
Platform-Based Design:
From Multi-Core Platforms

to Biochips and beyond
Prof. Jan Madsen

Embedded Systems Engineering

Microfluidic Biochips

Technical Univ. of Denmark
2010

Duke University
2002

Continuous-flow biochips Droplet-based biochips

2

Outline

•  Motivation & relation to MPSoC
•  Digital Microfluidic Biochips

– Technology and architectures
– Module-based synthesis
– Routing-based synthesis

•  Flow-Based Microfluidic Biochips
– Biochip synthesis
– Possibilities and challenges

3

Motivation

•  Biotech
– DNA analysis

•  Medicine
– Clinical diagnosis
– Therapeutics

•  Ecology
– Monitoring the quality of air/water/food

•  Pharmacy
– Screening
– Synthesis of new drugs

4

Motivation
Test	 tubes	

Automa,on	
Integra,on	
Miniaturiza,on	

Microfluidics	
Automa,on	
Integra,on	
Miniaturiza,on	

Robo,cs	
Automa,on	
Integra,on	
Miniaturiza,on	

5

Microfluidic Biochips

 Advantages:
  High throughput (reduced sample / reagent

consumption)
  Space (miniaturization)
  Time (parallelism)
  Automation (minimal human intervention)

6

Microfluidic biochip?

•  Manipulations of continuous liquid through
fabricated micro-channels

10 mm

Inlets Chamber Outlets

Switches Waste channels

7

Biochip design

Components

Chip

Programming

Specification

assembly
ALU, register, FSM,

wire, …

Processor, …

compiler
Instruction set
architecture

High-level language
C/Java

System on Chip

mixer, valve, pump,
channel, …

Biochip, …

Fluidic instruction
set architecture

Protocol description
language

Microfluidic Biochip

Reconfigurable
architectures

8

TECHNOLOGY AND
ARCHITECTURES

PART 2: DIGITAL MICROFLUIDIC BIOCHIPS

References:
1.  Elena Maftei, Paul Pop, Jan Madsen, Resent Research and Emerging

Challenges in the System-Level Design of Digital Microfluidic Biochips,
Proceedings of the International System on Chip Conference, 2011
(invited paper)

9

Digital microfluidic biochip

[Srinivasan,	 Pamula,	 Fair,	 2004]	

10

Digital microfluidic biochip

insulator filer fluid

top plate

bottom plate

droplet

ground electrode

control electrode
Speed: 12-25 cm/s
Size of electrode: 0.15 cm
Cell-to-cell transport: ~0.01 s

11

Biochip architecture?

•  Application specific architecture
– Spatial and temporal assignment done at

design-time
•  General purpose architecture

– Spatial assignment done at design-time
– Temporal assignment done at run-time

•  Reconfigurable architecture
– Spatial and temporal assignment done at run-

time

12

Application specific biochip

•  Biochip for malaria
detection

•  Operation:
•  Infected cell

isolation
•  Cell Lysis
•  DNA extraction
•  DNA amplification

using PCR
•  Optical detection

using SPR

13

General purpose biochip

[Griffith,	 Akella,	 2005]	

14

Reconfigurable biochip

Photodiode output port

input port

15

Biochemical operations

•  Transport
•  Merging
•  Mixing
•  Splitting
•  Diluting
•  Detection
•  …

16

MODULE-BASED SYNTHESIS

PART 2: DIGITAL MICROFLUIDIC BIOCHIPS

References:
1.  Elena Maftei, Paul Pop, Jan Madsen, Tabu Search-Based Synthesis of

Dynamically Reconfigurable Digital Microfluidic Biochips. In Proceedings
of the International Conference on Compilers, Architectures, and
Synthesis for Embedded Systems (CASES), 2009 (best paper award).

2.  E. Maftei, P. Pop, J. Madsen, Tabu Search-Based Synthesis of Digital
Microfluidic Biochips with Dynamically Reconfigurable Non-Rectangular
Devices, Automation for Embedded Systems, vol: 14, no. 3, September
2010, Pages 287-307.

17

Biochemical application

5

21

7

sink

source

In S1

dilute

In S3

In B

6

43
In S2 In R2

mix

dilute

In B

98

dilute

In B mix In S2

10 11

12 13

modul
e

Operatio
n

Area
(cells)

Time
(sec)

M1 Mixing 2x4 3
M2 Mixing 2x2 4
D1 Dilution 2x4 4
D2 Dilution 2x2 5

library L application G

array C

18

Mapping biochemical applications onto
microfluidic biochips
•  Allocation A

–  Determine modules Mk from library L
•  Binding B

–  Assign each operation Oi to a module Mk
•  Schedule S

–  Determine start time ti
start

 of each operation Oi
•  Placement P

–  Place modules on the m × n array
•  Synthesis Ψ

–  Given <G, C, L>, find Ψ = <A,B,S,P> which
minimize the schedule length δG

19

D1(4) M1(3)

D1(4) D1(4)

M2(4)

Scheduling

5

21

7

sink

source

In S1

In S3

In B

6

43
In S2 In R2

In B

98
In B In S2

10 11

12 13

S6

5

7

12

13

t t+4 t+8

M1

D1

M2

D1

D1

20

t

t+4

Scheduling

5

t+3

7
13

12

S

Overlapping modules

Concurrent
biochemical
applications

6
5

7
12
13

t t+4 t+8

M1

D1

M2

D1

D1

5

6

S

21

t+11 t+7 t+4

D2

Scheduling with placement

D
2

5

6

S

7
12

13

S
6

5
7
12

13

t t+4

M1

D1

M2

D1

D1

t+7 t+11 t+15

t

22

t+8

D2

Scheduling with placement

D
2

5

7

S
6

5
7

12
13

t t+4

M1

D1

M2

D2

D2

t+8 t+11 t+15

t

t+4

S 12

13 6

12

13

23

5

t

t

D2

Scheduling with dynamic placement

D
2

5
6
5

7
12
13

t t+4

M1

D1

M2

D2

D2

t+9 t+15

t+4 t+8

12

13

12

13

7 D
2

6

6

24

ROUTING-BASED SYNTHESIS
PART 2: DIGITAL MICROFLUIDIC BIOCHIPS

References:
1.  Elena Maftei, Paul Pop, Jan Madsen, Routing-Based Synthesis of Digital

Microfluidic Biochips. Proceedings of the Compilers, Architecture, and
Synthesis for Embedded Systems Conference (CASES’10), pp. 41-49,
2010 (best paper candidate)

25

Module-Based Design Tasks
Allocation

Binding & Scheduling

Mixer1

Mixer3

Mixer2

O8

O9

0.04 10.50 4.68

O1
2

O10

Diluter1
Mixer4

O7
Mixer1

Mixer3

Mixer2

O8

O9

0.04 10.50 4.68

O1
2

O10

Diluter1
Mixer4

O7
Mixer1

Mixer3

Mixer2

O8

O9

0.04 10.50 4.68

O1
2

O10

Diluter1
Mixer4

O7
Mixer1

Mixer3

Mixer2

O8

O9

0.04 10.50 4.68

O1
2

O10

Diluter1
Mixer4

O7
Mixer1

Mixer3

Mixer2

O8

O9

0.04 10.50 4.68

O1
2

O10

Diluter1
Mixer4

O7

Placement & Routing

26

Module-Based Synthesis

27

Module-Based Synthesis
O7
O8
O9

28

Module-Based Synthesis
O7
O8
O9

29

Module-Based Synthesis
O7 1x4
O8 1x4

30

Module-Based Synthesis
O9 2x4
O10 1x4

31

Module-Based Synthesis
O9 2x4
O10 1x4

32

Module-Based Synthesis

33

Reconfigurability

34

Reconfigurability

35

Reconfigurability

36

Reconfigurability

37

Reconfigurability

38

Reconfigurability

  Disadvantages of modules:
  Pessimistic segregation area
  Routing performed post-synthesis

39

Reconfigurability

  Disadvantages of modules:
  Pessimistic segregation area
  Routing performed post-synthesis

Eliminate the concept of modules: Routing-based synthesis
40

Routing-Based Synthesis

41

Routing-Based Synthesis
O7
O8
O9

42

Routing-Based Synthesis

43

Routing-Based Synthesis

44

Routing-Based Synthesis

45

Routing-Based Synthesis

46

Routing-Based Synthesis

47

Routing-Based Synthesis

48

Routing-Based Synthesis

49

Routing-Based Synthesis

50

Routing-Based Synthesis

51

Routing-Based Synthesis

52

When will the operations complete?

•  For module-based synthesis we
know the completion time from
the module library.

•  But now there are no modules,
the droplets can move
anywhere.
–  How can we find out the

operation completion times?

53

Characterizing operations
•  If the droplet does not move:

very slow mixing by diffusion

•  If the droplet moves, how
long does it take to
complete?

•  Mixing percentages:
p0, p90, p180 ?

54

Characterizing operations

  We know how long an operation takes
on modules

  Starting from this, can determine the
percentages?

55

Decomposing modules
Safe, conservative estimates
p90 = 0.1%, p180 = -0.5%,
p0 = 0.29% and 0.58%

Moving a droplet one cell takes 0.01 s.

56

Routing-Based Synthesis

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

57

Routing-Based Synthesis

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

58

Routing- vs. Module-Based Synthesis

Module-Based Synthesis Routing-Based Synthesis

59

ROUTING-BASED SYNTHESIS
ALGORITHM

PART 2: DIGITAL MICROFLUIDIC BIOCHIPS

References:
1.  Elena Maftei, Paul Pop, Jan Madsen, Routing-Based Synthesis of Digital

Microfluidic Biochips. Proceedings of the Compilers, Architecture, and
Synthesis for Embedded Systems Conference (CASES’10), pp. 41-49,
2010 (best paper candidate)

60

Problem Formulation

  Input
  Sequencing graph
  Library of modules
  Area constraint

  Output

  Implementation which minimizes application
execution time
  Allocation of modules from modules library
  Binding of modules to operations in sequencing graph
  Scheduling of operations
  Routes of the droplets

61

Proposed Solution

62

Proposed Solution

Merge

Mix

63

Proposed Solution

Merge

Mix

Minimize the time
until the droplets
meet

Minimize the completion
time for the operation

64

GRASP-Based Synthesis

  Greedy Randomized Adaptive Search Procedure

65

GRASP-Based Synthesis

  Greedy Randomized Adaptive Search Procedure

  For each droplet:
  Determine possible moves
  Evaluate possible moves
  Make a list of best N possible

moves
  Perform a randomly chosen

possible move from N

66

GRASP-Based Synthesis

  Greedy Randomized Adaptive Search Procedure

  For each droplet:
  Determine possible moves
  Evaluate possible moves
  Make a list of best N possible

moves
  Perform a randomly chosen

possible move from N

67

GRASP-Based Synthesis

  Greedy Randomized Adaptive Search Procedure

  For each droplet:
  Determine possible moves
  Evaluate possible moves
  Make a list of best N possible

moves
  Perform a randomly chosen

possible move from N

68

GRASP-Based Synthesis

  Greedy Randomized Adaptive Search Procedure

  For each droplet:
  Determine possible moves
  Evaluate possible moves
  Make a list of best N possible

moves
  Perform a randomly chosen

possible move from N

69

GRASP-Based Synthesis

  Greedy Randomized Adaptive Search Procedure

  For each droplet:
  Determine possible moves
  Evaluate possible moves
  Make a list of best N possible

moves
  Perform a randomly chosen

possible move from N

70

Experimental Evaluation

  GRASP algorithm implemented in Java
  Improvement brought by Routing-Based

Synthesis (RBS) compared to Module-Based
Synthesis (MBS)
  Two real-life applications
  Ten synthetic bechmarks

71

Experimental Results

 Improvement of RBS vs. MBS in schedule length

Colorimetric protein assay

11x11 11x10 10x10
0

50

100

150

200

250

RBS MBS
Area (cellsxcells)

A
v
e
ra

g
e
 s

c
h
e
d
u
le

 l
e
n
g
th

 (
s
)

72

Conclusions
  Characteristics of digital microfluidic biochips

resembles those of digital circuits
  It is possible to use techniques and methods from

MPSoC to design and analyze biochips, i.e., a
module-based approach

  Eliminating the concept of “virtual modules”, it is
possible to have a routing-based synthesis approach

  The routing-based synthesis leads to significant
improvements compared to module-based synthesis

  Can we use similar methods to address the flow-
based biochips?

73

BASIC ARCHITECTURE AND
COMPONENTS

PART 2: FLOW-BASED MICROFLUIDIC BIOCHIPS

References:
1.  Wajid Hassan Minhass, Paul Pop, Jan Madsen, System-Level Modeling

and Synthesis of Flow-Based Microfluidic Biochips. Proceedings of the
Compilers, Architecture, and Synthesis for Embedded Systems
Conference (CASES’11), 2011

74

Flow-Based Microfluidic Biochips

75

Flow-Based Biochip Components

Microfluidic valve

76

Switch Configurations

77

Microfluidic Mixer

78

Microfluidic Mixer: Operational Phases

79

Microfluidic Mixer: Conceptual View

80

Flow-Based Biochip Architecture

Schematic view Functional view

81

BIOCHIP SYNTHESIS
PART 2: FLOW-BASED MICROFLUIDIC BIOCHIPS

References:
1.  Wajid Hassan Minhass, Paul Pop, Jan Madsen, System-Level Modeling

and Synthesis of Flow-Based Microfluidic Biochips. Proceedings of the
Compilers, Architecture, and Synthesis for Embedded Systems
Conference (CASES’11), 2011

82

Application and Platform Models

83

Flow paths in the architecture

84

Flow paths in the architecture

85

Scheduling

86

Biochip Design Methodology

87

Conclusions

•  A system-level modeling and synthesis
approach for flow-based microfluidic
biochips is possible

•  The right abstraction allows for using
techniques and methods from MPSoC
design

88

POSSIBILITIES AND
CHALLENGES

PART 2: FLOW-BASED MICROFLUIDIC BIOCHIPS

References:
1.  Wajid Hassan Minhass, Paul Pop, Jan Madsen, Mette Hemmingsen, Martin

Dufva. System-Level Modeling and Simulation of the Cell Culture Microfluidic
Biochip ProCell, Symposium on Design, Test, Integration & Packaging of
MEMS/MOEMS, 2010

2.  Lee et al. Stand-alone self-powered integrated microfluidic blood analysis
system (SIMBAS). In Lab on a Chip, vol. 11, no. 5, 7 March 2011, pages
845-850

89

ProCell: Programmable Cell Chip

90

ProCell: Aims

•  Culturing and Manipulation of living cells
with real-time reaction monitoring

•  Automatically manipulate cells based on
their observed behavior

•  Allows for conditional experiments
•  Simulate in vivo conditions by in vitro

experiments

91

ProCell Prototype

92

Can we get rid of the pumps, tubes, etc.,
in order to get real small biochips?

SIMBAS:
Stand-alone, Self-powered Biochip!

Courtesy: Ivan Dimov http://newscenter.berkeley.edu March 16, 2011

93

SIMBAS Biochip

Courtesy: Ivan Dimov http://newscenter.berkeley.edu March 16, 2011

94

5 µL

SIMBAS Biochip : Working principles

95

Future?

96

Thank you for your attention

97

