
SAT-based Verification of LTL Formulas

Wenhui Zhang ?

Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, Beijing, China

zwh@ios.ac.cn

Abstract. Bounded model checking (BMC) based on satisfiability test-
ing (SAT) has been introduced as a complementary technique to BDD-
based symbolic model checking of LTL properties in recent years and a
lot of successful work has been done with this approach. The basic idea
is to search for a counter example of a particular length and to generate
a propositional formula that is satisfied iff such a counter example exists.
An over approximation of the length that need to be checked in order to
certify that the system is error free is usually too big, such that it is not
practical to use this approach for checking systems that are error free
with respect to given properties. Even if we know the exact threshold,
for a reasonably large system, this threshold would possibly also be large
enough to make the verification become intractable due to the complexity
of solving the corresponding SAT instance. This study is on a different
direction and the aim of this study is verification of valid properties.
We propose an approach to (partly) avoid the use of the completeness
threshold as the verification criteria when checking systems that are er-
ror free with respect to LTL properties. The benefit of the use of this
approach may be very large compared to the use of the completeness
threshold. Though, Prasad, Biere and Gupta pointed out in a survey
paper [18] that, currently, the strength of SAT-based verification tech-
niques lies primarily in falsification, this study explores the strength of
SAT-based techniques for verification and the case study shows that this
is a promising approach.

1 Introduction

Model checking has been successfully used in the last decade for the formal
verification of finite state systems. It is considered as one of the most practi-
cal applications of theoretical computer science in the verification of concurrent
systems. However the practical applicability of model checking is limited by the
state explosion problem which could be caused by for instance, the representa-
tion of currency of operations by their interleaving. Therefore much effort has
been put into the research aiming at minimizing models. The methods include
application of cone of influence reduction [1], semantic minimization [19], state
? Supported by the National Natural Science Foundation of China under Grant No.

60373050, 60421001 and 60573012, and the National Grand Fundamental Research
973 Program of China under Grant No. 2002cb312200.

information compression [10], abstraction techniques [6, 13], partial order reduc-
tions [21, 22], symmetry reductions [9], compositional techniques for splitting
verification tasks [8, 1], case-based partition techniques [14, 23], and BDD based
symbolic techniques for compactly representing transition relations and system
states [5, 4].

Bounded model checking (BMC) based on satisfiability testing (SAT) has
been introduced as a complementary technique to BDD-based symbolic model
checking of LTL properties [3]. A lot of successful work has been done with this
approach [2, 18]. The basic idea is to search for a counter example of a particular
length and to generate a propositional formula that is satisfied iff such a counter
example exists. The efficiency of this method is based on the observation that
if a system is faulty then only a fragment of its state space is sufficient for
finding an error. Given a finite transition system M , an LTL formula ϕ and a
natural number k, a BMC procedure decides whether there exists a computation
in M of length k or less that violates ϕ. SAT based BMC is performed by
generating a propositional formula which is satisfiable if and only if such a path
exists. BMC is conducted in an iterative process where k is incremented until
either (i) an error is found, (ii) the problem becomes intractable due to the
complexity of solving the corresponding SAT instance, or (iii) k reaches some
pre-computed completeness threshold which indicates that M satisfies ϕ. If we
have given M and ϕ such that M satisfies ϕ, then the practical value of this
approach depends on the existence of a relatively small value of the completeness
threshold. Computing an exact value of the completeness threshold for a given
model and formula is difficult. A general over approximation of the completeness
threshold is |M | ·2|ϕ| where |M | is the size of the model and |ϕ| is the size of the
formula. This approximation is obviously impractical for checking systems that
are error free with respect to given properties. For reducing this approximation,
completeness threshold has been studied for several types of LTL formulas [12,
7].

As stated in [12], knowing the completeness threshold is essential for making
BMC complete. Without it, there is no way of knowing whether the property
holds or rather the bound is not sufficiently high. Even if we know the complete-
ness threshold, for a reasonably large system, this threshold would possibly be
large enough to make the verification become intractable due to the complexity
of solving the corresponding SAT instance. This study is on a different direc-
tion that proposes an approach that (partly) avoids this problem and may prove
whether the property holds without knowing a completeness threshold. This kind
of research has also been considered in [2] for simple liveness properties of the
form Fp. There is also a lot of work on proving safety properties based on SAT,
the related works are for instance, proving safety properties by using induction
[20, 15], conservative abstraction with counter example guided refinement [?],
and interpolation based transition relation approximation for generating facts
relevant with respect to given properties [11]. In this work, we study LTL prop-
erties in general.

2 Propositional Linear Temporal Logic

Propositional linear temporal logic (LTL) is a logic introduced by Pnueli as a
specification language for concurrent programs [17]. Let AP be a set of proposi-
tion symbols. The set of LTL formulas is defined as follows:

– Every member of AP is an LTL formula.
– Logical connectives of LTL include: ¬, ∧, ∨, and →.

If ϕ and ψ are LTL formulas, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ → ψ.
– Temporal operators include: X, F , G, U , and R.

If ϕ and ψ are LTL formulas, then so are: X ϕ, F ϕ, G ϕ, ϕ U ψ, and ϕ R ψ.

2.1 Semantics of LTL

The formal semantics of LTL is defined with respect to paths of a Kripke struc-
ture. Let M = 〈S, T, I, L〉 be a Kripke structure where S is a set of states,
T ⊆ S × S is a transition relation which is total, I ⊆ S is a set of initial states
and L : S → 2AP is a labeling function. Let ϕ be a temporal formula. Let
π = π0π1 · · · be a path of M and πi be the subpath of π starting at πi. We
define the relation ϕ holds on π, denoted π |= ϕ, as follows.

π |= p iff p ∈ L(π0)
π |= ¬ϕ iff π 6|= ϕ
π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ
π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ
π |= ϕ → ψ iff π |= ϕ implies π |= ψ
π |= Xϕ iff π1 |= ϕ
π |= Fϕ iff ∃k ≥ 0.πk |= ϕ
π |= Gϕ iff ∀k ≥ 0.πk |= ϕ
π |= ϕUψ iff ∃k ≥ 0.∀j < k.(πk |= ψ ∧ πj |= ϕ)
π |= ϕRψ iff ∀j ≥ 0.(πj |= ψ)∨ ∃k ≥ 0.((πk |= ϕ) ∧ (∀j ≤ k.(πj |= ψ))

For simplicity, we call a Kripke structure a model. An LTL formula ϕ is true
in the model M , denoted M |= ϕ, iff ϕ is true on all paths starting from an
arbitrary initial state of M .

2.2 Bounded Semantics of LTL Formulas in NNF

An LTL formula is in negation normal form (NNF), if the symbol→ does not ap-
pear in the formula and ¬ is applied only to proposition symbols. Every formula
can be transformed into a formula in NNF by using the following rules:

ϕ → ψ = ¬ϕ ∨ ψ
¬(ϕ ∨ ψ) = (¬ϕ ∧ ¬ψ)
¬Fϕ = G¬ϕ
¬(ϕUψ) = ¬ϕR¬ψ

¬(ϕ ∧ ψ) = (¬ϕ ∨ ¬ψ)
¬Xϕ = X¬ϕ
¬Gϕ = F¬ϕ
¬(ϕRψ) = ¬ϕU¬ψ

In the following, we only consider LTL formulas in NNF. Let M = 〈S, T, I, L〉 be
a model and k ∈ N. Let π = π0π1 · · · be an infinite path of M . If u = π0 · · ·πk

and v = πl · · ·πk for some 0 ≤ l ≤ k, we call π = u · vω a (k, l)-loop. If π is a
(k, l)-loop for some 0 ≤ l ≤ k, we call π a k-loop.

Definition 1 (Bounded Semantics for a Loop). Let k ≥ 0 and π be a k-
loop. Then an LTL formula ϕ is valid on π with bound k, written π |=k ϕ, iff
π |= ϕ.

Definition 2 (Bounded Semantics without a Loop). Let k ≥ 0 and π be
a path which is not a k-loop. Then an LTL formula ϕ is valid on π with bound
k, written π |=k ϕ, iff π |=0

k ϕ where:

π |=i
k p iff p ∈ L(πi)

π |=i
k ¬p iff π 6|=i

k p
π |=i

k ϕ ∧ ψ iff π |=i
k ϕ and π |=i

k ψ
π |=i

k ϕ ∨ ψ iff π |=i
k ϕ or π |=i

k ψ

π |=i
k Xϕ iff i < k and π |=i+1

k ϕ

π |=i
k Fϕ iff ∃j ∈ {i, ..., k}.π |=j

k ϕ
π |=i

k Gϕ iff false.
π |=i

k ϕUψ iff ∃j ∈ {i, ..., k}.∀n ∈ {i, ..., j − 1}.(π |=j
k ψ ∧ π |=n

k ϕ)
π |=i

k ϕRψ iff ∃j ∈ {i, ..., k}.((π |=j
k ϕ) ∧ ∀n ∈ {i, ..., j}.(π |=n

k ψ))

Note that π |=i
k Gϕ is false by definition. This is explained by that a global

property can only be witnessed by an infinite path (or a path with a loop).

Theorem 1. Let M be a model, ϕ an LTL formula. Then M 6|= ϕ iff there is a
path π and a k ≥ 0 such that π |=k ¬ϕ.

3 Encoding the Model in SAT-Formulas

Since we have Fϕ = true Uϕ and ϕRψ = (ψU(ϕ ∧ ψ)) ∨ Gψ, we only consider
formulas of the form ϕ ∨ ψ, ϕ ∧ ψ, Xϕ, Gϕ, ϕUψ constructed from propositions
and the negation of propositions.

Given a model M , an LTL formula ϕ and a bound k, we will construct
encodings for the pair (M, ϕ). Let u0, ..., uk be a finite sequence of states on a
path π. We first define [[M]]k to be a formula representing that u0 · · ·uk is a
finite prefix of a valid path of M .

Definition 3 (Transition Relation). Let M = 〈S, T, I, L〉 be a model and
k ≥ 0.

[[M]]k := I(u0) ∧
k−1∧

i=0

T (ui, ui+1)

This translation of transition relation corresponds to that in [3]. Let M =
〈S, T, I, L〉 be a model. Let u,w (possibly with subscripts) represent individual
states. Let p ∈ AP be a proposition symbol and p(u) represent the propositional
formula representing the states in which p is true according to L. For a state
and a formula, we first present the encoding for (formula,state) pair as done in
[3] (however with a slightly different version). Then we propose an encoding for
(formula,state) pair for the purpose of verification.

3.1 Encoding of LTL Formulas

Let min() be the minimum operation and s(i, k, l) denote

if (k = i) then l else i + 1.

Definition 4 (Translation of LTL formulas). Given a state u ∈ {u0, ..., uk}
and a formula ϕ, the encoding is denoted by [[ϕ, u]]k,l.

[[p, u]]k,l = p(u)
[[¬p, u]]k,l = ¬p(u)
[[ϕ ∨ ψ, u]]k,l = [[ϕ, u]]k,l ∨ [[ψ, u]]k,l

[[ϕ ∧ ψ, u]]k,l = [[ϕ, u]]k,l ∧ [[ψ, u]]k,l

[[Xϕ, ui]]k,l = [[ϕ, us(i,k,l)]]k,l

[[Gϕ, ui]]k,l =
∧k

j=min(i,l)[[ϕ, uj]]k,l

[[ϕUψ, ui]]k,l =
∨k

j=i([[ψ, uj]]k,l ∧
∧j−1

t=i [[ϕ, ut]]k,l)∨∧k
t=i[[ϕ, ut]]k,l ∧

∨i−1
j=l ([[ψ, uj]]k,l ∧

∧j−1
t=l [[ϕ, ut]]k,l)

where [[ϕ, u−1]]k,l = false.

In the above definition, u−1 is a special symbol used only for the purpose of uni-
form formula representation (avoiding specification of different cases explicitly).
In the real transformation, formulas containing this symbol are to be replaced
by true or false according to their meaning, for instance, [[p ∨ q, u−1]]k,l must
be replaced by false and not by [[p, u−1]]k,l ∨ [[q, u−1]]k,l. In addition, we define
T (uk, u−1) = true. The subscript (k, l) in the definition indicates that the path
is a (k, l)-loop for l ≥ 0, otherwise the path is considered loop free.

Definition 5. [[M, ϕ]]k := [[M]]k ∧
∨k

l=−1(T (uk, ul) ∧ [[ϕ, u0]]k,l)

The encoding of [[M, ϕ]]k corresponds to that in [3] with some modification,
i.e. a condition

∧k
l=0 ¬T (uk, ul) representing loop-free-ness is removed (or more

precisely, replaced by true)1. This change does not affect the satisfiability of the
formula. This fact is to be established and presented as Theorem 2.

Lemma 1. [[ϕ, u0]]k,−1 → [[ϕ, u0]]k,l for l ∈ {0, ..., k}.
1 This is not only a matter of representational simplicity. With this clause in the

formulation, we would not be able to prove Lemma 3 and then the proof of Theorem
5 would be different and more complicated.

Proof: We prove a more general property

[[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l for i ∈ {0, ..., k} and l ∈ {0, ..., k}
by structural induction. The case is trivial for ϕ being a proposition or negation
of a proposition. Assume the induction hypothesis.

– The case is trivial for ϕ being a conjunctive or disjunctive formula.
– If ϕ = Xϕ0, then

[[ϕ, ui]]k,−1 is either false (i = k) or the same as [[ϕ0, ui+1]]k,−1 (i < k).
In the latter case, [[ϕ, ui]]k,l = [[ϕ0, ui+1]]k,l.
Therefore, according to the induction hypothesis, [[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l.

– If ϕ = Gϕ0, then [[ϕ, ui]]k,−1 is false. Therefore [[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l.
– If ϕ = ϕ0Uϕ1, then

∨i−1
j=−1([[ϕ1, uj]]k,−1 ∧

∧j−1
t=−1[[ϕ0, ut]]k,−1) = false.

Therefore [[ϕ, ui]]k,−1 =
∨k

j=i([[ϕ1, uj]]k,−1 ∧
∧j−1

t=i [[ϕ0, ut]]k,−1).
Then, according to the induction hypothesis,
[[ϕ, ui]]k,−1 →

∨k
j=i([[ϕ1, uj]]k,l ∧

∧j−1
t=i [[ϕ0, ut]]k,l).

Since the right side of the implication is a disjunctive part of [[ϕ, ui]]k,l, we
obtain [[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l. ut

Theorem 2. Let M be a model, ϕ be an LTL formula. Let k ≥ 0. There is a
path π of M such that π |=k ϕ iff [[M, ϕ]]k is satisfiable.

Theorem 2 corresponds to the normal soundness theorem of bounded LTL model
checking [3]. As explained, the only different in the encoding [[M, ϕ]]k and that
in [3] is that a condition representing loop-free-ness is removed. The fact that
this change does not affect the satisfiability of the formula can be proved easily
based on Lemma 1.

3.2 Encoding of LTL formulas for Verification

Definition 6 (Translation of LTL formulas for Verification). Given a
state u ∈ {u0, ..., uk} and a formula ϕ, the encoding is denoted by [[ϕ, u]]vk.

[[p, u]]vk = p(u)
[[¬p, u]]vk = ¬p(u)
[[ϕ ∨ ψ, u]]vk = [[ϕ, u]]vk ∨ [[ψ, u]]vk
[[ϕ ∧ ψ, u]]vk = [[ϕ, u]]vk ∧ [[ψ, u]]vk
[[Xϕ, ui]]vk = [[ϕ, ui+1]]vk
[[Gϕ, ui]]vk =

∧k
j=i[[ϕ, uj]]vk

[[ϕUψ, ui]]vk =
∨k

j=i([[ψ, uj]]vk ∧
∧j−1

t=i [[ϕ, ut]]vk) ∨∧k
t=i[[ϕ, ut]]vk

where [[ϕ, uk+1]]vk = true.

Definition 7. [[M, ϕ]]vk := [[M]]k ∧ [[ϕ, u0]]vk

In the following, we shall establish that there is no path π and k ≥ 0 such that
π |=k ϕ if there is some i such that [[M, ϕ]]vi is unsatisfiable.

Definition 8. [[M, ϕ, ui]]vk := [[M]]k ∧ [[ϕ, ui]]vk.

Proposition 1. For all i ∈ {0, ..., k}, the following equivalences holds:

(1) [[M, ϕ0 ∨ ϕ1, ui]]vk = [[M, ϕ0, ui]]vk ∨ [[M, ϕ1, ui]]vk
(2) [[M, ϕ0 ∧ ϕ1, ui]]vk = [[M, ϕ0, ui]]vk ∧ [[M, ϕ1, ui]]vk
(3) [[M, Xϕ, ui]]vk = [[M, ϕ, ui+1]]vk
(4) [[M, Gϕ, ui]]vk =

∧k
j=i[[M, ϕ, uj]]vk

(5) [[M, ϕUψ, ui]]vk =
∨k

j=i([[M, ψ, uj]]vk ∧
∧j−1

t=i [[M, ϕ, ut]]vk) ∨∧k
t=i[[M, ϕ, ut]]vk

Proof: We only prove the first equivalence. The others are similar. We have

[[M, ϕ0 ∨ ϕ1, ui]]vk
= [[M]]k ∧ [[ϕ0 ∨ ϕ1, ui]]vk
= [[M]]k ∧ ([[ϕ0, ui]]vk ∨ [[ϕ1, ui]]vk)
= [[M, ϕ0, ui]]vk ∨ [[M, ϕ1, ui]]vk

This was what needed to be proved.

Lemma 2. [[M, ϕ, ui]]vk+1 → [[M, ϕ, ui]]vk for i ∈ {0, ..., k}.

Proof: This can be proved based on structural induction on ϕ. The proof is
straightforward and is omitted.

Theorem 3. [[M, ϕ]]vk+1 → [[M, ϕ]]vk.

Proof: This follows directly from Lemma 2.

Theorem 4. [[M, ϕ]]k → [[M, ϕ]]vk.

Proof: Since [[M, ϕ]]k = [[M]]k ∧
∨k

l=−1(T (uk, ul) ∧ [[ϕ, u0]]k,l) and [[M, ϕ]]vk =
[[M]]k ∧ [[ϕ, u0]]vk, it is sufficient to prove that [[ϕ, u0]]k,l → [[ϕ, u0]]vk. We prove

[[ϕ, ui]]k,l → [[ϕ, ui]]vk for i ∈ {0, ..., k} and l ∈ {0, ..., k}
by structural induction. The case is trivial for ϕ being a proposition or negation
of a proposition. Assume the induction hypothesis.

– The case is trivial for ϕ being a conjunctive or disjunctive formula.
– If ϕ = Xϕ0, we have two cases.

For i = k, we have [[ϕ, ui]]vk = true. Therefore [[ϕ, ui]]k,l → [[ϕ, ui]]vk.
For i < k, we have [[ϕ, ui]]k,l = [[ϕ0, ui+1]]k,l and [[ϕ, ui]]vk = [[ϕ0, ui+1]]vk.
Therefore, according to the induction hypothesis, [[ϕ, ui]]k,l → [[ϕ, ui]]vk.

– If ϕ = Gϕ0, then
[[ϕ, ui]]k,l =

∧k
j=i[[ϕ0, uj]]k,l ∧

∧i−1
j=min(i,l)[[ϕ0, uj]]k,l

[[ϕ, ui]]vk =
∧k

j=i[[ϕ0, uj]]vk.
Therefore, according to the induction hypothesis, [[ϕ, ui]]k,l → [[ϕ, ui]]vk.

– If ϕ = ϕ0Uϕ1, then
[[ϕ0Uϕ1, ui]]k,l

=
∨k

j=i([[ϕ1, uj]]k,l ∧
∧j−1

t=i [[ϕ0, ut]]k,l)∨∧k
t=i[[ϕ0, ut]]k,l ∧

∨i−1
j=l ([[ϕ1, uj]]mk,l ∧

∧j−1
t=l [[ϕ0, ut]]k,l)

[[ϕ0Uϕ1, ui]]vk =
∨k

j=i([[ϕ1, uj]]vk ∧
∧j−1

t=i [[ϕ0, ut]]vk) ∨∧k
t=i[[ϕ0, ut]]vk.

Therefore, according to the induction hypothesis, [[ϕ, ui]]k,l → [[ϕ, ui]]vk.

Lemma 3. If [[M]]k ∧ [[ϕ, u0]]k,−1 is satisfiable, then [[M]]k+1 ∧ [[ϕ, u0]]k+1,−1

is satisfiable.

Proof: Let u0, ..., uk be a set of states (each represented by a set of literals) that
satisfy [[M]]k ∧ [[ϕ, u0]]k,−1. Since the transition relation in M is total, there
is a state uk+1 such that T (uk, uk+1). We prove that u0, ..., uk, uk+1 is a set
of states that satisfies [[M]]k+1 ∧ [[ϕ, u0]]k+1,−1. Since [[M]]k ∧ [[ϕ, u0]]k,−1 and
T (uk, uk+1), then [[M]]k+1 = [[M]]k ∧ T (uk, uk+1) is true. Then it is sufficient
to prove that

[[ϕ, ui]]k,−1 → [[ϕ, ui]]k+1,−1 for all i ∈ {0, ..., k}.
This can then be proved based on structural induction. The proof is omitted.

Lemma 4. Let l be non-negative. If [[M]]k ∧T (uk, ul)∧ [[ϕ, u0]]k,l is satisfiable,
then [[M]]k+1 ∧ T (uk+1, ul+1) ∧ [[ϕ, u0]]k+1,l+1 is satisfiable.

Proof: Let u0, ..., uk be a set of states that satisfy [[M]]k ∧T (uk, ul)∧ [[ϕ, u0]]k,l.
Let uk+1 = ul. We prove that u0, ..., uk, uk+1 is a set of states that satisfies
[[M]]k+1 ∧ T (uk+1, ul+1) ∧ [[ϕ, u0]]k+1,l+1. We have

[[M]]k+1 ∧ T (uk+1, ul+1)
= [[M]]k ∧ T (uk, uk+1) ∧ T (uk+1, ul+1)
= [[M]]k ∧ T (uk, ul) ∧ T (ul, ul+1)
= [[M]]k ∧ T (uk, ul)

Since [[M]]k ∧T (uk, ul)∧ [[ϕ, u0]]k,l, then [[M]]k+1 ∧T (uk+1, ul+1) is true. Then
it is sufficient to prove that

[[ϕ, ui]]k,l → [[ϕ, ui]]k+1,l+1 for all i ∈ {0, ..., k}.
This can then be proved based on structural induction. The proof is omitted.

Theorem 5. If [[M, ϕ]]k is satisfiable, then [[M, ϕ]]k+1 is satisfiable.

Proof: Suppose that [[M, ϕ]]k = [[M]]k ∧
∨k

l=−1(T (uk, ul) ∧ [[ϕ, u0]]k,l) is true.
Then [[M]]k ∧ (T (uk, ul) ∧ [[ϕ, u0]]k,l) is true for some l ∈ {−1, 0, ..., k}. There
are two cases l = −1 and l ∈ {0, ..., k}. In the former case, Lemma 3 implies that
[[M]]k+1 ∧ (T (uk+1, u−1)∧ [[ϕ, u0]]k+1,−1) is satisfiable. Therefore [[M, ϕ]]k+1 is
satisfiable. In the latter case, Lemma 4 implies that [[M]]k+1 ∧ (T (uk+1, ul+1)∧
[[ϕ, u0]]k+1,l+1) is satisfiable. Therefore [[M, ϕ]]k+1 is satisfiable also in this case.

Theorem 6. If [[M, ϕ]]vk is unsatisfiable for some k, then M |= ¬ϕ.

Proof: Suppose that M |= ¬ϕ does not hold. Then there is a path π of M and a
k′ ≥ 0 such that π |=k′ ϕ according to Theorem 1. Then [[M, ϕ]]k′ is satisfiable
according to Theorem 2. Then [[M, ϕ]]n is satisfiable for n ≥ k′ according to
Theorem 5. Then [[M, ϕ]]vn is satisfiable for n ≥ k′ according to Theorem 4.
Choose n′ such that n′ ≥ k and n′ ≥ k′. Then [[M, ϕ]]vn′ is satisfiable. Then
[[M, ϕ]]vk′′ is satisfiable for all n′ ≥ k′′ according to Theorem 3. This contradicts
with that [[M, ϕ]]vk is unsatisfiable, since n′ ≥ k. This proves the theorem.

4 SAT-based Verification

Theorem 6 provides a theoretical basis for verification and Theorem 2 provides
a theoretical basis for error detection. The theorems suggest the following com-
bination of verification and error detection approach. Let M be a model and ϕ
be a temporal formula to be verified.

– Start with k = 0;
– If [[M,¬ϕ]]vk is unsatisfiable, report that M |= ϕ is valid;
– If [[M,¬ϕ]]k is satisfiable, report that M |= ϕ does not hold;
– If a completeness threshold is reached, report that M |= ϕ is valid;
– Increase k and repeat the process.

Note that ¬ϕ represents the formula in NNF corresponding to ¬ϕ. In many
cases, as will be demonstrated in the case study, the procedure may terminate
before reaching a completeness threshold. However, in the general case, it may
be necessary to repeat the process until a completeness threshold is reached. For
instance, if we have the trivial property ϕ = Gtrue, which is true for all systems,
then we have [[M,¬ϕ]]k = false and [[M,¬ϕ]]vk = I(u0)∧

∧k−1
i=0 T (ui, ui+1). Then

the first one is unsatisfiable and the second is always satisfiable. The above
approach can only terminate when a completeness threshold is reached.

This is a theoretical formulation. In practice, for a reasonably large system,
the threshold would possibly be large enough to make the verification become
intractable due to the complexity of solving the corresponding SAT instance,
and the process will be interrupted by time or memory constraints.

In the rest of this section, we discuss some types of simple properties which
can then be a background for the case-study of the use of this approach for
verification in the next section.

A Safety Property: A simple safety property is of the forms pRq where p and q
are propositions. For verifying this property, we need to calculate [[M,¬pU¬q]]vk.
This formula expands to

I(u0) ∧
∧k−1

i=0 T (ui, ui+1) ∧ (
∨k

j=0(¬q(uj) ∧
∧j−1

t=0 ¬p(ut)) ∨
∧k

t=0 ¬p(ut))

Therefore M |= pRq if there is a k such that

I(u0) ∧
k−1∧

i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬q(uj) ∧
j−1∧
t=0

¬p(ut)) ∨
k∧

t=0

¬p(ut))

is unsatisfiable.

A Co-Safety Property: A simple co-safety property is of the form pUq where
p and q are propositions. For verifying this property, we need to calculate
[[M,¬pR¬q]]vk. This formula is equivalent to [[M, (¬qU(¬q∧¬p))∨G¬q]]vk which
expands to

I(u0) ∧
∧k−1

i=0 T (ui, ui+1) ∧
∨k

j=0(¬q(uj) ∧ ¬p(uj) ∧
∧j−1

t=0 ¬q(ut)) ∨
∧k

t=0 ¬q(ut))

Therefore M |= pUq if there is a k such that

I(u0) ∧
k−1∧

i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬p(uj) ∧
j∧

t=0

¬q(ut)) ∨
k∧

t=0

¬q(ut))

is unsatisfiable. Furthermore, we have the following lemma.

Lemma 5. if M |= pUq, then there is a k such that

I(u0) ∧
k−1∧

i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬p(uj) ∧
j∧

t=0

¬q(ut)) ∨
k∧

t=0

¬q(ut))

is unsatisfiable.

Proof: We prove that if

I(u0) ∧
k−1∧

i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬p(uj) ∧
j∧

t=0

¬q(ut)) ∨
k∧

t=0

¬q(ut))

is satisfiable for all k, then M 6|= pUq, i.e. [[M,¬pR¬q]]k′ is satisfiable for some
k′. We have

[[M,¬pR¬q]]k
= [[M, (¬qU(¬q ∧ ¬p)) ∨G¬q]]k
= I(u0) ∧

∧k−1
i=0 T (ui, ui+1)∧∨k

l=−1(T (uk, ul) ∧ [[(¬qU(¬q ∧ ¬p) ∨G¬q), u0]]k,l)
= I(u0) ∧

∧k−1
i=0 T (ui, ui+1)∧

([[(¬qU(¬q ∧ ¬p) ∨G¬q), u0]]k,−1∨∨k
l=0(T (uk, ul) ∧ [[(¬qU(¬q ∧ ¬p) ∨G¬q), u0]]k,l))

= I(u0) ∧
∧k−1

i=0 T (ui, ui+1)∧
(
∨k

j=0(¬q(uj) ∧ ¬p(uj) ∧
∧j−1

t=0 ¬q(ut))∨∨k
l=0(T (uk, ul) ∧ (

∨k
j=0(¬q(uj) ∧ ¬p(uj) ∧

∧j−1
t=0 ¬q(ut)) ∨

∧k
j=0 ¬q(uj)))

= I(u0) ∧
∧k−1

i=0 T (ui, ui+1)∧
(
∨k

j=0(¬p(uj) ∧
∧j

t=0 ¬q(ut)) ∨
∨k

l=0(T (uk, ul) ∧
∧k

j=0 ¬q(uj)))

The difference between [[M,¬pR¬q]]vk and [[M,¬pR¬q]]k is T (uk, ul) for some
k ≥ l ≥ 0. Since the transition relation is total, there is some k and l such that
T (uk, ul) is true. This proves the lemma. ut

Corollary 1. M |= pUq iff there is a k such that

I(u0) ∧
k−1∧

i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬p(uj) ∧
j∧

t=0

¬q(ut)) ∨
k∧

t=0

¬q(ut))

is unsatisfiable.

Proof: This follows from the Lemma 5 and Theorem 5.

A Liveness Property: Naturally, Fp is a special case of qUp. By simplifying the
previously obtained equation, we have

[[M, G¬p]]vk = I(u0) ∧
∧k−1

i=0 T (ui, ui+1) ∧
∧k

i=0 ¬p(ui)

Then according to Corollary 1, M |= Fp iff there is a k such that

I(u0) ∧
k−1∧

i=0

T (ui, ui+1) ∧
k∧

i=0

¬p(ui)

is unsatisfiable. Note that this is consistent with the liveness property of the
form Fp considered in [2] where the translation of M |= Fp is as follows:

[[M, Fp]]k = I(u0) ∧
k−1∧

i=0

T (ui, ui+1) →
k∨

i=0

p(ui)

Then M |= Fp iff there is a k such that [[M, Fp]]k is valid.

5 A Case Study

We consider verification of properties of the form pUq and pRq of a mutual
exclusion algorithm. We first present our tool for verification, and then the ex-
perimental results.

5.1 Verification Tool: VERBS

We have developed a tool called VERBS (VERification Based on Sat) based on
our satisfiability checking tool BOSCH (BOolean Satisfiability CHecker)2. The
input to the tool is as follows:

– a file containing the specification of state variables;
– a file containing the specification of initial states in CNF format;
– a file containing the specification of the transition relation in CNF format;
– a file containing the specification of the property;
– a number k representing the length of transition (k = 0, 1, 2, ...).

Currently the subset of LTL formulas handled by the tool is of the forms ϕUψ
and ϕRψ, where ϕ,ψ are propositional formulas in DNF format. The tool first
converts all these information to a CNF formula and then calls BOSCH for
satisfiability checking.
2 A tool based on DPLL and similar principles as the tool for parallel execution of

stochastic search procedures on reduced SAT instances [24].

5.2 Presentation of the Case

Let a, b be variables of enumeration type which have respectively the domain
{s0, ..., s3} and {t0, ..., t3}. Let x, y, t be variables of boolean type. Let the system
consist of two processes: A and B with the following specification in a first order
transition system [16]:

Process A:

a = s0 −→ (y, t, a) := (1, 1, s1)
a = s1 ∧ (x = 0 ∨ t = 0) −→ (a) := (s2)
a = s2 −→ (y, a) := (0, s3)
a = s3 −→ (y, t, a) := (1, 1, s1)

Process B:

b = t0 −→ (x, t, b) := (1, 0, t1)
b = t1 ∧ (y = 0 ∨ t = 1) −→ (b) := (t2)
b = t2 −→ (x, b) := (0, t3)
b = t3 −→ (x, t, b) := (1, 0, t1)

Let the initial state be a = s0 ∧ b = t0 ∧ x = y = t = 0. We consider two
properties:

1. One of the processes reached the critical region (a = s2 ∨ b = t2) releases
the property that the system is either at the initial state (a = s0 ∧ b = t0)
or some is waiting to enter the critical region (x = 1 ∨ y = 1);

2. The value of y and t is consistent (y = t) unless both processes have tried
to get into the critical region (a ≥ s1 ∧ b ≥ t1) and this continues until some
process exited the critical region (a = s3 ∨ b = t3).

Let boolean variables a0 and a1 represent the variable a such that a0 = i∧a1 = j
meaning a = s2i+j , and b0 and b1 represent b such that b0 = i ∧ b1 = j meaning
b = t2i+j . Then each state is represented by a tuple (a0, a1, b0, b1, x, y, t). Let
V = {a0, a1, b0, b1, p, q, r}. The system can be represented by boolean formulas
as follows:

I(a0, a1, b0, b1, x, y, t) ≡
x = 0 ∧ y = 0 ∧ t = 0 ∧ a0 = 0 ∧ a1 = 0 ∧ b0 = 0 ∧ b1 = 0

T (a0, a1, b0, b1, x, y, t, a′0, a
′
1, b

′
0, b

′
1, x

′, y′, t′) ≡
a0 = 0 ∧ a1 = 0 ∧ y′ = 1 ∧ t′ = 1 ∧ a′1 = 1 ∧ same(V \ {y, t, a1})∨
a0 = 0 ∧ a1 = 1 ∧ (x = 0 ∨ t = 0) ∧ a′0 = 1 ∧ a′1 = 0 ∧ same(V \ {a0, a1})∨
a0 = 1 ∧ a1 = 0 ∧ y′ = 0 ∧ a′1 = 1 ∧ same(V \ {y, a1})∨
a0 = 1 ∧ a1 = 1 ∧ y′ = 1 ∧ t′ = 1 ∧ a′0 = 0 ∧ same(V \ {y, t, a0})
b0 = 0 ∧ b1 = 0 ∧ x′ = 1 ∧ t′ = 0 ∧ b′1 = 1 ∧ same(V \ {x, t, b1})∨
b0 = 0 ∧ b1 = 1 ∧ (y = 0 ∨ t = 1) ∧ b′0 = 1 ∧ b′1 = 0 ∧ same(V \ {b0, b1})∨
b0 = 1 ∧ b1 = 0 ∧ x′ = 0 ∧ b′1 = 1 ∧ same(V \ {x, b1})∨
b0 = 1 ∧ b1 = 1 ∧ x′ = 1 ∧ t′ = 0 ∧ b′0 = 0 ∧ same(V \ {x, t, b0})

where same(S) represents v′1 = v1 ∧ · · · ∧ v′n = vn for the set of propositions
S = {v1, ..., vn}. Let

p1 ≡ (a0 = 1 ∧ a1 = 0 ∨ b0 = 1 ∧ b1 = 0)
q1 ≡ (a0 = 0 ∧ a1 = 0 ∧ b0 = 0 ∧ b1 = 0) ∨ (x = 1 ∨ y = 1)
p2 ≡ (a1 = 1 ∨ a0 = 1) ∧ (b1 = 1 ∨ b0 = 1) ∨ (y = 0 ∧ t = 0 ∨ y = 1 ∧ t = 1)
q2 ≡ (a0 = 1 ∧ a1 = 1 ∨ b0 = 1 ∧ b1 = 1)

We check the two properties: M |= p1Rq1 and M |= p2Uq2.

Property 1: For M |= p1Rq1, we check the satisfiability of [[M,¬(p1Rq1)]]k
and [[M,¬(p1Rq1)]]vk for k = 0, 1, 2, ..., until the first formula is satisfiable, the
second formulas is unsatisfiable, or the completeness threshold is reached. Here,
we only consider the use of [[M,¬(p1Rq1)]]vk to the verification of the property
(since verification is the main concern of this paper). Let Vi = {ui,0, ..., ui,6} and
same(S) represent ui+1,j = ui,j for each ui,j ∈ S. We have

[[M,¬(p1Rq1)]]vk = I(u0) ∧
k−1∧

i=0

T (ui, ui+1) ∧ [[¬(p1Rq1), u0]]vk

where

I(u0) ≡ ¬u04 ∧ ¬u05 ∧ ¬u06 ∧ ¬u00 ∧ ¬u01 ∧ ¬u02 ∧ ¬u03

T (ui, ui+1) ≡
¬ui,0 ∧ ¬ui,1 ∧ ui+1,5 ∧ ui+1,6 ∧ ui+1,1 ∧ same(Vi \ {ui,5, ui,6, ui,1})∨
¬ui,0 ∧ ui,1 ∧ (¬ui,4 ∨ ¬ui,6) ∧ ui+1,0 ∧ ¬ui+1,1 ∧ same(Vi \ {ui,0, ui,1})∨
ui,0 ∧ ¬ui,1 ∧ ¬ui+1,5 ∧ ui+1,1 ∧ same(Vi \ {ui,5, ui,1})∨
ui,0 ∧ ui,1 ∧ ui+1,5 ∧ ui+1,6 ∧ ¬ui+1,0 ∧ same(Vi \ {ui,5, ui,6, ui,0})∨
¬ui,2 ∧ ¬ui,3 ∧ ui+1,4 ∧ ¬ui+1,6 ∧ ui+1,3 ∧ same(Vi \ {ui,4, ui,6, ui,3})∨
¬ui,2 ∧ ui,3 ∧ (¬ui,5 ∨ ui,6) ∧ ui+1,2 ∧ ¬ui+1,3 ∧ same(Vi \ {ui,2, ui,3})∨
ui,2 ∧ ¬ui,3 ∧ ¬ui+1,4 ∧ ui+1,3 ∧ same(Vi \ {ui,4, ui,3})∨
ui,2 ∧ ui,3 ∧ ui+1,4 ∧ ¬ui+1,6 ∧ ¬ui+1,2 ∧ same(Vi \ {ui,4, ui,6, ui,2})

[[¬(p1Rq1), u0]]vk ≡∨k
j=0((uj,0 ∨ uj,1 ∨ uj,2 ∨ uj,3) ∧ ¬uj,4 ∧ ¬uj,5∧∧j−1
t=0 ((¬ut,0 ∨ ut,1) ∧ (¬ut,2 ∨ ut,3))) ∨

∧k
t=0((¬ut,0 ∨ ut,1) ∧ (¬ut,2 ∨ ut,3))

Let us use ϕ(k) to denote the conjunction of the above formulas. By feeding
files with formulas representing the initial states, the transition relation and the
property in required format into VERBS, we obtain that ϕ(0), ϕ(1) and ϕ(2)
are satisfiable, while ϕ(3) is unsatisfiable and this proves M |= p1Rq1.

The result of running VERBS provides information to be interpreted as a
path, if the result is satisfiable. For instance, for k = 2 and ϕ(2) satisfiable, we
can extract the following path from the information:

a0 = 0, a1 = 0, b0 = 0, b1 = 0, x = 0, y = 0, t = 0
a0 = 0, a1 = 1, b0 = 0, b1 = 0, x = 0, y = 1, t = 1
a0 = 0, a1 = 1, b0 = 0, b1 = 1, x = 1, y = 1, t = 0

This path information could sometimes be useful for error location, if the prop-
erty is not valid. For instance, if we check M |= Gp2 with k = 4, we obtain a
path with a loop as follows.

a0 = 0, a1 = 0, b0 = 0, b1 = 0, x = 0, y = 0, t = 0
a0 = 0, a1 = 1, b0 = 0, b1 = 0, x = 0, y = 1, t = 1
a0 = 1, a1 = 0, b0 = 0, b1 = 0, x = 0, y = 1, t = 1
a0 = 1, a1 = 1, b0 = 0, b1 = 0, x = 0, y = 0, t = 1
a0 = 0, a1 = 1, b0 = 0, b1 = 0, x = 0, y = 1, t = 1

This is a path with a loop that starts from the second state and has length 3.
With this path information, we know that the 4-th state of this path violates
p2. Therefore Gp2 does not hold in M . Then we may conclude that either Gp2

is not a necessary requirement of such a model or the model should be modified
in order to avoid such a path.

Property 2: For M |= p2Uq2, we check the satisfiability of [[M,¬(p2Uq2)]]k and
[[M,¬(p2Uq2)]]vk for k = 0, 1, 2, ..., until the first formula is satisfiable, the second
formulas is unsatisfiable, or the completeness threshold is reached. We have

[[M,¬(p2Uq2)]]vk = I(u0) ∧
k−1∧

i=0

T (ui, ui+1) ∧ [[¬(p2Uq2), u0]]vk

where I(u0) and T (ui, ui+1) are the same as that already specified previously,
and [[¬(p2Uq2), u0]]vk is as follows:
∨k

j=0((¬uj,0 ∧ ¬uj,1 ∨ ¬uj,2 ∧ ¬uj,3) ∧ (¬uj,5 ∧ ¬uj,6) ∧ (uj,5 ∧ uj,6)∧∧j
t=0((¬ut,0 ∨ ¬ut,1) ∧ (¬ut,2 ∨ ¬ut,3))) ∨

∧k
t=0((¬ut,0 ∨ ¬ut,1) ∧ (¬ut,2 ∨ ¬ut,3))

Let ψ(k) denote the conjunction of this formula and I(u0) ∧
∧k−1

i=0 T (ui, ui+1).
We obtain that ψ(0), ψ(1), ψ(2), ψ(3) are satisfiable, while ψ(4) is unsatisfiable
and this proves M |= p2Uq2.

Table 1. Experimental Data

Property k Variables Clauses SAT

ϕ(k) 0 7+2 13 yes
1 14+11 127 yes
2 21+20 243 yes
3 28+29 361 no

Property k Variables Clauses SAT

ψ(k) 0 7+2 18 yes
1 14+11 137 yes
2 21+20 258 yes
3 28+29 381 yes
4 35+38 506 no

Summary: Table 1 is a summary of the experimental data on a Sun Blade 1000
with 750 MHz and 512 MB. The number of variables is divided into two parts:
the number of variables representing the states and that of auxiliary variables
used in the transformation of the formula into CNF. The time used by BOSCH
for satisfiability checking is negligible.

6 Concluding Remarks

We have presented encodings of pairs of model and formula in SAT for the
purpose of both verification of valid properties and error detection, in which the
encoding with the emphasis on error detection is basically the same as that in
[3], and proposed an approach to verify M |= ϕ in the following way.

– Start with k = 0;
– If [[M,¬ϕ]]vk is unsatisfiable, report that M |= ϕ is valid;
– If [[M,¬ϕ]]k is satisfiable, report that M |= ϕ does not hold;
– If a completeness threshold is reached, report that M |= ϕ is valid;
– Increase k and repeat the process.

The case-study presented in the previous section shows that this approach is
useful for checking formulas that are valid in a model (though, there are also
weaknesses of the approach, cf. the discussion in Section 4), in the sense that
the iteration stopped before a completeness threshold is reached. Although the
system presented is simple with the completeness threshold bounded by a rel-
atively small number, it is easy to construct systems by extending the model,
such that the completeness threshold is larger than any given number, while
the verification can still stop when k reaches respectively 3 and 4 for the given
properties. Therefore the benefit of the use of this approach could be arbitrary
large compared to the use of the completeness threshold, and this extends the
practical capability of SAT based model checking to the verification of valid
properties.

In a survey paper [18], Prasad, Biere and Gupta pointed out that, currently,
the strength of SAT-based verification techniques lies primarily in falsification.
This is a remark on verification related to general temporal properties. For simple
properties, there has been a lot of work and report of success, for instance, for
proving simple safety and liveness properties [20, 15, 11, 2]. This study explores
the strength of SAT-based techniques for verification of general LTL properties
and the case study shows that this is a promising approach for certain types of
applications as demonstrated in the case study.

Acknowledgments: The author thanks anonymous referees for their construc-
tive critics and comments that helped improving this paper.

References

1. S. Berezin and S. Campos and E. M. Clarke. Compositional Reasoning in Model
Checking. Proceedings of COMPOS’97. Lecture Notes in Computer Science 1536:
81-102. 1998.

2. A. Biere, A. Cimmatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model
Checking. Advances in Computers 58, Academic Press, 2003.

3. A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. LNCS 1579:193-207. TACAS 99.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. IEEE Symposium on Logic in Computer
Science 5: 428-439, 1990.

5. R. Bryant. Graph based algorithms for boolean function manipulation. IEEE
Transaction on Computers 35(8):677-691. 1986.

6. E. M. Clarke, O. Grumberg and D. E. Long. Model Checking and Abstraction.
ACM Transactions on Programming Languages and Systems 16(5): 1512-1542,
1994.

7. E. M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and
Complexity of Bounded Model Checking. VMCAI 2004: 85-96.

8. E. M. Clarke, D. E. Long and K. L. McMillan. Compositional Model Checking.
IEEE Symposium on Logic in Computer Science 4: 353-362, 1989.

9. E. Allen Emerson and A. P. Sistla. Symmetry and model checking. Formal Meth-
ods in System Design 9:105-131. 1995.

10. J. Gregoire. Verification Model Reduction through Abstraction. Formal Design
Techniques VII, 280-282, 1995.

11. Ranjit Jhala and Kenneth L. McMillan. Interpolation and SAT-based Model
Checking. CAV 2003: 1-13.

12. D. Kroening, O. Strichman. Efficient Computation of Recurrence Diameters. VM-
CAI 2003: 298-309.

13. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Journal of Formal methods
in System Design 6:1-35. 1995.

14. K. L. McMillan. Verification of Infinite State Systems by Compositional Model
Checking. Lecture Notes in Computer Science 1703:219-234. CHARME 1999.

15. Leonardo de Moura, Harald Ruess, Maria Sorea. Bounded Model Checking and
Induction: ¿From Refutation to Verification. CAV 2003: 14-26.

16. Doron A. Peled. Software Reliability Methods. Springer-Verlag. 2001.
17. A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science

13:45-60. 1981.
18. Mukul R. Prasad, Armin Biere, Aarti Gupta. A survey of recent advances in

SAT-based formal verification. STTT 7(2): 156-173 (2005).
19. V. Roy and R. de Simone. Auto/Autograph. In Computer Aided Verification.

DIMACS series in Discrete Mathematics and Theoretical Computer Science 3:
235-250, June 1990.

20. Mary Sheeran, Satnam Singh and Gunnar Stlmarck. Checking Safety Properties
Using Induction and a SAT-Solver. FMCAD 2000: 108-125.

21. A. Valmaru. Stubborn sets for reduced state space generation. LNCS
483(ICATPN’89):491-515. 1989.

22. P. Wolper and P. Godefroid. Partial-order methods for temporal verification.
LNCS 715(CONCUR’93):233-246. 1993.

23. W. Zhang. Combining Static Analysis and Case-based Search Space Partitioning
for Reducing Peak Memory in Model Checking. Journal of Computer Science and
Technology 18(6):762-770, 2003.

24. W. Zhang, Z. Huang, and J. Zhang. Parallel Execution of Stochastic Search Pro-
cedures on Reduced SAT Instances. Lecture Notes in Computer Science 2417:108-
117. Springer-Verlag. 2002.

