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Bl f-H x: R (State Diagram)
® | initialization | oisd

I —

Process A ® ' Process B /ﬂ
work in NCR ] i work in NCR ]
y:=1;t:=1 x:=1;t:=0
[ wait { WQ
[x=0 or t=0] x=1'and t=1] i [y=0 or t=1] y=1and t=0]

{ work in CR ] { work in CR J




B - Hw: HIA

VAR: X: 0..1;y:0..1; t: 0..1;

a: {NCR,wait,CR}; b: {NCR,wait,CR};
INIT: x=0; y=0;
\_ a=NCR; b=NCR;

Process A:
a=NCR =2 (a,y,t):=(wait,1,1);
a=waitA(x=0vt=0) - (a):=(CR);
a=waitA—(x=0vt=0) -2 (a):=(wait);

a=CR - (a,y):=(NCR,0);
Process B:
b=NCR -2 (b,x,t):=(wait,1,0);

b=waitA(y=0vt=1) = (b):=(CR);
b=waitA—(y=0vt=1) = (b):=(wait);
b=CR - (b,x):=(NCR,0);




CRNCR0,1,1>

CR,Wait,l,l,

CR,NCR,0,0,0 CR,NCR,0,0,

' '/

Wait,CR 11,1

CR,CR,0,0,0 CR,CR,1,0,0



Ply-HJF: IRSHES

S =1{50,5¢,--571}

s 0F N T FL ot (a,b,x,y,t) I — N0 HR

L s AR (a,b,x,y,t)
éﬁﬁé i=a*24+b*8+x*4+y* 2+t

HAFNCRAFEO, waitftF 1, CRILFE?2

(paE
So =(0,0,0,0,0) = (NCR,NCR,0,0,0)

s.,s =(2,0,000)  =(CRNCR,0,0,0)
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(1) Kripke Structures

Definition
A Kripke structure is a triple K=<S,R,I>
— S : A set of states

— R < S xS : Atotal transition relation
— | < S : A set of initial states

R is total, if Vs.ds’.(s,s’)eR



Kripke Structures

* Basic Concepts
e States, Transition Relation, Initial States
* Successors, Predecessors
* Reachable States, Reachability Relation
e Paths (Finite and Infinite), Computation, Behavior
* Properties

* Basic System Properties
e Reachability, Safety
* Avoidability, Inevitability



Example: S




Example: R

I




Example: |

:




Basic Concepts



1. Successors

s’ is a successorofs, ifs 2 ¢’ i.e.,
R(s,s’)

The set of successors of s:

R(s)

Example:
The set of successors of X: R(s0) = { 51,52}
R(X)=U,_R(s)

R({s0,s1}) = {s1,s2, s3}

R is total if R(s)z forall s € S



1a. Predecessors

s is a predecessor of s, if s 2 ¢/, i.e,,
R(s,s’), R1(s’s)

The set of predecessors of s:
R4(s)

Example:
The set of predecessors of X :
RL(X)= U, _,R(s)

R1(s0) = {52}

R1({s0,s1}) = { 50,52, 53}




2. Reachable States (from s)

> *
the reflexive and transitive closure of =2

s’ is reachable from s, if
s> *g’

The set of states reachable fromsis{s’ | s2*s }:
R*(s).



2. Reachable States (from A,K)

s’ is reachable from A, if s2*s’ forsome s € A

The set of states reachable from Ais {s’ | s2*s’,se A}
R*(A).

The set of states reachable in Kis R*(I)={s’ | s=2*s’,s €| }:
Rh(K).



Reachable States

Reachable states of s: R*(s)={s" | s=2*s"}

Reachable states of X: R*( X) = U, _, R*(s)

seX

Reachable states of K: Rh(K) = R*(l)
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2a. Reachability Relation

A setY is reachable from s,
if there is a state s’ of Y,
such that s=>* ¢’

A setY is reachable from X,
if there is a state s” of Y and a state s of X,
such that s=>* ¢’

X=2>*Y



Example:

The set of reachable states (Y=R(X)):
X={s1l},Y={s1,s3} X={s0,s1},Y={s0,s1,52,53}

Reachability relation (X 2* Y):
X={s1l},Y={s2,s3}; X={s0,s1,s2} Y={s3}



3. Path

Definition

An infinite path is an infinite sequence of S:
S9S1 Sy -

such thats, 2> s, foralli>0

Definition
A finite path is a finite prefix of an infinite path:

Sg --+Sh,



Example: Paths

Infinite paths: Finite paths:
sOs1s3s1s3s1... sOs1s3s1
sO(s1s3)® s1s3sl1s3s1

s1s3s1s3s1s3s...



3a. Computation

A computation of K is an infinite path s;s; s, ....
such thats; e |



Example: Computations

sO(s1s3)®
s2(s3s1)®
s2(s0s2)*(s1s3)®



3b. Behavior

The behavior of K is the set of computations of K,
denoted [[K]].



Example: Behavior

(s0s2) (s2s0)®
s0(s2s0)*(s1s3) ¢ s2(s0s2)*(s3s1)®
s0s2(s0s2)*(s3s1)“ s2s50(s2s0)*(s1s3)°



4. Properties

A property is represented by a set of states
e X
Y

DEF: s satisfiesY, ifs €Y.

DEF: X satisfies Y, if for all seX, s satisfies Y, i.e., XcY

s is called a Y-state, if s satisfies .



Example: Y-States

s1, s2 and s3 are Y-states



4a. Path Properties

A path (computation) &
is called a Y-path (Y-computation),
if all states appear on 7 satisfy Y.

A path (computation) t reaches (passes) Y-states,
if some state appears on 1 satisfies Y.



Example: Y-Paths, Y-Computations

-

(s1s3) is a finite Y-path
(s1s3)® is a Y-path
s2(s1s3)® is a Y-computation



Complementary Sets - Negation

Y-States, Y-Paths, Y-Computations

Notation: —Y = (S\Y)

—Y-States, —Y-Paths, —=Y-Computations



Reachability

Y is a reachable, if

there is a computation of K that reaches a Y-state.
Reachability Problem:

Given a set .
Is Y reachable?




Avoidability

Y is avoidable, if
there a computation that does not reach any Y-state.

Avoidability Problem:

Given a set .

Is Y avoidable?



Basic System Properties

(1) Reachability, Safety

(2) Avoidability, Inevitability




(11) Reachability Property - Possibility

Let Y be a set of states.

Y is a reachability property, if
there is a computation of K that reaches a Y-state.



Example: {s0,s2}, {s0O,s1,s2}

&




Reachability Problem

Given a set ACS.
Is A a reachability property?



Reachability Analysis

Let K=<S,R,I> and A cS.
BOOL ReachabilityAnalysis(K,A)

{  w:=l;

repeat until w={};
s:=w.getElement(); if (s in A) return true;
visited[s]:=true;
for each (s' in R(s)),
if (visited[s']=false) w.putElement(s');
w.removeElement(s);

return false;




Reachability Analysis

Let K=<S,R,I> be a Kripke structure, and ACS.

Proposition:
ReachabilityAnalysis(K,A) =true
|ff

A is a reachability property



Reachability Analysis (Alternatively)

Let K=<S,R,I> be a Kripke structure, and ACS.

Proposition:
A is a reachability property, iff Rh(K)NA # &

=» Reachability analysis based on fixpoint computation



Fixpoints

* Letf: A—> A be afunction.
e a e Aisafixpoint of f, if f(a)=a
* Questions:

Existence of a fixpoint?
Computation of a fixpoint?



Fixpoints

* Let S be a finite set and (25, ) be a lattice.

e Let f: 25 = 25 be a monotonic function.

* The least fixpoint of f denoted uf (or uz.f(2)) is:
uf=u {*(J) | k=0,1,2,... }

* The greatest fixpoint of f denoted vf (or vZ.f(Z)) is:
vif=n{fk(S) | k=0,1,2,... }



Reachability Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A cS.
Let f: 25 = 25 be defined by f(w) =1L R(w)

THEN
Rh(K) = uf

A is a reachabillity property, iff uyf NA# &



Reachability Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A cS.

SET leastfixpoint(f,K)
{
w={};
repeat
w’i=w;
w :=f(w,K);
until w=w;

return w;




Reachability Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A cS.

{

SET leastfixpoint(f,K)

w={};
repeat

w’i=w;

w :=f(w,K);
until w=w;

return w;

SET f(w,K)
{

return | U R(w);

BOOL ReachabilityAnalysisFP(K,A)

{
w=leastfixpoint(f,K);
return (WNAzJ);




Reachability Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A cS.

Proposition:
ReachabilityAnalysisFP(K,A) =true
hij

A is a reachability property



Safety Property - Universality

Let Y be a set of states.

Y is a safety property, if
every computation is a Y-computation.

EE



Example: {s2,s3}, {s1,s2,s3}

&




Reachability & Safety

Safety is a dual property of reachability.

Proposition
A system K=<S,R,I> is safe with respect toY, iff
Rh(K) Y.

Corollary [Duality]
A system K=<S,R,I> is safe with respect to Y, iff

—Y is not reachable in K.



Safety Analysis

Let K=<S,R,I> be a Kripke structure, and A cS.

BOOL SafetyAnalysis(K,A)
{ w:=l
repeat until w={};
s:=w.getElement(); if (s not in A) return false;
visited[s].=true;
for each (s' in R(s)),
If (visited[s']=false) w.putElement(s’);
w.removeElement(s);
return true;




Safety Analysis

Let K=<S,R,I> be a Kripke structure, and A cS.

Proposition:
SafetyAnalysis(K,A) =true
hij

A is a safety property



Safety Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A cS.

SET leastfixpoint(f,K) SET f(w,K)
{ {
w={}; return | U R(w);
repeat }
w’i=w;
w :=f(w,K); BOOL SafetyAnalysisFP(K,A)
until w'=w; {
return w; w=leastfixpoint(f,K);
} return (w N (—A) =) ;
}




Safety Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A cS.

Proposition:
SafetyAnalysisFP(K,A) =true
hij

A is a safety property



Reachability & Safety

SafetyAnalysis(K,A) =true <
ReachabilityAnalysis(K,—A) =false



Deductive Safety Analysis

* Transition invariant
* System invariant
* Inductive invariant



Transition Invariant

K=(S,R, )

Definition
X is a transition invariant, if
for every s €X, if s=2¢’, then s’ eX.

Lemma

If R(X) =X, then X is a transition invariant.



Example: {s1,s2,s3}%, {s0,s2,s3}x, {51,53}\/

&




System Invariant

Definition
X is a system invariant, if
| =X and XNRh(K) is a transition invariant.

Lemma

X is a system invariant iff X is safety property.



Example: {51,52,53}\/, {sO,s2,s3}x, {51,53}\/

&




Inductive Invariant

Definition
X is an inductive invariant, if
| =X and X is a transition invariant.

Lemma
X is an inductive invariant iff
X is a system invariant and a transition invariant.



Example: {s1,s2,s3}%, {s0,s2,s3}x, {51,53}\/

&




Comparison

Rh(K) is an inductive Invariant;
an inductive invariant is a system invariant;

X is a system invariant iff X is a safety property.



Proof of Safety

Given X.
Question: is X a safety property of K?



Proof of Safety (1)

Given X.

Question: is X a safety property of K?

Lemma
If X is an inductive invariant,
then K is safe w.r.t. X.



Proof of Safety (1)

Given X.
Question: is X a safety property of K?

X is a safety property

(not always applicable)



Example: {s1,s3}, {s1,s2,s3}

&




Proof of Safety (2)

Given X.
Question: is X a safety property of K?

Lemma
If there is an inductive invariant Y such that YcX,
then K is safe w.r.t. X.

Completeness
If the conclusion holds, then such a Y exists.



Proof of Safety (2)

Given X.
Question: is X a safety property of K?

| Y
R(Y) Y

X is a safety property



Example: {s1,s3}, {s1,s2,s3}

&




Safety Analysis — An Example
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Example: Mutual Exclusion

Process A Process B

Non-Critical @ @ritical @

@ical Regio} @ical RegioD

\__




Example: Mutual Exclusion

Process B

Non-Critical @

J
Request for Entering

T W

Check for Entering

@ica I%e@
V.

Exit

Process A

Non-Critical @

J
Request for Entering

T war

Check for Entering

@calvRegioD
Vi

Exit

-
-y




Design of Mutual Exclusion (Activity)
® | initialization |

/5\

work in NCR ] work in NCR ]

[ request ]
v

{ wait
[else]
[condition 2

| workinCR |
[

[ request ]
J

[ wait
[else]
[condition 1

| workinCR |
{

J
exit }

v
exit ]




Design of Mutual Exclusion

* Purpose:
— ensure that not both processes are working in the
critical region (CR)
* Mechanism:
— use shared variables

— y=1: the first process is applying for entering CR or it is in
CR

— x=1: the second process is applying for entering CR or it
Is in CR

— t=(i-1): the i-th process has priority for entering CR



Design of Mutual Exclusion (State)

cﬁ[ initialization ] -
X:=0;y:=

- T
Process A P i Process B /ﬂ
work in NCR | work in NCR |
y:=1;t:=1 i x:=1:t:=0
wait i { Waiwb
=tand t=1] | Y= orteq] V=1andt=0]

[ work in CR J




Correctness of the Design

* How do we know that the design is correct?



Combined States of the Two Processes

“processA | ProcessB | xyi | Remark
NCR NCR

NCR wait
NCR CR
wait NCR
wait wait
wait CR
CR NCR
CR wait

CR CR Bad state



Correctness of the Design

* How do we know that the design is correct?

— We have to be sure that the bad state is not reachable in
all possible executions of the algorithm

— We may use state exploration (model checking)
techniques or deductive proof methods



Safety Analysis — An Example
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Kripke Structures

A Kripke structure is a triple K=<S,R,I>
— S : Afinite set of states
— R < S xS : Atotal transition relation
— |1 < S : A set of initial states



Domains of Process and Variable States

--
NCR NCR 1 1 1

wait wait 0 0 0

CR CR

(a,b,x,y,t)



The Set of States: S

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}



Transition Relation: R

(a,wait,x,0,t)
(a,wait,x,y,1)
(a,wait,x,1,0)
(3,CR,x,V,t)

(NCR,b,x,V,t) -2 (wait,b,x,1,1)
(wait,b,0,y,t) - (CR,b,0,y,t)
(wait,b,x,y,0) - (CR,b,x,y,0)
(wait,b,1,y,1) - (wait,b,1,y,1)
(CR,b,x,y,t) - (NCR,b,x,0,t)
(a,NCR,x,y,t) - (a,wait,1,y,0)

- (a,CR,x,0,t)
-2 (a,CR,x,y,1)
- (a,wait,x,1,0)
- (a,NCR,0,y,t)




The Set of Initial States: |

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }



Safe States

(NCR,b,x,y,t)
(wait,b,x,V,t)
(CR,NCR,x,V,t)
(CR,wait,x,y,t)

The set of unsafe states: (CR,CR,x,y,t)



Safety Analysis — An Example
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Safety Analysis

Let K=<S,R,I> be a Kripke structure, and A cS.

BOOL SafetyAnalysis(K,A)
{ w:=l
repeat until w={};
s:=w.getElement(); if (s not in A) return false;
visited[s].=true;
for each (s' in R(s)),
If (visited[s']=false) w.putElement(s’);
w.removeElement(s);
return true;




Safety Analysis

Let K=<S,R,I> be a Kripke structure, and Y cS.

Proposition:

SafetyAnalysis(K,Y) =true

|ff

Y is a safety property

|ff

Every reachable state of KisinY
(K is safe with respect to Y)



Safety Analysis

Safe states
(NCR,b,x,y,t)
(wait,b,x,y,t)

(CR,NCR,x,y,t)

Unsafe states
(CR,CR,x,y,t)

SafetyAnalysis(K,Y)="



Safety Analysis

CR NCR,0,0,

CRNCROOO

ait, NCROlCR wait,1,0,0
RNCROLL aitwait 10| aitwait1, 1D )R

Y

CR,wait,l,l,




Safety Analysis

Safe states
(NCR,b,x,y,t)
(wait,b,x,y,t)

(CR,NCR,x,y,t)

Unsafe states
(CR,CR,x,y,t)

SafetyAnalysis(K,Y)=true S
Every reachable state is a Y-state (safe state) <
Kis safe w.r.t. Y



Deductive Proof of the Safety Property

(NCR,b,x,y,t)
(wait,b,x,V,t)
(CR,NCR,x,V,t)
(CR,wait,x,y,t)

s this set (Y) a tranition invariant?
No, e.g., (CR,wait,x,y,1)=2 (CR,CR,x,y,1)



Inductive Set (X)

(NCR,NCR,0,0,t) | = X

(NCR,wait,1,0,t) s eX =((s=2s’) =5’ eX)
(wait,NCR,0,1,t) XcY

(NCR,CR,1,0,t) |
(CR,NCR,0,1,t) Y is a safety property
(wait,wait,1,1,t)

(CR,wait,1,1,0)

(wait,CR,1,1,1)
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Correctness of the Design

* How do we know that the design is correct?

— We have shown that the bad states are not reachable



(111) Avoidability Property

Let Y be a set of states.

Y is avoidable, if
there a computation that does not reach any Y-state.



Example: {s1,s3}V, {sO}V, {sO,s1} x

:




Avoidability Problem

Given a set ACS.
Is A an avoidability property?



Avoidability Problem

Lemma

For a finite state system <S,R,|>:

A is avoidable
iff Example:

there is a (—A)-computation A ={s1s3}

(—A)-computation: (s0s2)®




Directed Graphs, G=(V,E)

e Strongly connected graphs

e Subgraphs

e Strongly connected subgraphs
e Derived subgraphs

e Strongly connected components
* Non-trivial Strongly connected components



Avoidability Problem

LetR|[Y=RN (YXxY)

A is avoidable
iff

there is a (—A)-computation
iff
there is a (—A)-path starting from | that reaches

a non-trivial strongly connected component of
<—A, R|—-A>.

EE



Avoidability Problem

For a finite state system K=<S,R,I>:
Let K| X = <X,R|X,INX>
Let K'= <S’,R’,I’> = K| —A

A is avoidable, iff
there is a reachable non-trivial SCC of (S,R’) in K’ .

=



Tarjan Algorithm (scctarjan)

algorithm scctarjan; input: G = (V, E); output: A set of SCCs;
index :=0; S := empty;
for each vin Vdo if (v.index is undefined) strongconnect(v) endif endfor

function strongconnect; input: v; output: A set of SCCs;
v.index := v.lowlink := index; index := index +1; S.push(v);
for each (v, w) in E do
if (w.index is undefined) then
strongconnect(w); v.lowlink := min(v.lowlink, w.lowlink)
else if (wis in S) then
v.lowlink := min(v.lowlink, w.index)
endif
endfor
if (v.lowlink = v.index) then // SCCok(v);
currentSCC := empty;
repeat w := S.pop(); add w to currentSCC; until (w = v);
output currentSCC
endif



Example:

-

{s0O,s2}, {s1,s3}




Correctness and Complexity

Given G=(V,E).
The output of scctarjan(G) is a set of SCCs
that is a partition of G.

The complexity of scctarjan(G) is O(|V|+]|E]).



Avoidability Analysis

Let K=<S,R.I> and A cS. M

BOOL AvoidabilityAnalysis(K,A)
{  K'=(S",R,I"):=K|-=A;
G:=(S',R');
scclist:=scctarjan(G);
w:={};
for each (e in scclist) if (nontrivial(e)) w:=wuUe;

return ReachbilityAnalysis(K',w);




Avoidability Analysis

Let K=<S,R,I> be a Kripke structure, and A cS.

Proposition:
AvoidabilityAnalysis(K,A) =true
iff

A is an avoidability property



Inevitability

Given a set .

Y is an inevitability property, if
every computation reaches a Y-state



Example: {s1,s3}, {s2,53}

:




Avoidability & Inevitability

Inevitability is a negation of avoidability.

Proposition
Y is an inevitability property of K, iff
Y is not an avoidability property.



Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A cS.

BOOL InevitabilityAnalysis(K,A)
{ K"'=(S,R'I'):=K|-A;
G:=(S',R");
scclist:=scctarjan(G);
w:={};
for each (e in scclist) if (nontrivial(e)) w:=w U e€;
return (not ReachbilityAnalysis(K',w));




Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A cS.

Proposition:
InevitabilityAnalysis(K,A) =true
|ff

A is an inevitability property



Inevitability & Avoidability

Let K=<S,R,I> be a Kripke structure, and A cS.

InevitabilityAnalysis(K,A) =true <
AvoidabilityAnalysis(K,A) =false



Deductive Inevitability Analysis



Proof of Inevitability

If there is a sequence of sets of states:
Xo Xy,--X,, such that

1I=X,,

R(X\\Y) =X,,,, fori=0,1,...,n-1

X Y,
Then Y an inevitability property.

Completeness
For finite state systems,

if the conclusion holds, then such a sequence exists.



Example: Y={s2,s3}

X,=1{s0,s2}, X;={s1,s2}, X,={s3}



Inevitability Analysis — An Example
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Example: Mutual Exclusion

Process A Process B

Non-Critical @ @ritical @

@ical Regio} @ical RegioD

\__




Example: Mutual Exclusion

Process B

Non-Critical @

J
Request for Entering

T W

Check for Entering

@ica I%e@
V.

Exit

Process A

Non-Critical @

J
Request for Entering

T war

Check for Entering

@calvRegioD
Vi

Exit

-
-y




Design of Mutual Exclusion (Activity)
® | initialization |

/5\

work in NCR ] work in NCR ]

[ request ]
v

{ wait
[else]
[condition 2

| workinCR |
[

[ request ]
J

[ wait
[else]
[condition 1

| workinCR |
{

J
exit }

v
exit ]




Design of Mutual Exclusion

* Purpose:
— ensure that not both processes are working in the
critical region (CR)
* Mechanism:
— use shared variables

— y=1: the first process is applying for entering CR or it is in
CR

— x=1: the second process is applying for entering CR or it
Is in CR

— t=(i-1): the i-th process has priority for entering CR



Design of Mutual Exclusion (State)

cﬁ[ initialization ] -
X:=0;y:=

- T
Process A P i Process B /ﬂ
work in NCR | work in NCR |
y:=1;t:=1 i x:=1:t:=0
wait i { Waiwb
=tand t=1] | Y= orteq] V=1andt=0]

[ work in CR J




Correctness of the Design

* Ensure that not both processes are working in the
critical region (CR)

* Ensure that at least one process reaches CR



Combined States of the Two Processes

“processA | ProcessB | xys | Remark
NCR NCR

NCR wait

NCR CR Good states

wait NCR

wait wait

wait CR Good states
CR NCR Good states
CR wait Good states

CR CR Good states



Correctness of the Design

* How do we know that the design is correct?

— We have to be sure that the good states are inevitable,
i.e., reachable in all possible executions of the algorithm

— We may use state exploration (model checking)
techniques or deductive proof methods
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Kripke Structures

A Kripke structure is a triple K=<S,R,I>
— S : Afinite set of states
— R < S xS : Atotal transition relation
— |1 < S : A set of initial states



Domains of Process and Variable States

--
NCR NCR 1 1 1

wait wait 0 0 0

CR CR

(a,b,x,y,t)



The Set of States: S

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}



Transition Relation: R

(a,wait,x,0,t)
(a,wait,x,y,1)
(a,wait,x,1,0)
(3,CR,x,V,t)

(NCR,b,x,V,t) -2 (wait,b,x,1,1)
(wait,b,0,y,t) - (CR,b,0,y,t)
(wait,b,x,y,0) - (CR,b,x,y,0)
(wait,b,1,y,1) - (wait,b,1,y,1)
(CR,b,x,y,t) - (NCR,b,x,0,t)
(a,NCR,x,y,t) - (a,wait,1,y,0)

- (a,CR,x,0,t)
-2 (a,CR,x,y,1)
- (a,wait,x,1,0)
- (a,NCR,0,y,t)




The Set of Initial States: |

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }



Good States

(CR,b,x,y,t)
(a,CR,x,V,t)

The set of other states:
(NCR,NCR,x,V,t)
(wait,wait, x,y,t)
(wait,NCR,x,y,t)
(NCR,wait,x,y,t)
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Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A cS.

BOOL InevitabilityAnalysis(K,A)
{ K"'=(S,R'I'):=K|-A;
G:=(S',R");
scclist:=scctarjan(G);
w:={};
for each (e in scclist) if (nontrivial(e)) w:=w U e€;
return (not ReachbilityAnalysis(K',w));




Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A cS.

Proposition:
InevitabilityAnalysis(K,A) =true
|ff

A is an inevitability property



Inevitability Analysis

(NCR,b,x,y,t)
(wait,b,x,y,t)

(a,NCR,x,y,t)
(a,wait,x,y,t)

InivitabilityAnalysis(K,Y)="7



Inevitability Analysis

CR NCR,0,0,

CRNCROOO

ait, NCROlCR wait,1,0,0
RNCROLL aitwait 10| aitwait1, 1D )R

Y

CR,wait,l,l,




Inevitability Analysis (Returns False ?7?)

CR,NCR,0,0,0 CR,NCR,0,0,

ait,NCR,O,lCR,wait,l,O,
] ML GRIL
>

]I\

O v,




Design of Mutual Exclusion (State)

cﬁ[ initialization ] -
X:=0;y:=

——

! I

work in NCR ] work in NCR ]

y:=1;t:=1 x:=1;t:=0

wait : { Waiwb
=0 ort=0] X7 and =1l [y=0 or t=1] Y71 andt=0]

{ work in CR J




Revised Model of Mutual Exclusion

cﬁ[ initialization ] -
X:=0;y:=

I ——

! =

work in NCR ] work in NCR ]

y:=1;t:=1 x:=1;t:=0

wait ] wait J




Transition Relation: R

(NCR,b,x,y,t)
(wait,b,0,y,t)
(wait,b,x,y,0)
(wait,b,1,y,1)
(CR,b,x,y,t)

(a,NCR,x,y,t)

(a,wait,x,1,t)
(a,wait,x,y,1)
(a,wait,x,1,0)
(3,CR,x,V,t)

-2 (wait,b,x,1,1)
- (CR,b,0,y,t)
- (CR,b,x,y,0)
-2 (wait,b,1,y,1)
- (NCR,b,x,0,t)

- (a,wait,1,y,0)
-2 (a,CR,x,1,t)
-2 (a,CR,x,y,1)
- (a,wait,x,1,0)
- (a,NCR,0,y,t)




Inevitability Analysis

CR NCR,0,0,

CRNCROOO

ait, NCROlCR wait,1,0,0
RNCROLL aitwait 10| aitwait1, 1D )R

WL

CR,wait,l,l,




Inevitability Analysis

CR,NCR,0,0,0 CR,NCR,0,0,

ait, NCR,0,1, ANCR,wait,1,0,0
] GEMATEID|| GERwRILD
>




Inevitability Analysis

(NCR,b,x,y,t)
(wait,b,x,y,t)

(a,NCR,x,y,t)
(a,wait,x,y,t)

InivitabilityAnalysis(K',Y)=?



Inevitability Analysis

(NCR,b,x,y,t)
(wait,b,x,y,t)

(a,NCR,x,y,t)
(a,wait,x,y,t)

InevitabilityAnalysis(K',Y)=true S
Every computation reaches a Y-states <«
Y is inevitable in K’



Deductive Proof of Inevitability

X, =1 (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }
X, =1 (wait,NCR,0,1,1), (NCR,wait,1,0,0) }
X, =1 (wait,wait,1,0,0), (wait,wait,1,1,1) } U Y
X; =1 (CR,wait,1,1,0), (wait,CR,1,1,1) }
We have
1I=X,,
R(X.\Y) =X.,,, for i=0,1,2
XY,
Therefore Y an inevitability property of K.



Deductive Proof of Inevitability

CRNCROOO

ait, NCROlCR wait,1,0,0
RNCROLL aitwait 10| aitwait1, 1D )R

WL

CR,wait,l,l,

CR NCR,0,0,
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Correctness of the Design

* How do we know that the design is correct?

— We have shown that the good states are inevitable.



(IV) Summary
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