Fair and Labeled Kripke Structures

7 [E] A3l

HHSEHLEY

e AT TR

K
http://lcs.ios.ac.cn/~zwh/

qE

U Py

-~ B rig e

7 N
AGR
TN —
f A1 BIE T vk
N J
<ﬁ7< L%EE)
A I
FEFFERR || A R

EE

U Py

12 SR
RS
- T~/
7 N
EX4
TN — B
fi 2 Rl AR r
_ Y
<ﬁ7< = @)
A N

FEFPHERE || A A

NE

o NFKripkeZh

o Fr5KripkeZt 1

o N PhR 5 Kripke 4 1)

(1) Fair Kripke Structures

* Motivation

Bl 1-H 5. IRZE(State Diagram)
® | initialization | oisd

I —

Process A ® ' Process B /ﬂ
work in NCR] i work in NCR]
y:=1;t:=1 x:=1;t:=0
[wait { WQ
[x=0 or t=0] x=1'and t=1] i [y=0 or t=1] y=1and t=0]

{ work in CR] { work in CR J

Kripke Structures

CRNCROOO

ait, NCROlCR wait,1,0,0
RNCROLL aitwait 10| aitwait1, 1D)R

Y

CR,wait,l,l,

CR NCR,0,0,

Bl 1-H 5. IRZE(State Diagram)
® | initialization | oisd

I——

Process A N E Process B N
work in NCR] | work in NCR]
y:=1t:=1 x:=1;t:=0
[wait o { wa
x40 ort=0] | PTGt ysoort=1] | Y=tandt=0l

[work in CR J [work in CR]

Kripke Structure (Modified)

CR,NCR,0,0,0 CR,NCR,0,0,

ait, NCR,0,1, ANCR,wait,1,0,0
IRNCROLL ait,wait, 1,10
¥

W/

CR,wait,l,l,

Motivation

Restrict relevant computations to fair computations.

Fair Kripke Structures

* Formulation
* Basic Concepts
* Basic System Properties

Fair Kripke Structures

Definition

A fair Kripke structure is a quadruple <S,R,|,F>
— S : A finite set of states
— R < SxS: A total transition relation

— | < S: Asetof initial states
— F < 2°: A set of sets of states

Example: S,R,l

Example: F={{s2,53},{s0,s2}}

:

Example:

CR,NCR,0,0,0 CR,NCR,0,0,

ait, NCR,0,1, ANCR,wait,1,0,0

NCR,CR,1,0,0
/ \
>

Example:

CR,NCR,0,0,0 CR,NCR,0,0

ait, NCR,0,1, ANCR,wait,1,0,0

NCR,CR,1,0,0
ICRNCROLL quait,wait, 1, 10 ’
’ N

~

16

Basic Concepts

Basic Concepts

e Basic Concepts (Kripke Structures)
e States, Transition Relation, Initial States
* Successors, Predecessors,
 Reachable States, Reachability Relation,
e Paths (Finite and Infinite), Computation, Behavior
* Properties

* Basic Concepts (Fair Kripke Structures)
e Paths — Fair Paths

* Computations — Fair Computations
* States — Fair States

Paths

Definition

An infinite path is an infinite sequence of S:
S9S1 Sy -

such thats, 2> s, foralli>0

Definition
A finite path is a finite prefix of an infinite path:

Sg --+Sh,

Fair Paths

Definition
A fair (infinite) path is a path such that
for every f €F, there is an infinite number of states

on the path satisfying f.

Example: Paths

F={{s2,53},{s0,52}}

Infinite paths: Finite paths:
SsOs1s3s1s3s1... sOs1s3s1
sO(s1s3)® s1s3sl1s3s1

s1s3s1s3s1s3s...

Computations

Given a Kripke structure K=<S,R,I>.

Definition

A computation of K is an infinite sequence of S:
S9S1 Sy -

such thats,e |, ands. =2 s.,,foralli>0

Fair Computations

Definition
A fair computation is a computation such that
for every f €F, there is an infinite number of states

on the computation satisfying f.

Example: Computations

F={{s2,s3},{s0,s2}}

sO(s1s3)®
s2(s3s1)®
s2(s0s2)*(s1s3)®

System Behavior

System behavior = the set of fair computations

[[K]]

Example: Behavior

F={{s2,s3},{s0,s2}}

(s0s2)® (s2s0)®
s0(s2s0)*(s1s3)° s2(s0s2)*(s3s1)°
s0s2(s0s2)*(s3s1)® s250(s2s0)*(s1s3)®

Fair States

Definition
A fair state is a starting state of some fair path.

Example: Fair States

Q

F={{s2,s3},{s0,s2}}

Example: F={{..}, {..} }

CR,NCR,0,0,0 CR,NCR,0,0,

ait, NCR,0,1, ANCR,wait,1,0,0
IRNCROLL it wait, L, L0
¢ ,

CR,Wait,l,l,

Checking Fair States (Fair SCC)

Definition

A fair SCC is a non-trivial SCC

such that each fairness requirement is satisfied by
some state of the SCC.

Lemma
A state is fair, iff it may reach a fair SCC.

Fair SCC

Let K=<S,R,|,F> be a Kripke structure, and e an SCC.

bool Fairscc(K,e)

{ if (nontrivial(K,e)=false) return false;
for (each fin F) if (enf=) { return false; }
return true;

Fair States

Let K=<S,R,I,F> be a Kripke structure, and A a set of states.

bool ExistFairState(K,A)
{ G:=(S,R); scclist:=scctarjan(G);
w:={};
for (each e in scclist) if (Fairscc(K,e)) w=we;
K'=(S,R,A);
return ReachbilityAnalysis(K',w);

Fair States

Let K=<S,R,|,F> be a Kripke structure, A a set and s a state.

Proposition
There exists some fair state in A iff
ExistFairState(K,A)=true.

Proposition
s is a fair state iff
ExistFairState(K,{s})=true.

Basic Properties

* Fair Reachability, Fair Safety
* Fair Avoidability, Fair Inevitability
* Emptiness

Basic Properties (1)

* Fair Reachability, Fair Safety

Fair Reachability Property - Possibility

Let X be a set of states.

X is a fair reachability property, if
There is a fair computation of K that reaches

an X-state.

Example: {s0,s2}, {s0,s1,s2}

Q

F={{s2,s3},{s0,s2}}

Example: {s0O,s2}x, {sO,s1,s2}x

-

F={{s2,s3},{s0,s2}}

Fair Reachability Problem

Given a set XcS.
Is X a fair reachability property?

Reachability Analysis (Existing One)

Let K=<S,R,I> be a Kripke structure, and A cS.

bool ReachabilityAnalysis(K,A)
{ w:=l;
repeat until w={};
s:=w.getElement(); if (s in A) return true;
visited[s]:=true;
for each (s' in R(s)),
if (visited[s']=false) w.putElement(s');
w.removeElement(s);

return false;

Fair Reachability Analysis

* |s AcCS a fair reachability property?

* |s there a state s such that the following holds?
— s satisfies A
— s is fair

— s is reachable (from I)

Fair Reachability Analysis

Let K=<S,R,|,F> be a Kripke structure, and A cS.

bool FairReachabilityAnalysis(K,A)
{ w:=l;
repeat until w={};
s:=w.getElement();
if (s in A) and ExistFairState(K,{s}) return true;
visited[s]:=true;
for each (s' in R(s)),
if (visited[s']=false) w.putElement (s');

w.removeElement(s);

return false;
}

Fair Reachability Analysis

Let K=<S,R,|,F> be a Kripke structure, and A cS.

Proposition:
FairReachabilityAnalysis(K,A) =true
|ff

A is a fair reachability property

Fair Safety Property - Universality

Let Y be a set of states.

Y is a fair safety property, if
every fair computation is a Y-computation.

Example: {s0,s2}, {s1,52,53}x

Q

F={{s2,s3},{s0,s2}}

Fair Safety Analysis

Let K=<S,R,|,F> be a Kripke structure, and A cS.

bool FairSafetyAnalysis(K,A)
{ w:=l;
repeat until w={};
s:=w.getElement();
if (s not in A) and ExistFairState(K,{s}) return false;
visited[s]:=true;
for each (s' in R(s)),
if (visited[s']=false) w.putElement(s');

w.removeElement(s);

return true;

)

Basic Fair Safety Analysis

Let K=<S,R,|,F> be a Kripke structure, and A cS.

Proposition:
FairSafetyAnalysis(K,A) =true
|ff

A is a fair Safety property

Reachability & Safety

Fair safety is a dual property of fair reachability.

Proposition
A is a fair safety property of a system K=<S,R,I,F>,
iff S\A is not a fair reachability property of K.

FairSafetyAnalysis(K,A) =true <
FairReachabilityAnalysis(K,S\A) =false

Basic Properties (2)

* Fair Avoidability, Fair Inevitability

Avoidability Property

Let X be a set of states.

X is a fair avoidability property, if
there exists some fair computation of K that

does not pass any X-state.

Example: {s0,s2}x

&

F={{s2,s3},{s0,s2}}

Example: {s1,s3}V

F={{s2,s3},{s0,s2}}

Fair Avoidability Problem

Given a set XcS.
Is X a fair avoidability property?

Fair Avoidability Problem

For a finite state system <S,R,|,F>:
Define R|Y=RN\(YxY); {f1,...,fn}|Y={f1NY,...,fnNY}

Define K|Y =<Y,R|Y,INY,F|Y>
Let ACS. Let K'=<S,R",I’,F'> = K| (S\A)

A is a fair avoidability property, iff
there is a reachable fair SCC of K’ .

Fair Avoidability Analysis

Let K=<S,R,|,F> be a Kripke structure, and A cS.

bool FairAvoidabilityAnalysis(K,A)

{ K"'=(S",R"I',F"):=K|(S\A); G:=(S",R"); K”’:=(S",R",I);
scclist:=scctarjan(G);
w:={}; for each (e in scclist) if (Fairscc(K’,e)) w:=wue;
return ReachbilityAnalysis(K”,w);

Fair Avoidability: A Simpler Formulation

For a finite state system <S,R,|,F>:
Let ACS. Let K'=<S’,RI",F'> = K| (S\A)

A is a fair avoidability property, iff
there is a reachable fair SCC of K’, iff

there is a reachable fair state of K, iff

there is a fair state in I, iff
ExistFairState(K’,l’)=true.

Fair Avoidability: A Simpler Formulation

Let K=<S,R,|,F> be a Kripke structure, and A cS.

bool FairAvoidabilityAnalysis(K,A)
{
K':= (SR, I,F’) == K[(S\A);
return (ExistFairState(K’,I’));

Fair Avoidability Analysis

Let K=<S,R,|,F> be a fair Kripke structure, and A cS.

Proposition:
FairAvoidabilityAnalysis(K,A) =true
iff

A is a fair avoidability property

Fair Inevitability

Given a set .

Y is a fair inevitability property, if
every fair computation passes a Y-state

Example: {s1,s3}, {s2,53}

Q

F={{s2,s3},{s0,s2}}

Inevitability & Avoidability

Fair inevitability is the negation of fair avoidability.

Proposition
A is a fair inevitability property of a system K,
iff A'is not a fair avoidability property of K.

Fair Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A cS.

bool FairlnevitabilityAnalysis(K,A)
{ K'=(S",R",I'F'):=K|(S\A); G:=(S',R");
scclist:=scctarjan(G);
w:={}; for each (e in scclist) if (Fairscc(K’,e)) w:=we;
return (not ReachbilityAnalysis(K',w));

Fair Inevitability Analysis

Let K=<S,R,|,F> be a Kripke structure, and A cS.

Proposition:
FairlnevitabilityAnalysis(K,A) =true
|ff

A is a fair inevitability property

Inevitability & Avoidability

Fair inevitability is the negation of fair avoidability.

FairlnevitabilityAnalysis(K,A) =true <
FairAvoidabilityAnalysis(K,A) =false

Basic Properties (3)

* Emptiness

EE

Emptiness

Let K=<S,R,|,F>.

K is empty,

t
[

ne set of fair computations of K is empty,

K] =9

Example: Empty

&

F={{s2,s3},{s0,s2}}

Example: Non-empty

Q

F={{s2,s3},{s0,s2}}

Emptiness Problem

Given K=<S,R,|,F> .

Is K empty?

Emptiness Problem

Given K=<S,R,|,F> .
Is K empty?
K is nonempty, iff

there is an |-state that reaches a fair SCC, iff

there is a fair initial state.

Emptiness Checking

Let K=<S,R,I,F> be a fair Kripke structure.

bool EmpChecking(K)
{

return ExistFairState(K,l)=false;

Emptiness Checking

Let K=<S,R,I,F> be a fair Kripke structure.

Proposition:
EmpChecking(K) =true
iff

Kis empty

Application to Reachability

Given K=<S,R,I>, and AcS.

Define S',R',I',F as follows:
o S'=SUAt}
* R=RU{(st) | seA}U{(t,t)}

* F={{t}}

A is a reachability property, iff <SR’ I’,F>
IS nonempty

Application to Avoidability

Given K=<S,R,I>, and AcS.

Define S',R',I',F as follows:

o S'=SUAt}

* R'={(s,s") | (s,s")eR, sgA}U{(s;t) | seA} U {(t1)}
° '=|

¢ F={S} A

X

A is an avoidability property, iff <S’,R’,I’,F> is

nonempty

An Example

L Contents]

Mutual Exclusion

Kripke Structure

Summary

An Example

[Contents]

Mutual Exclusion

Kripke Structure

Summary

Bl 1-H 5. IRZE(State Diagram)
® | initialization | oisd

I —

Process A ® ' Process B /ﬂ
work in NCR] i work in NCR]
y:=1;t:=1 x:=1;t:=0
[wait { WQ
[x=0 or t=0] x=1'and t=1] i [y=0 or t=1] y=1and t=0]

{ work in CR] { work in CR J

Example

CR,NCR,0,0,0 CR,NCR,0,0,

ait, NCR,0,1, ANCR,wait,1,0,0

NCR,CR,1,0,0
/ \
>

An Example

{ Contents]

Mutual Exclusion

Kripke Structure

Summary

Fair Kripke Structures

Definition

A fair Kripke structure is a quintuple <S,R,|,F>
— S : A finite set of states
— R < SxS: A total transition relation

— | < S: Asetofinitial states
— F < 2°: A set of sets of states

The Set of States: S

{(a,b,x,y,t) | a,be{NCR,wait,CR} and x,y,t{0,1}}

Transition Relation: R

(a,wait,x,1,t)
(a,wait,x,y,1)
(a,wait,x,1,0)
(3,CR,x,V,t)

(NCR,b,x,V,t) -2 (wait,b,x,1,1)
(wait,b,0,y,t) - (CR,b,0,y,t)
(wait,b,x,y,0) - (CR,b,x,y,0)
(wait,b,1,y,1) - (wait,b,1,y,1)
(CR,b,x,y,t) - (NCR,b,x,0,t)
(a,NCR,x,y,t) - (a,wait,1,y,0)

-2 (a,CR,x,1,t)
-2 (a,CR,x,y,1)
- (a,wait,x,1,0)
- (a,NCR,0,y,t)

The Set of Initial States: |

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

The Set of Fairness Constraints: F

Apparently, we need fairness constraints:

Bl 1-H 5. IRZE(State Diagram)
® | initialization | oisd

I —

Process A ® ' Process B /ﬂ
work in NCR] i work in NCR]
y:=1;t:=1 x:=1;t:=0
[wait { WQ
[x=0 or t=0] x=1'and t=1] i [y=0 or t=1] y=1and t=0]

{ work in CR] { work in CR J

The Set of Fairness Constraints: F

In fact, we may construct 6 fairness constraints for:

(a=NCR)
(a=wait and x=0]|t=0)
(a=CR)

(b=NCR)
(b=wait and y=0|t=1)
(b=CR)

The Set of Fairness Constraints: F

51={(a,
52 ={(a,
S3={(a,

54 ={(a,
S5 ={(a,
56 ={(a,

0,X,Y,t)
0,X,Y,t)

0,X%,Y,t)

0,X%,Y,t)
0,X,Y,t)

0,X%,Y,t)

0=NCR}

o=wait and y=0|t=1 }

0=CR }

The Set of Fairness Constraints: F

51={(a,
52 ={(a,
S3={(a,

54 ={(a,
S5 ={(a,
56 ={(a,

0,X,Y,t)
0,X,Y,t)

0,X%,Y,t)

0,X%,Y,t)
0,X,Y,t)

0,X%,Y,t)

0=NCR}

o=wait and y=0|t=1 }

0=CR }

F={ S\S1, S\S2, S\S3, S\S4, S\S5, S\S6 }

Example

(a=wait and x=0]t=0):

CR,NCR,0,0,0 CR,NCR,0,0,

ait,NCR,0,1, ANCR,wait,1,0,0

‘m NCR,CR,1,0,0
ait,wait, L10/| @wait,wait,1,1D
/ \

/

Example: Properties

* Emptiness
* Reachability & Safety
* |nevitability & Avoidability

Example: Emptiness

K={SIRI|IF}

THEN
EmpChecking(K) = false

Example: Reachability & Safety

K = { SI RI |I F }
Y={(a,b,x,y,t) | a!=CR or b!=CR }

THEN
FairSafetyAnalysis(K,Y) =true

Example: Inevitability & Avoidability

K - { S) RI II F }
Y={(a,b,x,y,t) | a=CR or b=CR }

THEN
FairlnevitabilityAnalysis(K,A) = true

An Example

{ Contents]

Mutual Exclusion

Kripke Structure

Summary

(1) Labeled Kripke Structures

* Motivation

Bl 1-H 5. IRZE(State Diagram)
® | initialization | oisd

I —

Process A ® ' Process B /ﬂ
work in NCR] i work in NCR]
y:=1;t:=1 x:=1;t:=0
[wait { WQ
[x=0 or t=0] x=1'and t=1] i [y=0 or t=1] y=1and t=0]

{ work in CR] { work in CR J

B)7- HJw: IRESIER B (Kripke 4 14))

CR,NCR,0,0,0 CR,NCR,0,0,

Wait, NCR,0,,1
TRNCROLT aitwait 10| waitmaitiip PRI

' '/

CR,wait,1,1,00+ @

CR,wait,1,0,0

Bl7-HJw: RS

B)7- HJw: IRESIER B (Kripke 4 14))

Good,Bad,Neutral?

Motivation

Distinguish states based on a set of basic
properties (labels).

Labeled Kripke Structures

* Formulation
* Basic Concepts
* Basic System Properties

Labeled Kripke Structures

AP: a finite set of propositions.

Definition

A (Labeled) Kripke structure is a quadruple K=<S,R,I,L>
* S: Afinite set of states

e Rc SxS:Atotal transition relation

e | < S:Asetofinitial states

o L: S > 2%Pjs a labeling function

Example: S,R,l

Example: L

AP: {p,q}

Example: Paths, Computations, Behavior

AP: {p,q} 0 -
q

P,q}
(s0s2)® (s2s0)®
s0(s2s0)*(s1s3)° s2(s0s2)*(s3s1)°

s0s2(s0s2)*(s3s1)® s2s0(s2s0)*(s1s3)®

Basic Concepts

* Basic Concepts (Kripke Structures)
e States, Transition Relation, Initial States
* Successors, Predecessors,
* Reachable States, Reachability Relation,
e Paths (Finite and Infinite), Computation, Behavior
* Properties

* Basic Concepts (Labeled Kripke Structures)

e Labels

* Properties — Propositional Symbols — Formulas
e Sets — Propositional Formulas

Labels

A proposition = a set of states: S ={s | pe L(s) }
A set of states = a proposition:
Given X={x,,X,,...,X,,}, we create a proposition px as follows.

Add px to AP,
Add px to L(x,), L(x,), ..., L(x,)

X=S,={s| pxe L(s) }

Satisfiability Relation (State-based)

Let X)Y be sets of states. Let s be a state.

Definition

s satisfies Y (or s is a Y-state), ifs €Y,

Definition

X satisfies Y, if for all seX, s satisfies Y, i.e., Xc&Y

Satisfiability with Formulas

Definition
Let ¢ be a formula.

s |= @ is defined as follows.

> s |=p if
> s |= oAy if
> s |= vy if
> s |=—o: if

p €L(s)

S
S
S

= @ ands |=y
=@pors|=vy
= ¢

X |=¢,ifforallseX, s|=0¢

Correspondence: Formulas to Sets

Definition:

[[¢]] is defined as follows.

>

V YV VY

Lemma: s |= @ iff se[[o]], i.e.,

[P

[p]]

[pAr

={s|pel(s)}
/1] = [[o]] Nlwl]]
/1] = [lo]] VIlwvl]]

[—¢]]l = S\[[¢]]

[pll=1{s | s|=¢}.

Definition: s is a @-state, if s is a [[¢]]-state.

Example: Correspondence

{9}
©

[[pAq]]={s3}, [[pva]]={s1,s2,s3}

Correspondence: Sets to Formulas

Construction

[{s}]] = (/\reL(s)r) A (/\rgL(s)_'r)
[XOYIT = [[X]]VIYI]

Lemma:
if seX, thens |=[[X]], i.e., X< [[([[X]])]].

XcY => [[XI] = [[V]]

Correspondence: Sets to Formulas

Suppose that the function L: S =2 24P is one-to-one.

Then for each XcS,
there is a formula characterizing the set X.

Lemma:
seXiff s |=[[X]], i.e.,
X = [[([[X]]) 11.

Example: Correspondence

{9}
©

[{s3}]]=p~q, [[{s1,s2,s3}]]=pVvQ

Correspondence: non-one-to-one

Suppose that the function L: S =2 24P is not
one-to-one (i.e., a kind of abstraction).

Then:

seX =2 s |=][[X]], i.e.,
X < [[(IX]) 11.

Example: L is not one-to-one

{a}

\P,q}

[[{s0} J]=gAa—p, [[{sl}]]=ga—p, [laa—pl]l=1{s0, sl}
[[{s1, s3}1]1=q, [[{s0,sl,s3}1]=q, [[aql]l={s0, s1, s3}

Basic Properties

* Reachability, Safety
* Avoidability, Inevitability

Basic Properties (1)

* Reachability, Safety

Reachability Property

Let K=<S,R,I,L> and ¢ be a formula.

¢ is a reachability property, if
there is a computation of K that passes a ¢-state.

Proposition
¢ is a reachability property, iff
[[@]] is a reachability property of K'=<S,R,|>

Reachability Property

Let K=<S,R,I,L> and ¢ be a formula.

Proposition
¢ is a reachability property,
iff

ReachabilityAnalysis(K’,[[¢]]) = true

Safety Property

Let K=<S,R,I,L> and ¢ be a formula.

¢ is a safety property, if

every state on every computation is a ¢-state.

Proposition
¢ is a safety property, iff
[[¢]] is a safety property of K'=<S,R,I>

EE

Safety Property

Let K=<S,R,I,L> and ¢ be a formula.

Proposition
¢ is a safety property,
iff

SafetyAnalysis(K’,[[¢]]) = true

Let K=<S,R,I,L> and ¢ be a formula.

How to develop a safety analysis algorit
with (K,¢) as input without calculating [

This problem is left to the readers.

1m

o]] ?

Safety & Reachability

Safety is a dual property of reachability.

Proposition

¢ is a safety property of K=<S,R,1,L>,
iff

—(@ is not reachable in K.

Deductive Safety Analysis

Successors

Define:

R(y) =[[{s" | s=2s,s |=wy}]]

Invariant

Definition
@ is a transition invariant, if R(¢p)=2> o.

Inductive Invariant

Definition
@ is an inductive invariant, if
[[1]]=2, and @ is a transition invariant.

Proof of Safety

Given .

If there is a @’ such that
@’ is an inductive invariant and ¢’ o,
then K is safe w.r.t. ¢.

Relative Completeness
Suppose that L is a one-to-one mapping.
If the conclusion holds, then such a ¢’ exists.

Example: o=pvg=[[{s1,s2,53}]]

\P,q}

P}

(1) We need ¢’ satisfying ([[I]] 2 ¢’) and (¢’=2>) for the rule.
(2) We may choose ¢ = g, which is transition invariant.

Example: o=pvg=[[{s1,s2,53}]]

\P,q}

P}

(1) We need ¢’ satisfying ([[I]] 2 ¢’) and (¢’=2>) for the rule.
(2) We may choose ¢ = q or ¢’ = pv(, which are transition invariant.

Proof of Safety

Not complete, if L is not a one-to-one map.

Example: ¢=0=[[{s0,s1,s3}]] is a safety property

(L is not one-to-one)

\ds {q}

0} p,q}

(1) We need ¢’ satisfying ([[I]] =2 ¢’) and (¢’—>) for the rule.
(2) Since [[I]] =g =0, ¢ must be q.
(3) However g is not transition invariant.

Basic Properties (2)

* Avoidability, Inevitability

Avoidability Property

Let K=<S,R,I,L> and ¢ be a formula.

¢ is an avoidability property, if
there exists some computation of K that
does not pass any @-state.

Proposition
¢ is an avoidability property, iff
[[@]] is an avoidability property of K'=<S,R,I>

Avoidability Property

Let K=<S,R,I,L> and ¢ be a formula.

Proposition:

¢ is an avoidability property

iff

AvoidabilityAnalysis(K’, [[@]]) =true

Inevitability

Let K=<S,R,I,L> and ¢ be a formula.

Definition
¢ is an inevitability property, if
every computation passes a ¢-state

Proposition
¢ is an inevitability property of K, iff
[[@]] is an inevitability property of K’=<S,R,I>.

Inevitability

Let K=<S,R,I,L> and ¢ be a formula.

Proposition:
¢ is an inevitability property
iff

InevitabilityAnalysis(K’, [[@]]) =true

Inevitability & Avoidability

Inevitability is the negation of avoidability.

Proposition
¢ is an inevitability property of K,
iff

¢ is not avoidable in K.

Let K=<S,R,I,L> and ¢ be a formula.
s it easy (or possible) to develop

an inevitability analysis algorithm
with (K,¢) as input without calculating [[¢]] ?

This problem is left to the readers.

Deductive Inevitability Analysis

Proof of Inevitability

If there is a sequence of sets of states:
Pg, Pq,---, @, SUCh that

[[11]2> ¢,

R(p:A—) =2 o.,,, fori=0,1,...,n-1

P29,
Then @ is an inevitability property.

Relative Completeness
Suppose that L is a one-to-one mapping.

For finite state systems, if the conclusion holds, then such a
seguence exists.

Example: ¢=p={s2,s3}

{}

P}
X,={s0,s2}, X,={s1,s2}, X,={s3}
0=, ¢1=(PA=Q)V(JA—P), ¢>= PAQ

{9}
©

\P,q}

Proof of Inevitability

Not complete, if L is not a one-to-one map.

Example: ¢=p={s2,s3} is an inevitability property

(L is not one-to-one)

s {q}
O

{p}

We have [[|]] = (gA—p).
(aA—p) =2 @y,

(arn—p)Vv(p) 2 o,
(ar—p)v(p) 2 ¢,

An Example

L Contents]

Mutual Exclusion

Kripke Structure

Summary

An Example

[Contents]

Mutual Exclusion

Kripke Structure

Summary

Design of Mutual Exclusion (State)

cﬁ[initialization] -
X:=0;y:=

I ——

Process A ®

Process B /ﬂ

work in NCR]

work in NCR]

x:=1:t:=0

wait : { Waiwb
p=0ort=0] X7 and =1l [y=0 or t=1] Y71 andt=0]

y:=1;t:=1

{ work in CR J

Example

CR,NCR,0,0,0 CR,NCR,0,0,

ait, NCR,0,1, ANCR,wait,1,0,0

NCR,CR,1,0,0
/ \
>

An Example

{ Contents]

Mutual Exclusion

Kripke Structure

Summary

Labeled Kripke Structures

AP: a finite set of propositions.

Definition

A (Labeled) Kripke structure is a quadruple K=<S,R,I,L>
* S: Afinite set of states

e Rc SxS:Atotal transition relation

e | < S:Asetofinitial states

o L: S > 2%Pjs a labeling function

The Set of States: S

{(a,b,x,y,t) | a,be{NCR,wait,CR} and x,y,t{0,1}}

Transition Relation: R

(a,wait,x,1,t)
(a,wait,x,y,1)
(a,wait,x,1,0)
(3,CR,x,V,t)

(NCR,b,x,V,t) -2 (wait,b,x,1,1)
(wait,b,0,y,t) - (CR,b,0,y,t)
(wait,b,x,y,0) - (CR,b,x,y,0)
(wait,b,1,y,1) - (wait,b,1,y,1)
(CR,b,x,y,t) - (NCR,b,x,0,t)
(a,NCR,x,y,t) - (a,wait,1,y,0)

-2 (a,CR,x,1,t)
-2 (a,CR,x,y,1)
- (a,wait,x,1,0)
- (a,NCR,0,y,t)

The Set of Initial States: |

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

Labeling Function

AP={
a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR,
x=1,x=0,y=1,y=0,t=1,t=0

L(NCR,NCR,0,0,0) = {a=NCR,b=NCR,x=0,y=0,t=0}
L(NCR,NCR,0,0,1) = {a=NCR,b=NCR,x=0,y=0,t=1)

Labeling Function

AP={ p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12 }

L(NCR,NCR,0,0,0) = {p1,p4,p7,p9,p11}
L(NCR,NCR,0,0,1) = {p1,p4,p7,p9,p12}
L(NCR,NCR,0,0,0)= {a=NCR,b=NCR,x=0,y=0,t=0}

L(NCR,NCR,0,0,1) = {a=NCR,b=NCR,x=0,y=0,t=1)

Labeling Function (with Abstraction)

OR

AP={ a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR }

L(NC
L(NC
L(NC

R,NCR,x,y,t)
R, wait, x,y,t)

R,CR,x,V,t)

{a=NC
{a=NC
{a=NC

0=NCR}

o=wait}

0=CR}

Labeling Function (with Abstraction)

OR

AP={ p1,p2,p3,p4,p5,p6 }

(NCR,NCR,x,V,t) = {pl,p4}
L(NCR,wait,x,y,t) = {p1,p5}
L(NCR,CR,x,y,t) = {p1,p6}

Reachability & Safety

AP ={pl1,p2,p3,p4,p5,p6 }

K={SIRI |IL}
¢=—(p3Apb6}
THEN

SafetyAnalysis(K,[[]]]) =true

Inevitability & Avoidability

AP ={pl1,p2,p3,p4,p5,p6 }

K={S,R, 1 L}
d=(p3vpb6}

THEN
InevitabilityAnalysis(K,[[d]]) = false

An Example

{ Contents]

Mutual Exclusion

Kripke Structure

Summary

(111) Fair Labeled Kripke Structures

A fair labeled KS

a labeled KS + a fair KS

Fair Labeled Kripke Structures

AP: A set of propositions.

Definition

A fair Kripke structure is a quintuple <S,R,1,L,F>
— S : A finite set of states
— R < SxS: A total transition relation
— | < S: Asetof initial states

— L: S =2 2APis a labeling function
— F: A set of formulas over AP

Example: S,R,l

Example: L

AP: {p,qa}

Example: F={p,—q}

AP: {p,qa}

Basic Concepts

e Basic Concepts (Kripke Structures)
e States, Transition Relation, Initial States
* Successors, Predecessors,
 Reachable States, Reachability Relation,
e Paths (Finite and Infinite), Computation, Behavior
* Properties

* Basic Concepts (Fair Kripke Structures)
* Paths — Fair Paths
* Computations — Fair Computations
e Behavior - Language
* States — Fair States

Fair Labeled Kripke Structures

F=1{f1,...,fn }, a set of propositional formulas

<S,R,|,L,F>

a labeled KS + a fair KS
<S,RI,L> + <S,R,L{[[f1]],...,[[fn]]}>

Paths

Definition

An infinite path is an infinite sequence of S:
S9S1 Sy -

such thats,=> s, foralli>0

Definition
A finite path is a finite prefix of an infinite path:

Sg --+Sh,

Fair Paths

Definition
A fair (infinite) path is a path such that
for every f €F, there is an infinite number of states

on the path satisfying f.

Example: Paths

F={p,—q}
{p.,q}
Infinite paths: Finite paths:
s0s1s3s1s3s1... sOs1s3s1
sO(s1s3)® s1s3sl1s3s1

s1s3s1s3s1s3s...

Computations

Given a Kripke structure K=<S,R,I>.

Definition

A computation of K is an infinite sequence of S:
S9S1 Sy -

such thats,e |, ands. =2 s.,,foralli>0

Fair Computations

Definition
A fair computation is a computation such that
for every f €F, there is an infinite number of states

on the computation satisfying f.

Example: Computations

{} F:{p, _'q}

sO(s1s3)®

s2(s3s1)“ [pll] ={s2,s3}
s2(s0s2)*(s1s3)“ [[—q]] = {s0,s2}

System Behavior

System behavior = the set of fair computations

[[K]]

Example: Behavior

{} F={p,—|q}

{p,q}
(s0s2)® (s2s0)®
sO(s2s0)*(s1s3)® s2(s0s2)*(s3s1)®

s0s2(s0s2)*(s3s1)® s250(s2s0)*(s1s3)®

Language

Given AP.
Let K=<S,R,|,L,F>.

L(K) < (27%)
L(sOs1s2......) = L(sO)L(s1)L(s2)

L(K) = {L(r) | me [[K]] }

Example: Language

AP: {p,q} 0

oNe}

(s0s2)© (1} P}
(s2s0) (p {1

F={p, —a}

Fair States

Definition
A fair state is a starting state of some fair path.

Example: Fair States

F={p,—q}

Q

Basic Properties

* Fair Reachability, Fair Safety
* Fair Avoidability, Fair Inevitability
* Emptiness

Basic Properties (1)

* Fair Reachability, Fair Safety

Fair Reachability Property

Let K=<S,R,I,L,F>and ¢ be a formula.

¢ is a fair reachability property, if
there is a fair computation of K that passes an ¢-state.

Define [[F]] ={[[f]] | f € F}

Proposition

¢ is a fair reachability property, iff

[[¢]] is a fair reachability property of K’=<S,R,I,[[F]]>

Fair Reachability Property

Let K=<S,R,I,L,F>and ¢ be a formula.

Proposition:

Let K'=<S,R,l,[[F]]>.

¢ is a fair reachability property of K
iff

FairReachabilityAnalysis(K’,[[¢]]) =true

Fair Safety Property

Let K=<S,R,I,L,F>and ¢ be a formula.

¢ is a fair safety property, if
every state on every fair computation is a ¢-states.

Proposition
¢ is a fair safety property of K, iff
[[¢]] is a fair safety property of K'=<S,R,|,[[F]]>

Fair Safety Property

Let K=<S,R,I,L,F>and ¢ be a formula.

Proposition:

Let K'=<S,R,|,[[F]]>.

¢ is a fair safety property of K
iff

FairSafetyAnalysis(K’,[[¢]]) =true

Reachability & Safety

Fair safety is a dual property of fair reachability.

Proposition
¢ is a fair safety property of K=<S,R,I,L,F>, iff
—@ is not a fair reachability property.

Basic Properties (2)

* Fair Avoidability, Fair Inevitability

Fair Avoidability Property

Let K=<S,R,I,L,F>and ¢ be a formula.

¢ is a fair avoidability property, if
there exists some fair computation of K that
does not pass any ¢-states.

Proposition
¢ is a fair avoidability property, iff
[[¢]] is a fair avoidability property of K'=<S,R,I,[[F]]>

Fair Avoidability Property

Let K=<S,R,I,L,F>and ¢ be a formula.

Proposition

Let K'=<S,R,|,[[F]]>.

¢ is a fair avoidability property of K,
iff

FairAvoidabilityAnalysis(K’,[[¢]]) =true

Fair Inevitability

Let K=<S,R,I,L,F>and ¢ be a formula.

¢ is a fair inevitability property, if
every fair computation passes a ¢-state

Proposition
¢ is a fair inevitability property of K, iff
[[¢]] is a fair inevitability property of K'=<S,R,|,[[F]]>.

Fair Inevitability

Let K=<S,R,I,L,F>and ¢ be a formula.

Proposition

Let K'=<S,R,|,[[F]]>.

¢ is a fair inevitability property of K,
iff

FairlnevitabilityAnalysis(K',[[¢]]) =true

Avoidability & Inevitability

fair inevitability is a negation of fair avoidability.

Proposition
¢ is a fair inevitability property of K, iff
¢ is not a fair avoidability property.

Basic Properties (3)

* Emptiness

Emptiness

Let K=<§,R,I,L,F>.

L(K) is empty, iff

the set of fair computations of K is empty, iff
K'=<S,R,I,[[F]]> is empty, iff

EmpChecking(K’)

(IV) An Example

An Example

L Contents]

Mutual Exclusion

Kripke Structure

Model Checking

Summary

An Example

L Contents]

Mutual Exclusion

Kripke Structure

Model Checking

Summary

Example: Mutual Exclusion

Process A Process B

Non-Critical @ @ritical @

@cal RegioD @ical RegioD

199

Example: Mutual Exclusion

Process B

Non-Critical @

J
Request for Entering

T W

Check for Entering

@ica I%e@
V.

Exit

Process A

Non-Critical @

J
Request for Entering

T war

Check for Entering

@calvRegioD
Vi

Exit

-
-y

200

Design of Mutual Exclusion (Activity)

oﬁ[initialization]

/5\

work in NCR] work in NCR]

[request]
v

{ wait
[else]
[condition 2

| workinCR |
[

[request]
J

[wait
[else]
[condition 1

| workinCR |
{

J
exit }

v
exit]

Design of Mutual Exclusion

* Purpose:
— ensure that not both processes are working in the
critical region (CR)
* Mechanism:
— use shared variables
— y=1: the first process is applying for entering CR or
itisin CR
— x=1: the second process is applying for entering
CRoritisin CR

— t=(i-1): the i-th process has priority for entering CR

Design of Mutual Exclusion (State)

cﬁ[initialization] -
X:=0;y:=

— |

3

work in NCR]

work in NCR]

y:=1;t:=1 x:=1;t:=0

wait : { Waiwb
=0 ort=0] X7 and =1l [y=0 or t=1] Y71 andt=0]

{ work in CR J

Design of Mutual Exclusion (State)

cﬁ[initialization] -
X:=0;y:=

I ——

Process A ®

Process B /ﬂ

work in NCR]

work in NCR]

x:=1:t:=0

wait : { Waiwb
p=0ort=0] X7 and =1l [y=0 or t=1] Y71 andt=0]

y:=1;t:=1

{ work in CR J

Correctness of the Design

* How do we know that the design is correct?

Combined States of the Two Processes

Process A Process B m

NCR NCR
NCR wait
NCR CR
wait NCR
wait wait
wait CR
CR NCR
CR wait

CR CR Bad state

Correctness of the Design

* How do we know that the design is correct?

— We have to be sure that the bad state is not
reachable in all possible executions of the
algorithm

— We may use state exploration (model checking)
techniques or deductive proof methods

Contents J

Mutual Exclusion

Kripke Structure

Model Checking

Summary

Fair Kripke Structures

AP: A set of propositions.

A Kripke structure is a triple K=<S,R,1,L>
— S : A finite set of states
— R < S xS : Atotal transition relation
— | < S : A set of initial states
— L: S > 2%Pis a labeling function
— F: A set of formulas over AP

Process States and Variable States

--
NCR NCR 1 1 1

wait wait 0 0 0

CR CR

(a,b,x,y,t)

The Set of States: S

{(a,b,x,y,t) | a,be{NCR,wait,CR} and x,y,t{0,1}}

Transition Relation: R

(a,wait,x,1,t)
(a,wait,x,y,1)
(a,wait,x,1,0)
(3,CR,x,V,t)

(NCR,b,x,V,t) -2 (wait,b,x,1,1)
(wait,b,0,y,t) - (CR,b,0,y,t)
(wait,b,x,y,0) - (CR,b,x,y,0)
(wait,b,1,y,1) - (wait,b,1,y,1)
(CR,b,x,y,t) - (NCR,b,x,0,t)
(a,NCR,x,y,t) - (a,wait,1,y,0)

-2 (a,CR,x,1,t)
-2 (a,CR,x,y,1)
- (a,wait,x,1,0)
- (a,NCR,0,y,t)

The Set of Initial States: |

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

Labeling Function

AP={
a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR,
x=1,x=0,y=1,y=0,t=1,t=0

L(NCR,NCR,0,0,0)={a=NCR,b=NCR,x=0,y=0,t=0}
L(NCR,NCR,0,0,1)={a=NCR,b=NCR,x=0,y=0,t=1}

Fairness

F={
—(b=NCR),
—((x=0vt=0)Aa=wait),
—(a=CR),
—(b=NCR),
—((y=0vt=1)Ab=wait),
—(b=CR)

Example

CR,NCR,0,0,0 CR,NCR,0,0,

ait, NCR,0,1, ANCR,wait,1,0,0

NCR,CR,1,0,0
/ \
>

Safety Property

O = —|(a=CR/\b=CR)

Is ¢ a safety property?

Inevitability Property

v = (a=CRvb=CR)

Is v an inevitability property?

An Example

L Contents]

Mutual Exclusion

Kripke Structure

Model Checking

Summary

Modeling and Model Checking

* Model Checking with VERDS
— http://lcs.ios.ac.cn/~zwh/verds

* Input to VERDS
— VVM (VERDS verification model)

* Modeling Language
— VML (VERDS modeling langauge)

Without Fairness Specifications

Modeling in VML

VVM SPEC
VAR AG(!(p0.a=c0&p1.b=c0));
x:0..1;
y:0..1;
t: 0..1; Saf)
INIT afety: |
_n. Mutual exclusion
x=0;
N J
y=0;
PROC
pO: pOm();
pl: plm();

Modeling in VML

MODULE pOm()

VAR
a: {n0,wO0,c0};

INIT
a=n0;

TRANS
a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0]|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(wO0);

a=cO: (y,a):=(0,n0);

MODULE p1m()

VAR
b: {n0,w0,c0};

INIT
b=n0;

TRANS
b=nO0: (x,t,b):=(1,0,w0);
b=w0&(y=0]|t=1): (b):=(c0);
b=wO0&!(y=0]|t=1): (b):=(w0);
b=cO0: (x,b):=(0,n0);

The Complete Model in VML

VVM
VAR
x:0..1;
y:0..1;
t:0..1;
INIT
x=0;
y=0;
PROC
pO: pOm();
pl: plm();

SPEC
AG(!(p0.a=c0&p1.b=c0));

MODULE pOm()

VAR
a: {n0,w0,c0};

INIT
a=n0;

TRANS
a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0: (y,a):=(0,n0);

MODULE p1m()

VAR
b: {n0,w0,c0};

INIT
b=n0;

TRANS
b=n0: (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1): (b):=(c0);
b=w0&!(y=0|t=1): (b):=(wO0);
b=c0: (x,b):=(0,n0);

Verification with VERDS

.Jverds -ck 1 mutex3.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3.vvm

INFO: int=i0

PROPERTY: AG!((p0.a=2)& (pl.b=2))
check: 0

CONCLUSION: TRUE

Consider the Inevitability Property

VVM SPEC
VAR AG(!(p0.a=c0&p1.b=c0));
x:0..1; AF((p0.a=c0)|(p1l.b=c0));
y:0..1; /—/\
t:0..1;
INIT A
. Inevitability:
e Working in critical region
y=0; S y
PROC
p0: pOmM()
pl: pim()

Verification with VERDS

Jverds -ck 2 mutex3.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3.vvm

INFO: int=i0

PROPERTY: AF ((p0.a=2)| (pl.b=2))
check: 0

The property is false, preparing mutex3.cex ...
CONCLUSION: FALSE

Verification with VERDS

LOOP starts from STATE 2:

--- STATE O ---
x =0

y =0

t =1

pO.a =0
pl.b =0

--- TRANS 5 ---
--- STATE 1 ---
X =1

y =0

t =0

pO.a =0
plb =1

--- TRANS 1 ---
- STATE 2 -

pO.a =1

pl.b =1

--- TRANS 3 ---
--- STATE 3 ---

Checking the Model

cﬁ[initialization] -
X:=0;y:=

——
Process A P Process B /ﬂ
work in NCR | work in NCR |
y:=1;t:=1 x:=1;t:=0
wait { Waiwb
=0 ort=0] X7 and =1l [y=0 or t=1] Y71 andt=0]

{ work in CR J

With Fairness Specifications

Modified Model (with Fairness)

MODULE pOm()
VAR
a: {nO,w0,c0};
INIT
a=n0;
TRANS
a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(wO0);
a=c0: (y,a):=(0,n0);
FAIRNESS
l(a=n0);
l((x=0]t=0)&(a=w0));

l(a=c0);

MODULE p1m()

VAR
b: {n0,w0,c0};

INIT
b=n0;

TRANS
b=nO0: (x,t,b):=(1,0,w0);
b=wO0&(y=0|t=1): (b):=(c0);
b=wO0&!(y=0|t=1): (b):=(wO0);

b=cO0: (x,b):=(0,n0);
FAIRNESS
l(b=n0);
((y=0[t=1)&(b=w0));
l(b=c0);

Verification with VERDS

Jverds -ck 1 mutex3f.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3f.vvm

INFO: int=i0

PROPERTY: AG!((p0.a=2)& (pl.b=2))
check: 0

CONCLUSION: TRUE

Verification with VERDS

.Jverds -ck 2 mutex3f.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3f.vvm

INFO: int=i0

PROPERTY: AF((p0.a=2)| (pl.b=2))
check: 0

CONCLUSION: TRUE

Correctness of the Design

* How do we know that the design is correct?

— We
the

— We

nave shown that a safety property holds, i.e.,
oad states are not reachable

nave also shown that an inevitability property

holds under a fairness assumption, i.e., some good
states must be reached in every computation

Remarks on the Correctness

* Only verified against the given properties:

— The safety property

— The inevitability property

* Rely on:

—T
—T
—T

ne model

ne verification tool

ne fairness assumption

as a part of the model,
for the verification of
the inevitability propert)'

Modified Model (with Inappropr. Fairness)

MODULE pOm()

VAR
a: {n0,wO0,c0};

INIT
a=n0;

TRANS
a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0]|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(wO0);

a=cO: (y,a):=(0,n0);

FAIRNESS
l(@a=c0]a=wO0|a=n0);

MODULE p1m()

VAR
b: {n0,w0,c0};

INIT
b=n0;

TRANS
b=nO0: (x,t,b):=(1,0,w0);
b=w0&(y=0]|t=1): (b):=(c0);
b=wO0&!(y=0]|t=1): (b):=(w0);
b=cO0: (x,b):=(0,n0);

FAIRNESS
l(b=n0);
((y=0[t=1)&(b=w0)):
l(b=cO0);

Verification with VERDS

../verds -ck 1 mutex3fw.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3wf.vwm

INFO: int=i0

PROPERTY: AG!((p0.a=2)& (pl.b=2))
check: 0

CONCLUSION: TRUE

Verification with VERDS

Jverds -ck 2 mutex3fw.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3wf.vwm

INFO: int=i0

PROPERTY: AF((p0.a=2)| (pl.b=2))
check: 0

CONCLUSION: TRUE

Modified Model (with Inappropr. Fairness)

MODULE pOm()

VAR
a: {n0,wO0,c0};

INIT
a=n0;

TRANS
a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0]|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(wO0);

a=cO: (y,a):=(0,n0);

FAIRNESS
l(@a=c0]a=wO0|a=n0);

MODULE p1m()

VAR
b: {n0,w0,c0};

INIT
b=n0;

TRANS
b=nO0: (x,t,b):=(1,0,w0);
b=w0&(y=0]|t=1): (b):=(c0);
b=wO0&!(y=0]|t=1): (b):=(w0);
b=cO0: (x,b):=(0,n0);

FAIRNESS
l(b=n0);
((y=0[t=1)&(b=w0)):
l(b=cO0);

Modified Model (with Inappropr. Fairness)

MODULE pOm()

VAR
a: {n0,wO0,c0};

INIT
a=n0;

TRANS
a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0]|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(wO0);

a=cO: (y,a):=(0,n0);

FAIRNESS
l(@a=c0]a=wO0|a=n0);

MODULE p1m()

VAR
b: {n0,w0,c0};

INIT
b=n0;

TRANS
b=nO0: (x,t,b):=(1,0,w0);
b=w0&(y=0]|t=1): (b):=(c0);
b=wO0&!(y=0]|t=1): (b):=(w0);
b=cO0: (x,b):=(0,n0);

FAIRN

This model
IS empty

An Example

L Contents]

Mutual Exclusion

Kripke Structure

Model Checking

Summary

(V) Summary

-air Kripke Structures
| abeled Kripke Structures

Fair Labeled Kripke Structures
An Example

JEDEI\%XE&)E:

75 7 — N FKripke i BIK=<S,R, I, F>Fl— M EAACS.

(1)
IEIS XA T 0SB FKripke i 2 A 2 [n] i 55y
ISUEAR T B KB A]

@
3
=

(2)
IR R AT s, AP Kripke i 21 4 2 [a) 5 By
ISUEATE 75 A2 K 21 B 36 oo 4

