
Kripke Structures

中国科学院软件研究所

计算机科学国家重点实验室

张文辉

http://lcs.ios.ac.cn/~zwh/

程序与
软
件系
统

行为规范

2

课程内容

时序逻辑
系统

行为
模型 验证方法

基本原理

程序推理 模型检测

程序与
软
件系
统

行为规范

3

课程内容

时序逻辑
系统

行为
模型 验证方法

基本原理

程序推理 模型检测

逻辑模型

状态模型

例子-互斥：状态图(State Diagram)

4

work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B

例子-互斥：算法

5

VAR: x: 0..1; y: 0..1; t: 0..1;
a: {NCR,wait,CR}; b: {NCR,wait,CR};

INIT: x=0; y=0;
a=NCR; b=NCR;

Process A:

Process B:

a=NCR  (a,y,t):=(wait,1,1);
a=wait(x=0t=0)  (a):=(CR);
a=wait(x=0t=0)  (a):=(wait);
a=CR  (a,y):=(NCR,0);

b=NCR  (b,x,t):=(wait,1,0);
b=wait(y=0t=1)  (b):=(CR);
b=wait(y=0t=1)  (b):=(wait);
b=CR  (b,x):=(NCR,0);

例子-互斥：可达状态 + 部分不可达状态

6

CR,CR,0,0,0 CR,CR,1,0,0

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

例子-互斥：状态集合

S = { s0,s1,…,s71}

si对应于五元组(a,b,x,y,t)的一个元素

其中si代表 (a,b,x,y,t)
当且仅当 i=a*24+b*8+x*4+y*2+t

其中NCR代表0, wait代表1, CR代表2

例如:
s0 = (0,0,0,0,0) = (NCR,NCR,0,0,0)
s48 = (2,0,0,0,0) = (CR,NCR,0,0,0)

例子-互斥：状态迁移图(Kripke结构)

8

s0

s12s27

s51 s38
s20s39

s62
s47

s1

s64 s68

内容

• Kripke结构

• 安全性质相关概念及验证方法

• 必达性质相关概念及验证方法

(I) Kripke Structures

Definition
A Kripke structure is a triple K=<S,R,I>
– S : A set of states
– R  S x S : A total transition relation
– I  S : A set of initial states

R is total, if s.s’.(s,s’)R

Kripke Structures

• Basic Concepts
• States, Transition Relation, Initial States
• Successors, Predecessors
• Reachable States, Reachability Relation
• Paths (Finite and Infinite), Computation, Behavior
• Properties

• Basic System Properties
• Reachability, Safety
• Avoidability, Inevitability

Example: S

s2

s0

s3

s1

Example: R

s2

s0

s3

s1

Example: I

s2

s0

s3

s1

Basic Concepts

1. Successors

s’ is a successor of s, if s  s’, i.e.,
R(s,s’)

The set of successors of s:
R(s)

The set of successors of X:
R(X)= sXR(s)

R is total if R(s) for all s  S

s2

s0

s3

s1

Example:

R(s0) = { s1,s2}

R({s0,s1}) = { s1,s2, s3 }

1a. Predecessors

s is a predecessor of s’, if s  s’, i.e.,
R(s,s’), R-1 (s’,s)

The set of predecessors of s:
R-1(s)

The set of predecessors of X :
R-1(X)= sXR-1(s)

s2

s0

s3

s1

Example:

R-1(s0) = { s2}

R-1({s0,s1}) = { s0,s2, s3 }

2. Reachable States (from s)

* :
the reflexive and transitive closure of 

s’ is reachable from s, if
s*s’

The set of states reachable from s is { s’ | s*s’ }:
R*(s).

2. Reachable States (from A,K)

s’ is reachable from A, if s*s’ for some s  A

The set of states reachable from A is { s’ | s*s’, s A }:
R*(A).

The set of states reachable in K is R*(I)={ s’ | s*s’, s  I }:
Rh(K).

Reachable States

Reachable states of s: R*(s) = { s’ | s*s’ }

Reachable states of X: R*(X) = sX R*(s)

Reachable states of K: Rh(K) = R*(I)

例子-互斥：状态迁移图(Kripke结构)

21

s0

s12s27

s51 s38
s20s39

s62
s47

s1

s64 s68

2a. Reachability Relation

A set Y is reachable from s,
if there is a state s’ of Y,
such that s* s’

A set Y is reachable from X,
if there is a state s’ of Y and a state s of X,
such that s* s’

X * Y

s2

s0

s3

s1

The set of reachable states (Y=R(X)):
X = { s1 }, Y = { s1, s3 }; X = { s0,s1 }, Y = { s0,s1,s2,s3 }

Reachability relation (X * Y):
X = { s1 }, Y = { s2, s3 }; X = { s0,s1,s2 }, Y = { s3 }

Example:

3. Path

Definition
An infinite path is an infinite sequence of S:
s0 s1 s2 ….
such that si si+1 for all i  0

Definition
A finite path is a finite prefix of an infinite path:
s0 …sn

s2

s0

s3

s1

Infinite paths:
s0s1s3s1s3s1…
s0(s1s3)ω

s1s3s1s3s1s3s…

Finite paths:
s0s1s3s1
s1s3s1s3s1

Example: Paths

3a. Computation

A computation of K is an infinite path s0 s1 s2 ….
such that s0  I

s2

s0

s3

s1

s0(s1s3)ω

s2(s3s1)ω

s2(s0s2)*(s1s3)ω

Example: Computations

3b. Behavior

The behavior of K is the set of computations of K,
denoted [[K]].

s2

s0

s3

s1

(s0s2)ω

s0(s2s0)*(s1s3)ω

s0s2(s0s2)*(s3s1)ω

Example: Behavior

(s2s0)ω

s2(s0s2)*(s3s1)ω

s2s0(s2s0)*(s1s3)ω

4. Properties

A property is represented by a set of states
• X
• Y

DEF: s satisfies Y, if s  Y.

DEF: X satisfies Y, if for all sX, s satisfies Y, i.e., XY

s is called a Y-state, if s satisfies Y.

s2

s0

s3

s1

Example: Y-States

Y

s1, s2 and s3 are Y-states

4a. Path Properties

A path (computation) 
is called a Y-path (Y-computation),
if all states appear on  satisfy Y.

A path (computation)  reaches (passes) Y-states,
if some state appears on  satisfies Y.

Example: Y-Paths, Y-Computations

s2

s0

s3

s1

Y

(s1s3) is a finite Y-path
(s1s3) is a Y-path
s2(s1s3) is a Y-computation

Complementary Sets - Negation

Y-States, Y-Paths, Y-Computations

Notation: Y  (S\Y)

Y-States, Y-Paths, Y-Computations

Reachability

Y is a reachable, if
there is a computation of K that reaches a Y-state.

Reachability Problem:

Given a set Y.
Is Y reachable? s2

s0

s3

s1

Avoidability

Y is avoidable, if
there a computation that does not reach any Y-state.

Avoidability Problem:

Given a set Y.
Is Y avoidable?

s2

s0

s3

s1

Basic System Properties

(1) Reachability, Safety

(2) Avoidability, Inevitability

s2

s0

s3

s1

(II) Reachability Property - Possibility

Let Y be a set of states.

Y is a reachability property, if
there is a computation of K that reaches a Y-state.

Example: {s0,s2}, {s0,s1,s2}

s2

s0

s3

s1

Reachability Problem

Given a set AS.
Is A a reachability property?

Reachability Analysis

Let K=<S,R,I> and A S.

BOOL ReachabilityAnalysis(K,A)
{ w:=I;

repeat until w={};
s:=w.getElement(); if (s in A) return true;
visited[s]:=true;
for each (s' in R(s)),

if (visited[s']=false) w.putElement(s');
w.removeElement(s);

return false;
}

s2

s0

s3

s1

Reachability Analysis

Let K=<S,R,I> be a Kripke structure, and AS.

Proposition:
ReachabilityAnalysis(K,A) =true
Iff
A is a reachability property

Reachability Analysis (Alternatively)

Let K=<S,R,I> be a Kripke structure, and AS.

Proposition:
A is a reachability property, iff Rh(K)A ≠ 

 Reachability analysis based on fixpoint computation

Fixpoints

• Let f: A  A be a function.

• a  A is a fixpoint of f, if f(a)=a

• Questions:

Existence of a fixpoint?
Computation of a fixpoint?

Fixpoints

• Let S be a finite set and (2S,) be a lattice.
• Let f: 2S 2S be a monotonic function.

• The least fixpoint of f denoted f (or Z.f(Z)) is:
f =  { fk () | k=0,1,2,… }

• The greatest fixpoint of f denoted f (or Z.f(Z)) is:
f =  { fk (S) | k=0,1,2,… }

Reachability Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A S.

Let f: 2S 2S be defined by f(w) = I  R(w)

THEN
Rh(K) = f

A is a reachability property, iff f A ≠ 

Reachability Analysis (FP)
Let K=<S,R,I> be a Kripke structure, and A S.

SET leastfixpoint(f,K)
{

w={};
repeat

w’:=w;
w :=f(w,K);

until w’=w;
return w;

}

Reachability Analysis (FP)
Let K=<S,R,I> be a Kripke structure, and A S.

SET leastfixpoint(f,K)
{

w={};
repeat

w’:=w;
w :=f(w,K);

until w’=w;
return w;

}

SET f(w,K)
{

return I  R(w);
}

BOOL ReachabilityAnalysisFP(K,A)
{

w=leastfixpoint(f,K);
return (w  A ≠ ) ;

}

Reachability Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A S.

Proposition:
ReachabilityAnalysisFP(K,A) =true
Iff
A is a reachability property

Safety Property - Universality

50

Let Y be a set of states.

Y is a safety property, if
every computation is a Y-computation.

EE

Example: {s2,s3}, {s1,s2,s3}

s2

s0

s3

s1

Reachability & Safety

Safety is a dual property of reachability.

Proposition
A system K=<S,R,I> is safe with respect to Y, iff
Rh(K)  Y.

Corollary [Duality]
A system K=<S,R,I> is safe with respect to Y, iff
Y is not reachable in K.

Safety Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

BOOL SafetyAnalysis(K,A)

{ w:=I;

repeat until w={};

s:=w.getElement(); if (s not in A) return false;

visited[s]:=true;

for each (s' in R(s)),

if (visited[s']=false) w.putElement(s');

w.removeElement(s);

return true;

}

Safety Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

Proposition:
SafetyAnalysis(K,A) =true
Iff
A is a safety property

Safety Analysis (FP)
Let K=<S,R,I> be a Kripke structure, and A S.

SET leastfixpoint(f,K)
{

w={};
repeat

w’:=w;
w :=f(w,K);

until w’=w;
return w;

}

SET f(w,K)
{

return I  R(w);
}

BOOL SafetyAnalysisFP(K,A)
{

w=leastfixpoint(f,K);
return (w  (A) = ) ;

}

Safety Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A S.

Proposition:
SafetyAnalysisFP(K,A) =true
Iff
A is a safety property

Reachability & Safety

SafetyAnalysis(K,A) =true 
ReachabilityAnalysis(K,A) =false

Deductive Safety Analysis

• Transition invariant
• System invariant
• Inductive invariant

Transition Invariant

K=(S,R,I)

Definition
X is a transition invariant, if
for every s X, if ss’, then s’ X.

Lemma
If R(X) X, then X is a transition invariant.

Example: {s1,s2,s3}, {s0,s2,s3}, {s1,s3}

s2

s0

s3

s1

System Invariant

Definition
X is a system invariant, if
I X and XRh(K) is a transition invariant.

Lemma
X is a system invariant iff X is safety property.

Example: {s1,s2,s3}, {s0,s2,s3}, {s1,s3}

s2

s0

s3

s1

Inductive Invariant

Definition
X is an inductive invariant, if
I X and X is a transition invariant.

Lemma
X is an inductive invariant iff
X is a system invariant and a transition invariant.

Example: {s1,s2,s3}, {s0,s2,s3}, {s1,s3}

s2

s0

s3

s1

Comparison

Rh(K) is an inductive Invariant；

an inductive invariant is a system invariant；

X is a system invariant iff X is a safety property.

Proof of Safety

Given X.
Question: is X a safety property of K?

Proof of Safety (1)

Given X.
Question: is X a safety property of K?

Lemma
If X is an inductive invariant,
then K is safe w.r.t. X.

Proof of Safety (1)

Given X.
Question: is X a safety property of K?

I  X
R(X)  X

X is a safety property

(not always applicable)

Example: {s1,s3}, {s1,s2,s3}

s2

s0

s3

s1

Proof of Safety (2)

Given X.
Question: is X a safety property of K?

Lemma
If there is an inductive invariant Y such that YX,
then K is safe w.r.t. X.

Completeness
If the conclusion holds, then such a Y exists.

Proof of Safety (2)

Given X.
Question: is X a safety property of K?

I Y
R(Y)  Y
YX

X is a safety property

Example: {s1,s3}, {s1,s2,s3}

s2

s0

s3

s1

Safety Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

Safety Analysis

Summary

Safety Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

Safety Analysis

Summary

Example: Mutual Exclusion

Non-Critical Region

Critical Region

Process A

Non-Critical Region

Critical Region

Process B

Example: Mutual Exclusion

Request for Entering

Non-Critical Region

Wait

Check for Entering

Critical Region

Exit

Process A

Request for Entering

Non-Critical Region

Wait

Check for Entering

Critical Region

Exit

Process B

Design of Mutual Exclusion (Activity)

request

exit

work in CR

wait

[condition 1]

[else]

work in NCR

initialization

request

exit

work in CR

wait

[condition 2]

[else]

work in NCR

Design of Mutual Exclusion

• Purpose:
– ensure that not both processes are working in the

critical region (CR)

• Mechanism:
– use shared variables
– y=1: the first process is applying for entering CR or it is in

CR
– x=1: the second process is applying for entering CR or it

is in CR
– t=(i-1): the i-th process has priority for entering CR

Design of Mutual Exclusion (State)

79

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B

Correctness of the Design

• How do we know that the design is correct?

Combined States of the Two Processes

Process A Process B x,y,t Remark
NCR NCR
NCR wait
NCR CR
wait NCR
wait wait
wait CR
CR NCR
CR wait
CR CR Bad state

Correctness of the Design

• How do we know that the design is correct?
– We have to be sure that the bad state is not reachable in

all possible executions of the algorithm
– We may use state exploration (model checking)

techniques or deductive proof methods

Safety Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

Safety Analysis

Summary

Kripke Structures

A Kripke structure is a triple K=<S,R,I>
– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states

Domains of Process and Variable States

Process A Process B x y t

NCR NCR 1 1 1

wait wait 0 0 0

CR CR

(a,b,x,y,t)

The Set of States: S

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}

Transition Relation: R

(NCR,b,x,y,t)  (wait,b,x,1,1)
(wait,b,0,y,t)  (CR,b,0,y,t)
(wait,b,x,y,0)  (CR,b,x,y,0)
(wait,b,1,y,1)  (wait,b,1,y,1)
(CR,b,x,y,t)  (NCR,b,x,0,t)

(a,NCR,x,y,t)  (a,wait,1,y,0)
(a,wait,x,0,t)  (a,CR,x,0,t)
(a,wait,x,y,1)  (a,CR,x,y,1)
(a,wait,x,1,0)  (a,wait,x,1,0)
(a,CR,x,y,t)  (a,NCR,0,y,t)

The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

Safe States

(NCR,b,x,y,t)
(wait,b,x,y,t)
(CR,NCR,x,y,t)
(CR,wait,x,y,t)

The set of unsafe states: (CR,CR,x,y,t)

Safety Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

Safety Analysis

Summary

Safety Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

BOOL SafetyAnalysis(K,A)

{ w:=I;

repeat until w={};

s:=w.getElement(); if (s not in A) return false;

visited[s]:=true;

for each (s' in R(s)),

if (visited[s']=false) w.putElement(s');

w.removeElement(s);

return true;

}

Safety Analysis

Let K=<S,R,I> be a Kripke structure, and Y S.

Proposition:
SafetyAnalysis(K,Y) =true
Iff
Y is a safety property
Iff
Every reachable state of K is in Y
(K is safe with respect to Y)

Safety Analysis

(NCR,b,x,y,t)
(wait,b,x,y,t)
(CR,NCR,x,y,t)
(CR,wait,x,y,t)

(CR,CR,x,y,t)

Safe states

Unsafe states

Y Z

SafetyAnalysis(K,Y)=?

Safety Analysis

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Safety Analysis

(NCR,b,x,y,t)
(wait,b,x,y,t)
(CR,NCR,x,y,t)
(CR,wait,x,y,t)

(CR,CR,x,y,t)

Safe states

Unsafe states

Y Z

SafetyAnalysis(K,Y)=true 
Every reachable state is a Y-state (safe state) 
K is safe w.r.t. Y

Deductive Proof of the Safety Property

(NCR,b,x,y,t)
(wait,b,x,y,t)
(CR,NCR,x,y,t)
(CR,wait,x,y,t)

Is this set (Y) a tranition invariant?
No, e.g., (CR,wait,x,y,1) (CR,CR,x,y,1)

Inductive Set (X)

(NCR,NCR,0,0,t)
(NCR,wait,1,0,t)
(wait,NCR,0,1,t)
(NCR,CR,1,0,t)
(CR,NCR,0,1,t)
(wait,wait,1,1,t)
(CR,wait,1,1,0)
(wait,CR,1,1,1)

I  X

s X ((ss’) s’X)
X  Y

Y is a safety property

Safety Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

Safety Analysis

Summary

Correctness of the Design

• How do we know that the design is correct?
– We have to be sure that the bad state is not reachable in

all possible executions of the algorithm
– We may use state exploration (model checking)

techniques, or deductive proof methods
– We have shown that the bad states are not reachable

(III) Avoidability Property

Let Y be a set of states.

Y is avoidable, if
there a computation that does not reach any Y-state.

Example: {s1,s3}√, {s0}√, {s0,s1} x

s2

s0

s3

s1

Avoidability Problem

Given a set AS.
Is A an avoidability property?

Avoidability Problem

Lemma

For a finite state system <S,R,I>:
A is avoidable
iff
there is a (A)-computation

s2

s0

s3

s1

Example:

A = { s1,s3}

(A)-computation: (s0s2)

Directed Graphs, G=(V,E)

• Strongly connected graphs
• Subgraphs
• Strongly connected subgraphs
• Derived subgraphs
• Strongly connected components
• Non-trivial Strongly connected components

s2

s0

s3

s1

Avoidability Problem

105

Let R|Y = R  (Y x Y)

A is avoidable
iff
there is a (A)-computation
iff
there is a (A)-path starting from I that reaches
a non-trivial strongly connected component of
< A, R|A >.

EE

Avoidability Problem

For a finite state system K=<S,R,I>:

Let K|X = <X,R|X,IX>

Let K’= <S’,R’,I’> = K|A

A is avoidable, iff
there is a reachable non-trivial SCC of (S’,R’) in K’ .

SCC

Tarjan Algorithm (scctarjan)
algorithm scctarjan；input: G = (V, E)；output: A set of SCCs;

index := 0; S := empty;
for each v in V do if (v.index is undefined) strongconnect(v) endif endfor

function strongconnect；input: v；output: A set of SCCs;
v.index := v.lowlink := index; index := index +1; S.push(v);
for each (v, w) in E do

if (w.index is undefined) then
strongconnect(w); v.lowlink := min(v.lowlink, w.lowlink)

else if (w is in S) then
v.lowlink := min(v.lowlink, w.index)

endif
endfor
if (v.lowlink = v.index) then // SCCok(v);

currentSCC := empty;
repeat w := S.pop(); add w to currentSCC; until (w = v);
output currentSCC

endif

Example:

{s0,s2}, {s1,s3}

s2

s0

s3

s1

109

Given G=(V,E).
The output of scctarjan(G) is a set of SCCs
that is a partition of G.

The complexity of scctarjan(G) is O(|V|+|E|).

Correctness and Complexity

Avoidability Analysis

Let K=<S,R,I> and A S.

BOOL AvoidabilityAnalysis(K,A)
{ K':=(S',R',I'):= K|A;

G:=(S',R');
scclist:=scctarjan(G);
w:={};
for each (e in scclist) if (nontrivial(e)) w:=we;
return ReachbilityAnalysis(K',w);

}

s2

s0

s3

s1

Avoidability Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

Proposition:
AvoidabilityAnalysis(K,A) =true
iff
A is an avoidability property

Inevitability

Given a set Y.

Y is an inevitability property, if
every computation reaches a Y-state

Example: {s1,s3}, {s2,s3}

s2

s0

s3

s1

Avoidability & Inevitability

Inevitability is a negation of avoidability.

Proposition
Y is an inevitability property of K, iff
Y is not an avoidability property.

Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

BOOL InevitabilityAnalysis(K,A)
{ K':=(S',R',I'):=K|A;

G:=(S',R');
scclist:=scctarjan(G);
w:={};
for each (e in scclist) if (nontrivial(e)) w:=w  e;
return (not ReachbilityAnalysis(K',w));

}

Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

Proposition:
InevitabilityAnalysis(K,A) =true
Iff
A is an inevitability property

Inevitability & Avoidability

Let K=<S,R,I> be a Kripke structure, and A S.

InevitabilityAnalysis(K,A) =true 
AvoidabilityAnalysis(K,A) =false

Deductive Inevitability Analysis

Proof of Inevitability

If there is a sequence of sets of states:
X0, X1,…,Xn such that

IX0,
R(Xi\Y) Xi+1, for i=0,1,…,n-1
XnY,

Then Y an inevitability property.

Completeness
For finite state systems,
if the conclusion holds, then such a sequence exists.

Example: Y={s2,s3}

s2

s0

s3

s1

X0={s0,s2}, X1={s1,s2}, X2={s3}

Inevitability Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

Inevitability Analysis

Summary

Inevitability Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

Inevitability Analysis

Summary

Example: Mutual Exclusion

Non-Critical Region

Critical Region

Process A

Non-Critical Region

Critical Region

Process B

Example: Mutual Exclusion

Request for Entering

Non-Critical Region

Wait

Check for Entering

Critical Region

Exit

Process A

Request for Entering

Non-Critical Region

Wait

Check for Entering

Critical Region

Exit

Process B

Design of Mutual Exclusion (Activity)

request

exit

work in CR

wait

[condition 1]

[else]

work in NCR

initialization

request

exit

work in CR

wait

[condition 2]

[else]

work in NCR

Design of Mutual Exclusion

• Purpose:
– ensure that not both processes are working in the

critical region (CR)

• Mechanism:
– use shared variables
– y=1: the first process is applying for entering CR or it is in

CR
– x=1: the second process is applying for entering CR or it

is in CR
– t=(i-1): the i-th process has priority for entering CR

Design of Mutual Exclusion (State)

127

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B

Correctness of the Design

• Ensure that not both processes are working in the
critical region (CR)

• Ensure that at least one process reaches CR

Combined States of the Two Processes

Process A Process B x,y,t Remark
NCR NCR
NCR wait
NCR CR Good states
wait NCR
wait wait
wait CR Good states
CR NCR Good states
CR wait Good states
CR CR Good states

Correctness of the Design

• How do we know that the design is correct?
– We have to be sure that the good states are inevitable,

i.e., reachable in all possible executions of the algorithm
– We may use state exploration (model checking)

techniques or deductive proof methods

Inevitability Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

Inevitability Analysis

Summary

Kripke Structures

A Kripke structure is a triple K=<S,R,I>
– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states

Domains of Process and Variable States

Process A Process B x y t

NCR NCR 1 1 1

wait wait 0 0 0

CR CR

(a,b,x,y,t)

The Set of States: S

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}

Transition Relation: R

(NCR,b,x,y,t)  (wait,b,x,1,1)
(wait,b,0,y,t)  (CR,b,0,y,t)
(wait,b,x,y,0)  (CR,b,x,y,0)
(wait,b,1,y,1)  (wait,b,1,y,1)
(CR,b,x,y,t)  (NCR,b,x,0,t)

(a,NCR,x,y,t)  (a,wait,1,y,0)
(a,wait,x,0,t)  (a,CR,x,0,t)
(a,wait,x,y,1)  (a,CR,x,y,1)
(a,wait,x,1,0)  (a,wait,x,1,0)
(a,CR,x,y,t)  (a,NCR,0,y,t)

The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

Good States

(CR,b,x,y,t)
(a,CR,x,y,t)

The set of other states:
(NCR,NCR,x,y,t)
(wait,wait,x,y,t)
(wait,NCR,x,y,t)
(NCR,wait,x,y,t)

Inevitability Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

Inevitability Analysis

Summary

Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

BOOL InevitabilityAnalysis(K,A)
{ K':=(S',R',I'):=K|A;

G:=(S',R');
scclist:=scctarjan(G);
w:={};
for each (e in scclist) if (nontrivial(e)) w:=w  e;
return (not ReachbilityAnalysis(K',w));

}

Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

Proposition:
InevitabilityAnalysis(K,A) =true
Iff
A is an inevitability property

Inevitability Analysis

InivitabilityAnalysis(K,Y)=?

(NCR,b,x,y,t)
(wait,b,x,y,t)
(a,NCR,x,y,t)
(a,wait,x,y,t)

(a,CR,x,y,t)

Z Y
(CR,b,x,y,t)

Inevitability Analysis

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Inevitability Analysis (Returns False ??)

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

wait,wait,1,1,0 wait,wait,1,1,1

NCR,NCR,0,0,1

Design of Mutual Exclusion (State)

144

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Revised Model of Mutual Exclusion

145

work in CR

wait

[x=0 or t=0]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Transition Relation: R

(NCR,b,x,y,t)  (wait,b,x,1,1)
(wait,b,0,y,t)  (CR,b,0,y,t)
(wait,b,x,y,0)  (CR,b,x,y,0)
(wait,b,1,y,1)  (wait,b,1,y,1)
(CR,b,x,y,t)  (NCR,b,x,0,t)

(a,NCR,x,y,t)  (a,wait,1,y,0)
(a,wait,x,1,t)  (a,CR,x,1,t)
(a,wait,x,y,1)  (a,CR,x,y,1)
(a,wait,x,1,0)  (a,wait,x,1,0)
(a,CR,x,y,t)  (a,NCR,0,y,t)

Inevitability Analysis

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

X
X

X X

Inevitability Analysis

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

wait,wait,1,1,0 wait,wait,1,1,1

NCR,NCR,0,0,1

Inevitability Analysis

InivitabilityAnalysis(K’,Y)=?

(NCR,b,x,y,t)
(wait,b,x,y,t)
(a,NCR,x,y,t)
(a,wait,x,y,t)

(a,CR,x,y,t)

Z Y
(CR,b,x,y,t)

Inevitability Analysis

InevitabilityAnalysis(K’,Y)=true 
Every computation reaches a Y-states 
Y is inevitable in K’

(NCR,b,x,y,t)
(wait,b,x,y,t)
(a,NCR,x,y,t)
(a,wait,x,y,t)

(a,CR,x,y,t)

Z Y
(CR,b,x,y,t)

Deductive Proof of Inevitability

X0 = { (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }
X1 = { (wait,NCR,0,1,1), (NCR,wait,1,0,0) }
X2 = { (wait,wait,1,0,0), (wait,wait,1,1,1) }  Y
X3 = { (CR,wait,1,1,0), (wait,CR,1,1,1) }
We have

IX0,
R(Xi\Y) Xi+1, for i=0,1,2
X3Y,

Therefore Y an inevitability property of K’.

Deductive Proof of Inevitability

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

X
X

X X

Inevitability Analysis – An Example

Contents

Mutual Exclusion

Kripke Structure

InevitabilityAnalysis

Summary

Correctness of the Design

• How do we know that the design is correct?
– We have to be sure that the good states are inevitable,

i.e., reachable in all possible executions of the algorithm
– We may use state exploration (model checking)

techniques or deductive proof methods
– We have shown that the good states are inevitable.

(IV) Summary

155

• Kripke结构 --- 基本概念

• 安全性质 --- 模型检测算法、推理方法

• 必达性质 --- 模型检测算法、推理方法

EE

思考：

给定一个Kripke结构K=<S,R,I>和集合B,AS.

(1)
判断以下说法的正确性：

A是可避免性质，当且仅当

K有一条由I可达非A非平凡强连通分量的非A路径。

(2)
定义(B,A)路径为满足以下条件的路径：

至少一个B状态出现在该路径且同时或之后有A状态出现。

设计基于不动点计算的算法以检查K中是否存在

初始状态为起点的(B,A)路径。

