Platform-Based Design: From Multi-Core Platforms to Biochips and beyond

Prof. Jan Madsen Embedded Systems Engineering

DTU Informatics Department of Informatics and Mathematical Modeling

DTU Informatics Department of Informatics and Mathematical Modelling

Microfluidic Biochips

Continuous-flow biochips

Droplet-based biochips

Technical Univ. of Denmark 2010

Duke University 2002

- Motivation & relation to MPSoC
- Digital Microfluidic Biochips
 - Technology and architectures
 - Module-based synthesis
 - Routing-based synthesis
- Flow-Based Microfluidic Biochips
 - Biochip synthesis
 - Possibilities and challenges

- Biotech
 - DNA analysis
- Medicine
 - Clinical diagnosis
 - Therapeutics
- Ecology
 - Monitoring the quality of air/water/food
- Pharmacy
 - Screening
 - Synthesis of new drugs

Microfluidic Biochips

- Advantages:
 - High throughput (reduced sample / reagent consumption)
 - Space (miniaturization)
 - Time (parallelism)
 - Automation (minimal human intervention)

Microfluidic biochip?

Manipulations of continuous liquid through fabricated micro-channels

Biochip design

Microfluidic Biochip

System on Chip

References:

1. Elena Maftei, Paul Pop, Jan Madsen, Resent Research and Emerging Challenges in the System-Level Design of Digital Microfluidic Biochips, Proceedings of the International System on Chip Conference, 2011 (invited paper)

PART 2: DIGITAL MICROFLUIDIC BIOCHIPS

TECHNOLOGY AND ARCHITECTURES

Digital microfluidic biochip

Digital microfluidic biochip

Speed: 12-25 cm/s Size of electrode: 0.15 cm Cell-to-cell transport: ~0.01 s

Biochip architecture?

- Application specific architecture
 - Spatial and temporal assignment done at design-time
- General purpose architecture
 - Spatial assignment done at design-time
 - Temporal assignment done at run-time
- Reconfigurable architecture
 - Spatial and temporal assignment done at runtime

Application specific biochip

- Biochip for malaria detection
- Operation:
 - Infected cell isolation
 - Cell Lysis
 - DNA extraction
 - DNA amplification using PCR
 - Optical detection using SPR

General purpose biochip

[Griffith, Akella, 2005]

Reconfigurable biochip

Biochemical operations

- Transport
- Merging
- Mixing
- Splitting
- Diluting

. . .

Detection

->

_			

References:

- 1. Elena Maftei, Paul Pop, Jan Madsen, Tabu Search-Based Synthesis of Dynamically Reconfigurable Digital Microfluidic Biochips. In Proceedings of the International Conference on Compilers, Architectures, and Synthesis for Embedded Systems (CASES), 2009 (best paper award).
- 2. E. Maftei, P. Pop, J. Madsen, Tabu Search-Based Synthesis of Digital Microfluidic Biochips with Dynamically Reconfigurable Non-Rectangular Devices, *Automation for Embedded Systems,* vol: 14, no. 3, September 2010, Pages 287-307.

PART 2: DIGITAL MICROFLUIDIC BIOCHIPS

MODULE-BASED SYNTHESIS

Biochemical application

DTU Informatics Department of Informatics and Mathematical Modelling Mapping biochemical applications onto microfluidic biochips

- Allocation $\ensuremath{\mathcal{A}}$
 - Determine modules \mathcal{M}_k from library \mathcal{L}
- Binding \mathcal{B}
 - Assign each operation O_i to a module \mathcal{M}_k
- Schedule S
 - Determine start time t_i^{start} of each operation O_i
- Placement \mathcal{P}
 - Place modules on the $m \times n$ array
- Synthesis Ψ
 - Given <G, C, \mathcal{L} >, find $\Psi = \langle \mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{P} \rangle$ which minimize the schedule length δ_G

DTU Informatics Department of Informatics and Mathematical Modelling

Scheduling

Overlapping modules

Concurrent biochemical applications

Scheduling with placement

22

DTU Informatics Department of Informatics and Mathematical Modelling

Scheduling with placement

Scheduling with dynamic placement

DTU Informatics
Department of Informatics and Mathematical Modelling

References:

 Elena Maftei, Paul Pop, Jan Madsen, Routing-Based Synthesis of Digital Microfluidic Biochips. Proceedings of the Compilers, Architecture, and Synthesis for Embedded Systems Conference (CASES'10), pp. 41-49, 2010 (best paper candidate)

PART 2: DIGITAL MICROFLUIDIC BIOCHIPS

ROUTING-BASED SYNTHESIS

Module-Based Design Tasks

Allocation						
Operation	Area(cells)	Time(s)				
Mix/Dlt	2x4	2.8				
Mix/Dlt	1x4	4.6				
Mix/Dlt	2x3	5.6				
Mix/Dlt	2x2	9.96				

Placement & Routing

В

 S_3

 R_1

W

 R_2

Binding & Scheduling

 S_2

DTU Informatics Department of Informatics and Mathematical Modelling

Mcdule-Based Synthesis 08 Source 09 R_2 (2)(3 5 (6) (4 In S₂ In B In R In S, In S, In R, В 8 9 Dilute Mix Mix $\operatorname{In} R_{1}$ S_2 $S_{_3}$ Mix 10 (13)2 Waste Mix R_1 ► Sink S_1 W

Module-Based Synthesis 08 Source 09 R_2 2 (3 5 (6) 4 In S₂ In B In R. In S, In S, In R, В 8 9 Dilute Mix Mix $\operatorname{In} R_{1}$ S_2 $S_{_3}$ Mix 10 (13)2 Waste Mix R_1 ► Sink S_1 W

Reconfigurability

Reconfigurability

Reconfigurability

- Disadvantages of modules:
 - Pessimistic segregation area
 - Routing performed post-synthesis

- Disadvantages of modules:
 - Pessimistic segregation area
 - Routing performed post-synthesis

Eliminate the concept of modules: Routing-based synthesis

Routing-Based Synthesis 08 Source 09 R_2 5 2 (3) 4 (6 In S₂ In B In R. In S, In R, In S, В 8 9 Dilute Mix Mix In_{R_1} S_2 S₃ Mix 10 (13)2 Waste Mix R_1 ► Sink S_1 W

Waste

When will the operations complete?

- For module-based synthesis we know the completion time from the module library.
- But now there are no modules, the droplets can move anywhere.
 - How can we find out the operation completion times?

Characterizing operations

- If the droplet does not move: very slow mixing by diffusion
- If the droplet moves, how long does it take to complete?
- Mixing percentages:

p⁰, p⁹⁰, p¹⁸⁰?

Characterizing operations

Operation	Area(cells)	Time(s)
Mix/Dlt	2x4	2.8
Mix/Dlt	1x4	4.6
Mix/Dlt	2x3	5.6
Mix/Dlt	2x2	9.96

- We know how long an operation takes on modules
- Starting from this, can determine the percentages?

Decomposing modules

Safe, conservative estimates

Operation	Area(cells)	Time(s)
Mix/Dlt	2x4	2.8
Mix/Dlt	1x4	4.6
Mix/Dlt	2x3	5.6
Mix/Dlt	2x2	9.96

Moving a droplet one cell takes 0.01 s.

Routing- vs. Module-Based Synthesis

Routing-Based Synthesis

Module-Based Synthesis

References:

 Elena Maftei, Paul Pop, Jan Madsen, Routing-Based Synthesis of Digital Microfluidic Biochips. Proceedings of the Compilers, Architecture, and Synthesis for Embedded Systems Conference (CASES'10), pp. 41-49, 2010 (best paper candidate)

PART 2: DIGITAL MICROFLUIDIC BIOCHIPS

ROUTING-BASED SYNTHESIS ALGORITHM

Problem Formulation

- Input
 - Sequencing graph
 - Library of modules
 - Area constraint
- Output
 - Implementation which minimizes application execution time
 - Allocation of modules from modules library
 - Binding of modules to operations in sequencing graph
 - Scheduling of operations
 - Routes of the droplets

Proposed Solution

Proposed Solution Source 3 4 5 6 In S, In S₂ In R, In B In S, In R, 8 9 Dilute Merge Mix Mix (11)In R, Mix 10 13 2 Waste Mix Mix Sink

DTU Informatics Department of Informatics and Mathematical Modelling

DTU Informatics Department of Informatics and Mathematical Modelling

Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure

• For each droplet:

- Determine possible moves
- Evaluate possible moves
- Make a list of best N possible moves
- Perform a randomly chosen possible move from N

Greedy Randomized Adaptive Search Procedure

• For each droplet:

- Determine possible moves
- Evaluate possible moves
- Make a list of best N possible moves
- Perform a randomly chosen possible move from N

Greedy Randomized Adaptive Search Procedure

For each droplet:

- Determine possible moves
- Evaluate possible moves
- Make a list of best N possible moves
- Perform a randomly chosen possible move from N

Greedy Randomized Adaptive Search Procedure

• For each droplet:

- Determine possible moves
- Evaluate possible moves
- Make a list of best N possible moves
- Perform a randomly chosen possible move from N

Greedy Randomized Adaptive Search Procedure

For each droplet:

- Determine possible moves
- Evaluate possible moves
- Make a list of best N possible moves
- Perform a randomly chosen possible move from N

Experimental Evaluation

- GRASP algorithm implemented in Java
- Improvement brought by Routing-Based Synthesis (RBS) compared to Module-Based Synthesis (MBS)
 - Two real-life applications
 - Ten synthetic bechmarks

Experimental Results

Improvement of RBS vs. MBS in schedule length

Colorimetric protein assay

Conclusions

- Characteristics of digital microfluidic biochips resembles those of digital circuits
- It is possible to use techniques and methods from MPSoC to design and analyze biochips, i.e., a module-based approach
- Eliminating the concept of "virtual modules", it is possible to have a routing-based synthesis approach
- The routing-based synthesis leads to significant improvements compared to module-based synthesis
- Can we use similar methods to address the flowbased biochips?

References:

1. Wajid Hassan Minhass, Paul Pop, Jan Madsen, System-Level Modeling and Synthesis of Flow-Based Microfluidic Biochips. Proceedings of the Compilers, Architecture, and Synthesis for Embedded Systems Conference (CASES'11), 2011

PART 2: FLOW-BASED MICROFLUIDIC BIOCHIPS

BASIC ARCHITECTURE AND COMPONENTS

Flow-Based Microfluidic Biochips

Flow-Based Biochip Components

Microfluidic valve

Switch Configurations

Microfluidic Mixer: Operational Phases

Table 1:	Mixer:	Control	Layer	Mode
----------	--------	----------------	-------	------

Phase	v_1	v_2	v_3	v_4	v_5	<i>v</i> ₆	v_7	v_8	<i>v</i> 9
1. Ip1	0	0	1	0	0	0	0	0	1
2. Ip2	0	1	0	0	0	0	1	0	0
3. Mix	1	0	0	Mix	Mix	Mix	0	1	0
4. Op1	0	0	1	0	0	0	0	0	1
5. Op2	0	1	0	0	0	0	1	0	0

Microfluidic Mixer: Conceptual View

Flow-Based Biochip Architecture

Schematic view

Functional view

References:

1. Wajid Hassan Minhass, Paul Pop, Jan Madsen, System-Level Modeling and Synthesis of Flow-Based Microfluidic Biochips. Proceedings of the Compilers, Architecture, and Synthesis for Embedded Systems Conference (CASES'11), 2011

PART 2: FLOW-BASED MICROFLUIDIC BIOCHIPS BIOCHIP SYNTHESIS

Application and Platform Models

Flow paths in the architecture

$E_{\rm r} = (I_{\rm He}, C_{\rm r}, M_{\rm inerr}) 2$	$E_{\rm re} = (M_{\rm incore} \ C_{\rm re} \ C_{\rm re} \ C_{\rm re} \ C_{\rm re} \ O_{\rm ret}) \ 2.5 \ c$	Pouting Constraints
$F_1 = (In_1, S_1, Mixer_1), 2$ s	$F_{18} = (Mixer_2, s_6, s_7, s_8, s_{10}, Out_1), s_{13} s_{10}$	Routing Constraints:
$F_2 = (In_1, S_1, S_2, Mixer_2), 2.5 \text{ s}$	$F_{19} = (Mixer_3, S_7, S_6, S_5, Out_2, 3 s)$	
$F_3 = (In_1, S_1, S_2, S_3, Mixer_3), 3 s$	$F_{20} = (Mixer_3, S_7, S_6, S_5, Heater_1), 3 s$	$F_1: F_2 \vee F_3 \vee F_4 \vee F_7 \vee F_{24}$
$F_4 = (In_2, S_4, S_3, S_2, S_1, Mixer_1), 3.5 \text{ s}$	$F_{21} = (Mixer_3, S_7, Filter_1), 2 s$	$F_2: F_1 \lor F_3 \lor F_4 \lor F_5 \lor F_7 \lor F_{24} \lor F_{25}$
$F_5 = (In_2, S_4, S_3, S_2, Mixer_2), 3 s$	$F_{22-x} = (Mixer_3, S_7, S_8, Storage-8), 2.5 \text{ s}$	$F_3: F_1 \vee F_2 \vee F_4 \vee F_5 \vee F_6 \vee F_7 \vee F_{24}$
$F_6 = (In_2, S_4, S_3, Mixer_3), 2.5 \text{ s}$	$F_{23} = (Mixer_3, S_7, S_8, S_{10}, Out_1), 3 \text{ s}$	$\vee F_{25} \vee F_{26}$
$F_{7-x} = (In_1, S_1, S_2, S_3, S_4, Storage-8), 3.5 s$	$F_{24-x} = (Storage-8, S_4, S_3, S_2, S_1, Mixer_1), 3.5 \text{ s}$	$F_4: F_1 \vee F_2 \vee F_3 \vee F_5 \vee F_6 \vee F_7 \vee F_8$
$F_{8-x} = (In_2, S_4, Storage-8), 2 \text{ s}$	$F_{25-x} = (Storage-8, S_4, S_3, S_2, Mixer_2, 3 s)$	$\vee F_{24} \vee F_{25} \vee F_{26}$
$F_9 = (Mixer_1, S_5, Out_2), 2 s$	$F_{26-x} = (Storage-8, S_4, S_3, Mixer_3), 2.5 \text{ s}$	$F_5: F_2 \vee F_3 \vee F_4 \vee F_6 \vee F_7 \vee F_8 \vee F_{24}$
$F_{10} = (Mixer_1, S_5, Heater_1), 2 s$	$F_{27-x} = (Storage-8, S_8, S_7, S_6, S_5, Heater_1), 3.5 s$	$\vee F_{25} \vee F_{26} \vee F_{27}$
$F_{11} = (Mixer_1, S_5, S_6, S_7, Filter_1), 3 s$	$F_{28-x} = (Storage-8, S_8, S_7, Filter_1), 2.5 s$	$F_6: F_3 \vee F_4 \vee F_5 \vee F_7 \vee F_8 \vee F_{24} \vee F_{25}$
$F_{12-x} = (Mixer_1, S_5, S_6, S_7, S_8, Storage-8), 3.5 s$	$F_{29-x} = (Storage-8, S_8, S_{10}, Out_1), 2.5 \text{ s}$	$\vee F_{26}$
$F_{13} = (Mixer_1, S_5, S_6, S_7, S_8, S_{10}, Out_1), 4 s$	$F_{30-x} = (Heater_1, S_9, S_{10}, S_8, Storage-8), 3 s$	$F_7: F_1 \vee F_2 \vee F_3 \vee F_4 \vee F_5 \vee F_6 \vee F_8$
$F_{14} = (Mixer_2, S_6, S_5, Out_2), 2.5 \text{ s}$	$F_{31} = (Heater_1, S_9, S_{10}, Out_1), 2.5 \text{ s}$	$\vee F_{24} \vee F_{25} \vee F_{26}$
$F_{15} = (Mixer_2, S_6, S_5, Heater_1), 2.5 \text{ s}$	$F_{32-x} = (Filter_1, S_9, S_{10}, S_8, Storage-8), 3 s$	
$F_{16} = (Mixer_2, S_6, S_7, Filter_1), 2.5 \text{ s}$	$F_{33} = (Filter_1, S_9, S_{10}, Out_1), 2.5 \text{ s}$	$F_{33}: F_{13} \lor F_{18} \lor F_{23} \lor F_{29} \lor F_{30} \lor F_{31}$
$F_{17-x} = (Mixer_2, S_6, S_7, S_8, Storage-8), 3 s$		$\vee F_{32}$

Flow paths in the architecture

Biochip Design Methodology

- A system-level modeling and synthesis approach for flow-based microfluidic biochips is possible
- The right abstraction allows for using techniques and methods from MPSoC design

References:

- Wajid Hassan Minhass, Paul Pop, Jan Madsen, Mette Hemmingsen, Martin Dufva. System-Level Modeling and Simulation of the Cell Culture Microfluidic Biochip ProCell, Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, 2010
- 2. Lee *et al.* Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). In Lab on a Chip, vol. 11, no. 5, 7 March 2011, pages 845-850

PART 2: FLOW-BASED MICROFLUIDIC BIOCHIPS

POSSIBILITIES AND CHALLENGES

ProCell: Programmable Cell Chip

ProCell: Aims

- Culturing and Manipulation of living cells
 with real-time reaction monitoring
- Automatically manipulate cells based on their observed behavior
- Allows for conditional experiments
- Simulate *in vivo* conditions by *in vitro* experiments

ProCell Prototype

SIMBAS: Stand-alone, Self-powered Biochip!

Courtesy: Ivan Dimov http://newscenter.berkeley.edu March 16, 2011

Courtesy: Ivan Dimov http://newscenter.berkeley.edu March 16, 2011

DTU Informatics Department of Informatics and Mathematical Modelling

SIMBAS Biochip : Working principles

Thank you for your attention

DTU Informatics Department of Informatics and Mathematical Modelling

