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Motivation for course (1)

According to forecasts, future of IT 
characterized by terms such as  


 
Disappearing computer,


 

Ubiquitous computing,


 
Pervasive computing,


 

Ambient intelligence,


 
Post-PC era,


 

Cyber-physical systems.
Basic technologies:


 
Embedded Systems


 

Communication technologies ©
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Motivation for Course (2)

“Information technology (IT) is on the verge of another 
revolution. …..
networked systems of embedded computers ... have the 
potential to change radically the way people interact with their 
environment by linking together a range of devices and 
sensors that will allow information to be collected, shared, and 
processed in unprecedented ways. ...
The use … throughout society could well dwarf previous 
milestones in the information revolution.”

National Research Council Report (US)
Embedded Everywhere, 2001
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Embedded Systems & 
Cyber-Physical Systems

“Dortmund“ Definition: [Peter Marwedel]

Embedded systems are information processing systems 
embedded into a larger product

Berkeley: [Edward A. Lee]:
Embedded software is software integrated with physical 
processes. The technical problem is managing time and 
concurrency in computational systems.

 Definition: Cyber-Physical (cy-phy) Systems (CPS) are 
integrations of computation with physical processes 
[Edward A. Lee, 2006].
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Application area Automotive 
electronics: clearly cyber-physical 


 

Multiple networks


 

Multiple networked 
processors

Functions by embedded processing:


 

ABS: Anti-lock braking systems


 

ESP: Electronic stability control


 

Airbags


 

Efficient automatic gearboxes


 

Theft prevention with smart keys


 

Blind-angle alert systems


 

... etc ...

© P. Marwedel, 2011

[Based on slide by J.Engblom]
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Application area avionics: 
also cyber-physical


 

Flight control systems,


 
anti-collision systems,


 
pilot information systems,


 
power supply system,


 
flap control system,


 
entertainment system,


 
…

Dependability is of outmost 
importance. 
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More application areas


 

Railways


 

Telecommunication


 

Consumer electronics


 

Robotics


 

Public safety


 

Smart homes

Mostly cyber-physical
© P. Marwedel, 2011



- 8 - p. marwedel, 
informatik 12, 2011

Growing importance of cyber-physical/ 
embedded systems


 

the global mobile entertainment industry is 
now worth some $32 bln…predicting average revenue 
growth of 28% for 2010 [www.itfacts.biz, July 8th, 2009]


 

…, the market for remote home health monitoring is 
expected to generate $225 mln revenue in 2011, up from 
less than $70 mln in 2006, according to Parks Associates. 
[www.itfacts.biz, Sep. 4th, 2007]


 

Funding in the 7th European Framework


 
Creation of the ARTEMIS Joint Undertaking in Europe


 
Funding of CPS research in the US


 
Joint education effort of Taiwanese Universities


 
….
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Characteristics of cyber-physical/ 
embedded systems


 

Must be dependable


 
Must be efficient

• energy, code-size,
• run-time, weight,
• cost efficient


 

Dedicated towards a certain application


 
Dedicated user interface


 
Many CPS/ES must meet real-time constraints


 
Connected to physical environment


 
Hybrid systems (analog + digital parts).


 
Typically, CPS/ES are reactive systems: 
(In continual interaction with is environment)
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CPS & ES Hardware

CPS & ES hardware is frequently used in a loop 
(“hardware in a loop“):

Cyber-physical systems (!) © P. Marwedel, 2011
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Real-time constraints


 

CPS must meet real-time constraints
• A real-time system must react to stimuli from the 

controlled object (or the operator) within the time 
interval dictated by the environment.

• For real-time systems, right answers arriving too 
late are wrong.

• “A real-time constraint is called hard, if not 
meeting that constraint could result in a 
catastrophe“ [Kopetz, 1997].

• All other time-constraints are called soft.
• A guaranteed system response has to be explained 

without statistical arguments
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Challenges for Software in CPS


 

Dynamic environments


 

Capture the required behaviour!


 

Validate specifications


 

Efficient translation of specifications 
into implementations!


 

How can we check that we meet real- 
time constraints?


 

How do we validate embedded real- 
time software? (large volumes of data, 
testing may be safety-critical)
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Structure of this course

2: Specification & 
Modeling

3: ES-hardware

4: System 
software (RTOS, 
middleware, …)

8: Test *

5: Evaluation & 
Validation (energy, cost, 
performance, …) 

7: Optimization

6: Application 
mapping

A
pp

lic
at

io
n 

K
no

w
le

dg
e Design 

repository

Generic loop: tool chains differ in the number and type of iterations
Numbers denote sequence of chapters

* Could be 
integrated 
into loop; 
not included 
in the 
current 
course

Design
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Motivation for considering specs & 
models


 

Why considering specs & models?


 

If something is wrong with the specs, then it 
will be difficult to get the design right, 
potentially wasting a lot of time.


 

Typically, we work with models of the 
system under design (SUD)

What is a model anyway?

time

Specification Design 
repository

…
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Models

Definition: “A model is a simplification of another entity, 
which can be a physical thing or another model. The model 
contains exactly those characteristics and properties of the 
modeled entity that are relevant for a given task. A model
is minimal with respect to a task if it does not contain any other 
characteristics than those relevant for the task.”

[Jantsch, 2004]:

Which requirements do we have for our models?
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Specification of CPS/ES: 
Requirements for models


 
Hierarchy


 

Compositional behavior


 
Timing behavior


 

State-oriented behavior


 
Event-handling


 

Concurrency


 
Synchronization and communication


 

Presence of programming elements


 
Executability


 

Support for the design of large systems


 
No obstacles for efficient implementation


 

Domain-specific support


 
Non-functional properties

No single 
model 
will meet 
all 
require- 
ments


 compro- 
mises
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Models of computation 
- Definition -

What does it mean, “to compute”?
Models of computation define:


 

Components and an execution model for 
computations for each component


 

Communication model for exchange of 
information between components.

C-1

C-2
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Communication


 

Shared memory

memoryComp-1 Comp-2

Variables accessible to several components/tasks.

Model mostly restricted to local systems.
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Communication via shared memory

Several threads access the same memory


 
Very fast communication technique 
(no extra copying)


 
Potential race conditions:

thread a { 
u = 1; 
if u<5 {u = u + 1; ..} 

}

thread b { 
.. 
u = 5

}

Context switch after the test could result in u == 6.
inconsistent results possible
 Critical sections = sections at which exclusive access to 

resource r (e.g. shared memory) must be guaranteed
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Non-blocking/ 
asynchronous message passing

Sender does not have to wait until message has arrived; 

…
send ()
…

…
receive ()
…

Potential problem: buffer overflow
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Rendez-vous, Blocking/ 
synchronous message passing

Sender will wait until receiver has received message

…
send ()
…

…
receive ()
…

No buffer overflow, but reduced performance.
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Organization of computations 
within the components (1)


 

Finite state machines


 

Data flow 
(models the flow of data in a distributed system)


 

Differential equations

b
t
x





2

2
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Organization of computations 
within the components (2)


 

Discrete event model

a
b
c

time
actiona:=5   b:=7  c:=8   a:=6  a:=9

queue

5      10      13     15      195
7

8

6


 

Von Neumann model

Sequential execution, program memory etc.



Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA         |

C, C++, JavaVon-Neumann 
model

Plain text, use cases
|    (Message) sequence charts

Undefined 
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g. 
distributed DE in Ptolemy

VHDL*, Verilog, 
SystemC, …

Discrete event 
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite 
state machines

Message passing
Synchronous   |   Asynchronous

Shared 
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 24 - p. marwedel, 
informatik 12,  2010
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Support for early design phases


 

Informal text


 

Uses cases


 

(Message) sequence charts

The system must respond to 
incoming calls. It must play the 
welcome message followed by a 
beep and then start recording …

Similar to SW specification



Models of computation
considered in this course
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Plain text, use cases
|    (Message) sequence charts

Undefined 
components
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StateCharts

Extending classical automata to model ES & CPS


 
Adding timing with timed automata ( tutorial by Larsen)


 
Adding hierarchy: 
Complex graphs cannot be understood by humans. 
 Introduction of hierarchy  StateCharts [Harel, 1987] 
StateChart = the only unused combination of 
„flow“ or „state“ with „diagram“ or „chart“

Used here as a (prominent) example of a 
model of computation based on shared 
memory communication, appropriate only for 
local (non-distributed) systems
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Introducing hierarchy

FSM will be in exactly one of 
the substates of S if S is active 
(either in A or in B or ..)



- 29 - p. marwedel, 
informatik 12, 2011

Definitions


 

Current states of FSMs are also called active 
states.


 

States which are not composed of other states are called 
basic states.


 
States containing other states are called super-states.


 

Super-states S are called OR-super-states, if exactly one 
of the sub-states of S is active whenever S is active.

superstate

substates
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Default state mechanism

Try to hide internal 
structure from outside 
world!

 Default state

Filled circle 
indicates sub-state 
entered whenever 
super-state is entered.

Not a state by itself!
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Concurrency

Convenient 
ways of 
describing 
concurrency 
are required.

AND-super- 
states: 
FSM is in all 
(immediate) 
sub-states of a 
super-state. 

Example:
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Timers

Since time needs to be modeled in embedded systems,
timers need to be modeled.
In StateCharts, special edges can be used for timeouts.

If event a does not happen while the system is in the left 
state for 20 ms, a timeout will take place.
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Using timers in an answering machine
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Questions?

Q&A?
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Structure of this course

2: Specification & 
Modeling

3: ES-hardware

4: System 
software (RTOS, 
middleware, …)

8: Test *

5: Evaluation & 
Validation (energy, cost, 
performance, …) 

7: Optimization

6: Application 
mapping

A
pp
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at
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n 
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w
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e Design 

repository

Generic loop: tool chains differ in the number and type of iterations
Numbers denote sequence of chapters

* Could be 
integrated 
into loop; 
not included 
in the 
current 
course

Design
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The StateCharts simulation phases 
(StateMate Semantics)

How are edge labels evaluated?
Three phases:

1. Effect of external changes on events and conditions is 
evaluated,

2. The set of transitions to be made in the current step 
and right hand sides of assignments are computed,

3. Transitions become effective, variables obtain new 
values.

Separation into phases 2 and 3 guarantees and 
reproducible behavior. 
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Example

In phase 2, variables a and b are assigned to temporary 
variables:

In phase 3, these are assigned to a and b.

As a result, variables a and b are swapped.
Use pen on tablet
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Example (2)

In a single phase environment, executing the left state first 
would assign the old value of b (=0) to a and b:

Executing the right state first would assign the old value of a 
(=1) to a and b.

The result would depend on the execution order.
Use pen on tablet
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Reflects model of clocked hardware

In an actual clocked (synchronous) hardware system, both 
registers would be swapped as well.

Same separation into phases found in other languages as 
well, especially those that are intended to model hardware.
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Steps

Execution of a StateMate model consists of 
a sequence of (status, step) pairs

Status= values of all variables + set of events + current time
Step   = execution of the three phases (StateMate semantics)

Status phase 2

phase 3

phase 1 Other implementations of 
StateCharts do not have 

these 3 phases!



- 41 - p. marwedel, 
informatik 12, 2011

Determinate vs. deterministic


 

Kahn (1974) calls a system determinate if we will always 
obtain the same result for a fixed set (and timing) of inputs


 
Others call this property deterministic 
However, this term has several meanings:

• Non-deterministic finite state machines
• Non-deterministic operators 

(e.g. + with non-deterministic result in low order bits)
• Behavior not known before run-time 

(unknown input results in non-determinism)
• In the sense of determinate as used by Kahn

In order to avoid confusion, we use the term “determinate“ 
today.
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StateCharts determinate or not?

Determinate (in this context) means:
Must all simulators return the same result for a given input?


 
Separation into 2 phases a required condition


 
Semantics 

 
StateMate semantics may be non-determinate

Potential other sources of non-determinate behavior:


 
Choice between conflicting transitions resolved arbitrarily

 Determinate behavior for StateMate semantics if 
transition conflicts are resolved and no other sources of 
undefined behavior exist

A A Tools typically issue a warning if 
such a situation could exist



Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA         |
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SystemC, …

Discrete event 
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C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite 
state machines

Message passing
Synchronous   |   Asynchronous

Shared 
memory
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* Classification is based on implementation of VHDL, Verilog, SystemC with central queue
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Message passing in SDL

Communication between FSMs (or “processes“) 
is based on message-passing, assuming a potentially 
indefinitely large FIFO-queue.


 

Each process 
fetches next entry 
from FIFO,


 
checks if input 
enables transition,


 
if yes: transition 
takes place,


 
if no: input is ignored 
(exception: SAVE- 
mechanism).
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Determinate?

Let tokens be arriving at FIFO at the same time: 
Order in which they are stored, is unknown:

All orders are legal: simulators can show different 
behaviors for the same input, all of which are correct. 
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Data flow as a “natural” 
model of applications

Example: Video on demand system

www.ece.ubc.ca/~irenek/techpaps/vod/vod.html 
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Data flow modeling

Definition: Data flow modeling is … 
“the process of identifying, modeling and documenting how 
data moves around an information system. 
Data flow modeling examines 


 
processes (activities that transform data from one form to 
another), 


 
data stores (the holding areas for data),


 
external entities (what sends data into a system or receives 
data from a system, and


 
data flows (routes by which data can flow)”.

[Wikipedia: Structured systems analysis and design method. 
http://en.wikipedia.org/wiki/Structured Systems Analysis and 
Design Methodology, 2010 (formatting added)].
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Kahn process networks


 

Each component is a program/task/process, 
not an FSM


 

Communication is by FIFOs; no overflow considered 
 writes never have to wait, 
 reads wait if FIFO is empty.


 

Only one sender and one receiver per FIFO 
 no SDL-like conflicts at FIFOs
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Example

© R. Gupta (UCSD), W. Wolf (Princeton), 2003

levi animation

Process f(in int u, in int v, out int w){
int i; bool b = true;
for (;;) {
i= b ? wait(u) : wait(v); 

//wait returns next token in FIFO, waits if empty
send (i,w);   //writes a token into a FIFO w/o blocking
b = !b;
}
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Key beauty of KPNs


 

A process cannot check whether data is 
available before attempting a read.


 

A process cannot wait for data for more than one port at a 
time.


 

Therefore, the order of reads depends only on data, not on 
the arrival time.


 

Therefore, for a given input, for Kahn process networks the 
result will always the same, regardless of the speed of the 
nodes.

Many applications in cyber-physical/embedded system 
design: simplifies emulation of real systems.
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Synchronous data flow (SDF)

Synchronous data flow = 
global clock controlling “firing” of nodes

Asynchronous message passing= 
tasks do not have to wait until output is accepted.

In the general case, a number of tokens can be produced/ 
consumed per firing; firing rate depends on # of tokens …
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Multi-rate models & balance equations 
(one for each channel)

MfNf BA 
number of tokens consumed

number of firings per “iteration”number of tokens produced

Adopted from: ptolemy.eecs.berkeley.edu/presentations/03/streamingEAL.ppt

Schedulable statically
In the general case, buffers may be needed at edges.
Decidable:


 

buffer memory requirements


 

deadlock

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel

N MFIFO
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Introduction

Introduced in 1962 by Carl Adam Petri in his PhD 
thesis. Focus on modeling causal dependencies;
no global synchronization assumed (message passing only).
Key elements:


 
Conditions 
Either met or no met.


 
Events 
May take place if certain conditions are met.


 
Flow relation 
Relates conditions and events.

Conditions, events and the flow relation form
a bipartite graph (graph with two kinds of nodes).
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Example: Synchronization at single 
track rail segment

“Preconditions“
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Playing the “token game“

use normal view mode!
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Conflict for resource “track“
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Discrete event semantics

Basic discrete event (DE) semantics 


 
Queue of future actions, sorted by time


 
Loop:

• Fetch next entry from queue
• Perform function as listed in entry

- May include generation of new entries


 
Until termination criterion = true

a
b
c

time
actiona:=5   b:=7  c:=8   a:=6  a:=9

queue

5      10      13     15      195
7

8

6
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Simple example (VHDL notation)

Processes will wait for changes on their input ports.
If they arrive, processes will wake up, compute their code and 
deposit changes of output signals in the event queue and wait 
for the next event. 
If all processes wait, the next entry will be taken from the 
event queue.

gate1:
 process

 
(a,b)

begin
c <= a nor

 
b;

end;

gate2: 
process

 
(a,b)

begin
c <= a nor

 
b;

end;

S
a

b
c c

a

R
b

00
01

00
11

00
11

00
10

01
10
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-simulation cycles 
Simulation of an RS-Flipflop

0ns 0ns+
 

0ns+2
 

0ns+3
R  1    1  1 1 

S  0    0  0 0

Q  1    0  0 0

nQ 0    0  1 1

0ns 0ns+
 

0ns+2
 

0ns+3
R  1    1  1 1 

S  0    0  0 0

Q  1    0  0 0

nQ 0    0  1 1

00011

11000

0000

0111

1st 

2nd 


 

cycles reflect the fact that no real 
gate comes with zero delay.
 should delay-less signal 
assignments be allowed at all?

3rd 

gate1: 
process (S,Q)
begin

nQ <= S nor Q;
end;

gate2: 
process (R,nQ)
begin

Q <= R nor nQ;
end;



Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA         |

C, C++, JavaVon-Neumann 
model

Plain text, use cases
|    (Message) sequence charts

Undefined 
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g. 
distributed DE in Ptolemy

VHDL*, Verilog, 
SystemC, …

Discrete event 
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite 
state machines

Message passing
Synchronous   |   Asynchronous

Shared 
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue
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Imperative (von-Neumann) model

The von-Neumann model reflects the principles 
of operation of standard computers:


 
Sequential execution of instructions 
(sequential control flow, fixed sequence of 
operations)


 
Possible branches


 
Partitioning of applications into threads


 
In most cases:

• Context switching between threads, frequently 
based on pre-emption (cooperative multi-tasking 
or time-triggered context switch less common)  

• Access to shared memory
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Shared memory

Potential race conditions (inconsistent results possible) 
 Critical sections = sections at which exclusive access to 
resource r (e.g. shared memory) must be guaranteed.

task a { 
.. 
P(S)  //obtain lock
..    // critical section 
V(S)  //release lock 

}

task b { 
.. 
P(S)  //obtain lock
..    // critical section 
V(S)  //release lock 

}

Race-free access 
to shared memory 
protected by S 
possible

P(S) and V(S) are semaphore operations, 
allowing at most n accesses, n =1 in this case 
(mutex, lock); Deadlock possible.
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Communication/synchronization


 

Special communication libraries for ES & CPS
• OSEK/VDX COM

• …


 

Adopted communication libraries for general computing
• CORBA (Common Object Request Broker Architecture)

• Message passing interface (MPI)

• Posix threads (PThreads)

• OpenMP

• UPnP, DPWS, JXTA, …

Frequently not easy to adjust to real-time requirements
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What‘s the bottom line?


 

The prevailing technique for writing embedded 
SW has inherent problems; some of the difficulties of writing embedded 
SW are not resulting from design constraints, but from the modeling.


 

However, there is no ideal modeling technique which fits in all cases.


 

The choice of the technique depends on the application.


 

Check code generation from non-imperative models  


 

There is a tradeoff between the power of a modeling technique and its 
analyzability.


 

It may be necessary to combine modeling techniques.


 

In any case, open your eyes & think about the model 
before you write down your spec! Be aware of pitfalls.


 

You may be forced, to use imperative models, but you can 
still implement, for example, finite state machines or KPNs in Java.
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Questions?

Q&A?
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Structure of this course

2: Specification & 
Modeling

3: ES-hardware

4: System 
software (RTOS, 
middleware, …)

8: Test *

5: Evaluation & 
Validation (energy, cost, 
performance, …) 

7: Optimization

6: Application 
mapping

A
pp
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dg
e Design 

repository

* Could be 
integrated 
into loop; 
not included 
in the 
current 
course

Design
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Embedded System Hardware

Embedded system hardware is frequently 
used in a loop (“hardware in a loop“):

 Presentation by K. E. Årzén
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Example: Acceleration Sensor

Courtesy & ©: S. Bütgenbach, TU Braunschweig
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Assuming 0 
 

h(t) 
 

Vref

VrefVref /2
“00“
“01“
“10“
“11“

Vref /4 3Vref /4

Encoding of voltage intervals

h(t)
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Processing units

Need for efficiency (power + energy):

“Power is considered as the most important constraint in 
embedded systems“ 
[in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

Energy consumption by IT is the key concern of 
green computing initiatives (embedded computing 
leading the way)

Why worry about 
energy and power?

http://www.esa.int/images/earth,4.jpg
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Importance of Energy Efficiency

© Hugo De Man, 
IMEC, Philips, 2007

“inherent power

efficiency of silicon“
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Fundamentals of dynamic voltage 
scaling (DVS)

Power consumption of CMOS 
circuits (ignoring leakage):

frequency clock
voltagesupply 

ecapacitanc load
activity switching

with

:
:
:

:

2

f
V
C

fVCP

dd

L

ddL





 

) than  
voltage threshhold

  with

ddt

t

tdd

dd
L

VV
V

VV
VCk






(
:

2

Delay for CMOS circuits:

Decreasing Vdd reduces P quadratically, 
while the run-time of algorithms is only linearly increased
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Multiprocessor systems-on-a-chip 
(MPSoCs)

ht
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Multiprocessor systems-on-a-chip 
(MPSoCs) (2)

©
 H

ug
o 

D
e 

M
an

, I
M

E
C

, 2
00

7

~50% inherent power efficiency of silicon
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Reconfigurable Logic

Custom HW may be too expensive, SW too slow.
Combine the speed of HW with the flexibility of SW
HW with programmable functions and interconnect.
Use of configurable hardware; 

common form: field programmable gate arrays (FPGAs)
Applications: bit-oriented algorithms like


 
encryption,


 
fast “object recognition“ (medical and military)


 
Adapting mobile phones to different standards. 

Very popular devices from


 
XILINX (XILINX Vertex II are recent devices)


 
Actel, Altera and others
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Floor-plan of VIRTEX II FPGAs

More recent: Virtex 5, but no floor-plan found for Virtex 5.
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Virtex 5 CLBs and slices (simplified)

Memories typically used as look-up tables to 
implement any Boolean function of 

 

6 variables.
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Memory

For the memory, efficiency is again a concern:


 
speed (latency and throughput); predictable timing


 
energy efficiency


 
size


 
cost


 
other attributes (volatile vs. persistent, etc)

Memories?

Oops! 
Memories!
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Trends for the Speeds

Speed gap between processor and 
main DRAM increases

[P. Machanik: Approaches to Addressing the Memory Wall, TR Nov. 2002, U. Brisbane]

2

4

8

2 4 5

Speed

years

CPU P
er

for
man

ce

(1
.5-

2 p
.a.

)

DRAM (1.07 p.a.)

31


 

2x 
every 2 
years

1
0

Similar problems also for 
embedded systems & 
MPSoCs
 In the future: 
Memory access times >> 
processor cycle times
 “Memory wall” 
problem
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Access times and energy consumption 
increase with the size of the memory

Example (CACTI Model): 
"Currently, the size of 
some applications is 
doubling every 10 
months" [STMicroelectronics, 
Medea+ Workshop, Stuttgart, 
Nov. 2003]
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Set-associative cache n-way cache

Address

Data

Tag Index

Tags data blockTags

= =

|Set| = 2

1

data block

way 0 way 1$ (€)
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Hierarchical memories 
using scratch pad memories (SPM)

Address space

ARM7TDMI 
cores, well- 
known for 
low power 
consumption

scratch pad memory

0

FFF..

main

SPM

processor

HierarchyHierarchy

ExampleExample

no tag memory

SPM

select
Selection is by an 
appropriate address 
decoder (simple!)

SPM is a small, 
physically separate 
memory mapped into 
the address space
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Why not just use a cache ? 

0

1

2

3

4

5

6

7

8

9

256 512 1024 2048 4096 8192 16384

memory size

En
er

gy
 p

er
 a

cc
es

s 
[n

J]
   

   
   

   
   

   
.

Scratch pad
Cache, 2way, 4GB space
Cache, 2way, 16 MB space
Cache, 2way, 1 MB space

[R. Banakar, S. Steinke, B.-S. Lee, 2001]

2. Energy for parallel access of sets, in 
comparators, muxes.
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Structure of this course

2: Specification & 
Modeling

3: ES-hardware

4: System 
software (RTOS, 
middleware, …)

8: Test *

5: Evaluation & 
Validation (energy, cost, 
performance, …) 

7: Optimization

6: Application 
mapping

A
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e Design 

repository

* Could be 
integrated 
into loop; 
not included 
in the 
current 
course

Design
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Validation and Evaluation

Definition: Validation is the process of checking whether or 
not a certain (possibly partial) design is appropriate for its 
purpose, meets all constraints and will perform as expected 
(yes/no decision).

Definition: Validation with mathematical rigor is called 
(formal) verification.

Definition: Evaluation is the process of computing 
quantitative information of some key characteristics of a 
certain (possibly partial) design.
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How to evaluate designs 
according to multiple criteria?

In practice, many different criteria are relevant 
for evaluating designs:


 
(average) speed


 
worst case speed


 
power consumption


 
cost


 
size


 
weight


 
radiation hardness


 
environmental friendliness ….

How to compare different designs? 
(Some designs are “better” than others)
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Definitions


 

Let X: m-dimensional solution space for the 
design problem. Example: dimensions correspond to # of 
processors, size of memories, type and width of busses etc.


 

Let F: n-dimensional objective space for the design problem. 
Example: dimensions correspond to speed, cost, power 
consumption, size, weight, reliability, …


 

Let f(x)=(f1 (x),…,fn (x)) where xX be an objective function. 
We assume that we are using f(x) for evaluating designs.

solution space objective space 

f(x)

x x
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Pareto points

ii

ii

vuni
vuni




:},...,1{
:},...,1{


 

We assume that, for each objective, a total 
order < and the corresponding order 

 
are defined.


 

Definition: 
Vector u=(u1 ,…,un )

 
F dominates vector v=(v1 ,…,vn )

 
F 


 u is “better” than v with respect to one objective and not 

worse than v with respect to all other objectives:


 

Definition: 
Vector u

 
F is indifferent with respect to vector v

 
F 

 neither u dominates v nor v dominates u
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Pareto Point

Objective 1 
(e.g. energy 
consumption)

Objective 2 
(e.g. run time)

worse

better

Pareto-point

indifferent

indifferent

(Assuming minimization of objectives)
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Worst/best case execution times 
(WCET/BCET)

Requirements on WCET estimates:


 
Safeness: WCET 

 
WCETEST !


 

Tightness: WCETEST – WCET  minimal

© h. falk/p. marwedel
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ILP model


 

Objective function reflects 
execution time as as function of 
the execution time of blocks. 
To be maximized.


 

Constraints reflect 
dependencies between blocks.


 

Avoids explicit consideration of 
all paths

 Called implicit path 
enumeration technique.



- 96 - p. marwedel, 
informatik 12, 2011

Example (1)

CFGProgram

_main: 21 cycles
_L1:   27
_L3:    2
_L4:    2
_L5:   20
_L6:   13
_L2:   20

int main()
{
int i, j = 0;

_Pragma( "loopbound min 
100 max 100" );

for ( i = 0; i < 100; i++ ) {
if ( i < 50 )
j += i;

else
j += ( i * 13 ) % 42;

}

return j;
}

WCETs of BB 
(aiT 4 TriCore)
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Example (2)

/* Objective function = WCET to be maximized*/
21 x2 + 27 x7 + 2 x11 + 2 x14 + 20 x16 + 13 x18 + 20 x19;
/* CFG Start Constraint */ x0 - x4 = 0;
/* CFG Exit Constraint */  x1 - x5 = 0;
/* Constraint for flow entering function main */
x2 - x4 = 0;
/* Constraint for flow leaving exit node of main */
x3 - x5 = 0;
/* Constraint for flow entering exit node of main */
x3 - x20 = 0;
/* Constraint for flow entering main = flow leaving main */
x2 - x3 = 0;
/* Constraint for flow leaving CFG node _main */
x2 - x6 = 0;
/* Constraint for flow entering CFG node _L1 */
x7 - x8 - x6 = 0;
/* Constraint for flow leaving CFG node _L1 */
x7 - x9 - x10 = 0;
/* Constraint for lower loop bound of _L1 */
x7 - 101 x9 >= 0;
/* Constraint for upper loop bound of _L1 */
x7 - 101 x9 <= 0; ….



 

Virtual start node


 

Virtual end node


 

Virtual end node per function
Variables:


 

1 variable per node


 

1 variable per edge
Constraints: „Kirchhoff“ equations per node


 

Sum of incoming 
edge variables = 
flux through node



 

Sum of outgoing 
edge variables = 
flux through node

ILP

_main: 21 cycles
_L1:   27
_L3:    2
_L4:    2
_L5:   20
_L6:   13
_L2:   20

x7

x6

x8

x9

x10
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Real-time calculus (RTC)/ 
Modular performance analysis (MPA)

1

2

3

p 2p 3p

u


l
1

2

3

p 2p 3p

u


l


p-J p+J

periodic event stream periodic event stream with jitter

Thiele et al. (ETHZ): Extended network 
calculus: Arrival curves describe the maximum and 
minimum number of events arriving in some time interval .
Examples:

p pp-J p-J
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RTC/MPA: Service curves

Service curves  u resp.  ℓ
 

describe the 
maximum and minimum service capacity available in some 
time interval 

s

p

bandwidth b
TDMA bus

ps p-s p+s

b s

2p

u
l

Example:
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RTC/MPA: Workload characterization

 u resp.  ℓ
 

describe the maximum and minimum 
service capacity required as a function of the number e of 
events. Example:

1 2 3

4

8

12

16

e

WCET=4

BCET=3

 u

 l
(Defined 
only for 
an integer 
number of 
events)
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RTC/MPA: System of real time 
components

 ul
 ,

RTC

RTC’





 ','

u




RTC”

…

 ','
ul



 ul
 ,

Incoming event streams and available capacity 
are transformed by real-time components:

Theoretical results 
allow the computation 
of properties of 
outgoing streams 
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RTC/MPA: Transformation of arrival 
and service curves 

   uluuu
 ,min'   Resulting arrival curves:

Remaining service curves: 

Where: 
    )()(inf ugutftgf

tu


0

    )()(inf ugutftgf
u


0

  0' 
luu



   llull
  ,min'   

  0' 
ull



    )()(sup ugutftgf
tu


0

    )()(sup ugutftgf
u


0
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Summary

ES hardware


 
HW in a loop


 
Sensors, discretization


 
Processors


 
FPGAs


 
Memories


 
Communication ( presentation by L. Almeida)


 
Back to the analog world

Evaluation and validation


 
Multiple objectives, Pareto optimality


 
Computation of worst case execution times (WCETs)


 
Real-time calculus
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Questions?

Q&A?
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Structure of this course

2: Specification & 
Modeling

3: ES-hardware

4: System 
software (RTOS, 
middleware, …)

8: Test *

5: Evaluation & 
Validation (energy, cost, 
performance, …) 

7: Optimization

6: Application 
mapping
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* Could be 
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into loop; 
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in the 
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course

Design
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Aperiodic scheduling; - Scheduling 
with no precedence constraints -

Let {Ti } be a set of tasks. Let:


 
ci be the execution time of Ti ,


 
di be the deadline interval, that is, 

the time between Ti becoming available 
and the time until which Ti has to finish execution.


 

li be the laxity or slack, defined as li = di - ci


 
fi be the finishing time.
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Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due 
date (deadline) first.

EDD requires all tasks to be sorted by their (absolute) 
deadlines. Hence, its complexity is O(n log(n)). 

fifi fi
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Earliest Deadline First (EDF) 
- Algorithm -

Earliest deadline first (EDF) algorithm:


 
Each time a new ready task arrives:


 

It is inserted into a queue of ready tasks, sorted by their 
absolute deadlines. Task at head of queue is executed.


 

If a newly arrived task is inserted at the head of the 
queue, the currently executing task is preempted.

Straightforward approach with sorted lists (full comparison with 
existing tasks for each arriving task) requires run-time O(n2); 
(less with binary search or bucket arrays). 

Sorted queue

Executing task
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Earliest Deadline First (EDF) 
- Example -

Later deadline
 no preemption

Earlier deadline 
 preemption
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Periodic scheduling

Each execution instance of a task is called a job.

Notion of optimality for aperiodic scheduling does not make 
sense for periodic scheduling.

For periodic scheduling, the best that we can do is to design 
an algorithm which will always find a schedule if one exists. 
 A scheduler is defined to be optimal iff it will find a 
schedule if one exists.

T1

T2
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Periodic scheduling: Scheduling with 
no precedence constraints

Let {Ti } be a set of tasks. Let:


 
pi be the period of task Ti ,


 
ci be the execution time of Ti ,


 
di be the deadline interval, that is, 

the time between Ti becoming available 
and the time until which Ti has to finish execution.


 

li be the laxity or slack, defined as li = di - ci


 
fi be the finishing time.

li

di

ci
t

i

pi
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Independent tasks: 
Rate monotonic (RM) scheduling

Most well-known technique for scheduling 
independent periodic tasks [Liu, 1973].
Assumptions:


 
All tasks that have hard deadlines are periodic.


 

All tasks are independent.


 
di =pi , for all tasks.


 

ci is constant and is known for all tasks.


 
The time required for context switching is negligible.


 

For a single processor and for n tasks, the following 
equation holds for the average utilization µ:

)12( /1

1




n
n

i i

i n
p
c
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Rate monotonic (RM) scheduling 
- The policy -

RM policy: The priority of a task is a monotonically 
decreasing function of its period.
At any time, a highest priority task among all those that are 
ready for execution is allocated.

Theorem: If all RM assumptions are met, 
schedulability is guaranteed.
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Maximum utilization for guaranteed 
schedulability

Maximum utilization as a function of the number of tasks:

)2ln()12((lim

)12(

/1

/1

1










n

n

n
n

i i

i

n

n
p
c
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Example of RM-generated schedule

T1 preempts T2 and T3 .
T2 and T3 do not preempt each other.
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Failing RMS

Task 1: period 5, execution time 3
Task 2: period 8, execution time 3
µ=3/5+3/8=24/40+15/40=39/40 

 
0.975

2(21/2-1) 
 

0.828
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Intuitively: Why does RM fail ?

No problem if p2 = m p1, mℕ :

T1

T2

t fits

T1

T2

t

should be 
completed

Switching to T1 too early, 
despite early deadline for T2

t

t
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Structure of the course

2: Specification & 
Modeling

3: ES-hardware

4: System 
software (RTOS, 
middleware, …)

8: Test *

5: Evaluation & 
Validation (energy, cost, 
performance, …) 

7: Optimization

6: Application 
mapping

A
pp

lic
at

io
n 

K
no

w
le

dg
e Design 

repository

* Could be 
integrated 
into loop; 
not included 
in the 
current 
course

Design

More on validation/verification:  tutorial by Larsen
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Migration of data & instructions, global 
optimization model (TU Dortmund)

Which memory object (array, 
loop, etc.) to be stored in SPM?
Non-overlaying (“Static”)  
allocation:
Gain gk and size sk for each object 
k. Maximise gain G = gk , 
respecting size of SPM SSP   sk .
Solution: knapsack algorithm.
Overlaying (“dynamic”) 
allocation:
Moving objects back and forthProcessor

Scratch pad 
memory, 
capacity SSP

main 
memory

?

For i .{   }

for j ..{   }

while ...

Repeat

call ...

Array ...

Int ...

Array

Example:
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IP representation 
- migrating functions and variables-

Symbols:
S(vark ) = size of variable k
n(vark ) = number of accesses to variable k
e(vark ) = energy saved per variable access, if vark is migrated
E(vark ) = energy saved if variable vark is migrated (= e(vark ) n(vark ))
x(vark ) = decision variable, =1 if variable k is migrated to SPM, 

=0 otherwise
K = set of variables; Similar for functions I

Integer programming formulation:
Maximize 

 
k K x(vark ) E(vark ) + iI x(Fi ) E(Fi )

Subject to the constraint

k K S(vark ) x(vark ) + i I S(Fi ) x(Fi ) 
 

SSP
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Reduction in energy and average run- 
time

Multi_sort 
(mix of sort 
algorithms)

C
yc

le
s 

[x
10

0]
E

ne
rg

y 
[µ

J]
Feasible with standard compiler & postpassoptimization

Measured processor / external memory energy + 
CACTI values for SPM (combined model)

Numbers will change with technology, 
algorithms remain unchanged.
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Multiple scratch pads

scratch pad 0, 256 entries

scratch pad 1, 2 k entries

scratch pad 2, 16 k entries

background memory

ad
dr

es
se

s

0

Small is beautiful: 

One small SPM is 
beautiful ().

May be, several 
smaller SPMs are 
even more 
beautiful (  )?
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Optimization for multiple scratch pads

 
i

iij
j

j nxeC ,Minimize

With ej : energy per access to memory j,
and xj,i = 1 if object i is mapped to memory j, =0 otherwise,
and ni : number of accesses to memory object i,
subject to the constraints:

 
i

jiij SSPSxj ,:

 
j

ijxi 1: ,

With Si : size of memory object i, 
SSPj : size of memory j.
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Considered partitions

# of 
partitions

number of partitions of size:
4k 2k 1k 512 256 128 64

7 0 1 1 1 1 1 2
6 0 1 1 1 1 2 0
5 0 1 1 1 2 0 0
4 0 1 1 2 0 0 0
3 0 1 2 0 0 0 0
2 0 2 0 0 0 0 0
1 1 0 0 0 0 0 0

Example of considered memory partitions for a total 
capacity of 4096  bytes
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Results for parts of GSM coder/ 
decoder

A key advantage of partitioned 
scratchpads for multiple applications is 
their ability to adapt to the size of the 
current working set.

„Working set“
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Scratch-pad/tightly coupled memory 
based predictability

C program

SPM size

executable

Actual 
performance

Worst case 
execution time

memory-aware 
compiler ARMulator

aiT

Pre run-time scheduling is often the only practical means 
of providing predictability in a complex system [Xu, Parnas].
 Time-triggered, statically scheduled operating systems
 Let‘s do the same for the memory system

Are SPMs really more timing predictable?
Analysis using the aiT timing analyzer
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Architectures considered

ARM7TDMI with 3 different memory 
architectures:

1. Main memory 
LDR-cycles: (CPU,IF,DF)=(3,2,2) 
STR-cycles: (2,2,2) 
* = (1,2,0)

2. Main memory + unified cache 
LDR-cycles: (CPU,IF,DF)=(3,12,6) 
STR-cycles: (2,12,3) 
* = (1,12,0)

3. Main memory + scratch pad 
LDR-cycles: (CPU,IF,DF)=(3,0,2) 
STR-cycles: (2,0,0) 
* = (1,0,0)
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Results for G.721

References:


 

Wehmeyer, Marwedel: Influence of Onchip Scratchpad Memories on WCET: 4th Intl Workshop on 
worst-case execution time (WCET) analysis, Catania, Sicily, Italy, June 29, 2004



 

Second paper on SP/Cache and WCET at DATE, March 2005

Using Scratchpad: Using Unified Cache:
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Tight integration of compilation and 
timing analysis


 

Computation of the WCET after compilation 
does not give us optimum results


 

Let‘s optimize for the WCET 
during compilation


 

Tight integration 
of aiT WCET 
analyzer from 
AbsInt into 
experimental 
WCET aware 
compiler WCC
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Average WCETEST for 73 Benchmarks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Relative SPM Size [%]

A
vg

. R
el

at
iv

e 
W

C
ET

ES
T [

%
]

X-Axis: SPM size = x% of benchmark’s code size
Y-Axis: 100% = WCETEST when not using SPM at all

Steady WCETEST decreases for increasing SPM sizes
WCETEST reductions from 7% – 40%

© h. falk/p. marwedel

H. Falk, J. Kleinsorge: Optimal 
Static WCET-aware Scratch- 
pad Allocation of Program 
Code, 46th Design Automation 
Conference (DAC), 2009
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Dynamic replacement within scratch 
pad


 

Effectively results in a kind 
of compiler-controlled 
segmentation/ paging for 
SPM 


 

Address assignment within 
SPM required 
(paging or segmentation- 
like)

Reference: Verma, Marwedel: Dynamic Overlay of 
Scratchpad Memory for Energy Minimization, ISSS 2004

CPU

Memory

Memory

SPM
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Dynamic replacement within scratch pad 
- Results for edge detection relative to static 
allocation -

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

64 100 128 200 256 avg.
Scratchpad Size (Bytes)

Processor Energy Memory Energy Total Energy Execution Time
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Saving/Restoring Context Switch

Saving Context Switch (Saving)


 
Utilizes SPM as a common region 
shared all processes


 

Contents of processes are copied 
on/off the SPM at context switch


 

Good for small scratchpads

P1

P2

P3

Scratchpad

Process P3
Process P1Process P2

Saving/Restoring at 
context switch

Saving/Restoring 
at context switch
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Non-Saving Context Switch

Process P1

Process P3

Process P2

Scratchpad

Process P1

Non-Saving Context Switch


 
Partitions SPM into disjoint regions


 
Each process is assigned a SPM 
region


 
Copies contents during initialization


 
Good for large scratchpads

Process P2

Process P3

P1

P2

P3
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Hybrid Context Switch

Hybrid Context Switch (Hybrid)


 
Disjoint + Shared SPM regions


 
Good for all scratchpads


 
Analysis is similar to Non-Saving 
Approach

Scratchpad

Process 
P1,P2, P3

Process P1

Process P2

Process P3

Process  P1Process P2Process P3

P1

P2

P3Saving/Restoring 
at context switch

Saving/Restoring at 
context switch
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Research monographs


 

Lars Wehmeyer, Peter Marwedel: Fast, 
Efficient and Predictable Memory 
Accesses, Springer, 2006


 

Manish Verma, Peter Marwedel: 
Advanced Memory Optimization 
Techniques for Low-Power Embedded 
Processors, Springer, May 2007


 

Paul Lokuciejewski, Peter Marwedel: 
WCET-aware Source Code and 
Assembly Level Optimization Techniques 
for Real-Time Systems, Springer, 2010
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Textbook(s)

Several editions/translations:


 
1st edition

• English
- Original hardcover version
- Reprint, soft cover, 2006

• German, 2007
• Chinese, 2006
• Macedonian, 2010


 

2nd edition, with CPS
• English, Dec. 2010/Jan. 

2011
• German, TBA
• Plans for Portuguese & 

Greek edition

Peter
Marwedel

Peter
Marwedel

Peter
Marwedel

Slides available at: 
http://ls12-www.cs.tu-dortmund.de/ 
~marwedel/es-book
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Overall Summary


 

Introduction, Motivation and Overview
• Motivation
• Common characteristics


 

Specifications and Modeling 
• Models of computation
• Early phases
• FSM-based models, Data flow, Petri nets, discrete 

event-based models, Von-Neumann models
• Comparison


 

Exploitation of the memory hierarchy 
• Scratch pad memories

- Non-overlaying allocation
- Overlaying allocation
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Links to the rest of the course

Morning Afternoon

Monday Marwedel Marwedel

Tuesday Madsen Larsen

Wednesday Madsen Larsen

Thursday Almeida Arzen

Friday Almeida Arzen
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