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formalisms do not account for these three design aspects into account uniformly. AADL is a
precise formalism for modeling architecture and prototyping real-time hardware platforms,
but it delegates co-modeling physical and software behaviors to so-called annexes. By
contrast, Simulink/Stateflow (S/S) is strong for modeling interacting physical and software

Is(fglvxﬁﬁfjsmeﬂow behaviors, but weak for modeling architecture and hardware platforms. To address this
AADL issue, this paper considers the combination of AADL and S/S to co-model CPSs and
HCSP presents a method to uniformly analyze and verify this combination. AADL®S/S provides a
Formal semantics unified graphical co-modeling environment for CPS design and supports simulation through
Simulation and verification C code generation. We present a formal semantics of AADL® S/S by translating it to

Hybrid Communicating Sequential Processes (HCSP), which yields a deductive verification
framework for AADL®S/S models based on Hybrid Hoare Logic (HHL). We also prove the
correctness of the translation of AADL@S/S to HCSP. The effectiveness of our approach is
illustrated by the realistically-scaled case study of an automatic cruise control system.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Cyber-physical systems (CPS) tightly couple hardware and software to sense and actuate a physical environment. To
correctly model them, it is paramount to take the three perspectives of its software functionality, physical environment
and hardware platform and system architecture into account, uniformly. Unfortunately, according to the commonly accepted
design paradigm of “separation of concerns”, most of existing design methodologies and workflows do not support all three
design aspects uniformly. For example, the Architecture Analysis & Design Language (AADL) [1] features strong capabilities
for describing the architecture of a system due to the pragmatic (and practice-inspired) effectiveness of combining software
and hardware component models. However, the core of AADL only supports modeling of embedded system hardware and
abstraction of its relevant discrete behavior, and does not support the description of the continuous physical processes to
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Fig. 1. An overview of AADL®S/S (from [4]).

be controlled and its combination with software. By contrast, Simulink/Stateflow (S/S) [2,3], developed by Mathworks, is the
de-facto industry standard for model-based analysis and design of embedded systems. It is best-suited for modeling and
analyzing continuous physical processes, discrete computations and their combination. However, S/S cannot naturally model
system architectures and hardware platforms.

To address the above issue, we first present a combination of AADL and S/S, named AADL&®S/S, that provides a unified
graphical modeling formalism to represent all three perspectives of CPS design. An overview of AADL®S/S is given in Fig. 1.
Using AADL®S/S, a cyber-physical system is modeled with the following three layers:

e Architecture layer: the system architecture and its hardware platform are described by AADL components that define
the structure, type and characteristics of composed hardware and software components.

o Software layer: the software behavior can be modeled either through AADL behavioral annexes or S/S diagrams.

o Physical layer: the physics of the cyber-physical system and its interaction with the hardware/software platform are
modeled by S/S diagrams.

In order to simulate AADL®S/S models, we also present a way to translate AADL®S/S to C code, allowing co-simulation
of the combined models. It relies on the Real Time Workshop (RTW) toolbox of Matlab, which permits code generation from
S/S diagrams. The translation of the combined model amounts to coordinating code generated from AADL and S/S through
port communications specified in the architecture layer. The result of the simulation is then displayed visually for analysis.

However, guaranteeing the reliability of a safety-critical CPS developed using AADL @ S/S remains challenging, as
simulation-based techniques are inherently incomplete, and therefore cannot ensure reliability of safety-critical CPS rigor-
ously. To address this problem, we further develop an HCSP-based deductive verification approach for AADL&®S/S, including

e First, a formal semantics of AADL in terms of transition systems, including thread dispatch, scheduling, execution, and
bus connections with latency.

e Second, a translation from graphical AADL@® S/S models to Hybrid Communicating Sequential Processes (HCSP) [5,6].
Compared with other formalisms such as hybrid automata [7] and hybrid programs [8], HCSP provides a compositional
way to model complex CPSs due to its rich set of algebraic operators. The correctness of the translation is proved by
building a weak bisimulation relation between the transition semantics of the source and target models. The translated
HCSP model can be formally verified using HHL [9-11] and the results are preserved by the original AADL®S/S model.

e Additionally, we develop a simulator for HCSP, so that the translated HCSP model can also be simulated after translation,
and the correctness of the translation can be tested by comparing the simulation results before and after translation.
Furthermore, one can even design a CPS model starting from HCSP, as it also supports simulation and verification.
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In summary, the main contributions of this paper comprise:

1. A combination of AADL and S/S;

2. A simulation tool for AADL®S/S;

3. An HCSP-based analysis and verification approach for AADL®S/S;

4. An application of the above workflow to modeling and analyzing the realistically-scaled case study of an automatic
cruise control system.

These contributions deliver a framework for co-designing complex safety-critical CPS using AADL&® S/S, simulating the
resulting model and revising it until the desired and formally specified properties are satisfied. Afterwards, the whole model,
or at least its safety-critical parts, can be formally verified using HHL. Finally, correct SystemC code can be automatically
generated from the HCSP models based on [12]. Some preliminary results of contributions 1 and 2 were reported in [4].
Compared with our previous work [4], the novelty of this paper concerns the following aspects:

1. A formal semantics for AADL (as well as its combination with S/S);

2. The translation from AADL&®S/S to HCSP and its proof of correctness (in particular, a translation of buses in AADL);

3. A combination framework where threads are modeled by discrete Simulink diagrams (and a reformulation of threads
translation).

4. Devices in AADL are modeled by Simulink or HCSP to support the simulation of an entire CPS;

5. An HCSP simulator is developed to support the simulation of AADL®S/S;

6. We demonstrate how to verify the translated HCSP model using HHL in Isabelle/HOL.

Paper organization. Sect. 2 provides an overview of AADL, S/S, and HCSP. Sect. 3 depicts the combined framework composed
of AADL and S/S. Sect. 4 describes the simulation of AADL®S/S models by translation to C. Sect. 5 defines a formal semantics
for AADL and AADL@®S/S using timed transition systems. Sect. 6 presents the translation of AADL and AADL®S/S to HCSP.
The correctness of translation is proved in Sect. 7. A simulation tool for HCSP is introduced in Sect. 8. A case study of
a fully-functional automatic cruise control system is presented in Sect. 9. Finally, we review related work in Sect. 10 and
conclude in Sect. 11.

2. Preliminaries

In this section, we first provide an overview of the AADL standard and of Simulink/Stateflow (S/S). Then, we briefly
introduce HCSP, a formal specification language for modeling embedded and hybrid systems.

2.1. AADL

AADL is an architecture description language used to model embedded real-time systems as assembly of software compo-
nents mapped onto execution platforms [1,13,14]. An AADL specification is composed of software, hardware, and composite
systems.

Software in AADL consists of data, subprogram, threads, and processes. A data component represents a data type. A
subprogram component represents executable code that can be called, with parameters provided by threads and other
subprograms. A thread component represents the fundamental unit for executing a sequential flow of control behavior.
A process component, which is closely affiliated to a processor component, refers to a software instance responsible for
executing threads. It usually contains multiple thread components, whose execution is managed by a scheduler.

The hardware side represents computation and communication resources including processor, memory, bus and device
components. A processor component represents the hardware and software responsible for scheduling and executing task
threads. A memory component is used to represent storage entities for data and code. A device component models a
component interacting with the environment, such as sensor or actuator. A bus component represents a physical connection
among execution platform components. Finally, a system is a top-level component consisting of a hierarchy of software and
hardware components.

Communication among different components is realized through connections via ports, parameters and access to shared
data.

In this paper, we focus on modeling thread scheduling and execution, devices, and bus connections with latency. In
Sect. 5, we will describe these aspects of AADL in more detail and define a formal semantics.

2.2. Simulink/Stateflow

Simulink [2] is an environment for model-based design of dynamical systems, and has become a de-facto standard in the
embedded systems industry. A Simulink model contains a set of blocks, subsystems, and wires, where blocks and subsystems
cooperate by exchanging data flows through connected wires. Simulink provides an extensive library of pre-defined blocks

for building and managing such block diagrams, and also a rich set of fixed-step and variable-step ODE solvers for simulating

3

© 00 N O O b~ WON =

-
-

26



© 00 N O O b~ W N =

O OO o g g g g oo a D B B DS B B BB DWW W oOOWWWWWWNNDMNDNDNDMNDMNMNMNDDN= = = < 2 a4 g
- O © 00 N O O & WN =+ O © 0N O G A~ WONMN - O O© 0N GG A ON =+ O © ©NO UG B ON-=- O © 0N O B WNM = O

JID:TCS AID:13169 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.311] P4 (1-25)
X. Xu, S. Wang, B. Zhan et al. Theoretical Computer Science eee (esee) eoe—soe

dynamical systems. Stateflow [3] is a toolbox adding facilities for modeling and simulating reactive systems by means of
hierarchical statecharts. They can be defined as Simulink blocks, fed with Simulink inputs and producing Simulink outputs.
It extends Simulink’s scope to event-driven and hybrid forms of embedded control.

2.3. HCSP

HCSP is a formal language for describing hybrid systems which extends CSP by introducing differential equations for
modeling continuous evolution and interrupts for modeling the interaction between continuous evolution and discrete com-
putation. The standard syntax of HCSP is as follows [11,15]:

P := skip|x:=e|ch?x|chle|P;Q|B— P|PnQ|P*|[ic(io;— Qj) |
(F($,5) = 0&B) | (F($,8) = 0&B) &> [Jics (i0i —> Qi)
S == Pq||P3]|...||Pn forsomen >1
where x (resp. s) stands for a variable (resp. a vector of variables), B and e are Boolean and arithmetic expressions, ch is
a channel name, io; stands for a communication event (i.e., either ch;?x or ch;le), P, Q, Q; and P; are sequential process
terms, and S stands for an HCSP process term. The informal meanings of the individual constructors are as follows:

e skip, assignment x := e, input ch?x, output chle sequential composition P; Q and internal choice P m Q can be under-
stood as usual.

e External choice [Jjcj(io; —> Q;) waits for any of communication along io; to occur and triggers execution of the corre-
sponding Q;.

e B — P behaves as P if B is true, and otherwise terminates. We can then define the conditional statement
if B then P else Q as f:=0;B— (f:=1;P); (f =0A—-B) — Q, where f is a fresh variable indicating whether
the branch corresponding to B being true is taken.

e Repetition P* means executing P for an arbitrarily finite number of times.

e (F($,s) = 0&B) is the continuous evolution statement. It forces the vector s of real variables to obey the differential
equation F as long as the domain B holds, and terminates when B turns false. For instance, waitd is a special case
defined as t := 0; (i = 1&t < d). The communication interrupt (F (8, s) = 0&B) > [Jic;(io; —> Q;) behaves like (F($,s) =
0&B), except that the continuous evolution is preempted as soon as one of the communications io; takes place, and the
execution of the respective Q; follows. These two statements are the main extensions of CSP for describing continuous
behavior.

e For n > 2, P{||P2]...||P, represents the parallel composition of Pq, P3,..., Py, which run independently except all
communications along the common channels are synchronized.

Compared to the standard HCSP syntax, we make use of an extended language including data structures such as lists and
operations on lists, arrays of channels, while loops, and module definitions. A simulator for the extended HCSP language is
implemented (Sect. 8) and will be used in the case study.

3. General framework of AADL&®S/S

We proposed a co-modeling framework for cyber-physical systems combining AADL and S/S [4], called AADL&®S/S, in
which a cyber-physical system can be characterized from the software, hardware, and physics perspectives uniformly, as
shown in Fig. 1. In this framework, AADL is used to define the overall architecture of the system, including connections
between the software, hardware, and physical components. The software components define the discrete behavior of the
system, either as behavior annex within AADL, or S/S diagrams. The physical components define the continuous plants of
the system as S/S diagrams.

The architecture layer, described as AADL system composite components, specifies the types of components, and (part
of) their implementation (an abstraction of their actual implementation), as well as their composition. It usually consists
of a central processor unit classifier with several subcomponent devices (like sensor, controller, and actuator etc). Each of
these classifiers has its own type and implementation. For software functionality and physical processes, the architecture
layer usually needs their abstractions, i.e., the type classifiers of these software and physical components. The type classifier
of a component declares the set of input and output ports, specifies the contract of its behavior, that are accessible from
outside. By contrast, the implementation classifier of a component binds its type classifier with a concrete implementation
in the software and physical layers.

Computing type classifier for S/S diagrams. When combining S/S with AADL, we need to provide an abstraction for each S/S
diagram, i.e., its type classifier, so that it can be assembled with other components to form the whole system at the
architecture layer, while the diagram itself will be used as the implementation classifier of the component. Normally, the
type classifier of a component consists of two parts: port declaration and constraints.

The port declaration declares a set of ports used to input and output data between the component and other ones. How-
ever, S/S diagrams can be hierarchical, and hence its external ports can sometimes not be extracted directly. For example,
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consider the triggered subsystems in a Simulink diagram, they do not have any input and output ports, but are triggered
by events. Therefore, we need to analyze the whole system in detail in order to obtain all external ports, particular, event
ports. Moreover, this often gets worse when Stateflow models are additionally considered.

To address this problem, we exploit the tool ss2hcsp, a component in our toolkit MARS' [15,16], which can translate an
S/S diagram into a formal HCSP process. By applying ss2hcsp, all external ports of an S/S diagram can now be translated,
and exposed, by a set of channels in the corresponding HCSP model, which is stored in a separate file.

The reminder of the specification defines the properties of the component. We can adopt two approaches to generate the
constraints for a given S/S diagram. The first one uses Daikon [17]. The basic idea is to simulate the given S/S diagram, and
then run Daikon to generate a candidate invariant which is satisfied by all simulation runs. The efficiency of this approach
is much higher, but the generated invariant (approximation) can only be linear. Moreover, it may not be a true invariant,
which could be invalidated by conducting more simulations.

Alternatively, we can generate invariants directly from the S/S diagram, or the translated HCSP process, by using tech-
niques for invariant generation for hybrid systems [18]. This approach can generate more expressive and semantically correct
invariants, but the efficiency is normally low.

4. Co-simulation of AADL®S/S

In this section, we describe the co-simulation of AADL®S/S models by generating simulation code in C, denoted by
AADL®S/S2C, as an extension of our previous work [4]. The C code generation is divided into three parts:

(1) for the AADL part, we use AADL2C translator to generate C code following the execution semantics of AADL.

(2) for the S/S part, we use the existing code generation facility in Matlab, to produce C code that can simulate this part of
the model step-by-step;

(3) for the architecture part, we implement a library in C that includes thread scheduling protocols, interaction between
components and combination of AADL and S/S.

To realize co-simulation, the three parts are integrated together to form an executable C code that simulates the combined
model.

4.1. Translating AADL to C

For each thread in the AADL model, we create a corresponding Thread object containing its component properties. We
use the thread emerg. imp from the Cruise Control System (CCS) case study to clarify the mapping rules. emerg. imp
serves as an emergency control computing the acceleration of a self-driving car in real time. The full case study is described
in Sect. 9. The description of emerg.imp in AADL is as follows.

thread implementation emerg.impl
properties
Dispatch Protocol => Periodic;
Priority => 2; // highest
Deadline => 5ms;
Period => 5ms;
Execution Time => 1lms...lms;
annex Simulink{** ./Examples/AADL/CCS/Simulink/emerg imp.slx *x};
end emerg.impl;

The implementation block consists of two parts: properties and Simulink annex. Properties of a thread that are rele-

vant to the simulation include: dispatch protocol, priority, deadline, period, and minimum/maximum execution times. After
translation to C, the corresponding Thread object emerg imp is given as follows.

Thread *emerg imp = (Thread *)malloc (sizeof (Thread)) ;
emerg_imp->tid = 2;
emerg_imp->threadName = "emerg imp";

emerg_imp->period = 5;
emerg_imp->priority = 2;

emerg_imp->deadline = 5;

emerg_imp->state = "INITIAL";
emerg_imp->dispatch protocol = "Periodic";
emerg_ imp->maxExecutionTime = 1;
emerg_imp->minExecutionTime = 1;

Here, the state field stores the status of the thread during simulation, and takes one of five values as defined in the AADL
standard: Initial, Ready, Running, Complete and Finish.

1 https://gitee.com/bhzhan/mars.git.
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4.2. Translating S/S to C

Matlab provides an automatic code generation tool to translate S/S diagrams into C code that can simulate the model
step-by-step. To apply the code generation tool, we need to set some configuration parameters, such as the step size, the
ODE solver, format of the generated code, etc. The C code generated from an S/S diagram by the tool can be roughly divided
into three functions: Initialization (input), Computation (execute for one step), and Finalization (output).
Thus, the behavior of the Thread object emerg imp can be defined by the three function pointers:

emerg_imp->initialize = emerg imp initialize;
emerg_imp->compute = emerg imp step;
emerg_imp->finalize = emerg_imp_finalize;

where emerg imp initialize, emerg imp step and emerg imp finalize are all functions included in the C
file emerg imp.c generated by the tool of Matlab.

4.3. Co-simulation

The above C code is combined together through a function implementing the thread scheduling protocol. In particular,
the Highest Priority First (HPF) protocol is implemented in our case study. The communication between components is
implemented by shared variables in the context of C code. We set the step size of the Matlab simulation to agree with
that of AADL simulation, in this case 1 ms. At each step of the overall simulation, first, the C code denoting the physical
environment (such as vehicle imp_ step () describing the dynamics of the vehicle) executes one step, updating some
shared variables; then, determining a thread to be executed according to HPF and executing the behavior of the thread
(such as emerg imp->compute () ), which takes into account the period, deadline, and execution time of each thread.
The output of the model can then be visualized (in our case using Python’s plotting library), serving as a visual check that
properties of the model are satisfied for the given initial state.

5. An operational semantics of AADL&®S/S

In this section, we describe a formal semantics for AADL and for AADL® S/S based on timed transition systems that
communicate with each other. The main purpose is to describe the semantics, including its many subtleties, in a more
familiar language, before presenting the translation to HCSP in Sect. 6. The transition rule has the form (s, o) =5 ', 0",
where s, s’ are AADL states and o, ¢’ are valuations that map variables to values, ¢ condition and e communication event.
It means that, starting from s and o, if ¢ holds, then taking event e leads to s’ and o”.

For AADL, we focus on thread dispatch and execution, scheduling, and bus connections. We first describe each of these
aspects in turn, and finally consider the combination AADL&®S/S.

5.1. Thread

A thread includes a set of ports, properties and its behavior. Ports are used to transfer event and data between threads,
processors and devices. Event (resp. event data) ports send events (resp. events with data) that may be queued when the
receiver is not ready. The arrival of events can trigger a dispatch of a thread. Data ports send data, where only the latest
value is kept on the receiving side. In the semantics, we define each data port as a variable, and each event or event data
port as a queue of unprocessed events. They are shared by threads which are their input and output sides, respectively.

The properties of a thread include: dispatch_protocol, which can be periodic, aperiodic, sporadic, timed and hybrid (we
only consider periodic and aperiodic cases); period for a periodic thread; priority that determines the execution order during
scheduling; deadline for the length of the life cycle of a thread; and execution_time for the range of the accumulative time
that a thread requires the processor during each dispatch. Usually a minimum and a maximum execution time are specified.
For simplicity we will only consider the maximum execution time.

The behavior of a thread can be described by two processes: thread dispatch and execution. The semantics is presented
in Fig. 2.

Thread dispatch. After a thread is initialized, it enters the awaiting dispatch (waitD) state. Depending on its dispatch protocol,
it can be dispatched periodically or aperiodically (by the arrival of events). Given a thread i, if the thread is periodic with
period dj, it can stay at waitD; state for less than d; time (rule D1), and at time d;, sends a dispatch signal to thread i (rule
D2). The variable dt; is introduced to record the elapsed time, with initial value 0. For an aperiodic thread, it is triggered
by an incoming event. We use gc to represent a global clock. Let cny; denote the queue of events arriving at thread i from
thread k. We consider cny; as a variable shared by threads i and k, and write cn;(t) to denote the queue stored by cny; at
time t. If it is empty, then the thread needs to wait (rule D3); as soon as it turns not empty, it triggers a dispatch and at
the same time sends the triggering event to the thread (rule D4), meanwhile the event is removed from the queue. For both
cases, at the disp; state, it goes to waitD; state directly, waiting for the next dispatch (rule D5).
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(E4) (ready;, o) M (ready;, o [ti — t; +d]) (E5) (ready;,o) M (waitj, o)
(E6) (ready;, o) fi=DLi,runi? (running;, o)

. i inenj=0 .
(E7) (running;, o) % (running;, o’ [c; — 0])

enj=1Ac;+d<Max; Ati+d<DL;

(E8) (running;, o) (running;, o'[c; — ¢; +d, tj > t; +d])

. enj=1At;<DL;Aci <Max;,preempt;?
(E9) (running;, o) (ready;, o)

ti=DLjAc;<Max;
_—

e .
(errorj, o) (E11) (errori,0) — (waitj, o) e € {free;!, preempt;?}
enj=1Ac; <Max; Atj<DL;
bt ikt B et Sl Bt

(E10) (running;, o)

(E12) (running;, o) (running;, o [c; — Max;, t; = t; + (Max; — ¢;)])

3 en;=1Ac;=Max;,reqResource;!
(E13) (running;, o) (complete;, o [cn +— push(cni, out;)])
(E14) (complete;, o) 5 (wait;, o) e € {free;!, preempt;?}
en;=1Ac;=Max;,reqResource;!

(E15) (running;, o)

(complete;, o [cny, — out;])
(E16) (running;, o) —Hni:lmi:mxi'bmch? (block;, o)
(E17) (block;, o) LN (await;, o) e € {free;!, preempt;?}
SHDLL waity, o[t > 6+ d]) (E19) (awaity, o) SE20ck?

=DL; .
(E20) (await;, o) 225 (wait;, o)

(E18) (await;, o) (ready;, o)

Fig. 2. Semantics of thread dispatch and execution.

Thread execution. After a thread is dispatched, it goes to the execution process. In the following semantics, we assume the
input and output time of ports of threads are by default the dispatch time and the completion time respectively. Assume
the input port of thread i is in;, and the output port is out;. The cases for multiple ports can be considered similarly.

The thread stays at wait state initially. When the thread is dispatched, it goes to ready state (rules E1, E1’, E2). The input
value is assigned, the elapsed time of thread i from dispatching, recorded by t;, is initialized to O; and the variable en;,
which denotes whether the computation of the thread is done or not, is set to 0 for the first entrance; and the variable sr;,
indicating whether it has sent a request for execution to the scheduler or not, is set to 0. If the thread is periodic, and if in;
is a data port, the input value is obtained from the connection cny; (rule E1). The case for input event or event/data port
can be defined similarly (rule E1’). If the thread is aperiodic, the thread is dispatched with the corresponding triggering
event received (rule E2). At the first moment after entering the ready state, the thread sends a request to the scheduler
(rule E3). After the thread sends the request, if the processor is not available, it will stay in ready state for some time (rule
E4), where DL; denotes the deadline of thread i. If the elapsed time exceeds the deadline at ready state, the thread notifies
the scheduler by sending exit signal and goes back to wait state (rule E5).

If the thread is scheduled to execute within the deadline, it enters the running state (rule E6). When it is the first time
to enter the running state from the ready state in this dispatch (implied by en = 0), the execution time ¢; is set to 0 (rule
E7). At the running state, the thread will execute the behavior defined by S/S diagram. We assume the discrete computation
will be finished in zero time as soon as entering the running state and will not be preempted. We leave this question to
the combined semantics of AADL and S/S, where variable en; is set to 1 after the computation is done.

According to the AADL standard, the thread completes execution at any time between the minimal and maximal execu-
tion time. In order to fix a deterministic behavior, we force the thread complete at the maximal execution time. After the
computation is done, the thread can stay at running state for some d time (rule E8). During this process, the thread may be
preempted by another ready thread (rule E9). If the elapsed time reaches the deadline first before the maximum execution
time is met, the thread goes to the error state (rule E10), then it gives up the processor, by notifying the scheduler or gets
preempted just at this time, and goes to awaiting dispatch state directly (rule E11). If the thread reaches the maximum
execution time before the deadline, it executes successfully (rule E12).

It only remains to output the result. If the receiver is a thread in another processor, or a device, the communication
is realised by a shared bus. Thus the thread has to apply for the bus resource. If the resource application is successful, it
goes to complete state, and outputs to the bus by adding to the corresponding queue (rule E13) or updating the variable
(rule E15). At complete state, it gives up the processor and goes to the awaiting dispatch state (rule E14). Otherwise, if the
resource is being used by other thread, it will be blocked (rule E16), and then gives up the processor and goes to the await
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reqProcessor;?

(S§1) (waitS, 0) ——— > (preempt, o [rdy +> i])

(S2) (preempt, o) M (waitS, o [run_now + i, idle — 0]) i=o(rdy)

idle=0,canPreempt(i, run_now), preempt, ! run;! . .
(S3) (preempt, o) IS (waitS, o [run_now — i)

idle=0,—canPreempt(i, run_now)

(S4) (preempt, o) (waitS, o [Pool — Pool U {i}])

. free;? Poolz£, run;j! . .
(S5) (waitS, o) — (sche, o) (S6) (sche, 0) ——— (waitS, o [run_now > j, Pool — Pool\{r}])

(57) (sche, o) 204 (waits, o lidle > 11)  (S8) (waitS, ) S22 (waitS, o [Pool - Pool\ {i}])

Fig. 3. Semantics of scheduler.

state (rule E17). At the await state, it waits to be unblocked, and as soon as it is unblocked before the deadline, it goes to
the ready state again (rule E18, E19). Otherwise, the resource application fails and it goes to the awaiting dispatch state
(rule E20).

5.2. Process, processor and scheduler

A process includes a set of ports, port connections, properties and threads. One important property defined in processor
is schedu_protocol, according to which the execution of all threads on a processor is coordinated by the scheduler. There
are various scheduling protocols, including First In First Out (FIFO), Rate Monotonic Scheduling (RMS), Deadline Monotonic
Scheduling (DMS), Highest Priority First (HPF), and so on.

Scheduler. There are three states of scheduler: waitS, preempt, and sche, responsible for waiting for ready threads, trying to
preempt current running thread, and scheduling threads respectively. The semantics is given in Fig. 3. Initially, the scheduler
stays at waitS state, and the processor is idle, represented by idle = 1.

When the scheduler receives a request from thread i, it goes to preempt state, where rdy records the new ready thread
(rule S1). If the processor is idle, the new ready thread is scheduled to execute directly (rule S2), where run_now denotes
the current running thread. If the processor is busy, but if the incoming ready thread i has higher priority than the running
thread, i becomes the new running thread, and the previous running thread is preempted (rule S3). Otherwise, it is added
to the waiting ready set, represented by Pool (rule S4), where function canPreempt(i, run_now) represents that i will preempt
r according to the scheduling protocol.

When the current running thread completes, then the scheduler will receive a free signal from the thread, and go to
sche state (rule S5). At sche state, it will choose one thread from the ready set to execute if the current ready set is not
empty (rule S6), where j is defined by choose(Pool), choosing the next running thread according to the scheduling protocol.
Otherwise, it goes to waitS state and the processor becomes idle (rule S7). If the thread fails to be scheduled before the
deadline, the scheduler will be notified and the thread will be deleted from the ready set (rule S8).

5.3. Connection

Port connection. For the sampled port connection, we model them as a variable or a queue, depending on the type of the
destination port. For instance, given a port connection cn: port th1.a — th2.b, if th2.b is a data port, then we model cn as
a variable cnyy; otherwise, we model cn as a queue cniy, indicating that thread 1 is the outgoing side and thread 2 is the
incoming side.

Bus connection. Bus connection represents communication between processors, memory and devices by accessing a shared
bus. The exact semantics of bus behavior when there are multiple users is not specified by the AADL standard. Indeed there
are many variations, for example the difference between serial and parallel bus. We choose a basic semantics based on a
simplified version of the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol [19,20], where the bus
blocks all other users during a transmission, and each transmission takes time specified by the latency property in AADL.
The semantics of bus is shown in Fig. 4. At the beginning, the bus stays at wait state. If it receives a resource application,
it goes to res state, obtains the input from the input connection, and records the time that the thread occupies the bus
(rule B1, B1’). Assume a predefined latency, denoted by Ly, is needed for the thread occupying the resource, then the bus
will stay at res state for less than L, time (rule B2). During this time, it will block other thread who attempts to apply
for the resource (rule B3). When the latency time is passed, the bus goes back to the wait state and transfers the output
through the corresponding output connection (rule B4, B4’). At the wait state, the bus may also unblock some thread that
was previously blocked (rule B5).

5.4. Combination of AADL and S/S

In our framework, there are two ways by which S/S diagrams are integrated with AADL. First, the physical environment
of a system can be described by a continuous Simulink diagram, which can be represented by an abstract component
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R i? .
(B1) (waitB, o) Teqresoureei, (res, o [ty + 0, in — top(cn;), cn; — pop(cn;)])

R i? .
(B1") (waitB, o) Tearesoureei’, (res, o[ty > 0, in — cn;])

tp+d<Lp block;?
(B2) (res,0) ——— (res, o[ty — tp, +d]) (B3) (res,0) ——> (res, o)

(B4) (res,o0) ﬂ (waitB, o' [cnj push(cnj, out)])

= block;! .
(B4') (res, o) [b—L"> (waitB, o [cnj — out]) (B5) (waitB, o) niockiy, (waitB, o)

Fig. 4. Semantics of bus.

of AADL. Second, the behavior of threads in AADL can be described by discrete S/S diagrams. In what follows, we introduce
the operational semantics of these two combinations.

Abstract type classifier. AADL allows to use abstract type classifiers for physical components, which acts as an interface for
integrating continuous models described in S/S. Such component cannot be scheduled, but rather executes continuously. The
type classifier for physical components has the following form:
abstract phy
features
a: in data port;
b: out data port;
end phy
The implementation of phy will be defined as a continuous S/S diagram with the same name phy, with input a and output
b. Assume the connections to a and b are cnq and cny, respectively. We define them as the corresponding channels cn, and
cnp. According to the semantics of S/S diagram, the semantics of phy implementation in S/S is composed of the following
rules.
At any time, the continuous evolution is ready to output the value or receive the input value:

lo(b ?
51.0) 27 (51,00 (51,00 25 (51, 00a > c])

Suppose the solution of the continuous evolution of phy with initial value o is p defined over the time interval [0, c0),

then for any d > 0, we have (s1,0) LY (s1,0[v— p(d)]), with v the continuous variable of phy.
On the AADL side, the connections to a and b are defined by the corresponding communications. Both communications
can occur immediately whenever needed on the AADL side.

Thread behavior implementation. In this paper, we focus exclusively on using S/S diagrams to define computational behavior
of threads (and so omitting the case of behavioral annexes). For this case, we need to introduce new channels to transfer
the values between AADL thread and S/S diagram. Assume thread i has an input port a and an output port b, then define
channels as and bs for transmission of input and output respectively:

bslo’

51.0) 25 (sp.0lar> ) (. olarms ) = (3.0 (s3.0") 22 (51,0

Especially, the second transition corresponds to the discrete computation of the S/S diagram. On the AADL side, the rule
(E7) is changed to:

t<DLjnen;=0,as'o (a),bs? f

(running;, o) (running;,o[c— 0,b+> f,en; —> 1])

where en; is changed to 1, representing that the computation is finished.
Finally, we define the semantics of the combined AADL and S/S by the parallel composition of respective transition
systems in both cases, in which the communication events are synchronized.

6. An HCSP-based denotional semantics of AADL&®S/S

In this section, we present a translation of AADL&S/S to HCSP, which defines a denotational semantics of AADL&S/S.
First, we review the existing translation from S/S diagrams and give some examples. Next, we consider translation of threads,
scheduler, and connections in turn. Finally, we describe the translation of combined AADL&®S/S models.

6.1. From S/S to HCSP

Existing work by Zou et al. [21,22] define how to translate S/S components into HCSP processes. Inputs and outputs of
S/S diagrams are translated into HCSP communication channels to support interaction with the other translated components.
To give a specific example from our case study, consider the Simulink diagram of Fig. 5(a) modeling the physical behavior of
the vehicle (vehicle.imp) described in Fig. 10. The following is the translated HCSP process of “programming language”
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»( 2 )

ch_laser
3 s —CD
ch_actuator ch_GPS
»( 3 incAdes_v=des_v+1}
ch_wheel decKdes_v=des_v-1}
(a) vehicle.imp (b) pan_ctr_th.imp

Fig. 5. Examples of S/S diagrams.

style which can be executed by the HCSP simulator (Sect. 8) for simulation. Concretely, in the following HCSP code, the
notation $ denotes the external choice operator [|, the statement <x_dot = y & B> |> [] (ch!x --> P, dh?y
--> Q) denotes an ODE with communication interruption: (x = y&B) > [|(ch!x — P,dh?y — Q), and the double-star
P+ denote the repetition P*. In what follows, we use this “programming language” instead of the mathematical notation
in Sect. 2.3 to describe HCSP processes.

vehicle imp ::=

v := 0; s := 0;

sent_laser := 0; sent_wheel := 0; sent_GPS := 0;

while sent_laser == || sent_wheel == 0 || sent_GPS == 0 do
ch_laser!v --> sent_laser := 1
$ ch_wheel!v --> sent_wheel := 1
$ ch GPS!s --> sent_GPS := 1

endwhile;

ch_actuator?a;

(<s_dot = v, v_dot = a & true> |> [](
ch laser!v --> skip, ch wheel!v --> skip,
ch GPS!s --> skip,ch_actuator?a --> skip)

) **

The velocity v and the position s of the vehicle are initialized to 0. The process first outputs all initialized values and
then receives an acceleration a which can start the evolution of the ODE. During the continuous evolution, it is always
ready to receive a new acceleration and output the current velocity or position of the vehicle. Observe that the input
(acceleration) and the three outputs (one for position and the other two for velocity) are translated into communication
channels ch_actuator, ch _GPS, ch laser and ch_wheel, respectively.

Next, consider the user panel control thread (pan_ctr th.imp) of the system in Fig. 10, which is modeled using a
Stateflow diagram. The diagram is given in Fig. 5(b) and the translated HCSP is as follows. It first initializes the desired ve-
locity des_v to 0 and then monitors events via input channels. If any event arrives, the corresponding discrete computation
is performed and the execution result is delivered.

panel ctr th imp ::=

des_v := 0; # Initialization

(inputs?event;

event == "inc" -> des_v := des_v + 1; # Discrete Computation
event == "dec" -> des_v := des_v - 1;

outputs!des_v

) **

From the above example, we can see that the translation of an S/S diagram defining the behavior of an AADL thread
is divided into four parts: initialization of variables, input, discrete computation, and output. These will be spliced into the
code for the thread as will be described in Sect. 6.3.

6.2. Translation of the scheduler

We now examine the translation of the HPF scheduler, shown in Fig. 6(a), which will be used in the case study. Similar
translation principles apply to most, if not all, scheduling policies specified in the AADL standard.

Note that in Fig. 6(a), parameterized channel operations like free [sid] [_tid] are syntactic sugar supported by our
HCSP simulator (Sect. 8) that will be instantiated before simulation. The parameter sid will be instantiated by the sid of
SCHEDULE_HPF, while _tid will be instantiated by pattern matching. For example, for the following parallel composition
free[0] [_tid]l?prior || free[0][0]!2 || free[0] [1]!3
the left channel operation will be instantiated as free [0] [0] ?prior and free[0] [1] ?prior by pattern matching,
resulting in
free[0] [0] ?prior || free[0][0]!2 || free[0] [1]?prior || free[0] [1]!3
However, if we treat _tid as an input, say free [sid]? (tid, prior), then the above parallel composition will become

10
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module SCHEDULE_HPF (sid) ::= 27 ) xx

Pool := [];

run now := -1; run prior := -1; (a) Translation of the HPF scheduler

(

regProcessor [sid] [_tid] ?prior -->

if run prior > prior then 1 module DIS_aperiodic(
Pool := put(Pool, [prior, _tid]) 2 send, out_port, recv, in port) ::=
else 3 queue := [];
run now l= -1 -> 4 (if len(queue) == 0 then
p;eempt [sid] [run now]!; 5 outputs [send] [out_port]?event;
run now := tid; 6 queue := push(queue, event)
run_prior := prior; 7 else # len(queue) > 0
run[sid] [run now] ! 8 outputs [send] [out_port] ?event -->
endif - 9 queue := push(queue, event)
$ free[sid] [ tidl? --> 10 $ dis[recs] [in_port] !head (queue) -->
assert (_tid == run_now) ; 11 queue := tail (queue)
if len(Pool) > 0 then 12 endif) *x
(run_prior, run_now) :=
get _highest (Pool) ; (b) Dispatch for aperiodic threads
Pool := delete(Pool, run now) ;
run[sid] [run_now] !
else 1 module DIS periodic(tid, period) ::=
run_prior := -1; run now := -1 2 (wait (period) ;
endif 3 dis[tid]!) **
$ exit[sid] [_tid]l? -->
Pool := delete(Pool, _tid) (c) Dispatch for periodic threads

Fig. 6. Translation of scheduler and dispatching threads.

free[0]?(tid, prior) || freel0]l!(1, 2) || freel0]!(2, 3)
from which we can see that the channel free [0] is shared by more than two processes, violating the assumption in HCSP
that each channel can only connect two parallel processes [15].

The translation of HPF provides three pieces of information: the list of threads that are currently ready (Pool), the
ID (run_now) and priority (run_prior) of the thread that is currently running (—1 if no thread is running). When the
scheduler receives a request from a thread, it compares the priority of the thread with the priority of the running thread. If
the running thread has higher priority, then the new thread is inserted into the ready pool. Otherwise, the running thread is
preempted, and the new thread starts running. When a thread releases the processor, the scheduler chooses the thread with
the highest priority in the ready pool to run. When a non-running thread signals that it is no longer ready, the scheduler
simply removes it from Pool.

6.3. Translation of threads

In this section, we introduce translation of threads with periodic and aperiodic dispatch protocols. Each thread is trans-
lated into two HCSP processes. One process, with name prefixed by DIS, is used to dispatch the thread, while the second,
with name prefixed by EXE, models execution of the thread.

6.3.1. Thread dispatch

The translation of dispatching an aperiodic thread is shown in Fig. 6(b). It describes the behavior that the source thread
(send) sends events via the port out_port to the port in_port on the target thread (recv). Once recv receives an
event, it can be dispatched. Inside the dispatching process, queue contains the list of events to be processed. If the event
queue is empty, then the process monitors channel outputs [send] [out_port], and pushes any received event onto
the queue. If there are events in the queue, the process either gets a new event through outputs [send] [out_port]
as in the previous case, or dispatch the thread by sending the head event of the queue along dis [recv] [in_port]. The
dispatch for periodic threads is much simpler, shown in Fig. 6(c).

6.3.2. Thread body

Next, we consider translation of thread body. The body of a thread consists of discrete computation followed optionally
by outputting the result along a shared resource. The discrete computation is described by an S/S model, so the translation
comes from Section 6.1. We will represent this code as {Discrete Computation} in the following.

Next, we consider translation of output. If no resource is required, the translation is given in Fig. 7(a). Otherwise, it is
given in Fig. 7(b). We will represent this code as {Output} in the following. For the first case, the thread simply outputs
using the given channel, and then gives up the processor, by sending a free signal, or exactly at this moment, receiving the
preempt signal. For the second case, the thread requests the resource by either successfully sending the regqResource
signal or receiving a block signal. These two channels are implemented by the translation of bus component (see Sect. 6.4),
which guarantees that at any time one of these two channels is ready for communication. If the thread is able to send the
regResource signal, it obtained access to the bus, so it can proceed to send the outputs, and gives up the processor at
the end as before. Otherwise, it gives up the processor and transitions to the await state (to be explained below).

11

0 N O oA W N =

[AS I ST L T \ S T\ B \© B A T A B | Bl e T e I (]
0 N O g~ ODN - O © 0o N O~ O®N =+ O

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61



0 N O OB W N =

O OO o g g g g oo a D B B DS B B BB DWW W oOOWWWWWWNNDMNDNDNDMNDMNMNMNDDN= = = < 2 a4 g
- O © 00 N O O & WN -+ O © 0N O G A WON -+ O O© 0N O GG B ON = O O© ©®NO U B ON-=- O © 0N O b N = O ©

CWWNOU A WN—

JID:TCS AID:13169 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.311] P12 (1-25)

X. Xu, S. Wang, B. Zhan et al. Theoretical Computer Science eee (eeee) coo—coe
outputs [tid] [out_portl] !outl; 10 <t_dot = 1 & t < DL> |> []
outputs [tid] [out_port2] lout2; 11 (run(tid]? --> state := "running");
C 12 t == DL && state == "ready" ->
(free[tid]! --> state := "wait" 13 (exit [tid]! --> state := "wait"
$ preempt [tid]? --> state := "wait") 14 $ run[tid]? --> state := "running")
15 elif state == "running" then
16 en == 0 ->
(a) Output: no resource required 17 (¢ := 0;
18 {Discrete Computation};
19 en := 1);
regResource [tid] ! --> 20 en == 1 -> (
outputs [tid] [out_portl] loutl; 21 <t dot = 1, c dot = 1 & ¢ < Max
outputs [tid] [out_port2] lout2; 22 && t < DL> |; 1 <
23 preempt [tid]? --> state := "ready")
(free[tid]! --> state := "wait" 24 state == "running" ->
$ preempt [tid]? --> state := "wait") 25 # ¢ == Max or t == DL
$ block[tid]? --> 26 if ¢ == Max then
# Resource request failed 27 # t <= DL
(free[tid]! --> state := "await" 28 {output}
$ preempt [tid]? --> state := "await") 29 else
30 # ¢ < Max && t == DL
31 reempt [tid]? --> state := "wait"
(b) Output: resource required 32 g frele)[t[id]]! __> state := "wait"
33 endif
34 )
module EXE(tid, prior, Max, DL) ::= 35 else # state == "await"
{Initialization} 36 <t_dot = 1 & t < DL> |> []
state := "wait"; 37 (unblock [tid]? --> state := "ready");
(if state == "wait" then 38 t == DL -> state := "wait"
dis[tid]?; 39 endif
{Input} 40 )k
t := 0; en := 0; state := "ready"
elif state == "ready" then
regProcessor [tid] !prior; (c) Thread execution

Fig. 7. Translation of thread execution.

6.3.3. Thread execution

The translation for thread execution is shown in Fig. 7(c). It is expressed as the HCSP process EXE, which is structured as
a state machine. Variable state represents the current state of the thread (one of wait, ready, running and await).
Variables t, ¢ and en are introduced, with the same meaning as in Sect. 5.

The thread is initially at wait state, waiting for dispatching. First we consider the case of periodic dispatching. Once
it receives the dispatching signal from DIS periodic, it takes inputs from the input ports, resets t and entered, and
then enters the ready state. The {Input} can be modeled by a sequence of input channel operations that get data and
events from all input ports:

inputs[tid] [in_portl]?inl; inputs[tid] [in_port2]?in2;...

In the ready state, the thread first sends its request to run to the scheduler (line 9). Then it waits for the permission
from the scheduler inside an interrupt construct for at most DL (deadline) time units (line 10-11). If the scheduler sends
the run signal within the deadline, the thread enters the running state. If the deadline has passed with the thread still in
ready state, the thread sends the exit signal and returns to the wait state. The external choice on line 14 ensures that
if the scheduler sends the run signal exactly when t reaches the deadline, the thread will still enter the running state.

In the running state, the implementation is divided into whether it is entered into for the first time during the current
dispatch. For the first entry, the computation time c is set to 0. Then, the thread performs discrete computation and
set variable en to 1. As explained in Sect. 5, we choose to model the thread as completing the discrete computation
immediately.

After the discrete computation, the thread begins to wait for a duration of its maximum execution time, inside the
interrupt construct on line 21-23. The waiting stops either when the maximum execution time is reached (¢ == Max),
when the deadline is reached (t == DL), or preempted by the scheduler. If the interrupt construct finishes with the thread
still in running state, then it must be the case that one of the two boundary conditions is reached. If the maximum
execution time has been reached, the thread proceeds to produce output (Sect. 6.3.2). Otherwise, the deadline is reached
and the thread goes to wait state.

In the await state, the thread uses an interrupt construct to wait for the resource to unblock, until the deadline is
reached (line 36-37).

The above defines the execution model for periodic threads. For aperiodic threads, the only modification is replacing the
dispatching statement dis [tid] ? with an external non-deterministic choice, such as

dis[tid] [in_event_portl]?event --> skip $ dis([tid] [in_event_ port2]?event --> skip $
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out_port1 in_port1 in_port1
f send1 >: P recvi recvi
DataBuffer
EventBuffer
- in_port2
out_port2 '
(a) Buffers between ports (b) Two sender threads share one bus

Fig. 8. Connections are translated into buffers (with and without buses).

because an aperiodic thread is dispatched by event, and there may be several different kinds of such events. In addition,
the {Input} of an aperiodic thread can be depicted by the following sequence of input channel operations that get data
from the input data ports:

inputs[tid] [in_data_port]?inl; inputs[tid] [in_data_ port2]?in2;...
6.4. Translation of ports and connections

Each port connection can be formalized as a pair of HCSP communications in which the flow of data or control is
directional. In this way, the interfaces and connections defined in the AADL file can be realized through connections between
ports.

First, we consider the case that connections are not bound to buses. If two threads are bound to the same pro-
cessor, then they can communicate with each other without buses. In this case, connections can be translated into a
buffer on the receiver port to store temporarily data or event, see Fig. 8(a). Consider a connection from the data port
out_port on the thread send to the data port in port on the thread recv. The translation is shown in Fig. 9(a).
According to the EXE defined above, out_port and in port can be translated into the respective channel operations
outputs [send] [out_port]! and inputs [recv] [in port] ?. According to [13], data ports are interfaces for data
transmission among components without queuing and the transmission is asynchronous. So, there should be a buffer on the
receiver port to coordinate the asynchronous transmission, which can be modeled by an ODE with communication interrupt,
as shown in Fig. 9(a).

In contrast to data ports, event ports are interfaces for the communication of events that may be queued [13]. For
the event ports out_port2 on send2 and in port2 on recv2 in Fig. 8(a), if the receiver thread is aperiodic, then the
connection can be represented by a dispatching process DIS aperiodic (send2, out port2, recv2, in port2)
introduced in Sect. 6.3.1. If the receiver thread is periodic, then connection can be translated into a simplified DIS ape-
riodic, i.e., an EventBuffer, shown in Fig. 9(b).

Then, we consider the case that connections are bound to one or more buses., i.e., buses can be shared among different
components. In order to illustrate the translation intuitively, we introduce an example of two send threads sharing one bus,
showed in Fig. 8(b), where the out portl on sendl is a data port while the out _port2 on send2 is an event port.
The bus process is shown in Fig. 9(c). Before sending an output, the senders try to request the permission for using the bus
via channels regBus [sendl1] and regBus [send2]. If one gets the permission, it sends the data to the bus via channel
outputs [sendi] [out_porti] immediately. Therefore, the DataBuffer on in_portl of recvl and the Event-
Buffer on in port2 of recv2 should be instantiated as DataBuffer (bus, out portl, recvl, in portl)
and EventBuffer (bus, out port2, recv2, in port2), respectively, where out portl and out port2 are
corresponding output ports on the bus. The transmission may generate latency. During the transmission period, any other
thread requesting the bus permission will be blocked (BLOCK). The blocking code is shown in Fig. 9(d) and 9(e). When the
bus becomes idle, it can unblock the blocked threads by sending the signal unblock [send] to the corresponding thread.

6.5. Translation of the combined model to HCSP

As stated in Sect. 5.4, the combination of AADL and S/S is implemented in two ways: First, the physical environment,
represented by an abstract component, is described by a continuous Simulink diagram; Second, the behavior of threads
in AADL can be modeled by discrete Simulink diagrams. The interaction between components is translated to HCSP using
parallel composition and communications.

With the aid of Simulink, the continuous dynamics of the physical world can be described. The physical environment,
such as the temperature, evolves forever following some ODEs and communicates passively with control programs, i.e., it
can be observed by sensors and affected by actuators but it will never send or require data/event actively. Due to these
special characteristics, as far as we know, there is no component of AADL that can model physical environments in a
natural manner. Therefore, we choose abstract components specified by continuous Simulink diagrams to represent
physical environments, which can be translated into HCSP processes using existing work [21,22]. For example, the physical
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module DataBuffer (send, out_port, 4 BLOCK2;
recv, in_port, init_value) ::= 5 outputs [bus_id] [out_portl] !data
data := init_value; ( 6 $ unblock[sendl]! --> skip
<data_dot = 0 & true> \> [1 7 $ regBus[send2]? -->
(outputs [send] [out_port] ?data --> skip, 8 outputs [send2] [out_port2] ?event;
inputs [recv] [in_port] !data --> skip) 9 BLOCK1;
) xx 10 outputs [bus_id] [out_port2] levent
11 $ unblock[send2]! --> skip
* %
(a) Translation of connections between data ports (not bound to buses) 12)
(c) Translation of connections between ports (bound to buses).
module EventBuffer (
send, out_port, recv, in port) ::=
queue := [];
(if len(queue) == 0 then ; BLSCKl 6::
outputs [send] [out port]?event; !
queue := push (queﬁg, event) 3 while t < latency do
4 <t dot =1 & t < latency> |> []
else # len(queue) > 0
outputs [send] [out_port] ?event --> 5 (plock[sendl]l --> skip)
queue := push(queue, event) 6 endwhile
$ inputs([recv] [in_port] !head (queue) -->
queue := tail (queue) (d) Implementation of BLOCK1
endif
) **
1 BLOCK2 ::=
(b) Translation of connections between event ports (not bound to buses). 2 t = 0;
The receiver thread is periodic. 3 while t < latency do
4 <t dot = 1 & t < latency> |> I[]
5 (block [send2]! --> skip)
module BUS (bus_id, sendl, out_portl, send2, 6 endwhile
out_port2) ::= (
regBus [sendl]? -->
outputs [sendl] [out_portl]?data; (e) Implementation of BLOCK2

Fig. 9. Translation of connections.

component phy in Sect. 5.4 described by an open continuous Simulink diagram will be translated into a loop of an ODE
with communication interruption in the form

. *
cnp!b — skip,
cng?a —> skip

<(F(b, a) = 0&true) > | (

It will be composed with the HCSP processes of other components by parallel composition.

The behavior of a thread in AADL can also be modeled by an open discrete S/S diagram which gets data and events from
input ports and outputs the computation results to output ports. The input and output ports of the S/S diagram should
be linked to the corresponding data and event ports on the thread. As introduced in Sect. 6.3, a thread in AADL can be
translated into an automaton with templates labeled Input, Discrete Computation and Output (see Fig. 7(c)). An
open S/S diagram describing the thread behavior can be translated into an HCSP process composed of three parts Input,
Discrete Computation and Output as well, which can then be embedded into the corresponding templates of the
thread’s automaton. In this way, every thread can be translated into an individual HCSP process.

The connections between threads can be translated into buffer and bus processes for coordinating asynchronous com-
munication between components (see Sect. 6.4). Processors are translated into scheduler processes managing the execution
of threads according to the specified scheduling policies. In addition, devices can be modeled directly by HCSP processes for
producing simulated signals, or modeled as Simulink blocks like signalBuilder and then translated into HCSP processes.
Finally, these separated HCSP processes can be integrated in parallel to form the whole model of the system.

7. Correctness of translation

We now consider the correctness of translation from AADL and AADL@S/S to HCSP. The correctness of translation from
S/S to HCSP that we rely on is proved in existing work [15]. Hence we only examine the AADL part. The correctness of
translation of AADL&® S/S then follows from the correctness of translation of AADL and S/S, plus the correct interaction
between them via parallel composition.

Before presenting the proof, we first introduce some related notions. Let (S, A, —) be a labeled transition system, where
S is a set of configurations, A a set of actions (including communication action, time progress, and the silent action 7),

— C (S x A x S) is the transition relation. We write s Stto represent a transition, s = t a transition path consisting

of an arbitrary number of 7 transitions, and s Sta path s = s; LN t; =t for a € A\{t}. The semantics of AADL defined
in Sect. 5 is a transition system, where each configuration has the form (s,o), with s an AADL execution state and o
a variable valuation, and A a set of timed and communication events. The semantics of HCSP can also be defined as a
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transition system, see [15] for details, where a configuration has the form (P, o), with P a HCSP process to be executed and
o a valuation. With the semantics of both AADL and HCSP defined in terms of transition systems, we can compare them
using weak bisimulation. For each configuration co, we introduce co.val to return the corresponding valuation. The notion
of weak bisimulation is given below.

Definition 1 (Weak bisimulation). Let T; = (S;, A;j, —i) be two transition systems for i =1, 2. A relation R C §; x S, is a weak
bisimulation, iff it is symmetric, and moreover, for all (s,t) € R, s.val =, t.val, i.e. they are equivalent under a projection m

from variables of T; to T, and if s = s’ holds, then there exists a path t 2, ¢/ such that (s',t') € R.
We can then prove the following result indicating the equivalence between AADL and its translated HCSP model.

Theorem 1 (Weak bisimulation). Let M be a given AADL model and H its translated HCSP process. Assume o is an initial valuation,
then there exists a weak bisimulation relation R such that ((M,o0), (H,o0)) € R.

Proof. We prove the theorem according to the type of AADL construct M. If M is a thread i, then its transition semantics
consists of two parts: thread dispatch and execution. We list the proof respectively for them below.

Thread dispatch. The HCSP processes of thread dispatch are given in Fig. 6(b, c) respectively. Let o be an initial state, then
M starts at (waitD;, o), next we prove that it satisfies the weak bisimulation relation with the corresponding HCSP process
(DIS, o), depending on whether thread i is dispatched periodically or aperiodically. If thread i is periodic,

e Transition D1 corresponds to the execution of wait (period) of DIS periodic, where period < d;.

e Transition D2 corresponds to the execution of dis [tid] !, then AADL side goes to (disp;, o [dt; — d;]), and meanwhile,
the HCSP side goes to the end of the first repetition, i.e. (¢; DIS periodic,o’), satisfying that ¢’ and o[dt; — d;])
are equivalent except for local variables of each side (e.g. dt; for AADL). Notice that both the communications can occur
immediately from transition E1 of AADL side and HCSP process EXE.

e Transition D4 corresponds to the start of the next repetition, i.e. (DIS_periodic,o’). All the above relations are
symmetric.

If thread i is aperiodic,

e Transition D3 defines the waiting for incoming event, when the corresponding input event queue cny; is empty, and goes
to (waitDj, o[gc+ gc +d]). The projection is queue < cny;, with initial value [-] in DIS_aperiodic. We denote
the repetition part by body*. Correspondingly, body™ has an execution when queue is empty (it will wait till some
incoming event is received, decided by thread k which outputs event to queue), resulting in (body; body*, o [gc >
gc+d).

e When transition D4 occurs, the queue cny; is not empty, correspondingly, queue is not empty in body, and for both
sides, the output dis;! is ready to occur, resulting in (disp;, o [cng — pop(cny;)]) and (€; body*, o [queue — tail(queue)])
respectively.

e When transition D5 occurs, it goes to (waitD;), oo [cng — pop(cngi)]), and meanwhile, the HCSP side goes to next
repetition, i.e. (body*, o[queue > tail(queue)]) again.

For most of the above relations, they are symmetric. There is one exception that, for DIS aperiodic, at the be-
ginning of execution of body, there exists a transition corresponding to the receiving of event when queue is empty, i.e.
(body; body*, o) goes to (€, body*; o[queue > push(queue, ev)]). This occurs when thread k sends ev to thread i, i.e. thread
k executes output (line 28 of HCSP process EXE). At the AADL side, there exists a transition E13 for thread k that writes the
output event outy to the shared queue cny;. Notice that HCSP uses synchronized communication while AADL uses shared
variable to manage the event queue.

Thread execution. The HCSP process of thread execution, i.e. EXE, is given in Fig. 7(c). We use EXE; to represent the execution
of thread i. The AADL side starts at (wait;, oe), and the HCSP side starts at (EXE;, 0,), where o, and o, are resulting from
the thread dispatch and they are equivalent under a projection from the proof for thread dispatch.

e When E1 executes, dis;? occurs, resulting in ready; state and the assignment of some local variables. This transition
corresponds to the execution of lines 3-7 in EXE, where the projection between variables is

dis;? <> dis[i]?, t; <> t, en; <> en, in; <> data

where data corresponds to the value resulting from the communication between EXE and DataBuffer in Fig. 9(a).
sr; for AADL side is local and not present in HCSP side.
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When E1’ executes, the assignments of in; and cny; correspond to the communication between EXE and lines 10-11 of
EventBuf fer, with in; <> head (queue), and the other mapping is the same as E1.

When E2 executes, dis;?e occurs by receiving a triggering event, corresponding to line 5 of EXE, and the other mapping
is the same.

e Transition E3 corresponds to the execution of line 8-9 of EXE.

Transition E4 corresponds to the continuous evolution within the domain defined at line 10 of EXE, with the mapping
d<t,DL; <> DL.

e Transition E5 corresponds to lines 12-13, with mapping exit;! <> exit[i]!.

Transition E6 corresponds to the continuous interrupt by communication at line 11, and the external choice at line 14,
of EXE, with mapping run;? <> runli]?.

e Transition E7 corresponds to lines 15-17, with mapping c; — c.
e Transition E8 corresponds to lines 20-22, which executes the continuous evolution for time d by preserving the domain,

the

and the variable mapping is obvious.

Transition E9 corresponds to the interrupt at line 23, before the continuous evolution terminates.

Transition E10 is an internal action, and together with E11, they correspond to the external choice at lines 31-32.
Transition E12 corresponds to line 21-22, when c; reaches Max;.

Transitions E13 and E15 correspond to the cases when resource is needed for output, which is defined at line 1-2 of
Fig. 7(a), together with the lines 2-3 of Fig. 9(c) if the resource is bus.

Transition E14 corresponds to lines 4-5 and lines 5-6 of Fig. 7(a, b) depending on whether the resource is needed or
not.

Transition E16 corresponds to line 7 of Fig. 7(b), and followed by this, E17 corresponds to the external choice of lines
9-10.

Transition E18 corresponds to the continuous evolution of line 36 of EXE, and E19 and E20 correspond to line 37-38
respectively.

All the above relations are symmetric, except for one case: in EXE line 18-19, the discrete computation is taken and
variable en is set to 1. This transition corresponds to the execution of S/S diagram, which are defined as a sequence of

transitions at the bottom of Sect. 5.4.

Sch
cor

eduler. The HCSP process of scheduler is given by SCHEDULE HPF in Fig. 6(a). The initial state waitS of scheduler
responds to the start of the external choice on lines 5, 15, and 25, after executing the initialization at lines 2-3 of

SCHEDULE_HPF. The variables Pool and run_now are common at both sides, while the others are local. In particular,
idle =1 is implied by run_now = —1 and run_prior = —1; rdy corresponds to _tid, etc.

the

Transition S1 corresponds to line 5, the execution of communication action, with the mapping rdy <> prior.

Transition S2 corresponds to lines 11-13, where idle is local to the AADL side. idle is set to O, corresponds to that
run_prior is set to the priority of the requesting thread. Transition S3 corresponds to lines 9-13.

Transition S4 corresponds to line 7, where thread i is pushed into the waiting Pool.

Transition S5 corresponds to line 15, and transitions S6 and S7 correspond to lines 18-21 and 23 respectively.
Transition S8 corresponds to the communication action at lines 25-26.

When the above transition goes back to waitS state, it corresponds to another repetition of the body at lines 5-26. All
above relations are symmetric.

Connections. The HCSP process for the bus connection is given by process BUS in Fig. 9(c). The initial state waitB corresponds
to the starting of BUS.

All

Transitions B1 and B1’ correspond to the prefix events and receiving data/events of lines 7-8 and 2-3, where data <> in
and event <> in respectively.

State res corresponds to the BLOCK process on lines 4 and 9. The variable mapping is {t, <> t, L, <> latency}. Start-
ing from this state, transitions B2 and B3 correspond to the interrupt process on lines 4-5 of BLOCK1 and BLOCK?2
processes respectively.

Transitions B4 and B4’ correspond to the output data and event on lines 5 and 10 respectively.

Transition B5 corresponds to lines 6 and 11.

the above relations are symmetric.
By now, all the types of AADL constructs are proved, and Theorem 1 holds. O

Theorem 2 (Correctness of translation). The translation from AADL&® S/S to HCSP is correct.
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Proof. By Theorem 1 and the correctness of S/S to HCSP [15], we can prove the correctness of the translation from AADL
to HCSP and the translation from S/S to HCSP respectively. Based on this fact, we need to prove that the translation of the
combined AADL®S/S to HCSP is correct. We consider the two combinations defined in Sect. 5.4. For the translation, both

of them are defined as parallel composition of the corresponding HCSP processes after the channel communications among

. . . 2 1o (b
them are set. For the case of continuous evolution, the transitions (s, o) BLILN (s1,0[a+ c]) and (s1,0) Cnb—a()> (s1,0)

correspond to the interrupts to the continuous evolution at HCSP side, i.e. (F (B, a) = 0&true) > [|(cnp!b —> skip, cng?a —>
skip), both of which are ready to occur any time when the AADL side asks. At the semantics side, the two transitions
are always enabled whenever needed, corresponding to the HCSP side that the repetition guarantees that the interrupt can

. . . . 2
occur anytime whenever needed. For the case of discrete computation, the transitions (s, o) RN (s2,0[ar>c]), (s2,0[a+—

bsto” (b
c]) = (s3,0’) and (s3,0") beta ), (s1,0’) correspond to the Input, Discrete Computation and Output parts of the

translated HCSP of S/S diagram at HCSP side respectively. For both cases, the relations are symmetric. Furthermore, they
are combined with the AADL sides through synchronized communication and parallel composition, thus consistent. The
correctness of AADL@S/S to HCSP is proved. 0O

8. A simulation tool for HCSP

In order to test the correctness of the translation from AADL@®S/S into HCSP given in the previous section, in this
section, we describe a new simulator for HCSP with a graphical user interface. Additionally, this allows us to quickly obtain
the result of running an HCSP process, in order to check that its behavior is as expected.

While there are non-deterministic elements in HCSP, they are not used often. In particular, the result of translation
described in this paper is essentially deterministic. Our aim in the simulator is to compute an execution path of the process
and visualize it in a graphical interface. The computation follows closely the small-step operational semantics of HCSP.

The configuration of a single process is given by a triple (P, pos, st), where P is the process itself, and is unchanged
during the simulation, pos is a program point in P, and st is the state of the process, as a mapping from variable names
to values (which can be numbers, strings or lists). Note that according to the semantics of HCSP, the states of processes in
parallel are independent from each other.

A program point is a tuple of integers specifying the current location of execution, in the abstract syntax tree of the
process. We use this concept rather than modifying the process (as in small-step semantics) for easier visualization. For
each construct in HCSP, there is a corresponding definition of moving to the next program point in the construct. Their
derivation from small-step semantics is routine, and we omit the details here (the reader can refer to [15]).

8.1. Abstract procedure

The abstract procedure for simulating a parallel of n processes is given in Algorithm 1 and 2.

Algorithm 1 Perform internal steps of a process.

procedure EXEC_PROCESS(POS)
Require: pos is the starting position
Ensure: pos is at a position where no more internal steps can be performed, comm and delay specify expected communications and delay.
while true do
if pos at (¢ & B) then
comm <« [], delay <« time ¢ stay in B
else if pos at (¢ &B)(ci — P1,---,cn — Py) then

comm <« {cq,...,Cp}, delay < time ¢ stay in B
else if pos at c; — P1$--- $c, — P, then
comm <« {cq,...,Cp}, delay < oo

else if pos at c then
comm <« c, delay < oo
else
pos < perform internal step
end if
end while
end procedure

At each iteration, perform exec_process on each process, until no more internal steps can be performed. Then exec_process
returns a list comm of communications the process can perform, and a delay recording the number of time units the process
can wait (which may be infinite). The cases are:

o If the next step is a communication, then comm contains the communication, and delay is infinite.
o If the next step is an ODE, compute the amount of time before the ODE reaches the boundary (which may be infinite),
and set that to delay. The comm list is empty.
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o If the next step is an ODE with communication interrupt, the delay is computed as in the previous case. In addition,
comm is the list of possible interrupts.
o If the next step is an external choice, then delay is infinite, and comm is the list of communications.

Algorithm 2 Simulate a parallel of processes.

procedure EXEC_PARALLEL(hps)
Require: hps is a list of processes in parallel.
step < 0
while step < number of steps do
for hp in hps do
hp.comm, hp.delay < exec_process(hp)
end for
if 3hp; hp, c. c! € hpy.comm A c? € hp,.comm then
perform communication ¢
else if min(hp.delay) # oo then
perform delay min(hp.delay)
else
break > deadlock
end if
end while
end procedure

After all available internal steps are performed, we first check whether there is a matching communication. If there is,
perform the communication. If no matching communication is available, we next find the minimum of the delay among all
processes. If the minimum is finite (meaning at least one process has a non-infinite delay), then that amount of delay is
performed. Here an ODE solver is used to compute numerical solutions to ODEs. If all delays are infinite, we declare that
the process has reached a deadlock.

8.2. Implementation

The above procedure is implemented in Python. In addition to real numbers, the state of the system may contain strings
and lists. Operations on lists as stack, queue, or priority queue are supported. Solving of ODEs is done using Python’s scipy
package (function solve_ ivp), which is also able to accurately calculate the time at which the boundary of the domain is
reached using a root-finding algorithm. Finally, the simulator is linked to a web interface which is able to show the HCSP
process in pretty-printed form, the steps of execution, and a plot of the variables in the process against time. This allows us
to not only view the result of running an HCSP process, but also find out what went wrong if the process does not execute
as expected.

9. Case study

In this section, we model an automatic cruise control system using AADL& S/S. Then, we use the above framework to
translate the model and its several variants into HCSP processes. The resulting HCSP model and its variants are analyzed,
simulated and verified.

9.1. A cruise control system

The case study is adapted from the self-driving car system in [14], where it is modeled only in AADL. We extend the
model by adding environment and control components modeled in S/S. The architecture is divided into three levels, shown
in Fig. 10. The top level is the continuous plant, i.e., the physical vehicle, of the system described by a Simulink diagram. The
vehicle receives an acceleration command from the actuator and then evolves following an ODE. It outputs the current
position to GPS whenever required. There are two speed sensors, one is located on the wheel and the other uses laser
technology. If one of them fails, the other can still work to guarantee that the control system gets the real-time speed of
the vehicle.

The middle level defines the control of the system. First, data is obtained from sensors, then computation is performed
and finally control command is sent to actuators. The process obs_det . imp for obstacle detection contains two threads:
img acqg.imp and comp obs pos.imp. The thread img acqg.imp acquires from a camera raw images of the road
ahead and then sends the processed images to the thread comp obs_pos.imp which also receives obstacle informa-
tion detected by a radar. comp obs_pos.imp then outputs the final position of the obstacle. The image processing of
img acq.imp may cause some delay, so its behavior is abstracted as a unit delay (Fig. 11(a)) because the detail of the
image processing is not a concern in this case study. The behavior of comp obs_ pos.imp is also described by a discrete
Simulink diagram (Fig. 11(b)) which combines the two inputs in a conservative way.
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Fig. 10. A cruise control system.

The process vel ctr.imp for velocity control consists of three threads. vel voter.imp is a voter process receiving
and combining speed information received from wheel and laser. Its behavior is modeled by a discrete Simulink diagram
(Fig. 11(e)). PI_ctr.imp receives the vehicle speed produced by vel voter.imp and a desired speed from the user
panel and then computes a desired acceleration. Its behavior is modeled by a discrete PI controller with a wind-up method
(back-calculation) (Fig. 11(f)). emerg.imp is modeled by a Stateflow diagram (Fig. 11(c)) which receives obstacle position
from obs_det . imp, vehicle position from GPS, vehicle speed from vel voter.imp and the desired acceleration from
PI ctr.imp, and computes a command to the actuator based on all these inputs. It checks whether the acceleration
output by PI_ctr.imp is safe with respect to obstacle position. If so this is allowed as the final command. Otherwise, it
overrides the command with a safe deceleration. emerg. imp is the key of the CCS and the detail of its control strategy is
specified and verified in Sect. 9.4.

Process pan_ctr.imp includes only one thread pan ctr th.imp. It receives events from device user_ panel. The
driver can control user_ panel by triggering an event inc or dec to increase or decrease the desired speed. The behavior
of pan_ctr_ th.imp is modeled by a Stateflow diagram (Fig. 11(d)).

The bottom level of the architecture is the platform consisting of a bus and a processor. All threads are bound to the
processor. The scheduling policy of the processor is HPF as introduced in Sect. 6.2. The bus has a latency which is set to
1 ms or 3 ms in the following experiments.

9.2. Translation to HCSP

We now describe the exact settings of parameters used for translation in the experiments. The parameters setting for
threads and devices are shown in Table 1. Here MaxET is short for “Maximum Execution Time”.

For the devices like camera, radar and user_panel, we use HCSP directly to describe their behaviors for testing. For
the following experiments, we vary the number of buses and bus latency. The length of HCSP code in all variants is roughly
similar, at about 970 lines.

The AADL®S/S model of the CCS of Fig. 10 is stored in a JSON format. The translator takes a JSON file as an input and
generates files of HCSP modules as outputs.” One could change the configuration of the CCS (such as adding a bus) to obtain
variants of the model by modifying the JSON files directly.

2 All the JSON files and the corresponding programs are stored in the directory mars/Examples/AADL/CCS/TCS/ of the repository of our toolkit
MARS (https://gitee.com/bhzhan/mars.git).
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Fig. 11. The Simulink/Stateflow diagrams describing the behaviors of the threads.
Table 1
Parameters of threads and devices in Fig. 10.
thread priority period MaxET deadline device period
img_acq.imp 1 45 ms 10 ms 45 ms camera 200 ms
comp_obs_pos.imp 1 97 ms 20 ms 97 ms radar 10 ms
emerg. imp 2 5 ms 1 ms 5 ms actuator 2 ms
PI_ctr.imp 1 7 ms 1 ms 7 ms GPS 6 ms
vel voter.imp 1 8 ms 1 ms 8 ms wheel 10 ms
pan_ctr th.imp 0 - 10 ms 100 ms laser 10 ms
user_panel -

9.3. Simulation

We set up a scenario where there is a mobile obstacle in front of the vehicle and where the driver also sets a desired
speed for the vehicle. In this scenario, camera fails to work and thus only radar can detect the obstacle. We assume that
the obstacle appears at time 10 s and position 35 m, then moves ahead with velocity 2 m/s, before finally moving away at
time 20 s and position 55 m. This information is represented by simulated signals received by the radar. At the beginning
of the simulation, the vehicle is at rest at position 0 m and the driver pushes the inc button three times with time interval
0.5 s in between to set a desired speed to 3 m/s. After 30 s, the driver pushes the dec button twice in 0.5 s time intervals
to decrease the desired speed. We simulate this scenario for 40 s. The results are presented below.

9.3.1. Comparison with AADL&S/S2C

First, we test a simplified scenario without bus latency, in order to compare the results with simulation using our tool
AADL®S/S2C (which does not handle bus latency) introduced in Sect. 4. The left of Fig. 12 shows the simulation results
of the vehicle speed, where the black line denotes the desired velocity set by the driver, and the dotted and dashed lines
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Fig. 12. Comparison of simulations results from HCSP simulator and AADL&S/S2C.
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Fig. 13. HCSP simulation results (one bus with the latency 3 ms).

denote simulation results from translation to HCSP and translation to C, respectively. We can see that the two simulation
results are very similar. The right figure shows the positions of the vehicle and of the obstacle with respect to time. The
vehicle accelerates to the desired speed (3 m/s) in 10 s, and the acceleration is under the control of PI_ctr.imp. When
radar detects an obstacle ahead (10 s), the vehicle still keeps a stable speed for about 2 s because the distance to the
obstacle is safe. Then, emerg. imp takes control of the speed in order to avoid a collision. When the obstacle moves away
at 20 s, PI_ctr.imp takes control back and the speed bounces back quickly. After 10 s, PI_ctr.imp adjusts the speed
to the new desired value, set by the driver.

9.3.2. Analysis of the bus’ impact

In order to observe the impact on the system performance caused by bus latency, we restore bus latency to the model,
and consider different settings of number of buses and their latency.

From the CCS architecture (Fig. 10), the connections between devices and processes are all bound to one bus, and all
the threads in the processes are bound to one processor. We first set the bus latency to 3 ms, and the simulation results
are shown in Fig. 13, from which we can see that the vehicle nearly hits the moving obstacle ahead. The reason for this
dangerous situation is the competition for bus permission. The competition is so intense that radar can hardly transfer
the obstacle position to the process obs_det . imp in time. Actually, the delay of the transferring is up to 5 s in this case,
which is absolutely intolerable in the real world applications.

The above can be seen as a design error: the allocation of bus capacity is insufficient for the given latency. To correct this
problem, we set an extra bus with the same latency (3 ms) for radar. The connection between radar and obs_det . imp
is bound to this dedicated bus. The simulation result of the vehicle velocity in this case is shown in Fig. 14 (dashed line),
which is similar to the case not involving buses (solid line). The minor gap between them is due to the latency of the buses.

Based on the setting of two buses, we further increase the bus latency to 5 ms to test the performance of the system.
The result is that the vehicle never starts. By examining the logs of simulation, we can find that the thread emerg. imp
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Fig. 14. Vehicle velocity under different bus settings.

cannot obtain bus permission in order to transfer the acceleration command to actuator, causing the vehicle keeping
motionless. The reason is the lack of throughput of the bus. To resolve it, we hence add another bus to the architecture
and bind the connection between emerg.imp and actuator to this bus, and the simulation result returns to normal
according to Fig. 14 (dotted line).

9.4. Verification

One of the motivations of translating AADL@® S/S to HCSP is to verify the informal AADL& S/S graphical models. In
this case study, we verify the safety property of the simplified CCS using HHL in Isabelle/HOL. Since the original generated
HCSP specification of the CCS would be very costly and complicated to thoroughly verify (about 970 lines), we consider an
abstract model of the CCS with two main components: a controller (Control) and a physical plant (Plant), as shown in
Fig. 15, and assume the system architecture as trusted computing base.

The process Plant models the motion of the vehicle. For initialization, it sends an initial velocity and position and
receives the initial acceleration computed by Control. It then repeatedly evolve according to an ODE which is interrupted
by sending velocity and position, then receiving the updated acceleration data. The process Control provides control to
the vehicle acceleration based on its velocity and position. The thread emerg. imp in the CCS (Fig. 10) takes charge of the
control and its behavior is described by a Stateflow diagram of Fig. 11 (c). The control is based on the concept of Maximum
Protection Curve (MPC) computed as follows:

2
. v
Vmax, if Sops — § > —pe
min
) — . v2
Viim($) = N =2amin - (Sops — ), 10 < Spps — 5 < a2
min
0, otherwise

where s and s, are the respective current positions of the vehicle and the obstacle, vy is the maximum velocity that
the vehicle can reach and an;, < 0 is the braking deceleration of the vehicle. If the obstacle is out of the safe distance
(—v%wx /2amin) of the vehicle, the upper limit velocity of the vehicle can be the maximum vpqy; if not, the velocity should
not exceed +/—2amin - (Sops — ) in order to avoid the collision (provided s,,s — s > 0); otherwise, if sops — s < 0, then a
collision has already happened, and the vehicle should stop (v, = 0).

At each iteration, Control predicts the position S;ex and velocity vuexr Of the vehicle at the next period based on the
desired acceleration (ages) provided by PI_ctr.imp (see Fig. 10). Concretely, they can be computed by

Vnext = V =+ Qges - period
Snext = S+ v - period + 1 - ages - period®

where period is the communication period between Control and Plant.

If, at the next period, the velocity does not exceed the upper limit computed as above, i.e., Vpext < Viim(Snext), then the
desired acceleration ages is safe; if not, Control continue to test if the constant velocity (no acceleration or deceleration)
is safe (v < vjjm(s+ v - period)); otherwise, the emergency alerts and Control outputs the minimal deceleration (g, < 0)
to brake the vehicle. The above control strategy can be summarized as
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module Plant (init_v, init_s):
output v, s, a;
begin
v := init_v; s := init_pos;
P2Clv; P2Cls; C2P?a;
(<s_dot = v, v_dot = s & true> |> [1 (P2C!v --> (P2Cl!sg; C2P?a))) *x*
end
endmodule
module Control (v_max, a min, a_des, period, s_obs):
# Compute Maximum Protection Curve (v_1lim)
procedure MPC begin
if s_obs <= 0 then
v_lim := v_max
else
distance := s_obs - s_next;
if distance > v_max * v_max / (-2 * a_min) then
v_lim := v_max
elif distance >= 0 then
v_1lim := sqgrt(-2 * a min * distance)
else
v_lim := 0
endif
endif
end
# Main process
begin
(
P2C?v; P2C?s;
v_next := v+a_desx*period;
s_next := s+viperiod+0.5+a_des*periodrperiod;
@MPC;
if v_next <= v_lim then a := a_des
else # check if it will be safe when a := 0
s_next := s+v*period;
@MPC;
if v <= v_1lim then a := 0 else a := a_min endif
endif;
C2Pla;
wait (period)
) **
end
endmodule

Qdes
a(s,v) =40

amin Otherwise

Fig. 15. HCSP processes of Plant and Control.

if Viext < Viim (Snext)
else if v < vy, (s + v - period)

[M3G; v1.311] P23 (1-25)
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The safety property can be implied by the loop invariant 1oop_inv: s <Sgps A V < Vjin(s), and we can prove that

loop inv(s,v) — loop inwv(s’, V')

where v/ = v +af(s, v) - period and s’ =s + v - period + % -a(s,v) ~period2.
According to this loop invariant, the trace assertion of the system which records communications and the system state
in continuous time can be proved using HHL, as shown below:

{v=vogAs=sgpAa=ag A emp}

Plant

{3d’ ps. plant_end_state(vy, So,d’, ps) A plant_block(vg, S, dg, d’, ps)}

The above Hoare triple means that if the plant process starts with velocity vg, position sg, acceleration ap and an
empty trace, it will results in an end state satifying plant_end state and a total trace block satisfying plant block,

which specifies the exact behavior of Plant, including communications and ODE evolution, when receiving the list ps of

acceleration inputs from Control.

The Hoare triple below means that if the control process starts with velocity vg, position sg, acceleration ag and an empty
trace, it will result in an end state satisfying control end state and a total trace block satisfying control block

which specifies the exact behavior Control, including communications and waiting intervals, on receiving the list cs of

pairs of velocity and position from Plant.
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{v=vogAs=spAa=ag A emp}
Control

{3v' s’ cs. control_end_state(V',s’, cs) A control_block(vg,Sg, dg, V', s, cs)}

The last Hoare triple means that if the parallel process starts with a parallel state satisfying the loop invariant, it will
result in a total trace block satisfying tot block which specifies the exact behavior of two parallel process and declares
that it satisfies loop_1inv(s, v) after every iteration.

{(v=vgAs=soAa=ag A loop_inv(so, Vo)) & (Vv =vyAS=syAa=ap)}
Plant || Control
{3an. tot_block(sg, vo,Nn)}

10. Related work

Analysis and formal semantics of either AADL or S/S have been explored extensively in existing literature. AADL Inspector
is a model processing framework of AADL that encompasses various analysis features, especially including schedulability
analysis and dynamic simulation. Cheddar [23] is an open-source real time scheduling tool integrated to AADL Inspector,
which implements most classical scheduling simulation algorithms. For formalization of AADL, most work translate it into
other formal languages and frameworks. Chkouri et al. translated AADL to the BIP language, and applied it to a model of a
flight control system [24]. Hu et al. considered the translation of AADL to Timed Abstract State Machines [25]. Olveczky et
al. presents a formal semantics for AADL in rewriting logic, so the result is executable in Real-Time Maude [26]. The work by
Jahier et al. translates AADL into a non-deterministic synchronous model, so the results can be integrated with translation
of software components [27].

S/S has a built-in design verifier, which however only supports the verification of discrete behavior. S/S has also been
translated to various frameworks for formal verification [28-31,21,22]. In [32], the authors introduce a first-order syn-
chronous dataflow programming language extended with resettable ODEs and hierarchical automata, called Zélus, for which
a dedicated type system and causality analysis ensure absence of some bad behaviors such as loops. In the later work [33],
a large set of blocks from the Simulink standard library is programmed in Zélus. In contrast to the above cited work, we
consider the analysis and formal semantics of combined AADL and S/S models, and therefore able to model, simulate, and
verify architecture, functionality and physics of cyber-physical systems at the same time.

Several unified frameworks have also been proposed for modeling and analyzing cyber-physical systems. The most pop-
ular is Ptolemy [34], an actor-based framework for the design of heterogeneous systems. It supports different models of
computation, which integrate computing, networking, and physical dynamics. It provides the model transformation facility
for the analysis and verification of actor models. Functional Mock-up Interface (FMI) [35], a standard maintained by the
Modelica Association, is designed to enable the exchange and co-simulation of dynamic component models using a com-
bination of XML files for model description and compiled C-code for simulation. However, Ptolemy supports very limited
facilities to model continuous behaviors [36], and both Ptolemy and Modelica are not designed for hardware architecture
analysis.

11. Conclusion

This paper presented a combination of AADL and S/S named AADL&®S/S, and developed a simulation tool for it. Moreover,
to verify AADL®S/S models, we defined an operational semantics and an HCSP-based denotational semantics for AADL&®S/S,
and proved that there exists a weak bisimulation between the transition system of any AADL®S/S model and the transition
system of the translated HCSP process. This makes all AADL@®S/S models can be verified with HHL. In addition, we also
developed a simulator for HCSP for testing the correctness of the translation by comparing the simulation results before and
after translating, and providing the possibility that one can design a CPS starting with HCSP. We illustrated the framework
by considering the case study of a realistically-scaled automatic cruise control system.

There are, however, still some limitations to our approach. First, AADL provides a plenty of components and functions,
while we only consider its core functionalities, which limits the practicality of our framework for case-studying realistic
CPS models. Second, at present, our verifier only scales to small HCSP models, as means of model abstraction and modular
verification would be needed to tackle large-scale models.

To address these limitations, we are considering the following two main directions as future work. First, we would like
to further expand the subset of AADL under consideration, by taking into account other dispatch protocols, more complex
timing configurations for input and outputs, immediate and delayed timing properties, and other types of hardware com-
ponents such as memory. Secondly, we will explore ways to verify complex HCSP models using HHL [15]. This requires
combining the deductive analysis of different aspects of formal models such as control laws, bus and end-to-end latency,
scheduling policies, and so on, into account uniformly.
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