1 +0.61146x22 − (0.90046e−
2)x2x3 − (0.83808e− 5)x2 + 0.14389x23 − (0.1148e− 5)x3 + 4.5124

u24 = 1.0004x21 + (0.1131e − 1)x1x2 − (0.22779e − 2)x1x3 − (0.288e − 4)x1 + 0.517x22 − (0.80914e −
2)x2x3 − (0.11074e− 4)x2 + (0.83205e− 1)x23 − (0.82264e− 6)x3 + 0.70099

u41 = (0.43056e − 3)x21 − (0.29796e − 4)x1x2 + (0.10489e − 3)x1x3 + (0.59287e − 11)x1 + (3.8141e −
6)x22 + (0.95752e− 5)x2x3 + (0.26518e− 12)x2 + (0.39903e− 4)x23 + (0.51833e− 12)x3 + (0.36e− 2)

u42 = (0.56936e − 2)x21 + (0.53069e − 2)x1x2 + (0.35737e − 2)x1x3 − (0.75779e − 10)x1 + (0.20039e −
2)x22 + (0.26891e− 2)x2x3 + (0.29818e− 10)x2 + (0.16505e− 2)x23 − (0.16159e− 10)x3 + 0.52902

u51 = (0.28447e− 1)x21 − (0.28324e− 2)x1x2 − (0.37952e− 3)x1x3 +(0.125e− 6)x1 +(0.52784e− 3)x22 −
(0.86183e− 4)x2x3 − (0.63026e− 8)x2 + (0.88611e− 4)x23 − (0.86257e− 9)x3 + (0.11143e− 1)

u52 = (0.12129)x21 − (0.13405e− 1)x1x2 − (0.15008e− 2)x1x3 − (0.82285e− 6)x1 + (0.47845e− 2)x22 −
(0.73624e− 3)x2x3 − (0.20348e− 6)x2 + (0.52816e− 3)x23 + (0.21178e− 7)x3 + 3.5079

28


