
Evaluation of SAT-based Bounded Model Checking of ACTL Properties ∗

Yanyan Xu1,2, Wei Chen1,2, Liang Xu1,2 and Wenhui Zhang1

1State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

2School of Information Science and Engineering,
Graduate University of the Chinese Academy of Sciences, Beijing, China

xuyy@ios.ac.cn

Abstract

Bounded model checking (BMC) based on SAT has been
introduced as a complementary method to BDD-based sym-
bolic model checking of LTL and ACTL properties in re-
cent years. For general LTL and ACTL properties, BMC
has traditionally aimed mainly at error detection, taking the
advantage that error detection may only need to explore a
small portion of the whole state space. Recently bounded
model checking aiming at verification has also been pro-
posed. The aim of this paper is to exploit the strength of
BMC methods by combining different BMC approaches and
compare it with the traditional BDD-based symbolic meth-
ods. We consider two bounded model checking methods,
which are for error detection and verification of ACTL prop-
erties, respectively, and then combine them to a BMC al-
gorithm. Based on this algorithm, we have implemented
a tool named BMV (bounded model verifier), and carried
out a number of experiments, and we have then compared
BMV with Cadence SMV. The experimental results show
that for certain types of problems, both for verification and
error detection, BMV can perform much better than Ca-
dence SMV in both time and memory consumption, and we
believe that this is the first attempt to have an implementa-
tion of a method that combines practical error detection and
verification of ACTL properties by SAT-based model check-
ing.

1 Introduction

A common method used in formal verification is model
checking [7, 6]. Its basic idea consists of representing a
program or a system as a Kripke structure, representing a

∗Supported by the National Natural Science Foundation of China under
Grant No. 60573012 and 60421001, and the National Grand Fundamental
Research 973 Program of China under Grant No. 2002cb312200.

specification as a temporal logic formula, and checking au-
tomatically whether the formula holds in the model [15].
Generally, Binary Decision Diagrams [1] are used to sym-
bolically represent the transition relations and sets of states.
This approach, known as symbolic model checking [2], has
been successfully applied in practice. However, BDDs are
very sensitive to the type and size of the system. Therefore
much effort has been put into the research aiming at min-
imizing models. The methods include semantic minimiza-
tion [17], abstraction techniques [11], partial order reduc-
tions [18], symmetry reductions [8], compositional tech-
niques for splitting verification tasks [3], case-based par-
tition techniques [13, 21], and so on.

Due to advances in algorithms and tools for the Boolean
satisfiability problem (SAT) [14], formal reasoning based
on SAT is proven to be an alternative to BDDs, and bounded
model checking based on SAT has been introduced as
a complementary method to BDD-based symbolic model
checking of LTL and ACTL properties [4, 5, 16, 22, 23].
The basic idea of the approach presented in [4, 5, 16] is to
search for a counterexample of a particular bound k. First,
the approach generates a propositional formula, and then
a SAT solver will be used to check the formula, and if the
formula is satisfied by the SAT solver, it means a counterex-
ample exists, so the approach is designed to find errors. For
checking systems that are error free with respect to given
properties, the approach is not practical because the bound
k needed to be checked is usually too big (general over ap-
proximations of the bounds for LTL and ACTL are respec-
tively |M | ·2|ϕ| and |M |, where |M | is the size of the model
and |ϕ| is the size of the formula). In order to solve the
problem, [22, 23] proposes methods that can partly avoid
the dependence on such a bound for verification.

The aim of our paper is to exploit the strength of SAT-
based bounded model checking methods via comparison
with the traditional BDD-based symbolic methods. We con-
sider two bounded model checking methods [16, 23], which

are for error detection and verification of ACTL properties
respectively, and then combine them to a BMC algorithm.
We have implemented a tool named BMV (bounded model
verifier) based on this algorithm, and carried out a number
of experiments, and then we make a comparison of BMV
and Cadence SMV [24]. Our experiments show that for
certain types of problems, BMV can perform much better
than Cadence SMV in both time and memory consumption
for ACTL properties. The reason why we choose ACTL
for this first attempt to have an implementation of a method
that combines practical error detection and verification by
SAT-based model checking is that the number of iterations
in the bounded model checking needed for proving or dis-
proving ACTL properties is usually smaller than that for
similar LTL properties, and this number is important for the
practical efficiency of the method.

The rest of our paper is organized as follows. In section
2, we introduce the computation tree logic. In section 3, we
discuss the SAT-based bounded model checking algorithm.
Then, in section 4, we describe our bounded model check-
ing tool BMV, and we give the experimental results of BMV
and Cadence SMV in section 5. We conclude this paper and
discuss our future work in section 6.

2 Computation Tree Logic

Computation tree logic (CTL) is a propositional
branching-time temporal logic introduced by [7] as a speci-
fication language for finite state systems.

2.1 Syntax of CTL

Let AP be the set of atomic proposition symbols con-
taining true. The syntax of CTL formulas is given by the
following rules:

• If p ∈ AP , then p is a CTL formula.

• If ϕ and ψ are CTL formulas, then ¬ϕ, ϕ∨ψ and ϕ∧ψ
are CTL formulas.

• If ϕ and ψ are CTL formulas, then EXϕ, EGϕ and
E(ϕUψ) are CTL formulas.

Additional logical connectives and modal operators of
CTL can be defined as follows:

• ϕ → ψ ≡ ¬ϕ ∨ ψ

• EFϕ ≡ E(TrueUϕ)

• E(ϕRψ) ≡ E(ψU(ϕ ∧ ψ)) ∨ EGψ

• AFϕ ≡ ¬EG(¬ϕ)

• A(ϕRψ) ≡ ¬E(¬ϕU¬ψ)

• AXϕ ≡ ¬EX(¬ϕ)

• AGϕ ≡ ¬EF (¬ϕ)

• A(ϕUψ) ≡ ¬E(¬ϕR¬ψ)

2.2 Semantics of CTL

A model for CTL formulas is a Kripke structure
〈S, T, I, L〉, where S is the set of states; T ⊆ S × S is
the transition relation which is total; I ⊆ S is a set of initial
states; and L : S → 2AP is a function that labels each state
with a set of atomic propositions true in that state. A se-
quence π = π0π1... of S is a path of M , if for every i ≥ 0,
T (πi, πi+1) holds.

Definition 2.1 Let M be a model, s a state, p a proposition
symbol, ϕ and ψ CTL formulas. M, s |= ϕ denotes that ϕ is
true at the state s in M . Let π be a path of M . The relation
|= is defined as follows:

M, s |= p ⇔ p ∈ L(s)
M, s |= ¬ϕ ⇔ M, s 6|= ϕ
M, s |= ϕ ∧ ψ ⇔ M, s |= ϕ and M, s |= ψ
M, s |= ϕ ∨ ψ ⇔ M, s |= ϕ or M, s |= ψ
M, s |= EXϕ ⇔ ∃π(π0 = s ∧M,π1 |= ϕ)
M, s |= EGϕ ⇔ ∃π(π0 = s ∧ ∀k ≥ 0

(M, πk |= ϕ))
M, s |= E(ϕUψ) ⇔ ∃π(π0 = s ∧ ∃k ≥ 0

(M, πk |= ψ ∧ ∀j < k
(M, πj |= ϕ)))

The restriction of CTL to E path quantifier such that im-
plication is not used and negation is applied only to propo-
sitions is called ECTL, and the restriction of CTL to A path
quantifier with the same restriction is called ACTL, and
ACTL = {¬ϕ | ϕ ∈ ECTL}.

Definition 2.2 An ECTL formula ϕ is valid in M , denoted
M |= ϕ, iff ϕ is true at some initial state of the model M .

Definition 2.3 An ACTL formula ϕ is valid in M , also de-
noted M |= ϕ, iff ϕ is true at every initial state of the model
M .

This definition expresses that in order to check whether
an ACTL formula ϕ holds in M , we need to check whether
ϕ holds for each of the initial states of M .

3 Bounded Model Checking Based on SAT

In this section, we introduce two sat-based bounded
model checking methods for ACTL properties which are for
error detection [16] and verification of valid properties [23]
respectively. Both algorithms are about reducing the model
checking problem (M |= ϕ) to the bounded model check-
ing problem (Mk |=k ϕ), and how Mk |=k ϕ relates to the
satisfiability problem of the final encoding we get.

3.1 Bounded Semantics of ECTL

Let M = 〈S, T, I, L〉 be a model and k ≥ 0. A k-
path of M is a path π = s0...sk where (si, si+1) ∈ T
for i = 0, ..., k − 1. The k-model for M is a structure
Mk = 〈S, Pk, I, L〉 where Pk is the set of all different k-
paths of M . Let π = π0...πk ∈ Pk and loop(π) denotes∨k

i=0 T (πk, πi).

Definition 3.1 Let Mk be a k-model, s a state, p a proposi-
tion symbol, and ϕ and ψ ECTL formulas. The relation |=k

is defined as follows:

Mk, s |=k p ⇔ p ∈ L(s)
Mk, s |=k ¬p ⇔ p 6∈ L(s)
Mk, s |=k ϕ ∧ ψ ⇔ Mk, s |=k ϕ and

Mk, s |=k ψ
Mk, s |=k ϕ ∨ ψ ⇔ Mk, s |=k ϕ or

Mk, s |=k ψ
Mk, s |=k EXϕ ⇔ ∃π(π0 = s ∧Mk,

π1 |=k ϕ)
Mk, s |=k EGϕ ⇔ ∃π(π0 = s ∧ loop(π)

∧∀0 ≤ i ≤ k
(Mk, πi |=k ϕ))

Mk, s |=k E(ϕUψ) ⇔ ∃π(π0 = s ∧ ∃0 ≤ i ≤ k
(Mk, πi |=k ψ ∧ ∀j < i
(Mk, πj |=k ϕ)))

Since EFϕ ≡ E(trueUϕ) and E(ϕRψ) ≡ E(ψU(ϕ ∧
ψ)) ∨ EGψ, we only consider formulas of the form ϕ ∨ ψ,
ϕ ∧ ψ, EXϕ, EGϕ, E(ϕUψ) constructed from proposi-
tions and the negation of propositions.

Definition 3.2 An ECTL formula ϕ is valid in a k-model
Mk, denoted Mk |=k ϕ, iff ϕ is true at some initial state of
the model Mk.

Similarly, this definition is just definition 2.2 under bounded
semantics.

3.2 Encoding the Model in SAT-Formulas

Let s be a vector of state variables, but in this paper,
sometimes s is given some assignment, hence it means a
state, and we can know this from its context. Let k ≥ 0,
Nk the number of different k-paths of M , and si,0, ..., si,k

mean a finite sequence of states on some path for each i ∈
{1, ..., Nk}. We show how to encode the model Mk into a
propositional formula as below:

Definition 3.3 (Encoding the Model) Let Mk =
〈S, Pk, I, L〉 be the k-model of M and ϕ an ECTL
formula. The propositional formula [Mϕ,s]k is defined as
follows:

[Mϕ,s]k := I(s) ∧
Nk∧

i=1

k−1∧

j=0

T (si,j , si,j+1)

where I(s) represents a predicate that is only true when s is
the initial state; and T (si,j , si,j+1) iff (si,j , si,j+1) ∈ T .

Now we have the encoding for the model Mk, and in
next subsections we will have the encoding for properties.

3.3 Encoding Formulas for Error Detection

Let p ∈ AP be a proposition symbol and p(s) represent
the propositional formula representing the states in which p
is true according to L.

Definition 3.4 (Encoding Formulas for Error Detection)
Given a state s and a formula ϕ, the encoding [ϕ, s]ek (e
means for error detection) is defined as follows:

[p, s]ek = p(s)
[¬p, s]ek = ¬p(s)
[ϕ ∨ ψ, s]ek = [ϕ, s]ek ∨ [ψ, s]ek
[ϕ ∧ ψ, s]ek = [ϕ, s]ek ∧ [ψ, s]ek
[EXϕ, s]ek =

∨Nk

i=1(s = si,0 ∧ [ϕ, si,1]ek)
[EGϕ, s]ek =

∨Nk

i=1(s = si,0 ∧
∨k

l=0 Lk,i(l)
∧∧k

j=0[ϕ, si,j]ek)
[E(ϕUψ), s]ek =

∨Nk

i=1(s = si,0 ∧
∨k

j=0[ψ, si,j]ek
∧∧j−1

t=0 [ϕ, si,t]ek)

where Lk,j(l) = T (sk,j , sl,j) denotes a backward loop from
the k-th state to the l-th state in the symbolic k-path j, for
0 ≤ l ≤ k.

The number of different k-paths Nk considered in the
encoding of the the model and the ECTL formulas is not a
practical one for error detection. For practical application,
the sufficient number of paths involved depends on k and
the formula ϕ to be checked. Let FORM be the set of
ECTL formulas. [16] defined a function fe

k : FORM → N
which can be used instead of Nk .

Definition 3.5 (fe
k for Error Detection) Define fe

k :
FORM → N for error detection as follows:

• fe
k(p) = fe

k(¬p) = 0, if p ∈ AP ;

• fe
k(ϕ ∧ ψ) = fe

k(ϕ) + fe
k(ψ);

• fe
k(ϕ ∨ ψ) = max(fe

k(ϕ), fe
k(ψ));

• fe
k(EXϕ) = fe

k(ϕ) + 1;

• fe
k(EGϕ) = (k + 1) · fe

k(ϕ) + 1;

• fe
k(E(ϕUψ)) = k · fe

k(ϕ) + fe
k(ψ) + 1.

Definition 3.6 [Mϕ,s]ek is defined as Definition 3.3 except
that fe

k(ϕ) is used instead of Nk.

The encoding of the model checking problem is a com-
bination of the encoding of the model and the formula.

Definition 3.7 [M, ϕ, s]ek:=[Mϕ,s]ek ∧ [ϕ, s]ek

Now we will explain why it is correct that we translate
the model checking problem M |= ψ to the satisfiability
checking problem of [Mϕ,s]ek ∧ [ϕ, s]ek step by step (ϕ =
¬ψ). Let M be a model, s be a state of M , Mk be a k-model
of M , and ϕ be an ECTL formula, then [16] has proved:

• Mk, s |= ϕ implies Ml, s |= ϕ, for l ≥ k;

• Mk, s |= ϕ implies M, s |= ϕ;

• M |= ϕ⇔Mk |=k ϕ;

With these three points, we can get that:

• Mk |=k ϕ iff [M, ϕ, s]ek is satisfiable;

• Mk |=k ¬ϕ iff [M, ϕ, s]ek is unsatisfiable, for k=|M |.
With all these points, now we are able to translate the

model checking problem to the bounded model checking
problem and we can solve the latter problem with a state-
of-the-art SAT solver. Please note the power of this method
in finding errors largely depends on the fact that if M |= ϕ,
there usually exists some k < |M | such that Mk |=k ϕ.
Again, another fact that we have to reach the bound k =
|M | in order to check true ACTL formulas make it impos-
sible to use this method for verification. However, with the
encoding given in the next subsection, this may not be a
problem.

3.4 Encoding Formulas for Verification

For the purpose of verification of valid ACTL properties,
the encoding of ECTL formulas (the negation of the prop-
erty to be verified) is a little different from that for error
detection, and they are defined as follows.

Definition 3.8 (Encoding Formulas for Verification)
Given a state s and a formula ϕ. The encoding [ϕ, s]vk (v
means for verification) is defined as follows:

[p, s]vk = p(s)
[¬p, s]vk = ¬p(s)
[ϕ ∨ ψ, s]vk = [ϕ, s]vk ∨ [ψ, s]vk
[ϕ ∧ ψ, s]vk = [ϕ, s]vk ∧ [ψ, s]vk
[EXϕ, s]vk =

∨Nk

i=1(s = si,0 ∧ [ϕ, si,1]vk)
[EGϕ, s]vk =

∨Nk

i=1(s = si,0 ∧
∧k

j=0[ϕ, si,j]vk)
[E(ϕUψ), s]vk =

∨Nk

i=1(s = si,0 ∧ (
∨k

j=0

([ψ, si,j]vk ∧
∧j−1

t=0 [ϕ, si,t]vk)
∨∧k

t=0[ϕ, si,t]vk))

where [ϕ, si,j]k denotes true, if j > k.

Similarly a calculated number depending on k and the
formula to be verified can be used instead of Nk for the
verification purpose.

Definition 3.9 (fv
k for Verification) Define fv

k :
FORM → N for verification as follows:

• fv
k (p) = fv

k (¬p) = 0, if p ∈ AP ;

• fv
k (ϕ ∧ ψ) = fv

k (ϕ) + fv
k (ψ);

• fv
k (ϕ ∨ ψ) = max(fv

k (ϕ), fv
k (ψ));

• fv
k (EXϕ) = fv

k (ϕ) + 1;

• fv
k (EGϕ) = (k + 1) · fv

k (ϕ) + 1;

• fv
k (E(ϕUψ)) = k · fv

k (ϕ)+max(fv
k (ϕ), fv

k (ψ))+1.

Definition 3.10 [Mϕ,s]vk is defined as Definition 3.3 except
that fv

k (ϕ) is used instead of Nk.

Definition 3.11 [M, ϕ, s]vk:=[Mϕ,s]vk ∧ [ϕ, s]vk

Now we will explain how we can verify the true ACTL
properties using the bounded model checking method. Sim-
ilarly, let M be a model, s be a state of M , Mk be a k-model
of M , and ϕ be an ECTL formula, then from [23], we know
that:

• If Mk |=k ϕ, then [M, ϕ, s]vk is satisfiable, and this is
equal to that if for some k, [M, ϕ, s]vk is unsatisfiable,
then Mk |=k ¬ϕ.

• If [M,ϕ, s]vk+1 is satisfiable, then [M, ϕ, s]vk is satisfi-
able; and this expresses the key idea of this encoding:
for some k, if the encoding [M, ϕ, s]vk is unsatisfiable,
then [M, ϕ, s]vl is unsatisfiable, for l ≥ k. This is why
this method is only useful for some of the operators.
For some other operators like EF , it is not possible to
get a useful encoding [23].

From the two points above, we can get:

• If M |= ϕ, then [M,ϕ, s]vk is satisfiable for all k ≥0.

• If for some k, [M, ϕ, s]vk is unsatisfiable, then M |=
¬ϕ.

The second point is essential in the algorithm. We check
the encoding [M, ϕ, s]vk, and if for some k, it is unsatisfi-
able, then we can tell that the ECTL property ϕ is false in
M , so the ACTL one (ψ) is true.

3.5 The Bounded Model Checking Algorithm

Let M be a given model and ψ an ACTL formula, by
combining the two methods described in subsection 3.3 and
3.4 together, we get a total bounded model checking algo-
rithm and its pseudo code is displayed below.

01 Let ϕ = ¬ψ, so ϕ is an ECTL formula;

02 for(k = 1; k ≤ |M |; k + +){

03 Calculate fe
k(ϕ);

04 Calculate fv
k (ϕ);

05 Encode [Mϕ,s0,0]ek;

06 Encode [Mϕ,s0,0]vk;

07 Encode [ϕ, s0,0]ek;

08 Encode [ϕ, s0,0]vk;

09 Check the satisfiability of [M,ϕ, s0,0]vk;

10 If [M, ϕ, s0,0]vk is unsatisfiable, report
that M |= ψ is valid;

11 Check the satisfiability of [M,ϕ, s0,0]ek;

12 If [M, ϕ, s0,0]ek is satisfiable, report that
M |= ψ does not hold;

13 If k = |M | is reached, report that M |=
ψ is valid;

14 }

Note that before we check the satisfiability of
[M, ϕ, s0,0]ek and [M, ϕ, s0,0]vk, we need to convert them to
DIMACS [9] format, and this is done by defining one new
variable for each OR-subtree.

The BMC algorithm can verify some valid properties be-
fore the completeness threshold |M |, while in the same time
it can do error detection as before [16].

4 The Bounded Model Checking Verifier

The bounded model checking verifier (BMV) is a tool
which could do either SAT-based bounded model check-
ing for verification of ACTL[16, 23] and ∀µ-calculus
properties[19] or the traditional BDD-based model check-
ing of µ-calculus properties[6]. In this paper, we only con-
sider the BMC algorithm introduced in section 3. The input
language of BMV is a first order transition system which al-
lows the description of finite state systems that range from
the detailed to the abstract. The language provides for
modular hierarchical descriptions, and for the definition of
reusable components. The only data types in the language
are finite ones - Booleans, scalars and fixed arrays. Af-
ter inputting a first order transition system and an ACTL
formula, BMV can use the BMC algorithm to determine

whether specification expressed in an ACTL formula is sat-
isfied or not.

Let us consider the following program in the input lan-
guage of BMV.

enum{ req, re, gr } etype;
enum{ 0..255 } byte;

MODULE MAIN
VAR

bool x,y,t;
etype c0[2];
etype c1[2];
byte m,n;

PROC
P (c0,m);
P (c1,n);

INIT
x==false && y==false && t==false
&& m==0 && n==0

TRAN
m==2 && c0[0]==req && y==true ->
(x,y,m,c0[0]):=(true,true,m-1,c0[1]);
m>=n && t==false ->
(c1[0],t,x):=(gr,true,false);

END

MODULE P(etype c[2],byte l)
VAR

byte lab;
INIT

lab==0 && l==0
TRAN

lab==0 && l==1 ->
(c[1],l,lab):=(req,2,1);
lab==1 && l<=2 ->
(c[0],l,lab):=(re,l+1,2);

END

The model is a first order transition system, whose state
is defined by a collection of state variables, which may be
of Boolean or enumeration type. In the above program, for
example, the variables x, y and t are declared to be Boolean
type, while the variable type “etype” and “byte” are enumer-
ation type which are introduced by the keyword enum. The
value of an enumeration type variable is encoded by the in-
terpreter using a collection of Boolean variables, so that the
transition relation may be represented by propositional for-
mulas. This encoding is invisible to the user, however. The
input language of BMV also supports the array type whose
base type can be either Boolean or enumeration type.

The initial state(s) of the transition system introduced by
the keyword INIT is determined by conjunction of condi-

tions. In the above program, for example, in the MAIN
process the initial state is set to be the state which satisfies
the condition:
x == false && y == false && t == false
&& m == 0 && n == 0.

The transition relation introduced by the keyword TRAN
is determined by a collection of transition rules. A transi-
tion rule includes a condition statement and an assignment
statement. For example:

m ≥ n && t == false → (c1[0], t, x) := (gr, true, false);

The assignment statement on the right hand of ’→’ will be
executed if the condition statement on the left hand of ’→’
is satisfied.

If a variable is not assigned in a program, the BMV sys-
tem will be free to choose any legal value for the variable,
giving it the characteristics of an unconstrained input to the
system.

The above program also illustrates the definition of
reusable modules. Notice that the module name ”MAIN”
has special meaning in BMV, in the same way that it does
in the C++ programming language. A process can be instan-
tiated several times with different arguments and these pro-
cesses are introduced by the keyword PROC in the MAIN
process.

Any of the members in the language including VAR,
PROC, INIT and TRAN is optional, that is, they are not
necessary and we use them just according to our require-
ment.

To summarize, the input language of BMV is designed
to be flexible in terms of models it can describe. The lan-
guage is designed to exploit the capabilities of model check-
ing techniques. As a result, it has been made to support
a particular model of communication between concurrent
processes.

5 Experimental Results

We have carried out our experiments on three examples:
the eight puzzle, a barrel shifter and a multiplier, and per-
formed our experiments on the PC equipped with the pro-
cessor P4 2.93GHz, 512MB main memory and the operat-
ing system Linux 2.6.12. We make use of the satisfiability
solver MiniSat2 release 12-08-06 [25] , which uses the DI-
MACS format, in BMV. The test results of BMV are com-
pared against results obtained from Cadence SMV [24] re-
lease 10-11-02, and we use the benchmark tool Run [26] to
collect the memory consumption of Cadence SMV.

5.1 The Eight Puzzle (EP)

Our first example is the Eight Puzzle, the 3×3 version
of the well-known sliding-tile puzzles (see Figure 1). There

are eight numbered square tiles, and one empty position,
called the “blank”. Any tile horizontally or vertically adja-
cent to the blank can be swapped with the blank. The goal
is to rearrange the tiles from some random initial configura-
tion into a particular goal configuration. The initial config-
uration of our example is shown in the right graph of Figure
1, and in the graph, 0 means the “blank” position and 1-8
mean the eight square tiles. We number the nine positions
p0-p8, which are shown in the left graph of Figure 1.

p0 p1 p2

p3 p4 p5

p6 p7 p8

0 1 2

3 4 5

6 7 8

Figure 1. The Eight Puzzle (EP)

We have tested two properties which are expressed by
ACTL formulas. One is false and the other is true. The true
formula is ψt=AXAF (n0=0 || n2=0 || n4=0 || n6=0), which
means after a step, in the future, for all paths one of the four
positions n0, n2, n4 and n6 will be the “blank” position. The
false formula is ψf =AG ¬(n0=8 && n1=7 && n2=6 &&
n3=5 && n4=4 &&n5=3&& n6=2 && n7=1 && n8=0),
which means for all paths, the problem will never reach the
configuration illustrated in Figure 2.

8 7 6

5 4 3

2 1 0

Figure 2. The Final Configuration of EP

The test results of this example are shown in Table 1 (Ca-
dence SMV) and Table 2 (BMV) respectively. For Cadence
SMV, we present its time consumption (Time), memory
consumption (Memory) and BDD nodes allocated (BDDs);
and for BMV, we present the time consumption (Time), the
memory consumption (Memory)1, the bound k it needs (k),
the number of variables (Vars) and the number of clauses

1The time and memory consumption only mean that actually used by
MiniSat2. Overhead in converting the encoding into DIMACS format is
not counted, because what really matters in BMC should be the time and
memory consumption used by the SAT solver. Also, we only give the time

(Clas). In the tables below, the time unit is second and the
memory unit is MB.

Formula Time Memory BDDs
ψt 12.44 39.4 1609020
ψf 10.51 31.1 1098233

Table 1. Test Results of SMV for EP

Formula Time Memory Vars Clas k
ψt 0.06 6.84 10563 29550 1
ψf 324.29 117.86 156220 436276 30

Table 2. Test Results of BMV for EP

From the experimental results of this example, we can
see that for the true formula ψt, BMV performs much bet-
ter than SMV in both time and memory consumption. How-
ever, for the false formula ψf , SMV outperforms BMV be-
cause the bound k BMV needs is too big (30).

5.2 A Barrel Shifter (BS)

The barrel shifter, which comes from [27], rotates the
contents of a register file B = {b0, b1, b2, b3, b4} with one
position in each step. Let x′ mean next(x) for a variable
x. The specification of BS is then as follows: b0′ = b4,
b1′ = b0, b2′ = b1, b3′ = b2 and b4′ = b3. The system
also contains a fixed register file R = {r0, r1, r2, r3, r4},
and r′0 = r0, r1′ = r1, r2′ = r2, r3′ = r3 and r4′ = r4.
At the initial state, we have b0 = r0, b1 = r1, b2 = r2,
b3 = r3 and b4 = r4.

We have tested two properties which are expressed by
ACTL formulas. One is false and the other is true. The true
formula is ψt=AF (b0 = r4 → b1 = r0), which means in
the future, for all paths if b0 = r4, then b1 = r0. The false
formula is ψf =AF ¬(b0 = r4), which means in the future,
for all paths, b0 6= r4. The reason of that ψf is false is if
r0 = r1 = r2 = r3 = r4, then for all paths, b0 = r4 is
always true.

The test results of this example are shown in Table 3 (Ca-
dence SMV) and Table 4 (BMV) respectively. ”Type” in the
tables means the type of the variables(b0−b4, r0−r4). For
example, 7 means that the variables can be assigned a value
of 0-7. ”-” means out of memory and the process is killed
by Run [26]. The bound k BMV needs for ψt is 4 and 1 for
ψf .

and memory consumption for the reported maximum bound k, so the time
and memory consumption do not include the runs before k, i.e. from 1 to
k − 1.

Formula Type Time Memory BDDs
ψt 7 8.23 47.8 1639097
ψt 8 19.54 131.1 5645213
ψt 9 33.45 218.8 8952805
ψt 10 57.23 300.9 13893024
ψt 11 88.94 448.4 18909523
ψt 12 - - -
ψf 7 8.53 48.6 1668700
ψf 8 25.43 134.6 5843618
ψf 9 37.84 223.1 9203016
ψf 10 59.14 308.5 14280617
ψf 11 91.47 453.3 19100620
ψf 12 - - -

Table 3. Test Results of SMV for BS

Formula Type Time Memory Vars Clas k
ψt 7 0.01 3.89 764 1988 4
ψt 8 0.01 4.06 942 2843 4
ψt 9 0.01 4.03 1000 3104 4
ψt 10 0.01 4.04 1058 3365 4
ψt 11 0.02 4.12 1116 3626 4
ψt 12 0.02 4.14 1174 3887 4
ψf 7 0.01 3.77 492 1478 1
ψf 8 0.01 3.90 588 2113 1
ψf 9 0.01 3.91 634 2320 1
ψf 10 0.01 3.90 680 2527 1
ψf 11 0.01 3.91 726 2734 1
ψf 12 0.01 4.05 772 2941 1

Table 4. Test Results of BMV for BS

From the experimental results of this example, we can
see that both for the true formula ψt and for the false for-
mula ψf , BMV performs much better than SMV in both
time and memory consumption, and this is often the case
when we have a small bound k in bounded model checking.

5.3 A Multiplier

The example, which also comes from [27], models an
n×n bit shift-and-add multiplier. There are two arrays f [n]
and i[n] in the models, and the models shifts the contents
of f [n] from left to right bit by bit while keeping i[n] un-
changeable.

We have tested the same property expressed by the
ACTL formula ψ=AFdone according to two different mul-
tiplier models, and one is correct (the highest bit is set to 0),
denoted by Mt, and the other is incorrect (the highest bit is
set to 1), denoted by Mf .

The test results are shown in Table 5 (Cadence SMV)

and Table 6 (BMV) respectively. ”Bit” in the tables means
the number of the bits of the multiplier. For example, 16
means the multiplier is a 16×16 bit one, and k means the
bound we need.

Model Bit Time Memory BDDs
Mt 16 10.83 69.0 2895362
Mt 17 23.4 133.6 5798471
Mt 18 50.46 263.7 11608541
Mt 19 - - -
Mf 16 11.44 69.0 2894677
Mf 17 24.43 133.8 5797688
Mf 18 53.07 264.1 11607575
Mf 19 - - -

Table 5. Test Results of SMV for the Multiplier

Model Bit Time Memory Vars Clas k
Mt 16 0.00 3.77 2913 4944 16
Mt 17 0.01 3.77 3282 5629 17
Mt 18 0.01 3.97 3673 6302 18
Mt 19 0.01 4.09 4086 7013 19
Mf 16 0.00 3.77 535 1006 1
Mf 17 0.00 3.77 568 1068 1
Mf 18 0.00 3.78 601 1130 1
Mf 19 0.00 3.77 634 1192 1

Table 6. Test Results of BMV for the Multiplier

From the experimental results, we can see that both for
error detection and for verification, BMV performs much
better than SMV in both time and memory consumption.

5.4 Experimental Evaluation

We have carried out our experiments on three examples:
the eight puzzle, a barrel shifter and a multiplier. In Figures
3 and 4, there are eight graphs which depict the experimen-
tal results from Table 3, 4, 5 and 6. Figure 3 shows the re-
sults of the barrel shifter. The two top graphs show the time
and memory consumption for ψt of SMV and BMV, and
the graphs below show the same information for ψf . Figure
4 shows the results of the multiplier. The two top graphs
show the time and memory consumption for Mt of SMV
and BMV, and the graphs below show the same information
for Mf .

These graphs illustrate that for these two problems, and
for both error detection and verification, BMV performs
much better than SMV in both time and memory consump-
tion (the graphs of the resource consumption of BMV are

quite close to the horizontal axis and almost invisible in the
figures).

Figure 3. Graphs for BS

Figure 4. Graphs for Multiplier

6 Conclusions and Future Work

The basic idea of Bounded model checking is similar to
that for searching finite models [20], and in the bounded
model checking approach, we search for counter models
of given sizes until we find one, and so it is designed to

find errors. However, in this paper, we have considered two
bounded model checking methods [16, 23], which are for
finding errors and verification respectively, and combined
them to a BMC algorithm. Then we have implemented a
tool named BMV (bounded model verifier) based on this
algorithm, and carried out a number of experiments, and
then we make a comparison of BMV and Cadence SMV.
The experiments results show that for certain types of prob-
lems, BMV can perform much better than Cadence SMV in
both time and memory consumption.

We believe that this is the first attempt to have an im-
plementation of a method that combines practical error de-
tection and verification of ACTL properties by SAT-based
model checking. Similar tool can be built for LTL proper-
ties. The reason why we choose ACTL for this first attempt
is that the number of iterations in the bounded model check-
ing needed for proving or disproving ACTL properties is
usually smaller than that for similar LTL properties [16],
and this number is important for the practical efficiency of
the method.

There are two directions for future work. One is to im-
prove the encoding based on [12], so we can reduce the
length of the encoding. The other is to use non-CNF SAT-
solver like SatMate [10], thus to reduce the overhead due
to the need for additional variables when converting the en-
coding to DIMACS format. This, however, largely depends
on the performance of the non-CNF SAT solver.

References

[1] R.E. Bryant. Graph-based Algorithms for Boolean
Function Manipulations. IEEE Transactions on
Computers, Vol. C-35, No. 8, August, 1986: 677-
691.

[2] J.R. Burch, E.M. Clarke, K.L. McMillan,
D.L. Dill, and L.J. Hwang. Symbolic Model
Checking:1020 States and Beyond. Information
and Computation, 98(2):142-170, June 1992.

[3] S. Berezin, S. Campos and E.M. Clarke. Com-
positional Reasoning in Model Checking.
Proceedings of COMPOS′97. Lecture Notes
in Computer Science 1536:81-102. 1998.

[4] A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu. Sym-
bolic Model Checking without BDDs. Proceedings
of TACAS′99, 1579, Springer − V erlag,193-
207,1999.

[5] A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu. Sym-
bolic Model Checking Using SAT Procedures Instead
Of BDDs. Proceedings of ACM/IEEE Design
Automation Conference(DAC ′99),317-320,1999.

[6] E.M. Clarke, O. Grumberg, and D.A. Peled.
ModelChecking. The MIT Press. 1999: 98-105.
ISBN 0-262-03270-8.

[7] E.A. Emerson and E.M. Clarke. Using Branching-
time Temporal Logics to Synthesize Synchroniza-
tion Skeletons. Science of Computer Programing
2(3):241-266. 1982.

[8] E.A. Emerson and A.P. Sistla.
Symmetry and Model Checking.
Formal Methods in System Design9:105-131.
1995.

[9] D.S. Johnson(editor) and M.A. Trick(editor).
Cliques, Coloring and Satisfiability: The Second
DIMACS Implementation Challenge, vol. 26 of
ACM/AMS DIMACS Series, Amer. Math. Soc.,
1996.

[10] H. Jain, C. Bartzis, and E.M. Clarke. Satisfiabil-
ity Checking of Non-clausal Formulas using General
Matings. SAT , 2006.

[11] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani
and S. Bensalem. Property Preserving Abstrac-
tions for the Verification of Concurrent Systems.
Journal of Formal Methods in System Design
6:1-35.

[12] T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Sim-
ple Bounded LTL Model Checking. FMCAD, 2004.
1995.

[13] K.L. McMillan. Verification of Infinite State
Systems by Compositional Model Checking.
Lecture Notes in Computer Science 1703:219-
234. CHARME 1999.

[14] M.W. Moskewicz, C.F. Madigan, Y.Zhao, L.Zhang,
and S.Malik. Chaff: Engineering an Efficient SAT
Solver. Proceedings of ACM/IEEE Design
Automation Conference(DAC ′2001): 530-535.
2001.

[15] D.A. Peled. Software Reliability Methods.
Springer − V erlag. 2001.

[16] W. Penczek, B. Wozna, and A. Zbrzezny. Bounded
Model Checking for the Universal Fragment of CTL.
Fundamenta Informaticae 51:135-156. 2002.

[17] V. Roy and R. de Simone. Auto/Autograph. In
Computer Aided V erification. DIMACS series
in Discrete Mathematics and Theoretical
Computer Science 3:235-250, June 1990.

[18] P. Wolper and P. Godefroid. Partial-
Order Methods for Temporal Verification.
LNCS 715(CONCUR′93):233-246. 1993.

[19] B. Wang. Proving ∀µ-calculus Properties with Sat-
based Model Checking. FORTE 2005: 113-127.

[20] J. Zhang. Problems on the generation of finite models.
LNAI 814 (CADE 1994):753-757.

[21] W. Zhang. Combining Static Analysis and
Case-Based Search Space Partitioning for Re-
ducing Peak Memory in Model Checking.
Journal of Computer Science and Technology
18(6):762-770, 2003.

[22] W. Zhang. SAT-Based Verification of LTL Formulas.
FMICS, 2006.

[23] W. Zhang. Verification of ACTL Properties by
Bounded Model Checking. EUROCAST , 2007.

[24] http://www.Kenmcmil.com

[25] http://www.cs.chalmers.se/Cs/Research
/FormalMethods/MiniSat/MiniSat.html

[26] http://fmv.jku.at/run

[27] http://nusmv.irst.itc.it/examples

