Fair and Labeled Kripke Structures

中国科学院软件研究所 计算机科学国家重点实验室 张文辉 http://lcs.ios.ac.cn/~zwh/

- 公平Kripke结构
- 标号Kripke结构
- 公平标号Kripke结构

(I) Fair Kripke Structures

Motivation

例子-互斥: 状态图(State Diagram)

Kripke Structures

例子-互斥: 状态图(State Diagram)

Kripke Structure (Modified)

Restrict relevant computations to fair computations.

Fair Kripke Structures

- Formulation
- Basic Concepts
- Basic System Properties

Definition

- A fair Kripke structure is a quadruple <S,R,I,F>
 - S : A finite set of states
 - R \subseteq S x S : A total transition relation
 - $-I \subseteq S : A$ set of initial states
 - F $\subseteq 2^{S}$: A set of sets of states

Example: S,R,I

Example: F={{s2,s3},{s0,s2}}

Example:

Example:

Basic Concepts

Basic Concepts

- Basic Concepts (Kripke Structures)
 - States, Transition Relation, Initial States
 - Successors, Predecessors,
 - Reachable States, Reachability Relation,
 - Paths (Finite and Infinite), Computation, Behavior
 - Properties
- Basic Concepts (Fair Kripke Structures)
 - Paths Fair Paths
 - Computations Fair Computations
 - States Fair States

Definition An infinite path is an infinite sequence of S: $s_0 s_1 s_2 \dots$ such that $s_i \rightarrow s_{i+1}$ for all $i \ge 0$

Definition

A finite path is a finite prefix of an infinite path:

 $s_0 \dots s_n$

Definition

A fair (infinite) path is a path such that

for every $f \in F$, there is an infinite number of states on the path satisfying f.

Example: Paths

Infinite paths: s0s1s3s1s3s1... s0(s1s3)^ω s1s3s1s3s1s3s... Finite paths: s0s1s3s1 s1s3s1s3s1 Given a Kripke structure K=<S,R,I>.

Definition

A **computation** of K is an infinite sequence of S:

 $s_0 s_1 s_2 \dots$ such that $s_0 \in I$, and $s_i \rightarrow s_{i+1}$ for all $i \ge 0$ Definition

A **fair computation** is a computation such that for every $f \in F$, there is an infinite number of states on the computation satisfying f.

Example: Computations

System behavior = the set of fair computations

[[K]]

Example: Behavior

(s0s2)^ω s0(s2s0)*(s1s3)^ω s0s2(s0s2)*(s3s1)^ω

(s2s0)^ω s2(s0s2)*(s3s1)^ω s2s0(s2s0)*(s1s3)^ω Definition

A fair state is a starting state of some fair path.

Example: Fair States

F={{s2,s3},{s0,s2}}

Example: F={ {..}, {..} }

Checking Fair States (Fair SCC)

Definition

A fair SCC is a non-trivial SCC

such that each fairness requirement is satisfied by some state of the SCC.

Lemma

A state is fair, iff it may reach a fair SCC.

Fair SCC

}

Let K=<S,R,I,F> be a Kripke structure, and e an SCC.

```
bool Fairscc(K,e)
```

{ if (nontrivial(K,e)=false) return false; for (each f in F) if (e∩f= Ø) { return false; } return true;

Fair States

Let K=<S,R,I,F> be a Kripke structure, and A a set of states.

```
bool ExistFairState(K,A)
{ G:=(S,R); scclist:=scctarjan(G);
 w:={};
 for (each e in scclist) if (Fairscc(K,e)) w=w∪e;
 K'=(S,R,A);
 return ReachbilityAnalysis(K',w);
}
```

Let K=<S,R,I,F> be a Kripke structure, A a set and s a state.

Proposition There exists some fair state in A iff ExistFairState(K,A)=true.

Proposition s is a fair state iff ExistFairState(K,{s})=true.

Basic Properties

- Fair Reachability, Fair Safety
- Fair Avoidability, Fair Inevitability
- Emptiness

Basic Properties (1)

• Fair Reachability, Fair Safety

Fair Reachability Property - Possibility

Let X be a set of states.

X is a fair reachability property, if There is a fair computation of K that reaches an X-state.
Example: $\{s0, s2\}\sqrt{}, \{s0, s1, s2\}\sqrt{}$

Example: {s0,s2}x, {s0,s1,s2}x

F={{s2,s3},{s0,s2}}

Fair Reachability Problem

Given a set $X \subseteq S$. Is X a fair reachability property?

Reachability Analysis (Existing One)

```
Let K=<S,R,I> be a Kripke structure, and A \subseteqS.
```

```
bool ReachabilityAnalysis(K,A)
 w:=l;
  repeat until w={};
    s:=w.getElement(); if (s in A) return true;
    visited[s]:=true;
    for each (s' in R(s)),
          if (visited[s']=false) w.putElement(s');
    w.removeElement(s);
  return false;
```

Fair Reachability Analysis

- Is A ⊆ S a fair reachability property?
- Is there a state s such that the following holds?
 - s satisfies A
 - s is fair
 - s is reachable (from I)

Fair Reachability Analysis

```
Let K=<S,R,I,F> be a Kripke structure, and A \subseteqS.
bool FairReachabilityAnalysis(K,A)
{ w:=l;
  repeat until w={};
     s:=w.getElement();
     if (s in A) and ExistFairState(K,{s}) return true;
      visited[s]:=true;
      for each (s' in R(s)),
            if (visited[s']=false) w.putElement (s');
     w.removeElement(s);
   return false;
```

Fair Reachability Analysis

Let K=<S,R,I,F> be a Kripke structure, and A \subseteq S.

Proposition:

FairReachabilityAnalysis(K,A) =true

A is a fair reachability property

Fair Safety Property - Universality

Let Y be a set of states.

Y is a fair safety property, if every fair computation is a Y-computation.

Example: {s0,s2}√, {s1,s2,s3}x

F={{s2,s3},{s0,s2}}

Fair Safety Analysis

Let K=<S,R,I,F> be a Kripke structure, and A \subseteq S.

```
bool FairSafetyAnalysis(K,A)
{ w:=l;
  repeat until w={};
     s:=w.getElement();
     if (s not in A) and ExistFairState(K,{s}) return false;
     visited[s]:=true;
     for each (s' in R(s)),
            if (visited[s']=false) w.putElement(s');
     w.removeElement(s);
   return true;
```

Basic Fair Safety Analysis

Let K=<S,R,I,F> be a Kripke structure, and A \subseteq S.

Proposition:

FairSafetyAnalysis(K,A) =true Iff A is a fair Safety property Fair safety is a dual property of fair reachability.

Proposition

A is a fair safety property of a system K=<S,R,I,F>, iff S\A is not a fair reachability property of K.

FairSafetyAnalysis(K,A) =true ⇔ FairReachabilityAnalysis(K,S\A) =false

Basic Properties (2)

• Fair Avoidability, Fair Inevitability

Let X be a set of states.

X is a fair avoidability property, if there exists some fair computation of K that does not pass any X-state.

Example: {s0,s2}x

F={{s2,s3},{s0,s2}}

Example: $\{s1,s3\}$

F={{s2,s3},{s0,s2}}

Fair Avoidability Problem

Given a set $X \subseteq S$. Is X a fair avoidability property? For a finite state system $\langle S, R, I, F \rangle$: Define R|Y=R \cap (YxY); {f1,...,fn}|Y={f1 \cap Y,...,fn \cap Y}

Define $K|Y = \langle Y, R|Y, I \cap Y, F|Y \rangle$ Let $A \subseteq S$. Let $K' = \langle S', R', I', F' \rangle = K|(S \setminus A)$

A is a fair avoidability property, iff there is a reachable fair SCC of K'.

Fair Avoidability Analysis

Let K=<S,R,I,F> be a Kripke structure, and A \subseteq S.

```
bool FairAvoidabilityAnalysis(K,A)
{ K':=(S',R',I',F'):=K|(S\A); G:=(S',R'); K'':=(S',R',I');
    scclist:=scctarjan(G);
    w:={}; for each (e in scclist) if (Fairscc(K',e)) w:=w∪e;
    return ReachbilityAnalysis(K'',w);
```

For a finite state system $\langle S, R, I, F \rangle$: Let A \subseteq S. Let K' = $\langle S', R', I', F' \rangle = K | (S \setminus A)$

A is a fair avoidability property, iff there is a reachable fair SCC of K', iff there is a reachable fair state of K', iff there is a fair state in I', iff ExistFairState(K',I')=true.

Fair Avoidability: A Simpler Formulation

```
Let K=<S,R,I,F> be a Kripke structure, and A \subseteqS.
```

```
bool FairAvoidabilityAnalysis(K,A)
{
    K':= (S',R',I',F') := K|(S\A);
    return (ExistFairState(K',I'));
}
```

Fair Avoidability Analysis

Let K=<S,R,I,F> be a fair Kripke structure, and A \subseteq S.

Proposition:

FairAvoidabilityAnalysis(K,A) =true iff

A is a fair avoidability property

Given a set Y.

Y is a fair inevitability property, if every fair computation passes a Y-state

Example: {s1,s3}, {s2,s3}

F={{s2,s3},{s0,s2}}

Fair inevitability is the negation of fair avoidability.

Proposition

A is a fair inevitability property of a system K, iff A is not a fair avoidability property of K.

Fair Inevitability Analysis

}

Let K=<S,R,I> be a Kripke structure, and A \subseteq S.

```
bool FairInevitabilityAnalysis(K,A)
{ K':=(S',R',I',F'):=K|(S\A); G:=(S',R');
    scclist:=scctarjan(G);
    w:={}; for each (e in scclist) if (Fairscc(K',e)) w:=w∪e;
    return (not ReachbilityAnalysis(K',w));
```

Fair Inevitability Analysis

Let K=<S,R,I,F> be a Kripke structure, and A \subseteq S.

Proposition:

FairInevitabilityAnalysis(K,A) =true Iff

A is a fair inevitability property

Fair inevitability is the negation of fair avoidability.

FairInevitabilityAnalysis(K,A) =true ⇔ FairAvoidabilityAnalysis(K,A) =false

Basic Properties (3)

• Emptiness

Let $K = \langle S, R, I, F \rangle$.

K is empty, the set of fair computations of K is empty, $[[K]] = \emptyset$

Example: Empty

F={{s2,s3},{s0,s2}}

Example: Non-empty

Emptiness Problem

Given $K = \langle S, R, I, F \rangle$.

Is K empty?

Given $K = \langle S, R, I, F \rangle$.

Is K empty?

K is nonempty, iff there is an I-state that reaches a fair SCC, iff there is a fair initial state.

Emptiness Checking

Let K=<S,R,I,F> be a fair Kripke structure.

```
bool EmpChecking(K)
{
    return ExistFairState(K,I)=false;
}
```

Emptiness Checking

Let K=<S,R,I,F> be a fair Kripke structure.

Proposition:

EmpChecking(K) =true iff

K is empty
Application to Reachability

```
Given K=<S,R,I>, and A⊆S.
```

Define S',R',I',F as follows:

- $S'=S\cup\{t\}$
- $R'=R \cup \{ (s,t) \mid s \in A \} \cup \{ (t,t) \}$
- |'=|
- F={{t}}

A is a reachability property, iff <S',R',I',F> is nonempty

Application to Avoidability

Given K=<S,R,I>, and A⊆S.

Define S',R',I',F as follows:

- $S'=S\cup\{t\}$
- $R'=\{(s,s') \mid (s,s') \in R, s \notin A \} \cup \{(s,t) \mid s \in A\} \cup \{(t,t)\}$
- |'=|
- F={S}

A is an avoidability property, iff <S',R',I',F> is nonempty

例子-互斥: 状态图(State Diagram)

Example

Definition

A fair Kripke structure is a quintuple <S,R,I,F>

- S : A finite set of states
- $R \subseteq S \times S : A$ total transition relation
- $-I \subseteq S : A$ set of initial states
- $F \subseteq 2^{s}$: A set of sets of states

{(a,b,x,y,t) | $a,b \in \{NCR,wait,CR\}$ and $x,y,t \in \{0,1\}$ }

Transition Relation: R

(NCR,b,x,y,t)	\rightarrow (wait,b,x,1,1)
(wait,b,0,y,t)	\rightarrow (CR,b,0,y,t)
(wait,b,x,y,0)	\rightarrow (CR,b,x,y,0)
(wait,b,1,y,1)	→ (wait,b,1,y,1)
(CR,b,x,y,t)	\rightarrow (NCR,b,x,0,t)
(a,NCR,x,y,t)	→ (a,wait,1,y,0)
(a,NCR,x,y,t) (a,wait,x,1,t)	\rightarrow (a,wait,1,y,0) \rightarrow (a,CR,x,1,t)
(a,NCR,x,y,t) (a,wait,x,1,t) (a,wait,x,y,1)	$ \rightarrow (a, wait, 1, y, 0) \rightarrow (a, CR, x, 1, t) \rightarrow (a, CR, x, y, 1) $
(a,NCR,x,y,t) (a,wait,x,1,t) (a,wait,x,y,1) (a,wait,x,1,0)	$ \rightarrow (a, wait, 1, y, 0) \rightarrow (a, CR, x, 1, t) \rightarrow (a, CR, x, y, 1) \rightarrow (a, wait, x, 1, 0) $

The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

Apparently, we need fairness constraints:

例子-互斥: 状态图(State Diagram)

In fact, we may construct 6 fairness constraints for:

```
(a=NCR)
(a=wait and x=0|t=0)
(a=CR)
```

```
(b=NCR)
(b=wait and y=0|t=1)
(b=CR)
```

The Set of Fairness Constraints: F

The Set of Fairness Constraints: F

F={ S\S1, S\S2, S\S3, S\S4, S\S5, S\S6 }

Example

Example: Properties

- Emptiness
- Reachability & Safety
- Inevitability & Avoidability

Example: Emptiness

K = { S, R, I, F }

THEN EmpChecking(K) = false

Example: Reachability & Safety

THEN FairSafetyAnalysis(K,Y) =true

Example: Inevitability & Avoidability

THEN

FairInevitabilityAnalysis(K,A) = true

(II) Labeled Kripke Structures

Motivation

例子-互斥: 状态图(State Diagram)

例子-互斥: 状态迁移图(Kripke结构)

例子-互斥: 状态迁移图(Kripke结构)

Good, Bad, Neutral?

Distinguish states based on a set of basic properties (labels).

Labeled Kripke Structures

- Formulation
- Basic Concepts
- Basic System Properties

AP: a finite set of propositions.

Definition

A (Labeled) Kripke structure is a quadruple K=<S,R,I,L>

- S : A finite set of states
- $R \subseteq S \times S$: A total transition relation
- $I \subseteq S : A$ set of initial states
- L: S \rightarrow 2^{AP} is a labeling function

Example: S,R,I

Example: L

AP: {p,q}

Example: Paths, Computations, Behavior

s2(s0s2)*(s3s1)^ω s2s0(s2s0)*(s1s3)^ω

Basic Concepts

- Basic Concepts (Kripke Structures)
 - States, Transition Relation, Initial States
 - Successors, Predecessors,
 - Reachable States, Reachability Relation,
 - Paths (Finite and Infinite), Computation, Behavior
 - Properties
- Basic Concepts (Labeled Kripke Structures)
 - Labels
 - Properties Propositional Symbols Formulas
 - Sets Propositional Formulas

Labels

A proposition \rightarrow a set of states: $S_p = \{ s \mid p \in L(s) \}$

A set of states \rightarrow a proposition:

Given $X = \{x_1, x_2, ..., x_n\}$, we create a proposition px as follows.

Add px to AP, Add px to $L(x_1)$, $L(x_2)$, ..., $L(x_n)$

 $X = S_{px} = \{ s | px \in L(s) \}$

Let X,Y be sets of states. Let s be a state.

Definition s satisfies Y (or s is a Y-state), if $s \in Y$,

Definition X satisfies Y, if for all $s \in X$, s satisfies Y, i.e., $X \subseteq Y$
Satisfiability with Formulas

Definition Let φ be a formula.

s $|= \phi$ is defined as follows.

> s |= p if
$$p \in L(s)$$
> s |= $\phi \land \psi$ if $s |= \phi$ and $s |= \psi$ > s |= $\phi \lor \psi$ if $s |= \phi$ or $s |= \psi$ > s |= $\neg \phi$: if $s |\neq \phi$

X |= ϕ , if for all s \in X, s |= ϕ

Correspondence: Formulas to Sets

Definition:

 $[[\phi]]$ is defined as follows.

- > [[p]] = { s | $p \in L(s)$ }
- $\succ \ [[\phi \land \psi]] = [[\phi]] \cap [[\psi]]$
- \succ [[φ∨ψ]] = [[φ]] ∪[[ψ]]
- \succ [[$\neg \phi$]] = S\[[ϕ]]

Lemma: $s \models \phi \text{ iff } s \in [[\phi]], \text{ i.e.}, \quad [[\phi]] = \{ s \mid s \models \phi \}.$

Definition: s is a φ -state, if s is a $[[\varphi]]$ -state.

Example: Correspondence

$[[p \land q]] = \{s3\}, [[p \lor q]] = \{s1, s2, s3\}$

Correspondence: Sets to Formulas

Construction $[[\{s\}]] = (\bigwedge_{r \in L(s)} r) \land (\bigwedge_{r \notin L(s)} r)$ $[[X \cup Y]] = [[X]] \lor [[Y]]$

Lemma:

```
if s \in X, then s \mid = [[X]], i.e., X \subseteq [[([X]])].
```

 $\begin{array}{l} X \mid = \phi \text{ iff } [[X]] \rightarrow \phi \\ X \subseteq Y \quad \clubsuit \quad [[X]] \rightarrow [[Y]] \end{array}$

Suppose that the function L: S \rightarrow 2^{AP} is one-to-one.

Then for each $X \subseteq S$,

there is a formula characterizing the set X.

Lemma: s∈X iff s |= [[X]], i.e., X = [[([[X]])]].

Example: Correspondence

[[{s3}]]=pq, [[{s1,s2,s3}]]=pq

Suppose that the function L: S \rightarrow 2^{AP} is not one-to-one (i.e., a kind of abstraction).

Then:

 $s \in X \rightarrow s \mid = [[X]], i.e.,$ $X \subseteq [[([[X]])]].$

Example: L is not one-to-one

 $[[{s0}]]=q \neg p, [[{s1}]]=q \neg p, [[q \neg p]]={s0, s1} \\ [[{s1, s3}]]=q, [[{s0, s1, s3}]]=q, [[q]]={s0, s1, s3}$

Basic Properties

- Reachability, Safety
- Avoidability, Inevitability

Basic Properties (1)

• Reachability, Safety

 ϕ is a reachability property, if there is a computation of K that passes a ϕ -state.

Proposition

 $\boldsymbol{\phi}$ is a reachability property, iff

[[ϕ]] is a reachability property of K'=<S,R,I>

Proposition

φ is a reachability property, iff

ReachabilityAnalysis(K',[[φ]]) = true

 ϕ is a safety property, if

every state on every computation is a ϕ -state.

Proposition

φ is a safety property, iff[[φ]] is a safety property of K'=<S,R,I>

Proposition

 $\boldsymbol{\phi}$ is a safety property,

iff

SafetyAnalysis(K',[[φ]]) = true

How to develop a safety analysis algorithm with (K, ϕ) as input without calculating [[ϕ]] ?

This problem is left to the readers.

Safety is a dual property of reachability.

Proposition

φ is a safety property of K=<S,R,I,L>, iff

 $\neg \phi$ is not reachable in K.

Deductive Safety Analysis

Define:

$$\mathsf{R}(\psi) = [[\{ s' \mid s \rightarrow s', s \mid = \psi \}]]$$

Definition φ is a transition invariant, if $R(\varphi) \rightarrow \varphi$.

Definition

 ϕ is an inductive invariant, if

[[I]] $\rightarrow \phi$, and ϕ is a transition invariant.

Given ϕ .

If there is a φ' such that φ' is an inductive invariant and $\varphi' \rightarrow \varphi$, then K is safe w.r.t. φ .

Relative Completeness

Suppose that L is a one-to-one mapping.

If the conclusion holds, then such a ϕ' exists.

Example: φ=p∨q=[[{s1,s2,s3}]]

(1) We need φ' satisfying ([[I]] $\rightarrow \varphi'$) and ($\varphi' \rightarrow \varphi$) for the rule. (2) We may choose $\varphi' = q$, which is transition invariant.

Example: φ=p∨q=[[{s1,s2,s3}]]

(1) We need φ' satisfying ([[I]] $\rightarrow \varphi'$) and ($\varphi' \rightarrow \varphi$) for the rule. (2) We may choose $\varphi' = q$ or $\varphi' = p \lor q$, which are transition invariant.

Not complete, if L is not a one-to-one map.

Example: $\varphi=q=[[{s0,s1,s3}]]$ is a safety property

(L is not one-to-one)

(1) We need φ' satisfying ([[I]] $\rightarrow \varphi'$) and ($\varphi' \rightarrow \varphi$) for the rule.

- (2) Since [[I]] = q = φ , φ' must be q.
- (3) However q is not transition invariant.

Basic Properties (2)

• Avoidability, Inevitability

φ is an avoidability property, if
there exists some computation of K that
does not pass any φ-state.

Proposition

φ is an avoidability property, iff[[φ]] is an avoidability property of K'=<S,R,I>

Proposition:

φ is an avoidability property iff

AvoidabilityAnalysis(K', [[φ]]) =true

Inevitability

Let K=<S,R,I,L> and ϕ be a formula.

Definition

 ϕ is an inevitability property, if every computation passes a ϕ -state

Proposition

φ is an inevitability property of K, iff[[φ]] is an inevitability property of K'=<S,R,I>.

Inevitability

Let K=<S,R,I,L> and ϕ be a formula.

Proposition:

φ is an inevitability property iff

InevitabilityAnalysis(K', [[φ]]) =true

Inevitability is the negation of avoidability.

Proposition

 $\boldsymbol{\phi}$ is an inevitability property of K, iff

 $\boldsymbol{\phi}$ is not avoidable in K.

Is it easy (or possible) to develop an inevitability analysis algorithm with (K,φ) as input without calculating [[φ]] ?

This problem is left to the readers.

Deductive Inevitability Analysis

If there is a sequence of sets of states: $\phi_0, \phi_1, ..., \phi_n$ such that $[[1]] \rightarrow \phi_0,$ $R(\phi_i \land \neg \phi) \rightarrow \phi_{i+1}, \text{ for } i=0,1,...,n-1$ $\phi_n \rightarrow \phi,$

Then $\boldsymbol{\phi}$ is an inevitability property.

Relative Completeness

Suppose that L is a one-to-one mapping.

For finite state systems, if the conclusion holds, then such a sequence exists.

Example: φ=p={s2,s3}

$$X_0 = \{s0, s2\}, X_1 = \{s1, s2\}, X_2 = \{s3\}$$

 $\phi_0 = \neg q, \phi_1 = (p \land \neg q) \lor (q \land \neg p), \phi_2 = p \land q$

Not complete, if L is not a one-to-one map.
Example: φ=p={s2,s3} is an inevitability property

(L is not one-to-one)

We have
$$[[I]] = (q \land \neg p)$$
.
 $(q \land \neg p) \rightarrow \phi_0$,
 $(q \land \neg p) \lor (p) \rightarrow \phi_1$,
 $(q \land \neg p) \lor (p) \rightarrow \phi_2$,

Design of Mutual Exclusion (State)

Example

AP: a finite set of propositions.

Definition

A (Labeled) Kripke structure is a quadruple K=<S,R,I,L>

- S : A finite set of states
- $R \subseteq S \times S$: A total transition relation
- $I \subseteq S : A$ set of initial states
- L: S \rightarrow 2^{AP} is a labeling function

{(a,b,x,y,t) | $a,b \in \{NCR,wait,CR\}$ and $x,y,t \in \{0,1\}$ }

Transition Relation: R

(NCR,b,x,y,t)	\rightarrow (wait,b,x,1,1)
(wait,b,0,y,t)	\rightarrow (CR,b,0,y,t)
(wait,b,x,y,0)	\rightarrow (CR,b,x,y,0)
(wait,b,1,y,1)	→ (wait,b,1,y,1)
(CR,b,x,y,t)	\rightarrow (NCR,b,x,0,t)
(a,NCR,x,y,t)	→ (a,wait,1,y,0)
(a,NCR,x,y,t) (a,wait,x,1,t)	 → (a,wait,1,y,0) → (a,CR,x,1,t)
(a,NCR,x,y,t) (a,wait,x,1,t) (a,wait,x,y,1)	→ (a,wait,1,y,0) → (a,CR,x,1,t) → (a,CR,x,y,1)
(a,NCR,x,y,t) (a,wait,x,1,t) (a,wait,x,y,1) (a,wait,x,1,0)	$ \rightarrow (a, wait, 1, y, 0) \rightarrow (a, CR, x, 1, t) \rightarrow (a, CR, x, y, 1) \rightarrow (a, wait, x, 1, 0) $

The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

Labeling Function

 $L(NCR,NCR,0,0,0) = \{a=NCR,b=NCR,x=0,y=0,t=0\}$ $L(NCR,NCR,0,0,1) = \{a=NCR,b=NCR,x=0,y=0,t=1\}$

...

AP={ p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12 }

 $L(NCR,NCR,0,0,0) = \{p1,p4,p7,p9,p11\}$ $L(NCR,NCR,0,0,1) = \{p1,p4,p7,p9,p12\}$

• • •

 $L(NCR,NCR,0,0,0) = \{a=NCR,b=NCR,x=0,y=0,t=0\}$ $L(NCR,NCR,0,0,1) = \{a=NCR,b=NCR,x=0,y=0,t=1\}$

...

Labeling Function (with Abstraction)

OR

...

AP={ a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR }

- $L(NCR,NCR,x,y,t) = {a=NCR,b=NCR}$
- L(NCR,wait,x,y,t) = {a=NCR,b=wait}
- $L(NCR,CR,x,y,t) = {a=NCR,b=CR}$

Labeling Function (with Abstraction)

OR

...

- $L(NCR,NCR,x,y,t) = \{p1,p4\}$
- $L(NCR,wait,x,y,t) = \{p1,p5\}$
- $L(NCR, CR, x, y, t) = \{p1, p6\}$

Reachability & Safety

AP = {p1,p2,p3,p4,p5,p6 }

K = { S, R, I, L } φ = ¬(p3 ∧ p6 }

THEN SafetyAnalysis(Κ,[[φ]]) =true AP = {p1,p2,p3,p4,p5,p6 }

K = { S, R, I, L }
$$\phi$$
 = (p3 \lor p6 }

THEN

InevitabilityAnalysis(K,[[φ]]) = false

(III) Fair Labeled Kripke Structures

A fair labeled KS

=

a labeled KS + a fair KS

AP: A set of propositions.

Definition

A fair Kripke structure is a quintuple <S,R,I,L,F>

- S : A finite set of states
- $R \subseteq S \times S : A$ total transition relation
- $-I \subseteq S : A$ set of initial states
- L: S \rightarrow 2^{AP} is a labeling function
- F: A set of formulas over AP

Example: S,R,I

Example: L

AP: {p,q}

Example: F={p,¬q}

AP: {p,q}

Basic Concepts

- Basic Concepts (Kripke Structures)
 - States, Transition Relation, Initial States
 - Successors, Predecessors,
 - Reachable States, Reachability Relation,
 - Paths (Finite and Infinite), Computation, Behavior
 - Properties
- Basic Concepts (Fair Kripke Structures)
 - Paths Fair Paths
 - Computations Fair Computations
 - Behavior Language
 - States Fair States

Fair Labeled Kripke Structures

F = { f1,...,fn }, a set of propositional formulas

<S,R,I,L,F>

=

a labeled KS + a fair KS <S,R,I,L> + <S,R,I,{[[f1]],...,[[fn]]}>

Definition

An infinite path is an infinite sequence of S:

 $s_0 s_1 s_2 \dots$ such that $s_i \rightarrow s_{i+1}$ for all $i \ge 0$

Definition

A finite path is a finite prefix of an infinite path:

 $s_0 \dots s_n$

Definition

A fair (infinite) path is a path such that

for every $f \in F$, there is an infinite number of states on the path satisfying f.

Example: Paths

F={p,¬q}

Infinite paths: s0s1s3s1s3s1... s0(s1s3)^ω s1s3s1s3s1s3s... Finite paths: s0s1s3s1 s1s3s1s3s1 Given a Kripke structure K=<S,R,I>.

Definition

A **computation** of K is an infinite sequence of S:

 $s_0 s_1 s_2 \dots$ such that $s_0 \in I$, and $s_i \rightarrow s_{i+1}$ for all $i \ge 0$ Definition

A **fair computation** is a computation such that for every $f \in F$, there is an infinite number of states on the computation satisfying f.

Example: Computations

F={p, ¬q}

System behavior = the set of fair computations

[[K]]

Example: Behavior

F={p,¬q}

(sOs2)^ω sO(s2sO)*(s1s3)^ω sOs2(sOs2)*(s3s1)^ω (s2s0)^ω s2(s0s2)*(s3s1)^ω s2s0(s2s0)*(s1s3)^ω

Given AP. Let K=<S,R,I,L,F> .

 $L(K) \subseteq (2^{AP})^{\omega}$

L(s0s1s2....) = L(s0)L(s1)L(s2)

 $L(K) = \{ L(\pi) \mid \pi \in [[K]] \}$

Example: Language

(s0s2)^ω (s2s0)^ω ({p} {})^ω

Definition

A fair state is a starting state of some fair path.

Example: Fair States

F={p,¬q}

Basic Properties

- Fair Reachability, Fair Safety
- Fair Avoidability, Fair Inevitability
- Emptiness

Basic Properties (1)

• Fair Reachability, Fair Safety

 ϕ is a fair reachability property, if there is a fair computation of K that passes an ϕ -state.

Define [[F]] = { [[f]] $| f \in F$ } **Proposition**

φ is a fair reachability property, iff[[φ]] is a fair reachability property of K'=<S,R,I,[[F]]>

Proposition:

Let K'=<S,R,I,[[F]]>.

 $\boldsymbol{\phi}$ is a fair reachability property of K iff

FairReachabilityAnalysis(K',[[φ]]) =true

 ϕ is a fair safety property, if every state on every fair computation is a ϕ -states.

Proposition

φ is a fair safety property of K, iff[[φ]] is a fair safety property of K'=<S,R,I,[[F]]>

Proposition:

Let K'=<S,R,I,[[F]]>.

 $\boldsymbol{\phi}$ is a fair safety property of K

iff

FairSafetyAnalysis(K',[[φ]]) =true

Fair safety is a dual property of fair reachability.

Proposition

 ϕ is a fair safety property of K=<S,R,I,L,F>, iff $\neg \phi$ is not a fair reachability property.

Basic Properties (2)

• Fair Avoidability, Fair Inevitability

 ϕ is a fair avoidability property, if there exists some fair computation of K that does not pass any ϕ -states.

Proposition

φ is a fair avoidability property, iff[[φ]] is a fair avoidability property of K'=<S,R,I,[[F]]>

Proposition

Let K'=<S,R,I,[[F]]>.

 $\boldsymbol{\phi}$ is a fair avoidability property of K, iff

FairAvoidabilityAnalysis(K',[[φ]]) =true

 ϕ is a fair inevitability property, if every fair computation passes a ϕ -state

Proposition

φ is a fair inevitability property of K, iff[[φ]] is a fair inevitability property of K'=<S,R,I,[[F]]>.

Proposition

Let K'=<S,R,I,[[F]]>.

 $\boldsymbol{\phi}~$ is a fair inevitability property of K, iff

FairInevitabilityAnalysis(K',[[φ]]) =true

fair inevitability is a negation of fair avoidability.

Proposition

 φ is a fair inevitability property of K, iff φ is not a fair avoidability property.

Basic Properties (3)

• Emptiness

Let $K = \langle S, R, I, L, F \rangle$.

L(K) is empty, iff the set of fair computations of K is empty, iff K'=<S,R,I,[[F]]> is empty, iff EmpChecking(K')

(IV) An Example

Example: Mutual Exclusion

Example: Mutual Exclusion

Design of Mutual Exclusion (Activity)

Design of Mutual Exclusion

- Purpose:
 - ensure that not both processes are working in the critical region (CR)
- Mechanism:
 - use shared variables
 - y=1: the first process is applying for entering CR or it is in CR
 - x=1: the second process is applying for entering CR or it is in CR
 - t=(i-1): the i-th process has priority for entering CR

Design of Mutual Exclusion (State)

Design of Mutual Exclusion (State)

Correctness of the Design

• How do we know that the design is correct?

Combined States of the Two Processes

Process A	Process B	Remark
NCR	NCR	
NCR	wait	
NCR	CR	
wait	NCR	
wait	wait	
wait	CR	
CR	NCR	
CR	wait	
CR	CR	Bad state

Correctness of the Design

- How do we know that the design is correct?
 - We have to be sure that the bad state is not reachable in all possible executions of the algorithm
 - We may use state exploration (model checking) techniques or deductive proof methods

Mutual Exclusion

Kripke Structure

Model Checking

Summary

Fair Kripke Structures

AP: A set of propositions.

A Kripke structure is a triple K=<S,R,I,L>

- S : A finite set of states
- $R \subseteq S \mathrel{x} S$: A total transition relation
- $\mathsf{I} \subseteq \mathsf{S}:\mathsf{A}$ set of initial states
- L: S \rightarrow 2^{AP} is a labeling function
- F: A set of formulas over AP

Process A	Process B	X	У	t
NCR	NCR	1	1	1
wait	wait	0	0	0
CR	CR			

(a,b,x,y,t)

{(a,b,x,y,t) | $a,b \in \{NCR,wait,CR\}$ and $x,y,t \in \{0,1\}$ }

Transition Relation: R

(NCR,b,x,y,t)	\rightarrow (wait,b,x,1,1)
(wait,b,0,y,t)	\rightarrow (CR,b,0,y,t)
(wait,b,x,y,0)	\rightarrow (CR,b,x,y,0)
(wait,b,1,y,1)	→ (wait,b,1,y,1)
(CR,b,x,y,t)	\rightarrow (NCR,b,x,0,t)
(a,NCR,x,y,t)	→ (a,wait,1,y,0)
(a,NCR,x,y,t) (a,wait,x,1,t)	 → (a,wait,1,y,0) → (a,CR,x,1,t)
(a,NCR,x,y,t) (a,wait,x,1,t) (a,wait,x,y,1)	 → (a,wait,1,y,0) → (a,CR,x,1,t) → (a,CR,x,y,1)
(a,NCR,x,y,t) (a,wait,x,1,t) (a,wait,x,y,1) (a,wait,x,1,0)	→ (a,wait,1,y,0) → (a,CR,x,1,t) → (a,CR,x,y,1) → (a,wait,x,1,0)

The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

Labeling Function

...

L(NCR,NCR,0,0,0)={a=NCR,b=NCR,x=0,y=0,t=0} L(NCR,NCR,0,0,1)={a=NCR,b=NCR,x=0,y=0,t=1}

Fairness

$$F=\{ -(b=NCR), \\ -((x=0 \lor t=0) \land a=wait), \\ -(a=CR), \\ -(b=NCR), \\ -((y=0 \lor t=1) \land b=wait), \\ -(b=CR) \\ \}$$

Example

$$\phi = \neg(a=CR \land b=CR)$$

Is ϕ a safety property?

Inevitability Property

$$\psi$$
 = (a=CR \lor b=CR)

Is ψ an inevitability property?

Modeling and Model Checking

Model Checking with VERDS

<u>http://lcs.ios.ac.cn/~zwh/verds</u>

- Input to VERDS
 - VVM (VERDS verification model)
- Modeling Language
 - VML (VERDS modeling langauge)

Without Fairness Specifications

Modeling in VML

AG(!(p0.a=c0&p1.b=c0)); Safety: Mutual exclusion

Modeling in VML

MODULE p0m()		MODULE p1m()	
VAR		VAR	
a: {n0,w0,c0};		b: {n0,w0,c0	D};
INIT		INIT	
a=n0;		b=n0;	
TRANS		TRANS	
a=n0:	(y,t,a):=(1,1,w0);	b=n0:	(x,t,b):=(1,0,w0);
a=w0&(x=0 t=0): (a):=(c0);		b=w0&(y=0	t=1): (b):=(c0);
a=w0&!(x=0 t=0): (a):=(w0);		b=w0&!(y=0	0 t=1): (b):=(w0);
a=c0:	(y,a):=(0,n0);	b=c0:	(x,b):=(0,n0);

The Complete Model in VML

VVM	MODULE p0m()	
VAR	VAR	
x: 01;	a: {n0,w0,c0};	
y: 01;	INIT	
t: 01;	a=n0;	
INIT	TRANS	
x=0;	a=n0: (y,t,a):=(1,1,w0);	
y=0;	a=w0&(x=0 t=0): (a):=(c0);	
PROC	a=w0&!(x=0 t=0): (a):=(w0);	
p0: p0m();	a=c0: (y,a):=(0,n0);	
p1: p1m();		
	MODULE p1m()	
SPEC	VAR	
AG(!(p0.a=c0&p1.b=c0));	b: {n0,w0,c0};	
	INIT	
	b=n0;	
	TRANS	
	b=n0: (x,t,b):=(1,0,w0);	
	b=w0&(y=0 t=1): (b):=(c0);	
	b=w0&!(y=0 t=1): (b):=(w0);	
	b=c0: (x,b):=(0,n0);	

./verds -ck 1 mutex3.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3.vvm

INFO: int=i0

PROPERTY: A G ! ((p0.a = 2)& (p1.b = 2))

check: 0

. .

check: 1

•••

•••

check: 5

CONCLUSION: TRUE

Consider the Inevitability Property

t: 01; INIT x=0; y=0; PROC p0: p0m(); p1: p1m(); Inevitability: Working in critical region	<pre>VVM VAR</pre>	SPEC AG(!(p0.a=c0&p1.b=c0)); AF((p0.a=c0) (p1.b=c0)); Inevitability: Working in critical region
--	------------------------	---

./verds -ck 2 mutex3.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3.vvm

INFO: int=i0

PROPERTY: A F ((p0.a = 2)) (p1.b = 2))

check: 0

check: 1

•••

•••

check: 4

The property is false, preparing mutex3.cex ... CONCLUSION: FALSE

LOOP starts from STATE 2:

	TRANS 1
STATE 0	STATE 2
x =0	x =1
y =0	y =1
t =1	t =1
p0.a =0	p0.a =1
p1.b =0	p1.b =1
TRANS 5	TRANS 3
STATE 1	STATE 3
x =1	x =1
y =0	y =1
t =0	t =1
p0.a =0	p0.a =1
p1.b =1	p1.b =1

Checking the Model

With Fairness Specifications

Modified Model (with Fairness)

MODULE p0m()	MODULE p1m()	
VAR	VAR	
a: {n0,w0,c0};	b: {n0,w0,c0};	
INIT	INIT	
a=n0;	b=n0;	
TRANS	TRANS	
a=n0: (y,t,a):=(1,1,w0);	b=n0: (x,t,b):=(1,0,w0);	
a=w0&(x=0 t=0): (a):=(c0);	b=w0&(y=0 t=1): (b):=(c0);	
a=w0&!(x=0 t=0): (a):=(w0);	b=w0&!(y=0 t=1): (b):=(w0);	
a=c0: (y,a):=(0,n0);	b=c0: (x,b):=(0,n0);	
FAIRNESS	FAIRNESS	
!(a=n0);	!(b=n0);	
!((x=0 t=0)&(a=w0));	!((y=0 t=1)&(b=w0));	
!(a=c0);	!(b=c0);	

./verds -ck 1 mutex3f.vvm VERSION: verds 1.46 - JAN 2015 FILE: mutex3f.vvm INFO: int=i0 PROPERTY: A G ! ((p0.a = 2)& (p1.b = 2)) check: 0 _____ check: 1 _____ check: 19 _____ **CONCLUSION: TRUE**

./verds -ck 2 mutex3f.vvm VERSION: verds 1.46 - JAN 2015

FILE: mutex3f.vvm

INFO: int=i0

PROPERTY: A F ((p0.a = 2)| (p1.b = 2))

check: 0

check: 1

•••

•••

check: 99

CONCLUSION: TRUE

Correctness of the Design

- How do we know that the design is correct?
 - Safety property: ¬(a=CR∧b=CR)
 - Inevitability property: (a=CR\/b=CR)
 - We have shown that a safety property holds, i.e., the bad states are not reachable
 - We have also shown that an inevitability property holds under a fairness assumption, i.e., some good states must be reached in every computation

Remarks on the Correctness

- Only verified against the given properties:
 - The safety property
 - The inevitability property
- Rely on:
 - The model
 - The verification tool
 - The fairness assumption

as a part of the model, for the verification of the inevitability property

Modified Model (with Inappropr. Fairness)

MODULE p0m()	MODULE p1m()	
VAR	VAR	
a: {n0,w0,c0};	b: {n0,w0,c0};	
INIT	INIT	
a=n0;	b=n0;	
TRANS	TRANS	
a=n0: (y,t,a):=(1,1,w0);	b=n0: (x,t,b):=(1,0,w0);	
a=w0&(x=0 t=0): (a):=(c0);	b=w0&(y=0 t=1): (b):=(c0);	
a=w0&!(x=0 t=0): (a):=(w0);	b=w0&!(y=0 t=1): (b):=(w0);	
a=c0: (y,a):=(0,n0);	b=c0: (x,b):=(0,n0);	
FAIRNESS	FAIRNESS	
!(a=c0 a=w0 a=n0);	!(b=n0);	
	!((y=0 t=1)&(b=w0));	
	!(b=c0);	

../verds -ck 1 mutex3fw.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3wf.vvm

INFO: int=i0

PROPERTY: A G ! ((p0.a = 2)& (p1.b = 2))

check: 0

check: 1

•••

•••

check: 25

CONCLUSION: TRUE

./verds -ck 2 mutex3fw.vvm

VERSION: verds 1.46 - JAN 2015

FILE: mutex3wf.vvm

INFO: int=i0

PROPERTY: A F ((p0.a = 2)| (p1.b = 2))

check: 0

check: 1

•••

•••

check: 40

CONCLUSION: TRUE

Modified Model (with Inappropr. Fairness)

MODULE p0m()	MODULE p1m()	
VAR	VAR	
a: {n0,w0,c0};	b: {n0,w0,c0};	
INIT	INIT	
a=n0;	b=n0;	
TRANS	TRANS	
a=n0: (y,t,a):=(1,1,w0);	b=n0: (x,t,b):=(1,0,w0);	
a=w0&(x=0 t=0): (a):=(c0);	b=w0&(y=0 t=1): (b):=(c0);	
a=w0&!(x=0 t=0): (a):=(w0);	b=w0&!(y=0 t=1): (b):=(w0);	
a=c0: (y,a):=(0,n0);	b=c0: (x,b):=(0,n0);	
FAIRNESS	FAIRNESS	
!(a=c0 a=w0 a=n0);	!(b=n0);	
	!((y=0 t=1)&(b=w0));	
	!(b=c0);	

Modified Model (with Inappropr. Fairness)

MODULE p0m()		MODULE p1m()	
VAR		VAR	
a: {n0,w0,c0};		b: {n0,w0,c0};	
INIT		INIT	
a=n0;		b=n0;	
TRANS		TRANS	
a=n0:	(y,t,a):=(1,1,w0);	b=n0:	(x,t,b):=(1,0,w0);
a=w0&(x=0 t=0)): (a):=(cO);	b=w0&(y=0 t=1): (b):=(c0);	
a=w0&!(x=0 t=	0): (a):=(w0);	b=w0&!(y=0 t=1): (b):=(w0);	
a=c0:	(y,a):=(0,n0);	b=c0:	(x,b):=(0,n0);
FAIRNESS		FAIRNESS	
!(a=c0 a=w0) a=n0);	This model	
		is	empty

!(b

(V) Summary

- Fair Kripke Structures
- Labeled Kripke Structures
- Fair Labeled Kripke Structures
- An Example

思考题:

给定一个公平Kripke模型K=<S,R,I,F>和一个集合A⊆S.

(1) 通过对模型进行改造,用公平Kripke模型非空问题算法 验证A是否是K的公平可达性质

(2)

通过对模型进行改造,用公平Kripke模型非空问题算法验证A是否是K的公平可避免性质