
Verifying Chinese Train Control System Under a
Combined Scenario by Theorem Proving

Liang Zou1, Jidong Lv2, Shuling Wang1, Naijun Zhan1,
Tao Tang2, Lei Yuan2, and Yu Liu2

1 State Key Lab. of Comput. Sci., Institute of Software, Chinese Academy of Sciences
2 State Key Lab. of Rail Traffic Control and Safety, Beijing Jiaotong University

Abstract. In this paper, we investigate how to formalize and verify
the System Requirements Specification (SRS) of Chinese Train Control
System Level 3 (CTCS-3), which includes a set of basic operational sce-
narios that cooperate with each other to achieve the desired behavior
of trains. It is absolutely necessary to prove that the cooperation of ba-
sic scenarios indeed completes the required behavior. As a case study, a
combined scenario with several basic scenarios integrated is studied in
this paper. We model each scenario as a Hybrid CSP (HCSP) process,
and specify its properties using Hybrid Hoare Logic (HHL). Given such
an annotated HCSP model, the deductive verification of conformance
of the model to the properties is then carried out. For the purpose, we
implement a theorem prover of HHL in Isabelle/HOL, with which the
process including modelling and verification of annotated HCSP models
can be mechanized. In particular, we provide a machine-checked proof
for the combined scenario, with the result indicating a design error in
SRS of CTCS-3.

Keywords: Chinese Train Control System, Hybrid System, Specification
and Verification, Theorem Proving

1 Introduction

The System Requirements Specification (SRS) of Chinese Train Control System
Level 3 (CTCS-3) [16] is a standard specification for supervising train move-
ments to ensure the high reliability, safety and efficiency of high-speed trains in
China. CTCS-3 includes 14 basic operational scenarios, each of which with dif-
ferent system components involved, and the cooperations among these scenarios
to achieve the desired behavior of trains. One important problem in this area
is to formalise and verify the specifications for the scenarios of CTCS-3, both
separately and integrally, to guarantee the correctness.

Due to continuous character of train movement and discrete interactions be-
tween different system components, we model each scenario of CTCS-3 as a
hybrid system. Hybrid system seamlessly combines the models for discrete con-
trollers and for dynamic systems represented by differential or algebraic equa-
tions. In this paper, we adopt Hybrid CSP (HCSP) [2, 20] as the formal modelling

language for hybrid systems. As an extension of CSP, HCSP introduces real-time
constructs and differential equations for continuous evolution; and being a pro-
cess algebra, it provides standard means for constructing complex systems out
of simpler ones, which facilitates compositionality.

By using HCSP, each basic scenario of CTCS-3 is formalized as an HCSP
process, which is usually a parallel composition of sub-processes corresponding to
different components involved in this scenario. A combined scenario integrates
several basic scenarios that occur in a same situation, and the HCSP process
for it can be constructed from the processes corresponding to each separate
scenario. However, the combination of scenarios may not preserve correctness
because of complex interactions between these scenarios, thus as a remedy, to
verify correctness of combined scenarios is very necessary.

In this paper, we consider one combined scenario that integrates several basic
scenarios including movement authority, level transition and mode transition. We
model the combined scenario using HCSP, and then formulate the property to
be proved using Hybrid Hoare logic (HHL) proposed in [6]. HHL is defined espe-
cially for reasoning about HCSP processes, including first-order logic to specify
pre/post-conditions which describe the properties related to discrete jumps, and
duration calculus (DC) [18, 17] to record execution history that specifies contin-
uous properties of systems, and a set of axioms and inference rules to axiomatize
each construct of HCSP. Finally, we prove the negation of the property that a
train eventually passes through the location at which a level transition and a
mode transition take place simultaneously. This result reflects some design error
in SRS of CTCS-3.

In order to provide a machine-checked proof for the negation of the prop-
erty, we implement a theorem prover for HHL in proof assistant Isabelle/HOL.
The implementation includes the encodings of HCSP language and HHL proof
system, including both syntax and semantics (or inference rules for HHL in-
stead). It is built from scratch, i.e., defining the datatype for expressions from
the bottom most, in the style of deep embedding. Therefore, we can make full
use of inductive structure of assertions and thus reduce the size of verification
conditions generated.

1.1 Related Work

There have been a number of abstract models and specification languages pro-
posed for formalizing and verifying hybrid systems. The most popular is hybrid
automata [1, 8, 4], with real-time temporal logics [8, 9] interpreted on their be-
haviors as specification languages. However, analogous to state machines, hybrid
automata provides little support for structured description and composition. The
approach most closely related to ours is the work by Platzer [11], where hybrid
programs and the related differential dynamic logic for the deductive verifica-
tion of hybrid systems are proposed. As a case study of the approach, the safety
and liveness of movement authority scenario of European Train Control Sys-
tem was proved [12]. However, hybrid programs do not support parallelism and
communication.

2

For mechanization of HCSP verification, the encodings of the assertion lan-
guages of HHL especially DC are most essential. The first attempt at encoding
DC in a theorem prover was done in PVS [14], where shallow embedding is
adopted thus reasoning is done directly in high-order meta-logic of PVS. Later,
the work in both [3] and [13] considers the encoding of DC in Isabelle/HOL in
deep embedding style, and our encoding combines their approaches.

For formal modelling and verification of scenarios of train control systems,
most of existing work only consider single scenario so far, e.g. in [12, 5], some
separate scenarios of European Train Control System are considered.

1.2 Structure of the paper

We give a brief introduction of HCSP and HHL in Sec. 2, and then introduce
a combined scenario of CTCS-3 and its formal model in HCSP in Sec. 3. We
present the mechanization of HCSP specifications in Isabelle/HOL in Sec. 4,
based on which verify the combined scenario via interactive theorem proving in
Sec.5. Finally, the paper concludes and discusses the future work.

2 Preliminaries

This section introduces briefly the modelling language and specification language
for hybrid systems that we adopt in the paper.

2.1 Hybrid CSP Language

HCSP [2, 20] is a formal language for describing hybrid systems, which is an
extension of CSP by introducing timing constructs, interrupts, and differential
equations for representing continuous evolution. Exchanging data among pro-
cesses are described solely by communications, and no shared variable is allowed
between processes in parallel, so each program variable is local to the respective
sequential component. The syntax of HCSP is given as follows:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P tQ | P ∗
| 〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉D 8i∈I(ioi → Qi)

S ::= P | S‖S

Here P,Q,Qi, S are HCSP processes, x and s stand for process variables, ch
for channel name, ioi for a communication event (either ch?x or ch!e), B and e
for boolean and arithmetic expressions, and d for a non-negative real constant,
respectively.

The intended meaning of the individual constructs is explained as follows:

– skip terminates immediately having no effect on variables; and x := e assigns
the value of expression e to x and then terminates.

– ch?x receives a value along channel ch and assigns it to x, and ch!e sends
the value of e along ch. A communication takes place as soon as both the
sending and the receiving parties are ready, and may cause one side to wait.

3

– The sequential composition P ;Q behaves as P first, and if it terminates, as
Q afterwards.

– The conditional B → P behaves as P if B is true, otherwise it terminates
immediately.

– The internal choice P tQ behaves as either P or Q, and the choice is made
randomly by the system.

– The repetition P ∗ executes P for some finite number of times.

– 〈F(ṡ, s) = 0&B〉 is the continuous evolution statement (hereafter shortly
continuous). It forces the vector s of real variables to evolve continuously
according to the differential equations F as long as the boolean expression
B, which defines the domain of s, holds, and terminates when B turns false.

– 〈F(ṡ, s) = 0&B〉 D 8i∈I(ioi → Qi) behaves like the continuous 〈F(ṡ, s) =
0&B〉, except that it is preempted as soon as one of the communications
ioi takes place. That is followed by the respective Qi. Notice that, if the
continuous terminates before a communication from among {ioi}i∈I occurs,
then the process terminates immediately without waiting for communication.

– S1‖S2 behaves as if S1 and S2 run independently except that all commu-
nications along the common channels connecting S1 and S2 are to be syn-
chronized. S1 and S2 in parallel can neither share variables, nor input nor
output channels.

The basic constructs of HCSP are expressive enough to define a number of
constructs known in process calculi. For instances, the stop and external choice
in timed CSP can be respectively defined as

stop =̂ 〈ṫ = 1&True〉, and

8i∈I(ioi → Qi) =̂ stop D 8i∈I(ioi → Qi);

and especially, the timeout 〈F(ṡ, s) = 0&B〉Dd Q can be defined by

t := 0; 〈F (ṡ, s) = 0 ∧ ṫ = 1&t < d ∧B〉; t ≥ d→ Q,

which behaves like the continuous 〈F(ṡ, s) = 0&B〉, if the continuous terminates
before d time units, otherwise, after d time units of evolution according to F , it
moves on to execute Q. Based on timeout, the wait statement can be defined as
wait d =̂ 〈ṫ = 1〉Dd skip.

Super-Dense Computation For HCSP, we adopt the notion of super-dense com-
putation [8] to assume that digital control does not consume time compared
to continuous evolution of environment. Discrete processes such as skip, assign-
ment, as well as the evaluation of boolean expressions in B → P , take no time
to complete. Thus at a time point, multiple discrete processes may occur. Be-
cause of synchronization, the input or output process may cause to wait for the
compatible party being available, but as soon as both parties become ready, a
communication will occur and complete immediately.

4

2.2 Hybrid Hoare Logic

HHL [6] is an extension of Hoare logic for specifying and reasoning about HCSP
processes. In HHL, each specification for a sequential process P takes the form
{Pre}P{Post;HF}, where Pre, Post represent pre-/post-conditions, expressed
by first-order logic, to specify discrete properties of variables held at starting
and termination of the execution of P ; and HF history formula, expressed by
DC [18, 17], to record the execution history of P , including real-time and con-
tinuous properties. The effect of discrete processes will be specified by the pre-
/post-conditions, but not be recorded in the history. The specification for a
parallel process is then defined by assigning to each sequential component of it
the respective pre-/post-conditions and history formula, that is

{Pre1, P re2}P1‖P2{Post1, Post2;HF1,HF2}

In HHL, each of HCSP constructs is axiomatized by a set of axioms and infer-
ences rules, which constitute a basis for implementing the verification condition
generator for reasoning about HCSP specifications in Sec.4. The full explanation
of HHL can be found in [6].

DC is a real extension of Interval Temporal Logic (ITL) [10] for specifying
and reasoning about real-time systems. Like ITL, the only modality in DC is
the chop _ to divide a considered interval into two consecutive sub-intervals
such that its first operand is satisfied on the first sub-interval, while the second
operand is satisfied on the second sub-interval. Besides, DC extends ITL by
introducing durations of state expressions

∫
S, and the temporal variable ` to

denote the length of the considered interval, i.e.
∫
1. Here, we will adopt the

notion of point formula introduced in [19], denoted by dSe0, to mean that S
holds at the considered point interval. Then the formula dSe is defined as ¬(` >
0_d¬Se0_` > 0), meaning that the state expression S holds at each point of
the considered reference interval.

3 A Combined Scenario of CTCS-3 and Its HCSP Model

A train at CTCS-3 applies for movement authorities (MAs) from Radio Block
Center via GSM-Railway and is guaranteed to move safely in high speed within
its MA. CTCS-2 is a backup system of CTCS-3, under which a train applies
for MAs from Train Control Center via train circuit and balise instead. There
are 9 main operating modes in CTCS-3, among which the Full Supervision and
Calling On modes will be involved in the combined scenario studied in this paper.
During Full Supervision mode, a train needs to know the complete information
including its MA, line data, train data and so on; while during Calling On mode,
the on-board equipment of the train cannot confirm cleared routes, thus a train
is required to move under constant speed 40km/h.

The operating behavior of CTCS-3 is specified by 14 basic scenarios, all of
which cooperate with each other to constitute normal functionality of train con-
trol system. The combined scenario considered here integrates the Movement

5

Authority and Level Transition scenarios of CTCS-3, plus a special Mode Tran-
sition scenario.

For modeling a scenario, we model each component involved in it as an
HCSP process and then combine different parts by parallel composition to form
the model of the scenario. In particular, the train participates in each scenario,
and the HCSP model corresponding to the train under different scenarios has a
very unified structure. Let s be trajectory, v velocity, a acceleration, t clock time
of a train respectively, then we have the following general model for the train:

Train =̂

(
〈ṡ = v, v̇ = a, ṫ = 1& B〉D 8i∈I(ioi → Pcompi

);
Qcomp

)∗
where Pcompi

and Qcomp are discrete computation that takes no time to com-
plete. The train process proceeds as follows: at first the train moves continuously
at velocity v and acceleration a, as soon as domain B is violated, or a commu-
nication among {ioi}i∈I between the train and another component of CTCS-3
takes place, then the train movement is interrupted and shifted to Qcomp, or
Pcompi

respectively; after the discrete computation is done, the train repeats the
above process, indicated by ∗ in the model. For each specific scenario, the domain
B, communications ioi, and computation Pcompi and Qcomp can be instantiated
correspondingly. We assume the acceleration a is always in the range [−b, A].

In the rest of this section, we will first model three basic scenarios separately,
and then construct a combined scenario from them.

3.1 Movement Authority Scenario

Among all the scenarios, MA is the most basic one and crucial to prohibit trains
from colliding with each other. Before moving, the train applies for MA from
Radio Block Center (RBC, in CTCS-3) or Train Control Center (in CTCS-2),
and if it succeeds, it gets the permission to move but only within the MA it owns.
An MA is composed of a sequence of segments. Each segment is represented as a
tuple (v1, v2, e,mode), where v1 and v2 represent the speed limits of emergency
brake pattern and normal brake pattern by which the train must implement
emergency brake and normal brake (thus v1 is always greater than v2), e the
end point of the segment, and mode the operating mode of the train in the
segment. We introduce some operations on MAs and segments. Given a non-
empty MA α, we define hd(α) to return the first segment of α, and tl(α) the rest
sequence after removing the first segment; and given a segment seg, we define
seg.v1 to access the element v1 of seg, and similarly to other elements.

Given an MA, we can calculate its static speed profile and dynamic speed
profile respectively. As an illustration, Fig. 1 presents an MA with three seg-
ments, separated by points s1, s2, and s3. In the particular case, we assume s3
the end of the MA, thus the train is required to fully stop at s3 if the MA is not
extended. The static speed profile corresponds to two step functions formed by
the two speed limits (i.e. v1 and v2) of each segment; and for any segment seg,
the dynamic speed profile is calculated down to the higher speed limit of next

6

-

6

s1 s2 s3

v1

v2

s

v

0

Fig. 1. Static and dynamic speed pro-
files

q q q q
ST x1 z

MA
FS CO

TCC RBC

level 2 level 3

ppppppppppppppppppp
p p p p p p p p p p p p p p p p p p p

ppppppppppppppppppp
p p p p p p p p p p p p p p p p p p p

Fig. 2. Level and mode transition

segment taking into account the train’s maximum deceleration (i.e. constant b),
and corresponds to the curved function v2+2b s < next(seg).v21 +2b seg.e, where
next(seg) represents the next segment following seg in the considered MA. The
train will never be allowed to run beyond the static and dynamic speed profiles.

By instantiation to the general model, we get the model for a train under MA
scenario. Let B0 represent the general restriction that the train always moves
forward, i.e. v ≥ 0, or otherwise, the train has already stopped deceleration
(denoted by a ≥ 0). If B0 fails to hold, the acceleration a needs to be set by a
non-negative value in [0, A]. Notice that we add Tdelay to clock t to guarantee
that the interrupt B0 can at most occur once every Tdelay time units, to avoid
Zeno behavior. This is in accordance with the real system to check the condition
periodically. We adopt this approach several times.

Let B1 denote the case when the speed is less than the lower limit v2, or
otherwise the train has already started to decelerate; and B2 the case when the
speed is less than the higher limit v1 and not exceeding the dynamic speed profile,
or otherwise the train has already started an emergency brake, respectively.
When B1 or B2 is violated, the acceleration a will be assigned to be negative or
maximum deceleration b respectively, as shown in Q1comp below. For future use,
we denote the formula for specifying dynamic speed profile, i.e. ∀seg : MA . v2 +
2b s < next(seg).v21 + 2b seg.e, by DSP Form.

Let B7 represent that the train moves within the first segment of current MA.
Whenever it is violated, i.e. s > hd(MA).e, the train will apply for extension of
MA from TCC and RBC respectively. Define rMA2 and rMA3 to represent the
MAs allocated by TCC and RBC respectively, then normally the MA of train
will be defined as the minimum of the two. As defined in Q1comp, the application
procedure behaves as follows: the train first sends the value of ¬B7 to both TCC
and RBC; if ¬B7 is true, it sends the end of authorities (defined by getEoA)
of rMA2 and rMA3 to TCC and RBC, and then receives the new extended
authorities (defined by setMA2, setMA3) for rMA2 and rMA3 from TCC and
RBC respectively; and finally the MA will be updated correspondingly (defined
by comb).

7

B0 =̂ (v ≥ 0 ∨ a ≥ 0 ∨ t < Temp+ Tdelay)
B1 =̂ (∀seg : MA . v < seg.v2) ∨ a < 0 ∨ t < Temp′ + Tdelay
B2 =̂ (∀seg : MA . v < seg.v1 ∧ v2 + 2b s < next(seg).v21 + 2b seg.e) ∨ a = −b
B7 =̂ (s <= hd(MA).e)
Q1comp =̂ ¬B0 → (Temp := t;t{0<=c<=A}a := c);

¬B1 → (Temp′ := t;t{−b<=c<0}a := c);
¬B2 → a := −b;
CHb2!¬B7;CHb3!¬B7;
¬B7 → (CHeoa2!getEoA(rMA2); chma2?rMA2;

CHeoa3!getEoA(rMA3); chma3?rMA3;
MA := comb(rMA2, rMA3))

TCC =̂ CHb2?b2; b2→ (CHeoa2?eoa2; chma2!setMA2(eoa2))
RBCma =̂ CHb3?b3; b3→ (CHeoa3?eoa3; chma3!setMA3(eoa3))

3.2 Level Transition

When a train moves under CTCS-2, then whenever passing a balise, which is
assumed to be equally distributed every δ meters along the track, the train can
apply for upgrade to CTCS-3 when necessary. Let B3 represent the negative of
the case when the train is at level 2 and passing a balise. When B3 is violated,
then as specified in Q2comp, the following computation will take place: first,
the train sends a level upgrade application signal to RBC; as soon as RBC
receives the application, it sends back the package (b, x1, x2) to the train, where
b represents whether RBC approves the application, x1 the location for starting
level upgrade, and x2 the location for completing level upgrade; if RBC approves
the level upgrade (i.e. b is true), the train enters level 2.5 and meanwhile passes
the balise. Notice that level 2.5 does not actually exist, but is used only for
modelling the middle stage between level 2 and level 3, during which the train
will be supervised by both CTCS-2 and CTCS-3. Finally, as soon as the train
at level 2.5 reaches location x2 (the negative denoted by B4), the level will be
set to 3, specified in Q3comp. RBClu defines the process for RBC under the level
transition scenario.

B3 =̂ level 6= 2 ∨ s 6= n ∗ δ
B4 =̂ level 6= 2.5 ∨ s ≤ LU.x2
Q2comp =̂ ¬B3 → (CHLUA!;CHLU?LU ;LU.b→ level = 2.5;n = n+ 1);
Q3comp =̂ ¬B4 → level := 3
RBClu =̂ CHLUA?;tbLU∈{true,false}CHLU !(b, x1, x2)

3.3 Mode Transition

When a train moves under CTCS-2, it will always check whether its operating
mode is equal to the mode of current segment, i.e. hd(MA).mode. We denote

8

this condition by B5, and as soon as it is violated, the train will update its mode
to be consistent with mode of the segment, specified in Q4comp.

B5 =̂ mode = hd(MA).mode
Q4comp =̂ ¬B5 → mode := hd(MA).mode

We consider the mode transition from Full Supervision (FS) to Calling On
(CO) under CTCS-3, which is a little complicated. In the MA application stage,
RBC can only grant the train the MAs before the CO segment. The train needs
to ask the permission of the driver before moving into a CO segment at level 3.
To reflect this situation in modelling, we initialize both the speed limits for CO
segments to be 0, and as a result, if the train fails to get the permission from
the driver, it must stop before the CO segment; but if the train gets the driver’s
permission, the speed limits of the CO segments will be reset to be positive.

Let B6 denote the negation of the case when the train is at level 3, and
it moves to 300 meters far from the end of current segment, and the mode of
next segment is CO. As soon as B6 is violated, then as specified in Q5comp, the
following computation will take place: first, the train will report the status to
the driver and ask for permission to enter next CO segment via communications;
if the driver sends true, the speed limits of next CO segment will be reset to
be 40km/h and 50km/h respectively (abstracted away by function coma(MA)).
As a consequence, the train is able to enter next CO segment at a positive
speed successfully. Drivermc defines the process for the driver under the mode
transition scenario.

B6 =̂ level 6= 3 ∨ CO 6= hd(tl(MA)).mode ∨ hd(MA).e− s > 300
∨t < Temp+ Tdelay

Q5comp =̂ CHwin!¬B6;¬B6 → Temp := t;CHDC?brConf; brConf → coma(MA)
Drivermc =̂ CHwin?bwin; bwin → tbsConf∈{true,false}CHDC !bsConf

3.4 Combined Scenario and Model

We combine the scenarios introduced above, but with the following assumptions
for the occurring context:

– The train moves inside an MA it owns;
– There are two adjacent segments in the MA, divided by point z. The train

is supervised by CTCS-2 to the left of z and by CTCS-3 to the right, and
meanwhile, it is operated by mode FS to the left of z and by mode CO to
the right. Thus the locations for mode transition and for level transition are
coincident. As the starting point of a CO segment, both speed limits for
location z are initialized to 0 by RBC;

– The train has already got the permission for level transition from RBC which
sends (true, x1, z).

9

Please see Fig. 2 for an illustration.
The model of the combined scenario can then be constructed from the models

of all the basic scenarios contained in it. The construction takes the following
steps: firstly, decompose the process for each basic scenario to a set of sub-
processes corresponding to different system components that are involved in the
scenario (usually by removing parallel composition on top); secondly, as a com-
ponent may participate in different basic scenarios, re-construct the process for
it based on the sub-processes corresponding to it under these scenarios (usually
by conjunction of continuous domain constraints and sequential composition of
discrete computation actions); lastly, combine the new obtained processes for all
the components via parallel composition. According to this construction process,
we get the following HCSP model for the combined scenario:

System =̂ Train∗ ‖ Driver∗mc ‖ RBC∗lu ‖ RBC∗ma ‖ TCC∗
Train =̂ 〈ṡ = v, v̇ = a, ṫ = 1& B0 ∧B1 ∧B2 ∧B3 ∧B4 ∧B5 ∧B6 ∧B7〉;Ptrain

Ptrain =̂ Q1comp;Q2comp;Q3comp;Q4comp;Q5comp

According to SRS of CTCS-3, we hope to prove that the combined scenario
satisfies a liveness property, i.e., the train can eventually pass through the loca-
tion for level transition and mode transition. Our work applies deductive verifi-
cation method for verifying HCSP models. First, the requirements to be proved
are specified using HHL assertions as annotations in HCSP model, and then
based on the proof system of HHL, the annotated HCSP model is reduced to a
set of logical formulas whose validity implies the conformance of the model with
respect to the requirements. This process can be mechanized in proof assistant,
which will be the main content of the rest.

4 Isabelle Implementation

In this section, we aim to check if an HCSP process is correct with respect to
a specification written in HHL, by providing a machine-checkable proof in Is-
abelle/HOL. For this purpose, we need to encode HCSP including both its syntax
and semantics, and moreover, the axioms and inference rules of HHL. We adopt
the deep embedding approach [15] here, which represents the abstract syntax
for both HCSP and assertions by new datatypes, and then defines the semantic
functions that assign meanings to each construct of the datatypes. It allows us
to quantify over the syntactic structures of processes and assertions, and further-
more, make full use of deductive systems for reasoning about assertions written
in FOL and DC.

The full repository including all the mechanization code related to Sec.4
and Sec.5 can be found at https://github.com/liangdezou/HHL_prover, and we
present part of them here. We start from encoding the bottom construct, i.e.
expressions, that are represented as a datatype exp:

datatype exp = RVar string | SVar string | BVar string | Real real
| String string | Bool bool | exp + exp | exp − exp | exp ∗ exp

10

An expression can be a variable, that can be of three types, RVar x for real vari-
able, SVar x and BVar x for string and boolean variables; a constant, that can
be also of the three types, e.g. Real 1.0, String ‘‘CO’’ and Bool True; an arith-
metic expression constructed from operators +,−, ∗. Based on expressions, we
can define the assertion languages and the process language HCSP respectively.

4.1 Assertion Language

There are two assertion logics in HHL: FOL and DC, where the former is used
for specifying the pre-/post-conditions and the latter for the execution history
of a process respectively. The encodings for both logics consist of two parts:
syntax and deductive systems. We will encode the deductive systems in Gentzen’s
sequent calculus style, which applies backward search to conduct proofs and thus
is more widely used in interactive and automated reasoning. A sequent is written
as Γ ` ∆, where both Γ and ∆ are sequences of logical formulas, meaning that
when all the formulas in Γ are true, then at least one formula in ∆ will be
true. We will implement a sequent as a truth proposition. The sequent calculus
deductive system of a logic is composed of a set of sequent rules, each of which is
a relation between a (possibly empty) sequence of sequents and a single sequent.
In what follows, we consider to encode FOL and DC respectively.

First-Order Logic The FOL formulas are constructed from expressions by using
relational operators from the very beginning, and can be represented by the
following datatype fform:

datatype fform = [True] | [False] | exp [=] exp | exp [<] exp
| [¬] fform | fform [∨] fform | [∀] string fform

The other logical connectives including [∧], [→], and [∃] can be derived as normal.
For quantified formula [∀]string fform, the name represented by a string corre-
sponds to a real variable occurring in fform. We only consider the quantification
over real variables here, but it can be extended to variables of other types (e.g.
string and bool) without any essential difficulty. Notice that we add brackets to
wrap up the logical constructors in order to avoid the name conflicts between
fform and the FOL system of Isabelle library. But in sequel, we will remove
brackets for readability when there is no confusion in context; and moreover,
in order to distinguish between FOL formulas and Isabelle meta-logic formulas,
we will use ⇒, & and | to represent implication, conjunction and disjunction in
Isabelle meta-logic.

Now we need to define the sequent calculus style deductive system for fform.
The Isabelle library includes an implementation of the sequent calculus of clas-
sical FOL with equation, based upon system LK that was originally introduced
by Gentzen. Our encoding of the sequent calculus for fform is built from it di-
rectly, but with an extension for dealing with the atomic arithmetic formulas
that are defined in fform. We define an equivalent relation between the validity
of formulas of fform and of bool , the built-in type of Isabelle logical formulas,
represented as follows:

11

formT (f :: fform) ⇔ ` f

where the function formT transforms a formula of type fform to a corresponding
formula of bool . This approach enables us to prove atomic formulas f of fform

by applying the built-in arithmetic solvers of Isabelle and proving formT (f)

instead.

Duration Calculus Encoding DC into different proof assistants has been studied,
such as [14] in PVS, and [3, 13] in Isabelle/HOL. DC can be considered as an
extension of Interval Temporal Logic (ITL) by introducing state durations (here
point formulas instead), while ITL an extension of FOL with the introducing of
temporal variables and chop modality by regarding intervals instead of points as
worlds. Therefore, both [3] and [13] apply an incremental approach to encode
ITL on top of an FOL sequent calculus system, and then DC on top of ITL. We
will follow a different approach here, to represent DC formulas as a datatype, as
a result, the proving of DC formulas can be done by inductive reasoning on the
structures of the formulas.

The datatype dform encodes the history formulas HF:

datatype dform = [[True]] | [[False]] | dexp[[=]]dexp | dexp[[<]]dexp
| [[¬]]dform | dform[[∨]]dform |[[∀]] string dform | pf fform | dformadform

We will get rid of double brackets for readability if without confusion in context.
The datatype dexp defines expressions that are dependent on intervals. As seen
from HF, it includes the only temporal variable ` for representing the length
of the interval, and real constants. Given a state formula S of type fform, pf S

encodes the point formula dSe0, and furthermore, the following high S encodes
formula dSe:

high :: fform ⇒ dform

high S ≡ ¬ (True apf (¬S)a ` > Real 0)

The chop modality a can be encoded as well.
To establish the sequent calculus style deductive system for dform, we first

define the deductive system for the first-order logic constructors of dform, which
can be taken directly from the one built for fform above, and then define the
deductive system related to the new added modalities for DC, i.e. `, a and pf.

For ` and a, we encode the deductive system of ITL from [17], which is
presented in Hilbert style. Thus, we need to transform the deductive system
to sequent calculus style, and it is not so natural to do. We borrow the idea
from [13] that for each modality, define both the left and right introducing rules,
e.g., the following implementation

LI : $H, P ` $E ⇒ $H, Pa(` = Real 0) ` $E

RI : $H ` P, $E ⇒ $H ` Pa(` = Real 0), $E

where $H, $E represent arbitrary sequences of logical formulas of type dform,
encodes the axiom of ITL: P ↔ Pa(` = 0). In the same way, for point formula
pf, we encode the deductive system of DC defined in [17] in sequent calculus
style, e.g., the following implementation

12

PFRI : $H ` (pf S1
apf S2), $E ⇒ $H ` pf (S1 ∧ S2), $E

encodes the axiom of DC: dS1e0
adS2e0 → dS1 ∧ S2e0.

4.2 HCSP Syntax

We represent HCSP processes as a datatype proc, and each construct of HCSP
can be encoded as a construct in datatype proc correspondingly. Most of the
encoding is directly a syntactic translation, but with the following exceptions:

– In the deductive verification of HCSP process, the role of differential equation
is reflected by an differential invariant with respect to the property to be
verified, which can be automatically discovered in polynomial cases. So in
proc, instead of differential equation, we use differential invariant to describe
the underlying continuous, and for aiding verification, we also add execution
time range of the continuous. Thus, we encode continuous of form 〈F(ṡ, s) =
0&B〉 as <Inv&B> : Rg, where Inv represents the differential invariant of the
continuous, B the domain constraint, and Rg the range of execution time, of
the continuous respectively; and Inv, B are implemented as formulas of type
fform, while Rg of type dform.

– For sequential composition, we encode P ;Q as P; mid; Q, where P and Q

represent the encodings of P andQ respectively, and mid is added to represent
the intermediate assertions between P and Q. This is requisite for reducing
proof of sequential composition to the ones of its components, and commonly
used in theorem proving.

– For parallel composition, we remove the syntax restriction that it can only
occur in the outmost scope, thus it is encoded with the same datatype proc

as other constructs.

4.3 Verification Condition

Based on the inference rules of HHL, we implement the verification condition
generator for reasoning about HCSP specifications. The inference rules encoded
here are slightly different from those presented in [6], in the sense that we remove
the point formulas for specifying discrete changes in history formulas and use
` = 0 instead. This will not affect the expressiveness and soundness of HHL.

In deep embedding, the effects of assignments are expressed at the level of for-
mulas by substitution. We implement a map as a list of pairs (exp * exp) list,
and then given a map σ and a formula p of type fform, we define function
substF(σ, p) to substitute expressions occurring in p according to the map σ.
Based on this definition, we have the following axiom for assignment e:=f:

axioms Assignment :
` (p → substF ([(e, f)] , q)) ∧ (` = Real 0 →G) ⇒ {p} (e :=f) {q; G}

According to the rule of assignment, the weakest precondition of e := f with
respect to postcondition q is substF ([(e, f)], q), and on the other hand, the

13

strongest history formula for assignment is `= Real 0, indicating that as a dis-
crete action, assignment takes no time. Therefore, {p} (e :=f) {q;G} holds, if
p implies the weakest precondition, and moreover, G is implied by the strongest
history formula.

For continuous <Inv & B> : Rg, we assume that the precondition can be sep-
arated into two conjunctive parts: Init referring to initial state of continuous
variables, and p referring to other distinct variables that keep unchanged dur-
ing continuous evolution. With respect to precondition Init∧p, according to the
rule of continuous, when it terminates (i.e. B is violated), the precondition p

not relative to initial state, the closures of Inv and of ¬B hold in postcondition;
moreover, there are two cases for the history formula: the continuous terminates
immediately, represented by `= Real 0, or otherwise, throughout the continuous
evolution, p, Inv and B hold everywhere except for the endpoint, represented by
high (Inv∧p∧B), where both cases satisfy Rg.

axioms Continuous : `(Init → Inv) ∧ ((p ∧ close(Inv) ∧ close(¬B)) →q)
∧ ((((` = Real 0) ∨ (high (Inv ∧ p ∧ B))) ∧ Rg) → G)
⇒ {Init ∧ p} <Inv & B> : Rg {q; G}

where function close returns closure of corresponding formulas. The above ax-
iom says that {Init∧p} <Inv & B> : Rg {q;G} holds, if the initial state satisfies
invariant Inv, and furthermore, both q and G are implied by the postcondition
and the history formula of the continuous with respect to Init∧p respectively.

For sequential composition, the intermediate assertions need to be annotated
(i.e., (m, H) below) to refer to the postcondition and the history formula of the
first component. Therefore, the specification {p} P;(m, H);Q {q; HaG} holds, if
both {p} P {m;H} and {m} Q {q;G} hold, as indicated by the following axiom.

axioms Sequence : {p} P {m; H}; {m} Q {q; G} ⇒{p} P; (m, H); Q {q; HaG}

The following axiom deals with communication P1; ch!e || P2;ch?x, where
P1 and P2 stand for sequential processes. Let p1 and p2 be the preconditions for
the sequential components respectively, and (q1, H1), (q2, H2) the intermediate
assertions specifying the postconditions and history formulas for P1 and P2 re-
spectively. r1 and G1 represent the postcondition and history formula for the left
sequential component ended with ch!e, while r2 and G2 for the right component
ended with ch?x. Rg stands for the execution time range of the whole parallel
composition.

axioms Communication :
{p1, p2} P1 || P2 {q1, q2; H1, H2};
` (q1 → r1) ∧ (q2 →substF ([(x, e)] , r2));
` (H1 a high (q1)) →G1) ∧ (H2 a high (q2)) →G2);
` (((H1 a high (q1)) ∧ H2) ∨ ((H2 a high (q2)) ∧ H1)) →Rg;
⇒ {p1, p2} ((P1; (q1, H1); ch !! e) || (P2; (q2, H2); ch ?? x))

{r1, r2; G1 ∧ Rg, G2 ∧ Rg}

As shown above, to prove the final specification, the following steps need to
be checked: first, the corresponding specification with intermediate assertions
as postconditions and history formulas holds for P1 || P2; second, after the

14

communication is done, for the sending party, q1 is preserved, while for the
receiving party, x is assigned to be e. Thus, r1 must be implied by q1, and q2

implies the weakest precondition of the communicating assignment with respect
to r2, i.e. substF ([(x, e)], r2); third, for the communication to take place,
one party may need to wait for the other party to be ready, in case that P1 and
P2 do not terminate simultaneously. The left sequential component will result in
history formula H1ahigh (q1), in which high (q1) indicates that during waiting
time, the postcondition of P1 is preserved, and similarly for the right component.
Thus, G1 and G2 must be implied by them respectively; and finally, for both cases
when one party is waiting for the other, the conjunction of their history formulas
must satisfy the execution time Rg.

For repetition, we have the following implementation:

axioms Repetition :
{p1, p2} P || Q {p1, p2; H1, H2}; ` (H1 a H1 →H1) ∧ (H2 a H2 →H2)
⇒ {p1, p2} P∗ || Q∗ {p1, p2; H1 ∨ (` = Real 0), H2 ∨ (` = Real 0)}

The above axiom says that the final specification for P∗|| Q∗ holds, if the same
specification holds for one round of execution, i.e. P || Q, and moreover, H is
idempotent with respect to chop modality. The formula `= Real 0 indicates that
the repetition iterates zero time.

4.4 Soundness

First, we define the operational semantics of HCSP by function evalP (only the
case for sequential processes is presented here):

consts evalP :: proc ⇒ cstate ⇒ real ⇒ proc ∗ cstate ∗ real

where cstate is of the form real ⇒ state list. Each state of type state assigns
respective values to process variables; and each element of type cstate, called by
a behavior, associates a sequence of states to each time point. A behavior defines
the execution history of a process, and is able to reflect super-dense computation
by recording all the discrete changes in the sequence of states respectively at
a time point. Given a process P, an initial behavior f, an initial time a, the
transition evalP (P,f, a) = (P’,f’, b) represents that executing from behavior
f at time a, P evolves to P’ and ends at behavior f’ and time b.

We then define the validity of a specification {p} P {q;H} with respect to the
operational semantics, as follows:

definition Valid :: fform ⇒ proc ⇒ fform ⇒ fform ⇒ bool
where Valid (p, P, q, H) = ∀ f d f ’ d ’. evalP (P, f, d) = (Skip, f ’ , d’) ⇒

evalF (f, p, d) ⇒ (evalF (f ’ , q, d’) & ievalF (f ’ , H, d, d’))

which says that, given a process P, for any initial behavior f and initial time
d, if P terminates at behavior f’ and time d’, and if the precondition p holds
under the initial state, i.e. the last element in state list f(d) (represented by
evalF (f, p, d)), then the postcondition q will hold under the final state, i.e. the
last element in state list f’(d’) (represented by evalF (f’, q, d’)), and the his-
tory formula will hold under f’ between d and d’ (represented by ievalF (f’, H, d, d’)).

15

Based on the above definitions, we have proved the soundness of the proof
system in Isabelle/HOL, i.e. all the inference rules of the proof system are valid.

5 Proof of the Combined Scenario

Under the given assumptions in Section 3.4, we need to check whether the com-
bined scenario (i.e. model System) satisfies a liveness property, i.e., the train will
eventually move beyond location x2 for both level transition and mode transi-
tion. In this section, instead of proving the liveness property directly, we provide
a machine-checked proof for negation of the livness, which says, after moving for
any arbitrary time, the train will always stay before location x2. We start from
encoding the model System and the negation property first.

According to HCSP syntax implemented by proc, most encoding of model
System is a direct translation, except for continuous and sequential composition.
Firstly, the continuous of System needs to be represented in the form of differ-
ential invariants. According to the differential invariant generation method pro-
posed in [7], the differential invariant (a = −b)→ DSP Form is calculated for the
continuous, indicating that when the train brakes with maximum deceleration b,
it will never exceed the dynamic speed profile. Obviously it is a complement to
the domain constraint B2, saying that the train will never exceed the dynamic
speed profile except for the case of emergency brake. We adopt the conjunction
of these two formulas, that results in DSP Form, as the final invariant for the
continuous. Thus we represent the continuous as <Inv&B> : Rg, where Inv and B

correspond to encodings of DSP Form and the domain constraints respectively,
and Rg is True, specifying the executing time of the continuous; Secondly, the
intermediate formulas for all sequential composition are added. We finally get
the encoding of System, represented by System below.

Now it is turn to encode the negation property, specified by pre/post-conditions,
and history formula. The precondition is separated into two parts depending on
whether it is relative to initial values, shown by Init and Pre below:

definition Init :: form where Init ≡ (x2 − s > Real 300)
definition Pre :: form where
Pre ≡ (level = Real 2.5) ∧ (fst (snd (snd (hd (MA)))) = x2)

∧ (snd (snd (snd (hd (MA)))) = String ‘‘FS’’)
∧ (snd (snd (snd (hd (tl (MA))))) = String ‘‘CO’’)
∧ (fst (hd (MA)) = Real 0) ∧ (fst (snd (hd (MA))) = Real 0)

The Init represents that the initial position of the train (i.e. s) is more than 300
meters away from x2. The Pre indicates the following aspects: the train moves
at level 2.5, i.e. in process of level transition from CTCS-2 to CTCS-3; the end
of current segment is x2; the mode of the train in current segment is ‘‘FS’’; the
mode of the train in next segment is ‘‘CO’’; and at the end of current segment,
both speed limits are initialized to be 0. Notice that for any segment seg, seg.v1
is implemented as fst (seg), and seg.v2 as fst (snd (seg)), and so on.

16

We then get a specification corresponding to the negation property, with the
postcondition and history formula for the train to indicate that the train will
never pass through location x2:

theorem System proof : {Init ∧ Pre, True, True, True, True} System
{Pre ∧ s <= x2, True, True, True, True;

(` = Real 0) ∨ (high (Pre ∧ s <= x2)), True, True, True, True}

In Isabelle/HOL, we have proved this specification as a theorem. From this
fact, we know that the model System for level transition and mode transition
fails to conform to the liveness property. This reflects some design flaw for the
specifications of related scenarios in CTCS-3.

6 Conclusion and Future Work

In this paper, we have studied the formalization and verification of the scenarios
defined in SRS of CTCS-3, by using HCSP and HHL as the modelling and
specification languages respectively. We consider a combination of several basic
scenarios, which is expected to conform to a liveness property according to SRS
of CTCS. Especially, we have shown in the case study how to construct the
model for the combined scenario from the separate ones corresponding to basic
scenarios involved in it. The modelling technique can be applied to train control
systems in general, especially for other combined scenarios of CTCS-3. For tool
support, we have implemented a theorem prover in Isabelle/HOL for verifying
HCSP models annotated with HHL assertions, within which we have proved the
violation of the combined scenario with respect to the liveness property.

Future Work First of all, the case study in this paper is only a first step towards
the formal checking of the correctness of SRS of CTCS-3, and we will study
the whole SRS of CTCS-3 in forthcoming research. Second, the automation of
the theorem proving implementation of HCSP in Isabelle/HOL is not considered
currently, which needs the incorporation of existing tools (e.g. automatic SMT
solvers) for arithmetic and the decision procedure implementation for subset
of DC (i.e. one assertion language included in HHL). Finally, because of non-
compositionality of HHL proposed in [6], the proof system is incomplete to prove
all HCSP processes. These three aspects constitute our main future research.

Acknowledgements. The work has been supported mainly by projects NSFC-
91118007, NSFC-6110006, and National Science and Technology Major Project
of China (Grant No. 2012ZX01039-004).

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
Hybrid Systems, LNCS 736, pages 209–229. Springer-Verlag, 1992.

17

2. J. He. From CSP to hybrid systems. In A Classical Mind, Essays in Honour of
C.A.R. Hoare, pages 171–189. Prentice Hall International (UK) Ltd., 1994.

3. S. T. Heilmann. Proof Support for Duration Calculus. PhD thesis, Technical
University of Denmark, 1999.

4. T. A. Henzinger. The theory of hybrid automata. In LICS’96, pages 278–292.
IEEE Computer Society, 1996.

5. J. Hoenicke and E. Olderog. CSP-OZ-DC: A combination of specification tech-
niques for processes, data and time. Nord. J. Comput., 9(4):301–334, 2002.

6. J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for
hybrid CSP. In APLAS’10, pages 1–15. Springer, 2010.

7. J. Liu, N. Zhan, and H. Zhao. Computing semi-algebraic invariants for polynomial
dynamical systems. In EMSOFT ’11, pages 97–106. ACM, 2011.

8. Z. Manna and A. Pnueli. Verifying hybrid systems. In Hybrid Systems, LNCS 736,
pages 4–35. Springer, 1993.

9. Z. Manna and H. Sipma. Deductive verification of hybrid systems using STeP. In
HSCC’98, LNCS 1386, pages 305–318. Springer, 1998.

10. B. C. Moszkowski and Z. Manna. Reasoning in interval temporal logic. In Logic
of Programs, pages 371–382. Springer, 1983.

11. A. Platzer. Differential dynamic logic for hybrid systems. Journal of Automated
Reasoning, 41(2):143–189, 2008.

12. A. Platzer and J. Quesel. European train control system: A case study in formal
verification. In ICFEM, pages 246–265. Springer, 2009.

13. T. M. Rasmussen. Interval Logic - Proof Theory and Theorem Proving. PhD thesis,
Technical University of Denmark, 2002.

14. J. U. Skakkebaek and N. Shankar. Towards a duration calculus proof assistant in
PVS. In FTRTFT’94, pages 660–679. Springer, 1994.

15. M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus
deep embedding. In TPHOLs 2004, pages 305–320. Springer, 2004.

16. S. Zhang. CTCS-3 Technology Specification. China Railway Publishing House,
2008.

17. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real-Time
Systems. Series: Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2004.

18. C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information
Processing Letters, 40(5):269–276, 1991.

19. C. Zhou and X. Li. A mean-value duration calculus. In A Classical Mind, Essays
in Honour of C.A.R. Hoare, pages 432–451. Prentice-Hall International, 1994.

20. C. Zhou, J. Wang, and A. P. Ravn. A formal description of hybrid systems. In
Hybrid systems, LNCS 1066, pages 511–530. Springer, 1996.

18

