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Abstract. Bounded semantics of LTL with existential interpretation and that of
ECTL (the existential fragment of CTL), and the characterization of these exis-
tentially interpreted properties have been studied and used as the theoretical basis
for SAT-based bounded model checking [2, 18]. This has led to a lot of successful
work with respect to error detection in the checking of LTL and ACTL (the uni-
versal fragment of CTL) properties by satisfiability testing. Bounded semantics
of LTL with the universal interpretation and that of ACTL, and the characteri-
zation of such properties by propositional formulas have not been successfully
established and this hinders practical verification of valid universal properties
by satisfiability checking. This paper studies this problem and the contribution
is a bounded semantics for ACTL and a characterization of ACTL properties by
propositional formulas. Firstly, we provide a simple bounded semantics for ACTL
without considering the practical aspect of the semantics, based on converting a
Kripke model to a model (called a k-model) in which the transition relation is
captured by a set of k-paths (each path with k transitions). This bounded seman-
tics is not practically useful for the evaluation of a formula, since it involves too
many paths in the k-model. Then the technique is to divide the k-model into
submodels with a limited number of k-paths (which depends on k and the ACTL
property to be verified) such that if an ACTL property is true in every such model,
then it is true in the k-model as well. This characterization can then be used as the
basis for practical verification of valid ACTL properties by satisfiability check-
ing. A simple case study is provided to show the use of this approach for both
verification and error detection of an abstract two-process program written as a
first order transition system.

1 Introduction

Bounded semantics of LTL with existential interpretation (called existential LTL here-
after) and that of ECTL (the existential fragment of CTL), and the characterization of
these existentially interpreted properties have been studied and used as the theoretical
basis for SAT-based bounded model checking [2, 18]. This has lead to a lot of suc-
cessful work with respect to error detection in the checking of LTL and ACTL (the
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universal fragment of CTL) properties by satisfiability testing [1]. It is considered as a
complementary technique to BDD-based model checking [3, 5] for combating the state
explosion problem, esp. for effective error detection [19].

Bounded semantics of LTL with the universal interpretation and that of ACTL, and
the characterization of such properties by propositional formulas have not been suc-
cessfully established and this hinders practical verification of valid universal properties
by satisfiability checking. Bounded semantics of existential LTL and that of ECTL, and
the characterization of such properties are consistent with the fact that the witness of
the properties can be searched within a fragment of the valid paths. For witness of exis-
tential LTL properties ϕ, one path of the form u · vω is sufficient. In some cases, a finite
path u may be sufficient, while in the general case, it is sufficient to find a finite path
u · v such that there is a transition from the last element of v to the first element of v,
and show that u ·vω |= ϕ holds. For an ECTL property, a witness may consist of several
paths. Some may need to have a loop, while others may not need to have a loop. For
simplicity, we assume that all these paths are of the same length. A path of length k +1
is called a k-path (a path with k transitions). Then the number of k-paths needed for
witnessing an ECTL formula depends on the number k and the structure of the formula.
For instance, for EGEFϕ with ϕ being a propositional formula, the number of k-paths
needed is k + 1.

The problem of characterization of universally interpreted properties lies in that it
looks difficult to reason about all involved paths of a model, since the number of such
paths is too big. This paper studies this problem and the contribution is a bounded
semantics for ACTL and a characterization of ACTL properties by propositional for-
mulas. Firstly, we provide a simple bounded semantics for ACTL without considering
the practical aspect of the semantics, based on converting a Kripke model to a model
(called a k-model) in which the transition relation is captured by a set of k-paths (each
path with k transitions). Although this bounded semantics is not practically useful for
the evaluation of a formula, it serves as the basis for further development. Then the tech-
nique is to divide the k-model into submodels with a limited number of k-paths (which
also depends on k and the ACTL property to be verified) such that if an ACTL property
is true in every such model, then it is true in the k-model as well. This characterization
can then be used as the basis for practical verification of valid ACTL properties by sat-
isfiability checking. A simple case study is provided to show the use of this approach
for both verification and error detection of an abstract two-process program written as
a first order transition system.

The contents of this papers is as follows. Section 2 presents background knowledge
on CTL. Section 3 presents a bounded semantics for ACTL. Section 4 presents a further
development of the bounded semantics of ACTL. Section 5 presents a characterization
of the problem for model checking ACTL properties by propositional formulas. Section
6 presents the verification approach and a case study to show the use of this character-
ization for verification of abstract programs with respect to ACTL properties and for
error detection of incorrect abstract programs. Section 7 proposes a combined verifica-
tion approach in light of a discussion with respect to related work. Finally, we present
concluding remarks in Section 8.



2 Computation Tree Logic (CTL)

Computation tree logic is a propositional branching-time temporal logic [10] introduced
by Emerson and Clarke as a specification language for finite state systems. In this sec-
tion, preliminary knowledge on CTL, including the syntax and the semantics of CTL
and the definition of ACTL and ECTL, is presented.

Let AP be a set of proposition symbols. The set of CTL formulas is defined as
follows:

– Every member of AP is a CTL formula.
– The logical connectives of CTL are: ¬, ∧, and ∨.

If ϕ and ψ are CTL formulas, then so are ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ.
– The temporal operators are

EX , ER, EU , AX , AR, and AU .
If ϕ and ψ are CTL formulas, then so are:
EX ϕ, E(ϕ R ψ), E(ϕ U ψ), AX ϕ, A(ϕ R ψ), and A(ϕ U ψ).

In addition to the logical connectives, ϕ → ψ may be used as an abbreviation of ¬ϕ∨ψ.
In addition to the temporal operators, AFϕ, AGϕ, EFϕ, EGϕ may be used as abbre-
viations of respectively A(true U ϕ), A(false R ϕ), E(true U ϕ), and E(false R ϕ).

A model for CTL formulas is a Kripke structure M = 〈S, T, I, L〉 where S is a set
of states, T ⊆ S × S is a transition relation which is total, I ⊆ S is a set of initial
states and L : S → 2AP is a labeling function that maps each state of S to a set of
propositions that are assumed to be true at that state. A sequence π = π0π1 · · · of S is
a path of M , if T (πi, πi+1) holds for all i ≥ 0.

Definition 1. Let M be a model, s a state, p a proposition symbol, ϕ and ψ CTL for-
mulas. M, s |= ϕ denotes that ϕ is true at the state s in M . Let π be a path of M . The
relation |= is defined as follows:

M, s |= p iff
p ∈ L(s) .
M, s |= ¬ϕ iff
M, s 6|= ϕ
M, s |= ϕ ∧ ψ iff
(M, s |= ϕ) and (M, s |= ψ)
M, s |= ϕ ∨ ψ iff
(M, s |= ϕ) or (M, s |= ψ)
M, s |= EXϕ iff
∃π.(π0 = s ∧M, π1 |= ϕ)
M, s |= E(ϕUψ) iff
∃π.(π0 = s∧ ∃k ≥ 0.(M, πk |= ψ ∧ ∀j < k.(M, πj |= ϕ)))
M, s |= E(ϕRψ) iff
∃π.(π0 = s ∧ (∀j ≥ 0.(M, πj |= ψ)∨
∃k ≥ 0.((M, πk |= ϕ) ∧ ∀j ≤ k.(M, πj |= ψ))))



M, s |= AXϕ iff
∀π.(π0 = s → M, π1 |= ϕ)
M, s |= A(ϕUψ) iff
∀π.(π0 = s → ∃k ≥ 0.(M, πk |= ψ ∧ ∀j < k.(M, πj |= ϕ)))
M, s |= A(ϕRψ) iff
∀π.(π0 = s → (∀j ≥ 0.(M, πj |= ψ)∨
∃k ≥ 0.((M, πk |= ϕ) ∧ ∀j ≤ k.(M, πj |= ψ))))

A CTL formula is in negation normal form (NNF), if the symbol ¬ is applied only to
proposition symbols. Every formula can be transformed into an equivalent formula in
NNF.

The sublogic ACTL is the subset of CTL formulas that can be transformed into
NNF formulas not containing the temporal operators EX, EF, EG, EU, ER. Dually,
the sublogic ECTL is the subset of CTL formulas that can be transformed into NNF
formulas not containing the temporal operators AX, AF, AG, AU, AR.

Definition 2. Let ϕ be an ACTL formula. ϕ is true in M , denoted M |= ϕ, iff ϕ is true
at all initial states of M .

3 Bounded Semantics of ACTL

Since every ACTL formula can be transformed into an equivalent formula in NNF, we
only consider formulas of the form ϕ∨ψ, ϕ∧ψ, AXϕ, A(ϕRψ), A(ϕUψ) constructed
from propositions and the negation of propositions. Therefore, in the following, a for-
mula refers to such an ACTL formula unless otherwise stated. In this section, a bounded
semantics of ACTL is presented. One of the particular aspects of this semantics is the
use of the condition eqs(π) for stating that there are same (or equal) states appearing
in different positions in the path π. Note that in the semantics of existential LTL and
that of ECTL, a condition indicating that there is a transition from the last state of π to
some state already in π is used [2, 18]. This condition is not useful for the construction
of the bounded semantics for ACTL. The reason is that we need the property of eqs(π)
stated below for reasoning about the correctness of Lemma 1 and Lemma 2. Details are
explained in the sequel.

For simplicity, we fix the model under consideration to be M = 〈S, T, I, L〉, and
in the sequel, M refers to this model, unless otherwise stated. Let k ≥ 0. A k-paths of
M is a path π = π0 · · ·πk of M where πi ∈ S for i = 0, ..., k and (πi, πi+1) ∈ T for
i = 0, ..., k − 1. The k-model for M is a structure Mk = 〈S, Phk, I, L〉 where Phk is
the set of all different k-paths of M . Let |π| be the length of π. We have the following
definition of eqs(π).

eqs(π) :=
|π|−1∨

i=0

|π|−1∨

j=i+1

πi = πj .

If π is a prefix of π′, then eqs(π) → eqs(π′).

Definition 3 (Bounded Semantics of ACTL). Let Mk be the k-model of M , s a state,
p a proposition symbol, ϕ and ψ ACTL formulas. Mk, s |=k ϕ denotes that ϕ is true at



the state s in Mk. Let π = π0 · · ·πk be a path in Phk. Let [n] denote the set {0, ..., n}.
The relation |=k is defined as follows:

Mk, s |=k p iff
p ∈ L(s)
Mk, s |=k ¬p iff
p 6∈ L(s)
Mk, s |=k ϕ ∧ ψ iff
(Mk, s |=k ϕ) and (Mk, s |=k ψ)
Mk, s |=k ϕ ∨ ψ iff
(Mk, s |=k ϕ) or (Mk, s |=k ψ) .
Mk, s |=k AXϕ iff
k ≥ 1 and ∀π.(π0 = s → Mk, π1 |=k ϕ)
Mk, s |=k A(ϕUψ) iff
∀π.(π0 = s → ∃i ∈ [k].(Mk, πi |=k ψ ∧ ∀j ∈ [i− 1].(Mk, πj |=k ϕ)))
Mk, s |=k A(ϕRψ) iff
∀π.(π0 = s → ((eqs(π) ∧ ∀j ∈ [k].(Mk, πj |=k ψ))∨
∃i ∈ [k].((Mk, πi |=k ϕ) ∧ ∀j ∈ [i].(Mk, πj |=k ψ))))

For the soundness of this definition, we need to know that if M, s |= ϕ then there is
a finite k ≥ 0 such that Mk, s |=k ϕ, and vice versa.

Let kM be the number of reachable states of M . For k′ = kM , since k′ ≥ 1 and
eqs(π) are satisfied for every π ∈ Phk′ , we have M, s |= ϕ implies Mk′ , s |=k′ ϕ by
restricting every path in M to be k′-path. On the other hand, an infinite path π of M
has a k′-path as its prefix. A property is true on π, if it is true on such a prefix, unless it
is a global property, i.e., a property of the form A(ϕRψ) such that ϕ does not hold in
any state of π and ψ must hold in all states of π, and therefore a prefix is not sufficient
for showing the truth of ϕRψ. Assume this situation occurs and A(ϕRψ) holds in the
bounded semantics. We want to show that ϕRψ also holds on such a path π. For the
first, the situation implies that ψ is true on every state of every k′-path of which the set
of states is a subset of that of π. For the second, the set of states of all these k′-paths
with the start state π0 covers the set of states of π. These two conditions guarantee that
ψ is true on every state of π and therefore ϕRψ holds on π. Summing up the above
discussion, we have Mk′ , s |=k′ ϕ implies M, s |= ϕ. On the other hand, paths in a
k-model with more than kM transitions can be shortened to paths with kM transitions1

without affecting the satisfiability of ACTL formulas in the model. Formally, we have

Lemma 1. Let k ≥ kM . M, s |= ϕ iff Mk, s |=k ϕ.

This assures in some sense the soundness of the semantics, in addition, we need to
have some kind of continuity of the truth values of Mk, s |=k ϕ for a sequence of values
of k. Fortunately, the property of eqs(π) allows us to prove that if an ACTL property
holds on the k-model, it also holds on the (k + 1)-model (which is a model with longer
paths). Formally:

1 The number of reachable states for kM is an over-approximation. A smaller number is usually
sufficient. The least such number is called the completeness threshold, Computation of such
numbers has been studied in e.g. [13].



Lemma 2. If Mk, s |=k ϕ, then Mk+1, s |=k+1 ϕ.

This means that if Mk, s |=k ϕ holds for k = kM , then there is a k′ ≤ k such that
for all k′′ ≥ k′, Mk′′ , s |=k′′ ϕ holds, and for all k′′ < k′, Mk′′ , s |=k′′ ϕ does not
hold. Combining Lemma 1 and Lemma 2, we obtain

Theorem 1 (Soundness). M, s |= ϕ iff there is some k ≤ kM such that Mk, s |=k ϕ.

Definition 4. Let ϕ be an ACTL formula. ϕ is true in the k-model Mk, denoted Mk |=k

ϕ, iff ϕ is true at all initial states of the model Mk.

Following Theorem 1 and Lemma 2, we have the following theorem.

Theorem 2. M |= ϕ iff there is some k ≤ kM such that Mk |=k ϕ holds.

4 Refining the Bounded Semantics

The bounded semantics of ACTL is not directly useful as a method for checking whether
an ACTL formula holds in the model, since the number of k-paths in the k-model is
large. An over-approximation of the number is (kM )k+1, while the exact number is
difficult to compute. In the case of ECTL, if a witness exists, we only need to find a
small subset (depends on k and the property to be verified) of k-paths in the k-model to
certify the existence of a witness. in the case of ACTL, the number of involved k-paths
for certification of the property is necessarily large. The technique is then to divide the
k-model into submodels with a limited number of paths (which also depends on k and
the property to be verified) and prove that if such an ACTL property is true in every such
model, then it is true in the k-model as well. The details are explained in the sequel. We
first define the concept of submodels.

Definition 5 (Submodels). Let Mk = 〈S, Phk, I, L〉 be the k-model of M . M
′
k =

〈S, Ph
′
k, I, L〉 is a submodel of Mk, if Ph

′
k ⊆ Phk. We write M

′
k ≤ Mk for this

relation.

Similarly, if M
′
k and M

′′
k are two submodels, M

′
k ≤ M

′′
k iff Ph

′
k ⊆ Ph

′′
k . The number

of k-paths in a submodel M
′
k is denoted by |M ′

k|. We call a submodel M
′
k with n k-paths

a (k, n)-submodel. Note that in a (k, n)-submodel, we do not require the n k-paths in
the submodel be different.

A state s in a submodel M
′
k satisfies a formula ϕ, denoted by M

′
k, s |=k ϕ, is

defined just like the definition of Mk, s |=k ϕ (cf. Definition 3), except that ∀π means
∀π ∈ Ph

′
k instead of ∀π ∈ Phk. We have the following property of submodels.

Proposition 1. If M
′
k ≤ M

′′
k , then M

′′
k , s |=k ϕ implies M

′
k, s |=k ϕ.

Based on this proposition, we obtain:

Proposition 2. Let M
′
k,M

′′
k be respectively a (k, n)-submodel and a (k, m)-submodel.

If M
′
k, s1 6|=k ϕ or M

′′
k , s2 6|=k ψ, then there is a (k, max(m,n))-submodel M

′′′
k such

that M
′′′
k , s1 6|=k ϕ or M

′′′
k , s2 6|=k ψ.



We may combine submodels. Let M
′
k,M

′′
k be two submodels. Then M

′
k ∪ M

′′
k is

the submodel M∗
k with Ph∗k = Ph′k ∪Ph′′k and the other components remain the same.

Proposition 3. Let M
′
k,M

′′
k be two submodels. If M

′
k, s1 6|=k ϕ and M

′′
k , s2 6|=k ψ,

then M
′
k ∪M

′′
k , s1 6|=k ϕ and M

′
k ∪M

′′
k , s2 6|=k ψ.

A consequence of this proposition is that if there is a (k, n)-submodel M
′
k and

a (k, m)-submodel M
′′
k such that M

′
k, s1 6|=k ϕ and M

′′
k , s2 6|=k ψ, then there is a

(k, m + n)-submodel M
′′′
k such that M

′′′
k , s1 6|=k ϕ and M

′′′
k , s2 6|=k ψ.

In the following, we analyze how many paths are needed in submodels such that we
can conclude if an ACTL property is true in every such submodel of the k-model, then
it is true in the k-model. Let ϕ be a propositional formula.

For every s, if for every (k, 0)-submodel M
′
k (there is actually only one (k, 0)-

submodel), M
′
k, s |=k ϕ holds, then Mk, s |=k ϕ.

This is because propositional property does not depend on k-paths2. This fact serves
as the basis for reasoning about composed formulas. Suppose that we have now the
following two assumptions (which are needed for the following inductive construction):

1. For every s, if for every (k, n)-submodel M
′
k, M

′
k, s |=k ϕ holds, then Mk, s |=k ϕ.

2. For every s, if for every (k, m)-submodel M
′′
k , M

′′
k , s |=k ψ holds, then Mk, s |=k

ψ.

We then consider the composed ACTL formulas. Let z = max(m,n). According
to Proposition 1 and the two assumptions, we have, for every s,

– if for every (k, z)-submodel M
′′′
k , M

′′′
k , s |=k ϕ holds, then Mk, s |=k ϕ.

– if for every (k, z)-submodel M
′′′
k , M

′′′
k , s |=k ψ holds, then Mk, s |=k ψ.

Combining these two statements, we obtain:

For every s, if for every (k, max(m,n))-submodel M∗
k , M∗

k , s |=k ϕ ∧ ψ
holds, then Mk, s |=k ϕ ∧ ψ.

For disjunction, we consider the validity of Mk, s |=k ϕ∨ψ. Suppose that Mk, s |=k

ϕ∨ψ does not hold. Then none of Mk, s |=k ϕ and Mk, s |=k ψ holds. According to as-
sumption 1 and assumption 2, there is a (k, n)-submodel M

′
k such that M

′
k, s 6|=k ϕ and

there is a (k, m)-submodel M
′′
k , such that M

′′
k , s 6|=k ψ. Combining these two submod-

els, we obtain a (k, m + n)-submodel M
′′′
k such that M

′′′
k , s 6|=k ϕ and M

′′′
k , s 6|=k ψ.

Then M
′′′
k , s 6|=k ϕ ∨ ψ. By turning the direction of reasoning, we obtain:

For every s, if for every (k, m + n)-submodel M∗
k , M∗

k , s |=k ϕ ∨ ψ holds,
then Mk, s |=k ϕ ∨ ψ.

2 The number of different (k, n)-submodels is limited by mn where m is the number of different
k-paths.



For temporal formulas of the form AXϕ, suppose that Mk, s |=k AXϕ does not
hold. Then there is a k-path P1 = π0π1 · · ·πk with π0 = s such that Mk, π1 |=k ϕ
does not hold. According to assumption 1, there is a (k, n)-submodel M

′
k such that

M
′
k, π1 6|=k ϕ. Extending M

′
k with P1, we obtain a (k, n + 1)-submodel M

′′
k such that

M
′′
k , s 6|=k AXϕ. By turning the direction of reasoning, we obtain

For every s, if for every (k, n+1)-submodel M∗
k , M∗

k , s |=k AXϕ holds, then
Mk, s |=k AXϕ.

For temporal formulas of the form A(ϕUψ), suppose that Mk, s |=k A(ϕUψ) does
not hold. Then there is a k-path P1 = π0π1 · · ·πk with π0 = s such that either (1)
Mk, πi |=k ψ does not hold for all 0 ≤ i ≤ k or

– (2a) Mk, π0 |=k ψ does not hold, and
– (2b) for each j < k, if Mk, πi |=k ϕ holds for all 0 ≤ i ≤ j, then Mk, πj+1 |=k ψ

does not hold.

According to assumption 1 and assumption 2,

– With condition (1), there is a (k, m)-submodel M i
k such that M i

k, πi 6|=k ψ for each
0 ≤ i ≤ k.
According to Proposition 3, we may combine the k + 1 submodels, and obtain that
there is a (k, (k + 1)m)-submodel M∗

k such that M∗
k , πi 6|=k ψ for each 0 ≤ i ≤ k.

– With condition (2a), there is a (k, m)-submodel M0
k such that M0

k , π0 6|=k ψ.
– With condition (2b), for each j < k, there is a (k, n)-submodel M

′i
k such that

M
′i
k , πi 6|=k ϕ for some 0 ≤ i ≤ j, or there is a (k, m)-submodel M j+1

k such that
M j+1

k , πj+1 6|=k ψ.
According to Proposition 2, we obtain that for each j < k, there is a (k, max(m,n))-
submodel M

′′
k such that M

′′
k , πi 6|=k ϕ for some 0 ≤ i ≤ j, or M

′′
k , πj+1 6|=k ψ.

According to Proposition 3, we obtain that there is a (k, k ·max(m,n))-submodel
M

′∗
k such that for each j < k, M

′∗
k , πi 6|=k ϕ for some 0 ≤ i ≤ j, or M

′∗
k , πj+1 6|=k

ψ.

Since condition (2a) and condition (2b) are to be satisfied at the same time, we
need a (k, k · max(m,n) + m)-submodel to cover condition (2). Since condition (1)
is an alternative to condition (2), and (k + 1) ·m ≤ (k, k ·max(m,n) + m), a (k, k ·
max(m,n) + m)-submodel is sufficient to cover both conditions. Take the path P1

into consideration, we have a (k, k · max(m,n) + m + 1)-submodel M∗∗
k such that

M∗∗
k , s |=k A(ϕUψ) does not hold. By turning the direction of reasoning, we obtain

For every s, if for every (k, k ·max(m,n)+m+1)-submodel M∗
k , M∗

k , s |=k

A(ϕUψ) holds, then Mk, s |=k A(ϕUψ).

Similar arguments can be applied to temporal formulas of the form A(ϕRψ). Be-
cause the semantics of A(ϕRψ) involves the condition eqs(π), an analysis of eqs(π) is
needed. Otherwise, the reasoning is similar to that of the case of A(ϕUψ).

Suppose that Mk, s |=k A(ϕRψ) does not hold. Then there is a k-path P1 =
π0π1 · · ·πk with π0 = s such that



– (1) eqs(π) does not hold or Mk, πj |=k ψ does not hold for some 0 ≤ j ≤ k, and
– (2) for each j ≤ k, if Mk, πi |=k ψ holds for all 0 ≤ i ≤ j, then Mk, πj |=k ϕ

does not hold.

Condition (1) can be divided into 2 subcases: (1a) eqs(π) does not hold and (1b)
eqs(π) holds. According to assumption 1 and assumption 2,

– With condition (1b), we have that Mk, πj |=k ψ does not hold for some 0 ≤ j ≤ k.
Then there is a (k, m)-submodel M

′
k such that M

′
k, πj 6|=k ψ for some 0 ≤ j ≤ k.

– With condition (2), for each j ≤ k, there is a (k, m)-submodel M
′i
k such that

M
′i
k , πi 6|=k ψ for some 0 ≤ i ≤ j, or there is a (k, n)-submodel M j

k such that
M j

k , πj 6|=k ϕ.
Then there is a (k, (k + 1) ·max(m,n))-submodel M

′′
k such that for each j ≤ k,

M
′′
k , πi 6|=k ϕ for some 0 ≤ i ≤ j, or M

′′
k , πj 6|=k ϕ.

Applying the similar argument as that in the case of A(ϕUψ), we obtain that in
case eqs(π) holds (i.e., we have condition (1b) and condition (2)), there is a (k, (k+1) ·
max(m,n)+m+1)-submodel M∗

k such that M∗
k , s 6|=k A(ϕRψ). In case eqs(π) does

not holds, there is a (k, (k + 1) ·max(m,n) + 1)-submodel M
′′′
k such that M

′′′
k , s 6|=k

A(ϕRψ). According to Proposition 1, there is a (k, (k + 1) · max(m,n) + m + 1)-
submodel M∗

k such that M∗
k , s 6|=k A(ϕRψ) also in the this case. Therefore, by turning

the direction of reasoning, we obtain

For every s, if for every (k, (k + 1) · max(m,n) + m + 1)-submodel M∗
k ,

M∗
k , s |=k A(ϕRψ) holds, then Mk, s |=k A(ϕRψ).

The above reasoning leads to the following definition of the necessary number of
paths in such submodels.

Definition 6. Let ϕ be an ACTL formula. nk(ϕ) is defined as follows.

nk(p) = 0 if p ∈ AP
nk(¬p) = 0 if p ∈ AP
nk(ϕ ∧ ψ) = max(nk(ϕ), nk(ψ))
nk(ϕ ∨ ψ) = nk(ϕ) + nk(ψ)
nk(AXϕ) = nk(ϕ) + 1
nk(A(ϕRψ)) = (k + 1) ·max(nk(ϕ), nk(ψ)) + nk(ψ) + 1
nk(A(ϕUψ)) = k ·max(nk(ϕ), nk(ψ)) + nk(ψ) + 1

For verifying ϕ, we divide the k-model into submodels with nk(ϕ) paths. This leads
to the following lemma.

Lemma 3. Mk, s |=k ϕ iff for every (k, nk(ϕ))-submodel M∗
k , M∗

k , s |=k ϕ holds.

This lemma can be proved by structural induction on ϕ based on the above analysis.
Combining Theorem 1, we obtain

Theorem 3. M, s |= ϕ iff there is some k ≤ kM such that for every (k, nk(ϕ))-
submodel M∗

k , M∗
k , s |=k ϕ holds.



Similar to Definition 4, we can define the relation M∗
k |=k ϕ for a submodel M∗

k

and a formula ϕ. Then we obtain

Theorem 4. M |= ϕ iff there is some k ≤ kM such that for every (k, nk(ϕ))-submodel
M∗

k , M∗
k |=k ϕ holds.

5 SAT-Based Characterization of ACTL

Let k ≥ 0. Let Nk be the number of different k-paths of M . Let ui,0, ..., ui,k be a
finite sequence of state variables for each i ∈ {1, ..., Nk}. The sequence ui,0, ..., ui,k is
intended to be used as a representation of a path of Mk.

Definition 7. Let k ≥ 0.

Pk(i) :=
k−1∧

j=0

T (ui,j , ui,j+1)

Every assignment to the set of state variables {ui,0, ..., ui,k} satisfying Pk(i) represents
a valid k-path of M . The sequence ui,0, ..., ui,k is then called a symbolic path of Mk.
Let a be an assignment to ui,0, ..., ui,k for i ∈ {1, ..., Nk}. Then the value assigned
to ui,j , denoted a(ui,j), represents a state of M . Conversely, for each state s ∈ S of
M , we use u(s) to represent that u has already been assigned a value representing the
state s. The difference between a state variable u and u(s) is that the latter has a fixed
assignment and therefore cannot be assigned new values.

Definition 8 (Transition Relation). Let k ≥ 0. Let 0 ≤ b ≤ Nk.

[[M ]]bk :=
b∧

i=1

Pk(i)

This is a collection of Pk(l) for l = 1, ..., b. Let p ∈ AP be a proposition symbol
and p(u) represent the propositional formula representing the states in which p is true
according to L of M . State it differently, we have that p(u) is true when u is assigned
the truth value representing a state s such that p holds on s. Let ek(i) denote that there
are same states appearing in different positions in path Pk(i). Formally,

ek(i) :=
k−1∨
x=0

k∨
y=x+1

ui,x = ui,y.

This definition corresponds to the definition of eqs(π) for a k-path π = ui,0ui,1 · · ·ui,k.



Definition 9 (Translation of ACTL formulas). Let k ≥ 0. Let u be a state variable
and ϕ be an ACTL formula. The encoding [[ϕ, u]]bk is defined as follows.

[[p, u]]bk = p(u)
[[¬p, u]]bk = ¬p(u)
[[ϕ ∨ ψ, u]]bk = [[ϕ, u]]bk ∨ [[ψ, u]]bk
[[ϕ ∧ ψ, u]]bk = [[ϕ, u]]bk ∧ [[ψ, u]]bk
[[AXϕ, u]]bk =

∧b
i=1(u = ui,0 → [[ϕ, ui,1]]bk)

[[A(ϕRψ), u]]bk =
∧b

i=1(u = ui,0 →∨k
j=0([[ϕ, ui,j ]]bk ∧

∧j
t=0[[ψ, ui,t]]bk) ∨∧k

j=0[[ψ, ui,j ]]bk ∧ ek(i))
[[A(ϕUψ), u]]bk =

∧b
i=1(u = ui,0 →

∨k
j=0([[ψ, ui,j ]]bk ∧

∧j−1
t=0 [[ϕ, ui,t]]bk))

where [[ϕ, ui,j ]]b0 denotes false for j > 0.

[[ϕ, ui,j ]]b0 may occur when k = 0. We may only consider the cases with k ≥ 1
in the definition. But we choose to allow k = 0 for avoiding situations where we may
need to explicitly mention k = 0 as a special case.

Definition 10. [[M, ϕ, u]]bk := [[M ]]bk → [[ϕ, u]]bk.

[[M, ϕ, u(s)]]bk encodes M ′
k, s |= ϕ, in the sense that a model of [[M, ϕ, u(s)]]bk

satisfying [[M ]]bk yields a (k, b)-submodel M ′
k such that M ′

k, s |= ϕ. This means that if
there is no falsifying assignments, then every (k, b)-submodel M ′

k satisfies M ′
k, s |= ϕ.

On the other hand, a falsifying assignment of [[M, ϕ, u(s)]]bk yields a (k, b)-submodel
M ′′

k such that M ′′
k , s 6|= ϕ.

Lemma 4. [[M, ϕ, u(s)]]bk is valid iff for every (k, b)-submodel M ′
k, M ′

k, s |= ϕ.

According to Lemma 3, we obtain Mk, s |= ϕ iff [[M, ϕ, u(s)]]nk(ϕ)
k is valid. Then

with Theorem 1, we obtain

Theorem 5. M, s |= ϕ iff there is some k ≤ kM such that [[M, ϕ, u(s)]]nk(ϕ)
k is valid.

Definition 11. [[M, ϕ]]bk := I(u) ∧ [[M ]]bk → [[ϕ, u]]bk.

I(u) restricts the potential values of u to be the initial states of M . [[M, ϕ]]bk is valid
iff for each s of the initial states, [[M ]]bk → [[ϕ, u(s)]]bk is valid. According to Lemma 4
and Lemma 3, we obtain Mk |= ϕ iff [[M, ϕ]]nk(ϕ)

k is valid. Then with Theorem 2, we
obtain

Theorem 6. M |= ϕ iff there is some k ≤ kM such that [[M, ϕ]]nk(ϕ)
k is valid.

6 Bounded Verification and Case Study

Bounded verification of valid ACTL properties can be based on theorem 6. For mini-
mizing the number of propositions used in the SAT formulas, we base the verification
on the following corollary where the variable u (implicitly) in Theorem 6 is replaced
by u1,0 which is already in [[M ]]nk (when n ≥ 1). Let

[[M, ϕ]]∗k := I(u1,0) ∧ [[M ]]nk(ϕ)
k → [[ϕ, u1,0]]

nk(ϕ)
k .



Corollary 1. M |= ϕ iff there is a 0 ≤ k ≤ kM such that [[M, ϕ]]∗k is valid.

The verification approach is as follows. For a given model M and an ACTL formula
ϕ,

– Start with k = 0;
– If [[M, ϕ]]∗k is valid, report that the property holds;
– Increase k, if k ≤ kM , go to the first “if”-test;
– Report that the property does not hold.

6.1 Case Study

We first present the tool for the case study. There are mainly two steps for the veri-
fication: one is the generation of a CNF formula and the other is the checking of the
formula. The tool first converts the Boolean representation of the initial state and the
transition relation of the abstract program and the property (to be checked) to the CNF
formula and then call the satisfiability checker BOSCH3 for checking the CNF for-
mula. If the formula is satisfiable, an assignment that makes the formula satisfiable is
presented. This can be used for error detection as demonstrated in Section 6.3.

We now present the abstract program (this is taken from [23] in which the program
was used for the illustration of the verification of LTL properties) and the properties
to be verified. Let a, b be variables of enumeration type which have respectively the
domain {s0, ..., s3} and {t0, ..., t3}. Let x, y, t be variables of Boolean type. The pro-
gram consists of two processes: A and B with the following specification in a first order
transition system [17]:

Process A:
a = s0 −→ (y, t, a) := (1, 1, s1)
a = s1 ∧ (x = 0 ∨ t = 0) −→ (a) := (s2)
a = s2 −→ (y, a) := (0, s3)
a = s3 −→ (y, t, a) := (1, 1, s1)
Process B:
b = t0 −→ (x, t, b) := (1, 0, t1)
b = t1 ∧ (y = 0 ∨ t = 1) −→ (b) := (t2)
b = t2 −→ (x, b) := (0, t3)
b = t3 −→ (x, t, b) := (1, 0, t1)

Let the initial state be a = s0∧b = t0∧x = y = t = 0. We consider two properties:

– A liveness property: process A or process B will at some future point (including
the current one) pass a critical region, i.e. AF (a = s3 ∨ b = s3).

– A mixed property: at any point, process A or process B will at some future point
(including the current one) pass a critical region, i.e. AGAF (a = s3 ∨ b = s3).

3 A tool based on DPLL and developed based on parts of the code of a tool presented in [25].



Let boolean variables a0 and a1 represent the variable a such that a0 = i ∧ a1 = j
meaning a = s2i+j , and b0 and b1 represent b such that b0 = i ∧ b1 = j meaning
b = t2i+j . Then each state is represented by a tuple (a0, a1, b0, b1, x, y, t).

Let V = {a0, a1, b0, b1, p, q, r}. The system can be represented by boolean formu-
las as follows:

I(a0, a1, b0, b1, x, y, t)
≡ x = 0 ∧ y = 0 ∧ t = 0 ∧ a0 = 0 ∧ a1 = 0 ∧ b0 = 0 ∧ b1 = 0
T (a0, a1, b0, b1, x, y, t, a′0, a

′
1, b

′
0, b

′
1, x

′, y′, t′)
≡ a0 = 0 ∧ a1 = 0 ∧ y′ = 1 ∧ t′ = 1 ∧ a′1 = 1 ∧ same(V \ {y, t, a1})∨

a0 = 0 ∧ a1 = 1 ∧ (x = 0 ∨ t = 0) ∧ a′0 = 1 ∧ a′1 = 0 ∧ same(V \ {a0, a1})∨
a0 = 1 ∧ a1 = 0 ∧ y′ = 0 ∧ a′1 = 1 ∧ same(V \ {y, a1})∨
a0 = 1 ∧ a1 = 1 ∧ y′ = 1 ∧ t′ = 1 ∧ a′0 = 0 ∧ same(V \ {y, t, a0})
b0 = 0 ∧ b1 = 0 ∧ x′ = 1 ∧ t′ = 0 ∧ b′1 = 1 ∧ same(V \ {x, t, b1})∨
b0 = 0 ∧ b1 = 1 ∧ (y = 0 ∨ t = 1) ∧ b′0 = 1 ∧ b′1 = 0 ∧ same(V \ {b0, b1})∨
b0 = 1 ∧ b1 = 0 ∧ x′ = 0 ∧ b′1 = 1 ∧ same(V \ {x, b1})∨
b0 = 1 ∧ b1 = 1 ∧ x′ = 1 ∧ t′ = 0 ∧ b′0 = 0 ∧ same(V \ {x, t, b0}) ∨ loop action

where same(X) represents v′1 = v1 ∧ · · · ∧ v′n = vn for the set of propositions X =
{v1, ..., vn}, and loop action is a transition enabled if none of the other transitions is
applicable, and the effect of this transition is that the values of the state variables are
kept unchanged in the next state.

The formula (a = s3 ∨ b = t3) is the same as the following.

(a0 = 1 ∧ a1 = 1 ∨ b0 = 1 ∧ b1 = 1)

Let us denote this formula by ψ. Then the two properties are as follows.

(1) M |= AFψ
(2) M |= AGAFψ

6.2 Checking Correctness

For M |= AFψ, we want to know whether [[M, AFψ]]∗k is valid for some k. We check
the satisfiability of the negation of [[M, AFψ]]∗k for k = 0, 1, 2, ..., until the formula
is unsatisfiable, or the completeness threshold kM is reached. By making trivial sim-
plifications, transforming the formula into CNF format, and using the tool BOSCH for
satisfiability checking, we obtain that the CNF formula is satisfiable for k = 0, 1, 2, 3
and it is unsatisfiable for k = 4. This proves M |= AFψ. Table 1 shows the experi-
mental data of this verification on a Sun Blade 1000 with 750 MHz and 512 MB. The
number of variables includes the number of variables representing the states and that of
auxiliary variables used in the transformation of the formula into CNF. The time used
by BOSCH for satisfiability checking is negligible.

For M |= AGAFψ, we check the satisfiability of the negation of [[M, AGAFψ]]∗k
for k = 0, 1, 2, ... . We obtain that it is satisfiable for k = 0, 1, ..., 9 and it is unsatisfiable
for k = 10. This proves M |= AGAFψ. Table 2 shows the experimental data of this
verification for k = 0, 3, 6, 9, 10. The time is that (in seconds) used by BOSCH for
satisfiability checking.



Property k Variables Clauses Time SAT
AFψ 0 9 14 0.0 yes

1 26 157 0.0 yes
2 43 302 0.0 yes
3 60 449 0.0 yes
4 77 598 0.0 no

Table 1. Experimental data for verification of AFψ

Property k Variables Clauses Time SAT
AGAFψ 0 23 25 0.0 yes

3 185 1000 0.0 yes
6 410 2146 0.1 yes
9 698 3463 0.2 yes
10 808 3940 5.0 no

Table 2. Experimental data for for verification of AGAFψ

6.3 Error Detection

Suppose that we have an erroneous program where the transition rule

a = s1 ∧ (x = 0 ∨ t = 0) → (a) := (s2)

is wrongly written as

a = s1 ∧ (x = 0 ∨ t = 1) → (a) := (s2).

Then the two properties do not hold in this modified program. Let us denote this
program (its equivalent Kripke structure) by M ′. Then we need to check the properties
up to the threshold kM ′ . With Proposition 2, we may use an over approximation of kM ′ .
For instance, we may use 17, which is the number of reachable states of M ′, as the over
approximation.

The inputs to the satisfiability checker are satisfiable with each k up to and including
17, and this certifies that the properties do not hold in this program, i.e.

M ′ 6|= AFψ
M ′ 6|= AGAFψ

Table 3 and Table 4 show the experimental data of error detection with respect to
the properties AFψ and AGAFψ with k = 0, 4, 8, 12, 16, 17, respectively.

For error location, the path information produced by BOSCH can be used for the
analysis of the problem of the program. For the property AGAFψ, the path information
is shown in Table 5, where a = si iff a0 = i/2∧a1 = i%2 and b = ti iff b0 = i/2∧b1 =
i%2. By looking at the path information, we find two paths. The first path has a loop
at state 06 (the sixth state in the path) and the second path has a loop at state 02. The
first path satisfies AFψ and the second one does not. Further, we can relate the first
state of the second path to the first state of the first path, and this means that the second
path starts at the first state of the first path, and this path has an execution sequence that
looks like a deadlock. By analyzing the program, we know that there is a deadlock (not
ending with a state satisfying ψ) and therefore the program does not satisfy AGAFψ.



Property k Variables Clauses Time SAT
AFψ 0 9 14 0.0 yes

4 77 598 0.0 yes
8 145 1214 0.0 yes
12 213 1862 0.0 yes
16 281 2542 0.0 yes
17 298 2717 0.0 yes

Table 3. Experimental data for error detection w. r. t. AFψ

Property k Variables Clauses Time SAT
AGAFψ 0 23 25 0.0 yes

4 253 1363 0.0 yes
8 595 3005 0.2 yes
12 1049 4951 0.4 yes
16 1615 7201 0.9 yes
17 1774 7811 1.1 yes

Table 4. Experimental data for error detection w. r. t. AGAFψ

Path State a0 a1 b0 b1 x y t

1 00 0 0 0 0 0 0 0
1 01 0 1 0 0 0 1 1
1 02 1 0 0 0 0 1 1
1 03 1 1 0 0 0 0 1
1 04 1 1 0 1 1 0 0
1 05 1 1 1 0 1 0 0
1 06 0 1 1 0 1 1 1
1 07 1 0 1 0 1 1 1
1 08 1 1 1 0 1 0 1
1 09 = 06 0 1 1 0 1 1 1
1 · · · · · · · · · · · · · · · · · · · · · · · ·
2 01 0 1 0 0 0 1 1
2 02 0 1 0 1 1 1 0
2 03 = 02 0 1 0 1 1 1 0
2 · · · · · · · · · · · · · · · · · · · · · · · ·

Table 5. Path information for error detection w. r. t. AGAFψ



6.4 Complexity and Discussion
The complexity of [[M, ϕ]]∗k depends on M , k and nk(ϕ). For a given k, the number
of propositional variables involved in [[M, ϕ]]∗k is (k + 1) · nk(ϕ) where nk(ϕ) =
2O(log(k)·|ϕ|). This means that the number of propositional variables could be exponen-
tial in the length (in practice, in the nesting depth of AR and AU ) of ϕ. We expect that
for practical applications, the nesting depth of AR and AU of a formula is small. Then
the efficiency depends very much on k which is bounded by the number of reachable
states (or more accurately, the diameter) of M .

When a small k is sufficient for the verification, the advantage of this approach is
clear. In such cases, it could be much more efficient than BDD based approaches. we
provide an example illustrating this advantage.

Let p0, ..., pn−2, q, r be variables of the domain {0, 1} and ⊕ be the function: addi-
tion modulo 2. Let the system be consist of n processes. A, B and Ci for i = 0, ..., n−3
(each is a sequential process which executed in parallel to each other with the interleav-
ing semantics) with the following specification:

A : r = r ⊕ 1; p0 = p0 ⊕ 1
B : pn−2 = pn−2 ⊕ 1; q = q ⊕ 1
Ci : pi = pi ⊕ 1; pi+1 = pi+1 ⊕ 1; q = q ⊕ 1

Let the initial state be pi = 0 and q = r = 1.
Let ϕ = AXA(qU(p0∨p2∨· · ·∨pn−2)) for an even number n. For verifying ϕ(n),

we first transform the problem to CNF formula, then use zChaff , an implementation
of the Chaff algorithm [16] for verification. For n = 4, 6, 8, 10, 12, the property is
verified when k reaches respectively 2, 3, 4, 5, 6. The verification times by zChaff for
n = 4, 6, 8, 10, 12 are shown in Table 6.

Property k Time (s) Variables Clauses SAT
ϕ(4) 2 0.01 139 1254 no
ϕ(6) 3 0.03 278 4077 no
ϕ(8) 4 0.11 465 9522 no
ϕ(10) 5 0.42 700 18456 no
ϕ(12) 6 1.15 983 31746 no

Table 6. Experimental data for verification by zChaff

For comparison, we have carried out the same verification task using SMV (release
2.5.4.3), an implementation of the symbolic model checking technique [15]. The veri-
fication times for n = 4, 6, 8, 10, 12 are shown in Table 7.

Table 6 and Table 7 show clear advantage of using this bounded verification ap-
proach over the BDD based verification approach for this example.

6.5 Summary
The case study shows that this approach can be used to both verification of correct
properties and error detection, and the comparison has illustrated that when a small k



Property Time (s) BDD nodes Memory (KB)
ϕ(4) 0.06 6092 1245.184
ϕ(6) 0.96 14545 1376.256
ϕ(8) 12.97 111981 2949.120
ϕ(10) 192.01 888025 15335.424
ϕ(12) 6596.34 6135235 99287.040

Table 7. Experimental data for verification by SMV

is sufficient for the verification, the advantage is clear. In such cases, it could be much
more efficient than BDD based approaches. For error detection, in addition to identi-
fying that there is an error, error paths may also be produced. Creating and analyzing
tree-like counter examples have also been studied in many papers including [8, 20]. In
our work, the counterexample may be created and presented as a set of k-paths. Al-
though we may use this approach for error detection, it needs to reach a completeness
threshold for k. This is usually not very efficient. This approach can be combined with
that presented in [18] for error detection. This is to be discussed in the next section.

7 A Combined Verification Approach

Bounded model checking based on SAT (satisfiability checking) has first been intro-
duced as a complementary technique to BDD-based symbolic model checking of LTL
properties [2]. This idea has then been used for checking ACTL properties [18]. The
characterization, denoted here by [[ϕ, ui,j ]]

∗,b
k , is based on a bounded semantics for

ECTL and the encoding of ECTL formulas as follows.

[[p, u]]∗,bk = p(u)
[[¬p, u]]∗,bk = ¬p(u)
[[ϕ ∨ ψ, u]]∗,bk = [[ϕ, u]]∗,bk ∨ [[ψ, u]]∗,bk

[[ϕ ∧ ψ, u]]∗,bk = [[ϕ, u]]∗,bk ∧ [[ψ, u]]∗,bk

[[EXϕ, u]]∗,bk =
∨b

i=1(u = ui,0 ∧ [[ϕ, ui,1]]
∗,b
k )

[[EGϕ, u]]∗,bk =
∨b

i=1(u = ui,0 ∧
∧k

j=0[[ϕ, ui,j ]]
∗,b
k ∧∧k

j=0 T (ui,k, ui,j))
[[E(ϕUψ), u]]∗,bk =

∨b
i=1(u = ui,0 ∧

∨k
j=0([[ψ, ui,j ]]

∗,b
k ∧∧j−1

t=0 [[ϕ, ui,t]]
∗,b
k ))

where [[ϕ, ui,j ]]
∗,b
0 denotes false for j > 0. Define

[[M, ϕ]]∗,bk := I(u) ∧ [[M ]]bk ∧ [[ϕ, u]]∗,bk .

Let fk(ϕ) be the sufficient number4 of paths for a witness (if there is any) of the
ECTL formula ϕ. According to this encoding, we have the following theorem [18].

Theorem 7. Let ϕ be an ACTL formula. Mk 6|=k ϕ iff there is some k < kM such that
[[M,¬ϕ]]∗,fk(¬ϕ)

k is satisfiable.

4 The computation of fk(ϕ) is referred to the paper [18].



This theorem can be used as a basis for efficient error detection with SAT-based
model checking. The procedure for verification of a given model M against an ACTL
formula ϕ could be as follows:

– Start with k = 0;
– If [[M,¬ϕ]]∗,fk(¬ϕ)

k is satisfiable, report “the property does not hold”;
– Increase k, if k < kM , go to the first “if”-test;
– Report that the property holds.

This can also be used for verification of valid properties. However, it is not efficient
for this purpose, since one has to reach the condition with k = kM . Theorem 7 and
Theorem 6 can be combined to avoid the use of the completeness threshold kM .

Corollary 2. Let ϕ be an ACTL formula. Mk |=k ϕ if there is some k ≤ kM such
that [[M, ϕ]]nk(ϕ)

k is valid or for all k ≥ 0, [[M,¬ϕ]]∗,fk(¬ϕ)
k is unsatisfiable. Mk 6|=k

ϕ if [[M, ϕ]]nk(ϕ)
k is not valid for each k ≥ 0 or there is some k < kM such that

[[M,¬ϕ]]∗,fk(¬ϕ)
k is satisfiable.

The procedure for the verification of a given model M against an ACTL formula ϕ
could then be as follows:

– Start with k = 0;
– If [[M, ϕ]]nk(ϕ)

k is valid, report “the property holds”;
– If [[M,¬ϕ]]∗,fk(¬ϕ)

k is satisfiable, report “the property does not hold”;
– Increase k, go to the first “if”-test;

The procedure based on Corollary 2 is guaranteed to terminate with a report on
whether the property holds. In theory, there is still a completeness threshold that may
be reach in some cases of the satisfiability checking. Even in such cases, the advantage
is that we do not need to know the completeness threshold for which the cost for the
calculation is high [1, 13] and an over-approximation can be quite large.

The complexity of the procedure depends on the number of variables involved in
the encoding. For a given k and an ACTL formula ϕ, the number of variables needed is
kO(|ϕ|). The efficiency depends on whether there is a small k which is sufficient to cer-
tify or falsify the property. The part O(|ϕ|) is small when there are few levels of nesting
temporal operators (which is often the case in the practical property specification and
verification).

Related Works There has not been lack of motivation and work for proving proper-
ties based on SAT. Related works include, for instance, SAT-based analysis of partial
correctness assertions [11, 12], SAT-based proof of safety properties by using induc-
tion [21], conservative abstraction with counter example guided refinement [9], and
interpolation based transition relation approximation for generating facts relevant with
respect to given properties [14]. Proving simple liveness properties based on SAT was
also considered in [1]. Recently, SAT-based verification of valid general LTL and ACTL
properties has been considered in [23, 24]. The idea is to verify a model of a particular
length (as short as possible) and to generate a propositional formula that is unsatisfiable



if the model is unsatisfiable with respect to the given property. However the condition
in these approaches is only a sufficient condition, not a sufficient and necessary condi-
tion, such that there are valid LTL and ACTL properties that cannot be verified by using
these approaches alone.

8 Concluding Remarks

Model checking has been considered as one of the most practical applications of the
theoretical computer science in the verification of concurrent systems. The practical ap-
plicability of explicit state model checking, introduced in [6, 7], is limited by the state
explosion problem which could be caused by for instance, the representation of cur-
rency of operations by their interleaving. Therefore much effort has been put into the
research aiming at minimizing models. Binary Decision Diagram (BDD) based on sym-
bolic techniques has significantly improved the practical applicability of model check-
ing by compactly representing transition relations and system states [4, 3, 5]. Although
this is a great success, it has not solved the state explosion problem. For many problems,
there is no polynomial size representation with BDD.

For combating this problem, bounded model checking based on SAT (satisfiability
checking) has been introduced as a complementary technique to BDD-based symbolic
model checking of LTL and ACTL properties in respectively 1999 and 2002 [2, 18].
The basic idea is to search for a counter example of a particular length (as short as
possible) and to generate a propositional formula that is satisfied iff such a counter
example exists. This idea is similar to that for searching finite models [22] for which
we search for counter models of given sizes until we find one.

Prasad, Biere and Gupta pointed out in a survey paper [19] in 2005 that, currently,
the strength of SAT-based verification techniques lies primarily in falsification. This is
a remark on verification related to general temporal properties. For simple properties,
there has been a lot of work and report of success, for instance, for proving simple safety
and liveness properties [21, 9, 14, 1]. Recently, SAT-based verification of valid general
LTL and ACTL properties has been considered in [23, 24]. However these approaches
are based on semantics with existential interpretation and the condition in these ap-
proaches is not a sufficient and necessary condition, such that there are valid LTL and
ACTL properties that cannot be verified by using these approaches.

This work has provided a bounded semantics for ACTL, and based on this seman-
tics, a refinement has been developed. Then a characterization of ACTL properties by
propositional formulas and an approach is presented for the verification of ACTL for-
mulas such that a sufficient and necessary condition is provided. This means that all
ACTL properties can either be verified or falsified by using this approach, with the
emphasis on verification. For practical application, falsification using this approach de-
pends on a completeness threshold which is not very efficient, and therefore a proposal
for combining this approach with the approach based on the bounded semantics for
ECTL is suggested for avoiding the use of such a completeness threshold.

ACKNOWLEDGMENTS: The author thanks anonymous referees for their constructive
critics that helped improving this paper.
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