
Embedded System Foundations
of Cyber-Physical Systems

Peter Marwedel
TU Dortmund,

Dortmund, Germany

G
ra

ph
ic

s:
 ©

 A
le

xa
nd

ra
 N

ol
te

, G
es

in
e

M
ar

w
ed

el
, 2

00
3

These slides use Microsoft clip arts.
Microsoft copyright restrictions apply.

2011年 08 月 08 日

- 2 - p. marwedel,
informatik 12, 2011

Motivation for course (1)

According to forecasts, future of IT
characterized by terms such as


Disappearing computer,



Ubiquitous computing,


Pervasive computing,



Ambient intelligence,


Post-PC era,



Cyber-physical systems.
Basic technologies:


Embedded Systems



Communication technologies ©
P

. M
ar

w
ed

el
, 2

01
1

- 3 - p. marwedel,
informatik 12, 2011

Motivation for Course (2)

“Information technology (IT) is on the verge of another
revolution. …..
networked systems of embedded computers ... have the
potential to change radically the way people interact with their
environment by linking together a range of devices and
sensors that will allow information to be collected, shared, and
processed in unprecedented ways. ...
The use … throughout society could well dwarf previous
milestones in the information revolution.”

National Research Council Report (US)
Embedded Everywhere, 2001

- 4 - p. marwedel,
informatik 12, 2011

Embedded Systems &
Cyber-Physical Systems

“Dortmund“ Definition: [Peter Marwedel]

Embedded systems are information processing systems
embedded into a larger product

Berkeley: [Edward A. Lee]:
Embedded software is software integrated with physical
processes. The technical problem is managing time and
concurrency in computational systems.

 Definition: Cyber-Physical (cy-phy) Systems (CPS) are
integrations of computation with physical processes
[Edward A. Lee, 2006].

- 5 - p. marwedel,
informatik 12, 2011

Application area Automotive
electronics: clearly cyber-physical



Multiple networks



Multiple networked
processors

Functions by embedded processing:



ABS: Anti-lock braking systems



ESP: Electronic stability control



Airbags



Efficient automatic gearboxes



Theft prevention with smart keys



Blind-angle alert systems



... etc ...

© P. Marwedel, 2011

[Based on slide by J.Engblom]

- 6 - p. marwedel,
informatik 12, 2011

Application area avionics:
also cyber-physical



Flight control systems,


anti-collision systems,


pilot information systems,


power supply system,


flap control system,


entertainment system,


…

Dependability is of outmost
importance.

©
P

. M
ar

w
ed

el
, 2

01
1

- 7 - p. marwedel,
informatik 12, 2011

More application areas



Railways



Telecommunication



Consumer electronics



Robotics



Public safety



Smart homes

Mostly cyber-physical
© P. Marwedel, 2011

- 8 - p. marwedel,
informatik 12, 2011

Growing importance of cyber-physical/
embedded systems



the global mobile entertainment industry is
now worth some $32 bln…predicting average revenue
growth of 28% for 2010 [www.itfacts.biz, July 8th, 2009]



…, the market for remote home health monitoring is
expected to generate $225 mln revenue in 2011, up from
less than $70 mln in 2006, according to Parks Associates.
[www.itfacts.biz, Sep. 4th, 2007]



Funding in the 7th European Framework


Creation of the ARTEMIS Joint Undertaking in Europe


Funding of CPS research in the US


Joint education effort of Taiwanese Universities


….

- 9 - p. marwedel,
informatik 12, 2011

Characteristics of cyber-physical/
embedded systems



Must be dependable


Must be efficient

• energy, code-size,
• run-time, weight,
• cost efficient



Dedicated towards a certain application


Dedicated user interface


Many CPS/ES must meet real-time constraints


Connected to physical environment


Hybrid systems (analog + digital parts).


Typically, CPS/ES are reactive systems:
(In continual interaction with is environment)

- 10 - p. marwedel,
informatik 12, 2011

CPS & ES Hardware

CPS & ES hardware is frequently used in a loop
(“hardware in a loop“):

Cyber-physical systems (!) © P. Marwedel, 2011

- 11 - p. marwedel,
informatik 12, 2011

Real-time constraints



CPS must meet real-time constraints
• A real-time system must react to stimuli from the

controlled object (or the operator) within the time
interval dictated by the environment.

• For real-time systems, right answers arriving too
late are wrong.

• “A real-time constraint is called hard, if not
meeting that constraint could result in a
catastrophe“ [Kopetz, 1997].

• All other time-constraints are called soft.
• A guaranteed system response has to be explained

without statistical arguments

- 12 - p. marwedel,
informatik 12, 2011

Challenges for Software in CPS



Dynamic environments



Capture the required behaviour!



Validate specifications



Efficient translation of specifications
into implementations!



How can we check that we meet real-
time constraints?



How do we validate embedded real-
time software? (large volumes of data,
testing may be safety-critical)

- 13 - p. marwedel,
informatik 12, 2011

Structure of this course

2: Specification &
Modeling

3: ES-hardware

4: System
software (RTOS,
middleware, …)

8: Test *

5: Evaluation &
Validation (energy, cost,
performance, …)

7: Optimization

6: Application
mapping

A
pp

lic
at

io
n

K
no

w
le

dg
e Design

repository

Generic loop: tool chains differ in the number and type of iterations
Numbers denote sequence of chapters

* Could be
integrated
into loop;
not included
in the
current
course

Design

- 14 - p. marwedel,
informatik 12, 2011

Motivation for considering specs &
models



Why considering specs & models?



If something is wrong with the specs, then it
will be difficult to get the design right,
potentially wasting a lot of time.



Typically, we work with models of the
system under design (SUD)

What is a model anyway?

time

Specification Design
repository

…

- 15 - p. marwedel,
informatik 12, 2011

Models

Definition: “A model is a simplification of another entity,
which can be a physical thing or another model. The model
contains exactly those characteristics and properties of the
modeled entity that are relevant for a given task. A model
is minimal with respect to a task if it does not contain any other
characteristics than those relevant for the task.”

[Jantsch, 2004]:

Which requirements do we have for our models?

- 16 - p. marwedel,
informatik 12, 2011

Specification of CPS/ES:
Requirements for models


Hierarchy



Compositional behavior


Timing behavior



State-oriented behavior


Event-handling



Concurrency


Synchronization and communication



Presence of programming elements


Executability



Support for the design of large systems


No obstacles for efficient implementation



Domain-specific support


Non-functional properties

No single
model
will meet
all
require-
ments


 compro-
mises

- 17 - p. marwedel,
informatik 12, 2011

Models of computation
- Definition -

What does it mean, “to compute”?
Models of computation define:



Components and an execution model for
computations for each component



Communication model for exchange of
information between components.

C-1

C-2

- 18 - p. marwedel,
informatik 12, 2011

Communication



Shared memory

memoryComp-1 Comp-2

Variables accessible to several components/tasks.

Model mostly restricted to local systems.

- 19 - p. marwedel,
informatik 12, 2011

Communication via shared memory

Several threads access the same memory


Very fast communication technique
(no extra copying)


Potential race conditions:

thread a {
u = 1;
if u<5 {u = u + 1; ..}

}

thread b {
..
u = 5

}

Context switch after the test could result in u == 6.
inconsistent results possible
 Critical sections = sections at which exclusive access to

resource r (e.g. shared memory) must be guaranteed

- 20 - p. marwedel,
informatik 12, 2011

Non-blocking/
asynchronous message passing

Sender does not have to wait until message has arrived;

…
send ()
…

…
receive ()
…

Potential problem: buffer overflow

- 21 - p. marwedel,
informatik 12, 2011

Rendez-vous, Blocking/
synchronous message passing

Sender will wait until receiver has received message

…
send ()
…

…
receive ()
…

No buffer overflow, but reduced performance.

- 22 - p. marwedel,
informatik 12, 2011

Organization of computations
within the components (1)



Finite state machines



Data flow
(models the flow of data in a distributed system)



Differential equations

b
t
x





2

2

- 23 - p. marwedel,
informatik 12, 2011

Organization of computations
within the components (2)



Discrete event model

a
b
c

time
actiona:=5 b:=7 c:=8 a:=6 a:=9

queue

5 10 13 15 195
7

8

6



Von Neumann model

Sequential execution, program memory etc.

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA |

C, C++, JavaVon-Neumann
model

Plain text, use cases
| (Message) sequence charts

Undefined
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL*, Verilog,
SystemC, …

Discrete event
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite
state machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 24 - p. marwedel,
informatik 12, 2010

- 25 - p. marwedel,
informatik 12, 2011

Support for early design phases



Informal text



Uses cases



(Message) sequence charts

The system must respond to
incoming calls. It must play the
welcome message followed by a
beep and then start recording …

Similar to SW specification

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA |

C, C++, JavaVon-Neumann
model

Plain text, use cases
| (Message) sequence charts

Undefined
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL*, Verilog,
SystemC, …

Discrete event
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite
state machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 26 - p. marwedel,
informatik 12, 2010

- 27 - p. marwedel,
informatik 12, 2011

StateCharts

Extending classical automata to model ES & CPS


Adding timing with timed automata ( tutorial by Larsen)


Adding hierarchy:
Complex graphs cannot be understood by humans.
 Introduction of hierarchy  StateCharts [Harel, 1987]
StateChart = the only unused combination of
„flow“ or „state“ with „diagram“ or „chart“

Used here as a (prominent) example of a
model of computation based on shared
memory communication, appropriate only for
local (non-distributed) systems

- 28 - p. marwedel,
informatik 12, 2011

Introducing hierarchy

FSM will be in exactly one of
the substates of S if S is active
(either in A or in B or ..)

- 29 - p. marwedel,
informatik 12, 2011

Definitions



Current states of FSMs are also called active
states.



States which are not composed of other states are called
basic states.


States containing other states are called super-states.



Super-states S are called OR-super-states, if exactly one
of the sub-states of S is active whenever S is active.

superstate

substates

- 30 - p. marwedel,
informatik 12, 2011

Default state mechanism

Try to hide internal
structure from outside
world!

 Default state

Filled circle
indicates sub-state
entered whenever
super-state is entered.

Not a state by itself!

- 31 - p. marwedel,
informatik 12, 2011

Concurrency

Convenient
ways of
describing
concurrency
are required.

AND-super-
states:
FSM is in all
(immediate)
sub-states of a
super-state.

Example:

- 32 - p. marwedel,
informatik 12, 2011

Timers

Since time needs to be modeled in embedded systems,
timers need to be modeled.
In StateCharts, special edges can be used for timeouts.

If event a does not happen while the system is in the left
state for 20 ms, a timeout will take place.

- 33 - p. marwedel,
informatik 12, 2011

Using timers in an answering machine

- 34 - p. marwedel,
informatik 12, 2011

Questions?

Q&A?

- 35 - p. marwedel,
informatik 12, 2011

Structure of this course

2: Specification &
Modeling

3: ES-hardware

4: System
software (RTOS,
middleware, …)

8: Test *

5: Evaluation &
Validation (energy, cost,
performance, …)

7: Optimization

6: Application
mapping

A
pp

lic
at

io
n

K
no

w
le

dg
e Design

repository

Generic loop: tool chains differ in the number and type of iterations
Numbers denote sequence of chapters

* Could be
integrated
into loop;
not included
in the
current
course

Design

- 36 - p. marwedel,
informatik 12, 2011

The StateCharts simulation phases
(StateMate Semantics)

How are edge labels evaluated?
Three phases:

1. Effect of external changes on events and conditions is
evaluated,

2. The set of transitions to be made in the current step
and right hand sides of assignments are computed,

3. Transitions become effective, variables obtain new
values.

Separation into phases 2 and 3 guarantees and
reproducible behavior.

- 37 - p. marwedel,
informatik 12, 2011

Example

In phase 2, variables a and b are assigned to temporary
variables:

In phase 3, these are assigned to a and b.

As a result, variables a and b are swapped.
Use pen on tablet

- 38 - p. marwedel,
informatik 12, 2011

Example (2)

In a single phase environment, executing the left state first
would assign the old value of b (=0) to a and b:

Executing the right state first would assign the old value of a
(=1) to a and b.

The result would depend on the execution order.
Use pen on tablet

- 39 - p. marwedel,
informatik 12, 2011

Reflects model of clocked hardware

In an actual clocked (synchronous) hardware system, both
registers would be swapped as well.

Same separation into phases found in other languages as
well, especially those that are intended to model hardware.

- 40 - p. marwedel,
informatik 12, 2011

Steps

Execution of a StateMate model consists of
a sequence of (status, step) pairs

Status= values of all variables + set of events + current time
Step = execution of the three phases (StateMate semantics)

Status phase 2

phase 3

phase 1 Other implementations of
StateCharts do not have

these 3 phases!

- 41 - p. marwedel,
informatik 12, 2011

Determinate vs. deterministic



Kahn (1974) calls a system determinate if we will always
obtain the same result for a fixed set (and timing) of inputs


Others call this property deterministic
However, this term has several meanings:

• Non-deterministic finite state machines
• Non-deterministic operators

(e.g. + with non-deterministic result in low order bits)
• Behavior not known before run-time

(unknown input results in non-determinism)
• In the sense of determinate as used by Kahn

In order to avoid confusion, we use the term “determinate“
today.

- 42 - p. marwedel,
informatik 12, 2011

StateCharts determinate or not?

Determinate (in this context) means:
Must all simulators return the same result for a given input?


Separation into 2 phases a required condition


Semantics 

StateMate semantics may be non-determinate

Potential other sources of non-determinate behavior:


Choice between conflicting transitions resolved arbitrarily

 Determinate behavior for StateMate semantics if
transition conflicts are resolved and no other sources of
undefined behavior exist

A A Tools typically issue a warning if
such a situation could exist

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA |

C, C++, JavaVon-Neumann
model

Plain text, use cases
| (Message) sequence charts

Undefined
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL*, Verilog,
SystemC, …

Discrete event
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite
state machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 43 - p. marwedel,
informatik 12, 2010

- 44 - p. marwedel,
informatik 12, 2011

Message passing in SDL

Communication between FSMs (or “processes“)
is based on message-passing, assuming a potentially
indefinitely large FIFO-queue.



Each process
fetches next entry
from FIFO,


checks if input
enables transition,


if yes: transition
takes place,


if no: input is ignored
(exception: SAVE-
mechanism).

- 45 - p. marwedel,
informatik 12, 2011

Determinate?

Let tokens be arriving at FIFO at the same time:
Order in which they are stored, is unknown:

All orders are legal: simulators can show different
behaviors for the same input, all of which are correct.

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA |

C, C++, JavaVon-Neumann
model

Plain text, use cases
| (Message) sequence charts

Undefined
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL*, Verilog,
SystemC, …

Discrete event
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite
state machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 46 - p. marwedel,
informatik 12, 2010

- 47 - p. marwedel,
informatik 12, 2011

Data flow as a “natural”
model of applications

Example: Video on demand system

www.ece.ubc.ca/~irenek/techpaps/vod/vod.html

- 48 - p. marwedel,
informatik 12, 2011

Data flow modeling

Definition: Data flow modeling is …
“the process of identifying, modeling and documenting how
data moves around an information system.
Data flow modeling examines


processes (activities that transform data from one form to
another),


data stores (the holding areas for data),


external entities (what sends data into a system or receives
data from a system, and


data flows (routes by which data can flow)”.

[Wikipedia: Structured systems analysis and design method.
http://en.wikipedia.org/wiki/Structured Systems Analysis and
Design Methodology, 2010 (formatting added)].

- 49 - p. marwedel,
informatik 12, 2011

Kahn process networks



Each component is a program/task/process,
not an FSM



Communication is by FIFOs; no overflow considered
 writes never have to wait,
 reads wait if FIFO is empty.



Only one sender and one receiver per FIFO
 no SDL-like conflicts at FIFOs

- 50 - p. marwedel,
informatik 12, 2011

Example

© R. Gupta (UCSD), W. Wolf (Princeton), 2003

levi animation

Process f(in int u, in int v, out int w){
int i; bool b = true;
for (;;) {
i= b ? wait(u) : wait(v);

//wait returns next token in FIFO, waits if empty
send (i,w); //writes a token into a FIFO w/o blocking
b = !b;
}

- 51 - p. marwedel,
informatik 12, 2011

Key beauty of KPNs



A process cannot check whether data is
available before attempting a read.



A process cannot wait for data for more than one port at a
time.



Therefore, the order of reads depends only on data, not on
the arrival time.



Therefore, for a given input, for Kahn process networks the
result will always the same, regardless of the speed of the
nodes.

Many applications in cyber-physical/embedded system
design: simplifies emulation of real systems.

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA |

C, C++, JavaVon-Neumann
model

Plain text, use cases
| (Message) sequence charts

Undefined
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL*, Verilog,
SystemC, …

Discrete event
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite
state machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 52 - p. marwedel,
informatik 12, 2010

- 53 - p. marwedel,
informatik 12, 2011

Synchronous data flow (SDF)

Synchronous data flow =
global clock controlling “firing” of nodes

Asynchronous message passing=
tasks do not have to wait until output is accepted.

In the general case, a number of tokens can be produced/
consumed per firing; firing rate depends on # of tokens …

- 54 - p. marwedel,
informatik 12, 2011

Multi-rate models & balance equations
(one for each channel)

MfNf BA 
number of tokens consumed

number of firings per “iteration”number of tokens produced

Adopted from: ptolemy.eecs.berkeley.edu/presentations/03/streamingEAL.ppt

Schedulable statically
In the general case, buffers may be needed at edges.
Decidable:


buffer memory requirements


deadlock

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel

N MFIFO

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA |

C, C++, JavaVon-Neumann
model

Plain text, use cases
| (Message) sequence charts

Undefined
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL*, Verilog,
SystemC, …

Discrete event
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite
state machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 55 - p. marwedel,
informatik 12, 2010

- 56 - p. marwedel,
informatik 12, 2011

Introduction

Introduced in 1962 by Carl Adam Petri in his PhD
thesis. Focus on modeling causal dependencies;
no global synchronization assumed (message passing only).
Key elements:


Conditions
Either met or no met.


Events
May take place if certain conditions are met.


Flow relation
Relates conditions and events.

Conditions, events and the flow relation form
a bipartite graph (graph with two kinds of nodes).

- 57 - p. marwedel,
informatik 12, 2011

Example: Synchronization at single
track rail segment

“Preconditions“

- 58 - p. marwedel,
informatik 12, 2011

Playing the “token game“

use normal view mode!

- 59 - p. marwedel,
informatik 12, 2011

Conflict for resource “track“

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA |

C, C++, JavaVon-Neumann
model

Plain text, use cases
| (Message) sequence charts

Undefined
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL*, Verilog,
SystemC, …

Discrete event
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite
state machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 60 - p. marwedel,
informatik 12, 2010

- 61 - p. marwedel,
informatik 12, 2011

Discrete event semantics

Basic discrete event (DE) semantics


Queue of future actions, sorted by time


Loop:

• Fetch next entry from queue
• Perform function as listed in entry

- May include generation of new entries


Until termination criterion = true

a
b
c

time
actiona:=5 b:=7 c:=8 a:=6 a:=9

queue

5 10 13 15 195
7

8

6

- 62 - p. marwedel,
informatik 12, 2011

Simple example (VHDL notation)

Processes will wait for changes on their input ports.
If they arrive, processes will wake up, compute their code and
deposit changes of output signals in the event queue and wait
for the next event.
If all processes wait, the next entry will be taken from the
event queue.

gate1:
 process

(a,b)

begin
c <= a nor

b;

end;

gate2:
process

(a,b)

begin
c <= a nor

b;

end;

S
a

b
c c

a

R
b

00
01

00
11

00
11

00
10

01
10

- 63 - p. marwedel,
informatik 12, 2011

-simulation cycles
Simulation of an RS-Flipflop

0ns 0ns+

0ns+2

0ns+3
R 1 1 1 1

S 0 0 0 0

Q 1 0 0 0

nQ 0 0 1 1

0ns 0ns+

0ns+2

0ns+3
R 1 1 1 1

S 0 0 0 0

Q 1 0 0 0

nQ 0 0 1 1

00011

11000

0000

0111

1st 

2nd 



cycles reflect the fact that no real
gate comes with zero delay.
 should delay-less signal
assignments be allowed at all?

3rd 

gate1:
process (S,Q)
begin

nQ <= S nor Q;
end;

gate2:
process (R,nQ)
begin

Q <= R nor nQ;
end;

Models of computation
considered in this course

C, C++, Java with libraries
CSP, ADA |

C, C++, JavaVon-Neumann
model

Plain text, use cases
| (Message) sequence charts

Undefined
components

Kahn networks, SDF(Not useful)Data flow

Only experimental systems, e.g.
distributed DE in Ptolemy

VHDL*, Verilog,
SystemC, …

Discrete event
(DE) model

C/E nets, P/T nets, …Petri nets

SDLStateChartsCommunic. finite
state machines

Message passing
Synchronous | Asynchronous

Shared
memory

Communication/
local computation

* Classification is based on implementation of VHDL, Verilog, SystemC with central queue

- 64 - p. marwedel,
informatik 12, 2010

- 65 - p. marwedel,
informatik 12, 2011

Imperative (von-Neumann) model

The von-Neumann model reflects the principles
of operation of standard computers:


Sequential execution of instructions
(sequential control flow, fixed sequence of
operations)


Possible branches


Partitioning of applications into threads


In most cases:

• Context switching between threads, frequently
based on pre-emption (cooperative multi-tasking
or time-triggered context switch less common)

• Access to shared memory

- 66 - p. marwedel,
informatik 12, 2011

Shared memory

Potential race conditions (inconsistent results possible)
 Critical sections = sections at which exclusive access to
resource r (e.g. shared memory) must be guaranteed.

task a {
..
P(S) //obtain lock
.. // critical section
V(S) //release lock

}

task b {
..
P(S) //obtain lock
.. // critical section
V(S) //release lock

}

Race-free access
to shared memory
protected by S
possible

P(S) and V(S) are semaphore operations,
allowing at most n accesses, n =1 in this case
(mutex, lock); Deadlock possible.

- 67 - p. marwedel,
informatik 12, 2011

Communication/synchronization



Special communication libraries for ES & CPS
• OSEK/VDX COM

• …



Adopted communication libraries for general computing
• CORBA (Common Object Request Broker Architecture)

• Message passing interface (MPI)

• Posix threads (PThreads)

• OpenMP

• UPnP, DPWS, JXTA, …

Frequently not easy to adjust to real-time requirements

- 68 - p. marwedel,
informatik 12, 2011

What‘s the bottom line?



The prevailing technique for writing embedded
SW has inherent problems; some of the difficulties of writing embedded
SW are not resulting from design constraints, but from the modeling.



However, there is no ideal modeling technique which fits in all cases.



The choice of the technique depends on the application.



Check code generation from non-imperative models



There is a tradeoff between the power of a modeling technique and its
analyzability.



It may be necessary to combine modeling techniques.



In any case, open your eyes & think about the model
before you write down your spec! Be aware of pitfalls.



You may be forced, to use imperative models, but you can
still implement, for example, finite state machines or KPNs in Java.

- 69 - p. marwedel,
informatik 12, 2011

Questions?

Q&A?

- 70 - p. marwedel,
informatik 12, 2011

Structure of this course

2: Specification &
Modeling

3: ES-hardware

4: System
software (RTOS,
middleware, …)

8: Test *

5: Evaluation &
Validation (energy, cost,
performance, …)

7: Optimization

6: Application
mapping

A
pp

lic
at

io
n

K
no

w
le

dg
e Design

repository

* Could be
integrated
into loop;
not included
in the
current
course

Design

- 71 - p. marwedel,
informatik 12, 2011

Embedded System Hardware

Embedded system hardware is frequently
used in a loop (“hardware in a loop“):

 Presentation by K. E. Årzén

- 72 - p. marwedel,
informatik 12, 2011

Example: Acceleration Sensor

Courtesy & ©: S. Bütgenbach, TU Braunschweig

- 73 - p. marwedel,
informatik 12, 2011

Assuming 0 

h(t) 

Vref

VrefVref /2
“00“
“01“
“10“
“11“

Vref /4 3Vref /4

Encoding of voltage intervals

h(t)

- 74 - p. marwedel,
informatik 12, 2011

Processing units

Need for efficiency (power + energy):

“Power is considered as the most important constraint in
embedded systems“
[in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

Energy consumption by IT is the key concern of
green computing initiatives (embedded computing
leading the way)

Why worry about
energy and power?

http://www.esa.int/images/earth,4.jpg

- 75 - p. marwedel,
informatik 12, 2011

Importance of Energy Efficiency

© Hugo De Man,
IMEC, Philips, 2007

“inherent power

efficiency of silicon“

- 76 - p. marwedel,
informatik 12, 2011

Fundamentals of dynamic voltage
scaling (DVS)

Power consumption of CMOS
circuits (ignoring leakage):

frequency clock
voltagesupply

ecapacitanc load
activity switching

with

:
:
:

:

2

f
V
C

fVCP

dd

L

ddL





 

) than
voltage threshhold

 with

ddt

t

tdd

dd
L

VV
V

VV
VCk






(
:

2

Delay for CMOS circuits:

Decreasing Vdd reduces P quadratically,
while the run-time of algorithms is only linearly increased

- 77 - p. marwedel,
informatik 12, 2011

Multiprocessor systems-on-a-chip
(MPSoCs)

ht
tp

://
w

w
w

.m
ps

oc
-fo

ru
m

.o
rg

/2
00

7/
sl

id
es

/H
at

to
ri.

pd
f

- 78 - p. marwedel,
informatik 12, 2011

Multiprocessor systems-on-a-chip
(MPSoCs) (2)

©
 H

ug
o

D
e

M
an

, I
M

E
C

, 2
00

7

~50% inherent power efficiency of silicon

- 79 - p. marwedel,
informatik 12, 2011

Reconfigurable Logic

Custom HW may be too expensive, SW too slow.
Combine the speed of HW with the flexibility of SW
HW with programmable functions and interconnect.
Use of configurable hardware;

common form: field programmable gate arrays (FPGAs)
Applications: bit-oriented algorithms like


encryption,


fast “object recognition“ (medical and military)


Adapting mobile phones to different standards.

Very popular devices from


XILINX (XILINX Vertex II are recent devices)


Actel, Altera and others

- 80 - p. marwedel,
informatik 12, 2011

Floor-plan of VIRTEX II FPGAs

More recent: Virtex 5, but no floor-plan found for Virtex 5.

- 81 - p. marwedel,
informatik 12, 2011

Virtex 5 CLBs and slices (simplified)

Memories typically used as look-up tables to
implement any Boolean function of 

6 variables.

- 82 - p. marwedel,
informatik 12, 2011

Memory

For the memory, efficiency is again a concern:


speed (latency and throughput); predictable timing


energy efficiency


size


cost


other attributes (volatile vs. persistent, etc)

Memories?

Oops!
Memories!

- 83 - p. marwedel,
informatik 12, 2011

Trends for the Speeds

Speed gap between processor and
main DRAM increases

[P. Machanik: Approaches to Addressing the Memory Wall, TR Nov. 2002, U. Brisbane]

2

4

8

2 4 5

Speed

years

CPU P
er

for
man

ce

(1
.5-

2 p
.a.

)

DRAM (1.07 p.a.)

31



2x
every 2
years

1
0

Similar problems also for
embedded systems &
MPSoCs
 In the future:
Memory access times >>
processor cycle times
 “Memory wall”
problem

- 84 - p. marwedel,
informatik 12, 2011

Access times and energy consumption
increase with the size of the memory

Example (CACTI Model):
"Currently, the size of
some applications is
doubling every 10
months" [STMicroelectronics,
Medea+ Workshop, Stuttgart,
Nov. 2003]

- 85 - p. marwedel,
informatik 12, 2011

Set-associative cache n-way cache

Address

Data

Tag Index

Tags data blockTags

= =

|Set| = 2

1

data block

way 0 way 1$ (€)

- 86 - p. marwedel,
informatik 12, 2011

Hierarchical memories
using scratch pad memories (SPM)

Address space

ARM7TDMI
cores, well-
known for
low power
consumption

scratch pad memory

0

FFF..

main

SPM

processor

HierarchyHierarchy

ExampleExample

no tag memory

SPM

select
Selection is by an
appropriate address
decoder (simple!)

SPM is a small,
physically separate
memory mapped into
the address space

- 87 - p. marwedel,
informatik 12, 2011

Why not just use a cache ?

0

1

2

3

4

5

6

7

8

9

256 512 1024 2048 4096 8192 16384

memory size

En
er

gy
 p

er
 a

cc
es

s
[n

J]

.

Scratch pad
Cache, 2way, 4GB space
Cache, 2way, 16 MB space
Cache, 2way, 1 MB space

[R. Banakar, S. Steinke, B.-S. Lee, 2001]

2. Energy for parallel access of sets, in
comparators, muxes.

- 88 - p. marwedel,
informatik 12, 2011

Structure of this course

2: Specification &
Modeling

3: ES-hardware

4: System
software (RTOS,
middleware, …)

8: Test *

5: Evaluation &
Validation (energy, cost,
performance, …)

7: Optimization

6: Application
mapping

A
pp

lic
at

io
n

K
no

w
le

dg
e Design

repository

* Could be
integrated
into loop;
not included
in the
current
course

Design

- 89 - p. marwedel,
informatik 12, 2011

Validation and Evaluation

Definition: Validation is the process of checking whether or
not a certain (possibly partial) design is appropriate for its
purpose, meets all constraints and will perform as expected
(yes/no decision).

Definition: Validation with mathematical rigor is called
(formal) verification.

Definition: Evaluation is the process of computing
quantitative information of some key characteristics of a
certain (possibly partial) design.

- 90 - p. marwedel,
informatik 12, 2011

How to evaluate designs
according to multiple criteria?

In practice, many different criteria are relevant
for evaluating designs:


(average) speed


worst case speed


power consumption


cost


size


weight


radiation hardness


environmental friendliness ….

How to compare different designs?
(Some designs are “better” than others)

- 91 - p. marwedel,
informatik 12, 2011

Definitions



Let X: m-dimensional solution space for the
design problem. Example: dimensions correspond to # of
processors, size of memories, type and width of busses etc.



Let F: n-dimensional objective space for the design problem.
Example: dimensions correspond to speed, cost, power
consumption, size, weight, reliability, …



Let f(x)=(f1 (x),…,fn (x)) where xX be an objective function.
We assume that we are using f(x) for evaluating designs.

solution space objective space

f(x)

x x

- 92 - p. marwedel,
informatik 12, 2011

Pareto points

ii

ii

vuni
vuni




:},...,1{
:},...,1{



We assume that, for each objective, a total
order < and the corresponding order 

are defined.



Definition:
Vector u=(u1 ,…,un)

F dominates vector v=(v1 ,…,vn)

F


 u is “better” than v with respect to one objective and not

worse than v with respect to all other objectives:



Definition:
Vector u

F is indifferent with respect to vector v

F

 neither u dominates v nor v dominates u

- 93 - p. marwedel,
informatik 12, 2011

Pareto Point

Objective 1
(e.g. energy
consumption)

Objective 2
(e.g. run time)

worse

better

Pareto-point

indifferent

indifferent

(Assuming minimization of objectives)

- 94 - p. marwedel,
informatik 12, 2011

Worst/best case execution times
(WCET/BCET)

Requirements on WCET estimates:


Safeness: WCET 

WCETEST !



Tightness: WCETEST – WCET  minimal

© h. falk/p. marwedel

���
���

��
��	

�
	�

���

��

��������
���������������

��������	�
��	�
�������	�
���

��
��	��������������	
���
���

�	���
��
�
�
�	�
�

�����
��
�
�
�	�
�

��
�
����������������

�	��� ���������	�
�
��

�	��� ����������
���

WCETEST

- 95 - p. marwedel,
informatik 12, 2011

ILP model



Objective function reflects
execution time as as function of
the execution time of blocks.
To be maximized.



Constraints reflect
dependencies between blocks.



Avoids explicit consideration of
all paths

 Called implicit path
enumeration technique.

- 96 - p. marwedel,
informatik 12, 2011

Example (1)

CFGProgram

_main: 21 cycles
_L1: 27
_L3: 2
_L4: 2
_L5: 20
_L6: 13
_L2: 20

int main()
{
int i, j = 0;

_Pragma("loopbound min
100 max 100");

for (i = 0; i < 100; i++) {
if (i < 50)
j += i;

else
j += (i * 13) % 42;

}

return j;
}

WCETs of BB
(aiT 4 TriCore)

- 97 - p. marwedel,
informatik 12, 2011

Example (2)

/* Objective function = WCET to be maximized*/
21 x2 + 27 x7 + 2 x11 + 2 x14 + 20 x16 + 13 x18 + 20 x19;
/* CFG Start Constraint */ x0 - x4 = 0;
/* CFG Exit Constraint */ x1 - x5 = 0;
/* Constraint for flow entering function main */
x2 - x4 = 0;
/* Constraint for flow leaving exit node of main */
x3 - x5 = 0;
/* Constraint for flow entering exit node of main */
x3 - x20 = 0;
/* Constraint for flow entering main = flow leaving main */
x2 - x3 = 0;
/* Constraint for flow leaving CFG node _main */
x2 - x6 = 0;
/* Constraint for flow entering CFG node _L1 */
x7 - x8 - x6 = 0;
/* Constraint for flow leaving CFG node _L1 */
x7 - x9 - x10 = 0;
/* Constraint for lower loop bound of _L1 */
x7 - 101 x9 >= 0;
/* Constraint for upper loop bound of _L1 */
x7 - 101 x9 <= 0; ….



Virtual start node


Virtual end node


Virtual end node per function
Variables:


1 variable per node


1 variable per edge
Constraints: „Kirchhoff“ equations per node


Sum of incoming
edge variables =
flux through node



Sum of outgoing
edge variables =
flux through node

ILP

_main: 21 cycles
_L1: 27
_L3: 2
_L4: 2
_L5: 20
_L6: 13
_L2: 20

x7

x6

x8

x9

x10

- 98 - p. marwedel,
informatik 12, 2011

Real-time calculus (RTC)/
Modular performance analysis (MPA)

1

2

3

p 2p 3p

u


l
1

2

3

p 2p 3p

u


l


p-J p+J

periodic event stream periodic event stream with jitter

Thiele et al. (ETHZ): Extended network
calculus: Arrival curves describe the maximum and
minimum number of events arriving in some time interval .
Examples:

p pp-J p-J

- 99 - p. marwedel,
informatik 12, 2011

RTC/MPA: Service curves

Service curves  u resp.  ℓ

describe the
maximum and minimum service capacity available in some
time interval 

s

p

bandwidth b
TDMA bus

ps p-s p+s

b s

2p

u
l

Example:

- 100 - p. marwedel,
informatik 12, 2011

RTC/MPA: Workload characterization

 u resp.  ℓ

describe the maximum and minimum
service capacity required as a function of the number e of
events. Example:

1 2 3

4

8

12

16

e

WCET=4

BCET=3

 u

 l
(Defined
only for
an integer
number of
events)

- 101 - p. marwedel,
informatik 12, 2011

RTC/MPA: System of real time
components

 ul
 ,

RTC

RTC’





 ','

u




RTC”

…

 ','
ul



 ul
 ,

Incoming event streams and available capacity
are transformed by real-time components:

Theoretical results
allow the computation
of properties of
outgoing streams 

- 102 - p. marwedel,
informatik 12, 2011

RTC/MPA: Transformation of arrival
and service curves

   uluuu
 ,min' Resulting arrival curves:

Remaining service curves:

Where:
    )()(inf ugutftgf

tu


0

    )()(inf ugutftgf
u


0

  0' 
luu



   llull
  ,min' 

  0' 
ull



    )()(sup ugutftgf
tu


0

    )()(sup ugutftgf
u


0

- 103 - p. marwedel,
informatik 12, 2011

Summary

ES hardware


HW in a loop


Sensors, discretization


Processors


FPGAs


Memories


Communication ( presentation by L. Almeida)


Back to the analog world

Evaluation and validation


Multiple objectives, Pareto optimality


Computation of worst case execution times (WCETs)


Real-time calculus

- 104 - p. marwedel,
informatik 12, 2011

Questions?

Q&A?

- 105 - p. marwedel,
informatik 12, 2011

Structure of this course

2: Specification &
Modeling

3: ES-hardware

4: System
software (RTOS,
middleware, …)

8: Test *

5: Evaluation &
Validation (energy, cost,
performance, …)

7: Optimization

6: Application
mapping

A
pp

lic
at

io
n

K
no

w
le

dg
e Design

repository

* Could be
integrated
into loop;
not included
in the
current
course

Design

- 106 - p. marwedel,
informatik 12, 2011

Aperiodic scheduling; - Scheduling
with no precedence constraints -

Let {Ti } be a set of tasks. Let:


ci be the execution time of Ti ,


di be the deadline interval, that is,

the time between Ti becoming available
and the time until which Ti has to finish execution.



li be the laxity or slack, defined as li = di - ci


fi be the finishing time.

- 107 - p. marwedel,
informatik 12, 2011

Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due
date (deadline) first.

EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

fifi fi

- 108 - p. marwedel,
informatik 12, 2011

Earliest Deadline First (EDF)
- Algorithm -

Earliest deadline first (EDF) algorithm:


Each time a new ready task arrives:



It is inserted into a queue of ready tasks, sorted by their
absolute deadlines. Task at head of queue is executed.



If a newly arrived task is inserted at the head of the
queue, the currently executing task is preempted.

Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n2);
(less with binary search or bucket arrays).

Sorted queue

Executing task

- 109 - p. marwedel,
informatik 12, 2011

Earliest Deadline First (EDF)
- Example -

Later deadline
 no preemption

Earlier deadline
 preemption

- 110 - p. marwedel,
informatik 12, 2011

Periodic scheduling

Each execution instance of a task is called a job.

Notion of optimality for aperiodic scheduling does not make
sense for periodic scheduling.

For periodic scheduling, the best that we can do is to design
an algorithm which will always find a schedule if one exists.
 A scheduler is defined to be optimal iff it will find a
schedule if one exists.

T1

T2

- 111 - p. marwedel,
informatik 12, 2011

Periodic scheduling: Scheduling with
no precedence constraints

Let {Ti } be a set of tasks. Let:


pi be the period of task Ti ,


ci be the execution time of Ti ,


di be the deadline interval, that is,

the time between Ti becoming available
and the time until which Ti has to finish execution.



li be the laxity or slack, defined as li = di - ci


fi be the finishing time.

li

di

ci
t

i

pi

- 112 - p. marwedel,
informatik 12, 2011

Independent tasks:
Rate monotonic (RM) scheduling

Most well-known technique for scheduling
independent periodic tasks [Liu, 1973].
Assumptions:


All tasks that have hard deadlines are periodic.



All tasks are independent.


di =pi , for all tasks.



ci is constant and is known for all tasks.


The time required for context switching is negligible.



For a single processor and for n tasks, the following
equation holds for the average utilization µ:

)12(/1

1




n
n

i i

i n
p
c

- 113 - p. marwedel,
informatik 12, 2011

Rate monotonic (RM) scheduling
- The policy -

RM policy: The priority of a task is a monotonically
decreasing function of its period.
At any time, a highest priority task among all those that are
ready for execution is allocated.

Theorem: If all RM assumptions are met,
schedulability is guaranteed.

- 114 - p. marwedel,
informatik 12, 2011

Maximum utilization for guaranteed
schedulability

Maximum utilization as a function of the number of tasks:

)2ln()12((lim

)12(

/1

/1

1










n

n

n
n

i i

i

n

n
p
c

- 115 - p. marwedel,
informatik 12, 2011

Example of RM-generated schedule

T1 preempts T2 and T3 .
T2 and T3 do not preempt each other.

- 116 - p. marwedel,
informatik 12, 2011

Failing RMS

Task 1: period 5, execution time 3
Task 2: period 8, execution time 3
µ=3/5+3/8=24/40+15/40=39/40 

0.975

2(21/2-1) 

0.828

- 117 - p. marwedel,
informatik 12, 2011

Intuitively: Why does RM fail ?

No problem if p2 = m p1, mℕ :

T1

T2

t fits

T1

T2

t

should be
completed

Switching to T1 too early,
despite early deadline for T2

t

t

- 118 - p. marwedel,
informatik 12, 2011

Structure of the course

2: Specification &
Modeling

3: ES-hardware

4: System
software (RTOS,
middleware, …)

8: Test *

5: Evaluation &
Validation (energy, cost,
performance, …)

7: Optimization

6: Application
mapping

A
pp

lic
at

io
n

K
no

w
le

dg
e Design

repository

* Could be
integrated
into loop;
not included
in the
current
course

Design

More on validation/verification:  tutorial by Larsen

- 119 - p. marwedel,
informatik 12, 2011

Migration of data & instructions, global
optimization model (TU Dortmund)

Which memory object (array,
loop, etc.) to be stored in SPM?
Non-overlaying (“Static”)
allocation:
Gain gk and size sk for each object
k. Maximise gain G = gk ,
respecting size of SPM SSP   sk .
Solution: knapsack algorithm.
Overlaying (“dynamic”)
allocation:
Moving objects back and forthProcessor

Scratch pad
memory,
capacity SSP

main
memory

?

For i .{ }

for j ..{ }

while ...

Repeat

call ...

Array ...

Int ...

Array

Example:

- 120 - p. marwedel,
informatik 12, 2011

IP representation
- migrating functions and variables-

Symbols:
S(vark) = size of variable k
n(vark) = number of accesses to variable k
e(vark) = energy saved per variable access, if vark is migrated
E(vark) = energy saved if variable vark is migrated (= e(vark) n(vark))
x(vark) = decision variable, =1 if variable k is migrated to SPM,

=0 otherwise
K = set of variables; Similar for functions I

Integer programming formulation:
Maximize 

k K x(vark) E(vark) + iI x(Fi) E(Fi)

Subject to the constraint

k K S(vark) x(vark) + i I S(Fi) x(Fi) 

SSP

- 121 - p. marwedel,
informatik 12, 2011

Reduction in energy and average run-
time

Multi_sort
(mix of sort
algorithms)

C
yc

le
s

[x
10

0]
E

ne
rg

y
[µ

J]
Feasible with standard compiler & postpassoptimization

Measured processor / external memory energy +
CACTI values for SPM (combined model)

Numbers will change with technology,
algorithms remain unchanged.

- 122 - p. marwedel,
informatik 12, 2011

Multiple scratch pads

scratch pad 0, 256 entries

scratch pad 1, 2 k entries

scratch pad 2, 16 k entries

background memory

ad
dr

es
se

s

0

Small is beautiful:

One small SPM is
beautiful ().

May be, several
smaller SPMs are
even more
beautiful (  )?

- 123 - p. marwedel,
informatik 12, 2011

Optimization for multiple scratch pads

 
i

iij
j

j nxeC ,Minimize

With ej : energy per access to memory j,
and xj,i = 1 if object i is mapped to memory j, =0 otherwise,
and ni : number of accesses to memory object i,
subject to the constraints:

 
i

jiij SSPSxj ,:

 
j

ijxi 1: ,

With Si : size of memory object i,
SSPj : size of memory j.

- 124 - p. marwedel,
informatik 12, 2011

Considered partitions

of
partitions

number of partitions of size:
4k 2k 1k 512 256 128 64

7 0 1 1 1 1 1 2
6 0 1 1 1 1 2 0
5 0 1 1 1 2 0 0
4 0 1 1 2 0 0 0
3 0 1 2 0 0 0 0
2 0 2 0 0 0 0 0
1 1 0 0 0 0 0 0

Example of considered memory partitions for a total
capacity of 4096 bytes

- 125 - p. marwedel,
informatik 12, 2011

Results for parts of GSM coder/
decoder

A key advantage of partitioned
scratchpads for multiple applications is
their ability to adapt to the size of the
current working set.

„Working set“

- 126 - p. marwedel,
informatik 12, 2011

Scratch-pad/tightly coupled memory
based predictability

C program

SPM size

executable

Actual
performance

Worst case
execution time

memory-aware
compiler ARMulator

aiT

Pre run-time scheduling is often the only practical means
of providing predictability in a complex system [Xu, Parnas].
 Time-triggered, statically scheduled operating systems
 Let‘s do the same for the memory system

Are SPMs really more timing predictable?
Analysis using the aiT timing analyzer

- 127 - p. marwedel,
informatik 12, 2011

Architectures considered

ARM7TDMI with 3 different memory
architectures:

1. Main memory
LDR-cycles: (CPU,IF,DF)=(3,2,2)
STR-cycles: (2,2,2)
* = (1,2,0)

2. Main memory + unified cache
LDR-cycles: (CPU,IF,DF)=(3,12,6)
STR-cycles: (2,12,3)
* = (1,12,0)

3. Main memory + scratch pad
LDR-cycles: (CPU,IF,DF)=(3,0,2)
STR-cycles: (2,0,0)
* = (1,0,0)

- 128 - p. marwedel,
informatik 12, 2011

Results for G.721

References:


Wehmeyer, Marwedel: Influence of Onchip Scratchpad Memories on WCET: 4th Intl Workshop on
worst-case execution time (WCET) analysis, Catania, Sicily, Italy, June 29, 2004



Second paper on SP/Cache and WCET at DATE, March 2005

Using Scratchpad: Using Unified Cache:

- 129 - p. marwedel,
informatik 12, 2011

Tight integration of compilation and
timing analysis



Computation of the WCET after compilation
does not give us optimum results



Let‘s optimize for the WCET
during compilation



Tight integration
of aiT WCET
analyzer from
AbsInt into
experimental
WCET aware
compiler WCC

- 130 - p. marwedel,
informatik 12, 2011

Average WCETEST for 73 Benchmarks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Relative SPM Size [%]

A
vg

. R
el

at
iv

e
W

C
ET

ES
T [

%
]

X-Axis: SPM size = x% of benchmark’s code size
Y-Axis: 100% = WCETEST when not using SPM at all

Steady WCETEST decreases for increasing SPM sizes
WCETEST reductions from 7% – 40%

© h. falk/p. marwedel

H. Falk, J. Kleinsorge: Optimal
Static WCET-aware Scratch-
pad Allocation of Program
Code, 46th Design Automation
Conference (DAC), 2009

- 131 - p. marwedel,
informatik 12, 2011

Dynamic replacement within scratch
pad



Effectively results in a kind
of compiler-controlled
segmentation/ paging for
SPM



Address assignment within
SPM required
(paging or segmentation-
like)

Reference: Verma, Marwedel: Dynamic Overlay of
Scratchpad Memory for Energy Minimization, ISSS 2004

CPU

Memory

Memory

SPM

- 132 - p. marwedel,
informatik 12, 2011

Dynamic replacement within scratch pad
- Results for edge detection relative to static
allocation -

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

64 100 128 200 256 avg.
Scratchpad Size (Bytes)

Processor Energy Memory Energy Total Energy Execution Time

- 133 - p. marwedel,
informatik 12, 2011

Saving/Restoring Context Switch

Saving Context Switch (Saving)


Utilizes SPM as a common region
shared all processes



Contents of processes are copied
on/off the SPM at context switch



Good for small scratchpads

P1

P2

P3

Scratchpad

Process P3
Process P1Process P2

Saving/Restoring at
context switch

Saving/Restoring
at context switch

- 134 - p. marwedel,
informatik 12, 2011

Non-Saving Context Switch

Process P1

Process P3

Process P2

Scratchpad

Process P1

Non-Saving Context Switch


Partitions SPM into disjoint regions


Each process is assigned a SPM
region


Copies contents during initialization


Good for large scratchpads

Process P2

Process P3

P1

P2

P3

- 135 - p. marwedel,
informatik 12, 2011

Hybrid Context Switch

Hybrid Context Switch (Hybrid)


Disjoint + Shared SPM regions


Good for all scratchpads


Analysis is similar to Non-Saving
Approach

Scratchpad

Process
P1,P2, P3

Process P1

Process P2

Process P3

Process P1Process P2Process P3

P1

P2

P3Saving/Restoring
at context switch

Saving/Restoring at
context switch

- 136 - p. marwedel,
informatik 12, 2011

Research monographs



Lars Wehmeyer, Peter Marwedel: Fast,
Efficient and Predictable Memory
Accesses, Springer, 2006



Manish Verma, Peter Marwedel:
Advanced Memory Optimization
Techniques for Low-Power Embedded
Processors, Springer, May 2007



Paul Lokuciejewski, Peter Marwedel:
WCET-aware Source Code and
Assembly Level Optimization Techniques
for Real-Time Systems, Springer, 2010

- 137 - p. marwedel,
informatik 12, 2011

Textbook(s)

Several editions/translations:


1st edition

• English
- Original hardcover version
- Reprint, soft cover, 2006

• German, 2007
• Chinese, 2006
• Macedonian, 2010



2nd edition, with CPS
• English, Dec. 2010/Jan.

2011
• German, TBA
• Plans for Portuguese &

Greek edition

Peter
Marwedel

Peter
Marwedel

Peter
Marwedel

Slides available at:
http://ls12-www.cs.tu-dortmund.de/
~marwedel/es-book

- 138 - p. marwedel,
informatik 12, 2011

Overall Summary



Introduction, Motivation and Overview
• Motivation
• Common characteristics



Specifications and Modeling
• Models of computation
• Early phases
• FSM-based models, Data flow, Petri nets, discrete

event-based models, Von-Neumann models
• Comparison



Exploitation of the memory hierarchy
• Scratch pad memories

- Non-overlaying allocation
- Overlaying allocation

- 139 - p. marwedel,
informatik 12, 2011

Links to the rest of the course

Morning Afternoon

Monday Marwedel Marwedel

Tuesday Madsen Larsen

Wednesday Madsen Larsen

Thursday Almeida Arzen

Friday Almeida Arzen

	Embedded System Foundations of Cyber-Physical Systems
	Motivation for course (1)
	Motivation for Course (2)
	Slide Number 4
	Application area Automotive electronics: clearly cyber-physical
	Application area avionics:�also cyber-physical
	More application areas
	Growing importance of cyber-physical/ embedded systems
	Characteristics of cyber-physical/ embedded systems
	CPS & ES Hardware
	Real-time constraints
	Challenges for Software in CPS
	Structure of this course
	Motivation for considering specs & models
	Models
	Specification of CPS/ES:�Requirements for models
	Models of computation� - Definition -
	Communication
	Communication via shared memory
	Non-blocking/�asynchronous message passing
	Rendez-vous, Blocking/�synchronous message passing
	Organization of computations�within the components (1)
	Organization of computations�within the components (2)
	Slide Number 24
	Support for early design phases
	Slide Number 26
	StateCharts
	Introducing hierarchy
	Definitions
	Default state mechanism
	Concurrency
	Timers
	Using timers in an answering machine
	Questions?
	Structure of this course
	The StateCharts simulation phases�(StateMate Semantics)
	Example
	Example (2)
	Reflects model of clocked hardware
	Steps
	Determinate vs. deterministic
	StateCharts determinate or not?
	Slide Number 43
	Message passing in SDL
	Determinate?
	Slide Number 46
	Data flow as a “natural”�model of applications
	Data flow modeling
	Kahn process networks
	Example
	Key beauty of KPNs
	Slide Number 52
	Synchronous data flow (SDF)
	Multi-rate models & balance equations�(one for each channel)
	Slide Number 55
	Introduction
	Example: Synchronization at single track rail segment
	Playing the “token game“
	Conflict for resource “track“
	Slide Number 60
	Discrete event semantics
	Simple example (VHDL notation)
	-simulation cycles�Simulation of an RS-Flipflop
	Slide Number 64
	Imperative (von-Neumann) model
	Shared memory
	Communication/synchronization
	What‘s the bottom line?
	Questions?
	Structure of this course
	Embedded System Hardware
	Example: Acceleration Sensor
	Assuming 0  h(t)  Vref
	Processing units
	Importance of Energy Efficiency
	Fundamentals of dynamic voltage�scaling (DVS)
	Multiprocessor systems-on-a-chip (MPSoCs)
	Multiprocessor systems-on-a-chip (MPSoCs) (2)
	Reconfigurable Logic
	Floor-plan of VIRTEX II FPGAs
	Virtex 5 CLBs and slices (simplified)
	Memory
	Trends for the Speeds
	Access times and energy consumption increase with the size of the memory
	Set-associative cache n-way cache
	Hierarchical memories�using scratch pad memories (SPM)
	Why not just use a cache ?
	Structure of this course
	Validation and Evaluation
	How to evaluate designs�according to multiple criteria?
	Definitions
	Pareto points
	Pareto Point
	Worst/best case execution times (WCET/BCET)
	ILP model
	Example (1)
	Example (2)
	Real-time calculus (RTC)/�Modular performance analysis (MPA)
	RTC/MPA: Service curves
	RTC/MPA: Workload characterization
	RTC/MPA: System of real time components
	RTC/MPA: Transformation of arrival and service curves
	Summary
	Questions?
	Structure of this course
	Aperiodic scheduling; - Scheduling with no precedence constraints -
	Uniprocessor with equal arrival times
	Earliest Deadline First (EDF)�- Algorithm -
	Earliest Deadline First (EDF)�- Example -
	Periodic scheduling
	Periodic scheduling: Scheduling with no precedence constraints
	Independent tasks:�Rate monotonic (RM) scheduling
	Rate monotonic (RM) scheduling�- The policy -
	Maximum utilization for guaranteed schedulability
	Example of RM-generated schedule
	Failing RMS
	Intuitively: Why does RM fail ?
	Structure of the course
	Migration of data & instructions, global optimization model (TU Dortmund)
	IP representation�- migrating functions and variables-
	Reduction in energy and average run-time
	Multiple scratch pads
	Optimization for multiple scratch pads
	Considered partitions
	Results for parts of GSM coder/ decoder
	Scratch-pad/tightly coupled memory�based predictability
	Architectures considered
	Results for G.721
	Tight integration of compilation and timing analysis
	Average WCETEST for 73 Benchmarks
	Dynamic replacement within scratch pad
	Dynamic replacement within scratch pad�- Results for edge detection relative to static allocation -
	Saving/Restoring Context Switch
	Non-Saving Context Switch
	Hybrid Context Switch
	Research monographs
	Textbook(s)
	Overall Summary
	Links to the rest of the course

