
Fair and Labeled Kripke Structures

中国科学院软件研究所

计算机科学国家重点实验室

张文辉

http://lcs.ios.ac.cn/~zwh/

程序与
软
件系
统

行为规范

2

课程内容

时序逻辑
系统

行为
模型 验证方法

基本原理

程序推理 模型检测

EE

程序与
软
件系
统

行为规范

3

课程内容

时序逻辑
系统

行为
模型 验证方法

基本原理

程序推理 模型检测

逻辑模型

状态模型

内容

• 公平Kripke结构

• 标号Kripke结构

• 公平标号Kripke结构

(I) Fair Kripke Structures

• Motivation

例子-互斥：状态图(State Diagram)

6

work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B

7

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Kripke Structures

例子-互斥：状态图(State Diagram)

8

work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B

X X

？

9

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

X
X

X X

Kripke Structure (Modified)

Motivation

Restrict relevant computations to fair computations.

Fair Kripke Structures

• Formulation
• Basic Concepts
• Basic System Properties

Fair Kripke Structures

Definition
A fair Kripke structure is a quadruple <S,R,I,F>

– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states
– F  2S : A set of sets of states

Example: S,R,I

s2

s0

s3

s1

Example: F={{s2,s3},{s0,s2}}

s2

s0

s3

s1

15

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example:

16

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example:

Basic Concepts

Basic Concepts

• Basic Concepts (Kripke Structures)
• States, Transition Relation, Initial States
• Successors, Predecessors,
• Reachable States, Reachability Relation,
• Paths (Finite and Infinite), Computation, Behavior
• Properties

• Basic Concepts (Fair Kripke Structures)
• Paths – Fair Paths
• Computations – Fair Computations
• States – Fair States

Paths

Definition
An infinite path is an infinite sequence of S:
s0 s1 s2 ….
such that si si+1 for all i  0

Definition
A finite path is a finite prefix of an infinite path:
s0 …sn

Definition
A fair (infinite) path is a path such that
for every f F, there is an infinite number of states
on the path satisfying f.

Fair Paths

s2

s0

s3

s1

Infinite paths:
s0s1s3s1s3s1…
s0(s1s3)ω

s1s3s1s3s1s3s…

Finite paths:
s0s1s3s1
s1s3s1s3s1

Example: Paths

F={{s2,s3},{s0,s2}}

Given a Kripke structure K=<S,R,I>.

Definition
A computation of K is an infinite sequence of S:
s0 s1 s2 ….
such that s0  I, and si  si+1 for all i  0

Computations

Definition
A fair computation is a computation such that
for every f F, there is an infinite number of states
on the computation satisfying f.

Fair Computations

s2

s0

s3

s1

s0(s1s3)ω

s2(s3s1)ω

s2(s0s2)*(s1s3)ω

Example: Computations

F={{s2,s3},{s0,s2}}

System behavior = the set of fair computations

[[K]]

System Behavior

s2

s0

s3

s1

(s0s2)ω

s0(s2s0)*(s1s3)ω

s0s2(s0s2)*(s3s1)ω

Example: Behavior

(s2s0)ω

s2(s0s2)*(s3s1)ω

s2s0(s2s0)*(s1s3)ω

F={{s2,s3},{s0,s2}}

Definition
A fair state is a starting state of some fair path.

Fair States

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: Fair States

29

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example：F={ {..}, {..} }

Definition
A fair SCC is a non-trivial SCC
such that each fairness requirement is satisfied by
some state of the SCC.

Lemma
A state is fair, iff it may reach a fair SCC.

Checking Fair States (Fair SCC)

Let K=<S,R,I,F> be a Kripke structure, and e an SCC.

bool Fairscc(K,e)
{ if (nontrivial(K,e)=false) return false;

for (each f in F) if (ef= ) { return false; }
return true;

}

Fair SCC

Let K=<S,R,I,F> be a Kripke structure, and A a set of states.

bool ExistFairState(K,A)
{ G:=(S,R); scclist:=scctarjan(G);

w:={};
for (each e in scclist) if (Fairscc(K,e)) w=we;
K'=(S,R,A);
return ReachbilityAnalysis(K',w);

}

Fair States

Let K=<S,R,I,F> be a Kripke structure, A a set and s a state.

Proposition
There exists some fair state in A iff
ExistFairState(K,A)=true.

Proposition
s is a fair state iff
ExistFairState(K,{s})=true.

Fair States

• Fair Reachability, Fair Safety
• Fair Avoidability, Fair Inevitability
• Emptiness

Basic Properties

• Fair Reachability, Fair Safety

Basic Properties (1)

Let X be a set of states.

X is a fair reachability property, if
There is a fair computation of K that reaches
an X-state.

Fair Reachability Property - Possibility

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: {s0,s2}, {s0,s1,s2}

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: {s0,s2}x, {s0,s1,s2}x

Given a set XS.
Is X a fair reachability property?

Fair Reachability Problem

Let K=<S,R,I> be a Kripke structure, and A S.

bool ReachabilityAnalysis(K,A)
{ w:=I;

repeat until w={};
s:=w.getElement(); if (s in A) return true;
visited[s]:=true;
for each (s' in R(s)),

if (visited[s']=false) w.putElement(s');
w.removeElement(s);

return false;
}

Reachability Analysis (Existing One)

• Is AS a fair reachability property?

• Is there a state s such that the following holds?
– s satisfies A
– s is fair
– s is reachable (from I)

Fair Reachability Analysis

Let K=<S,R,I,F> be a Kripke structure, and A S.
bool FairReachabilityAnalysis(K,A)
{ w:=I;

repeat until w={};
s:=w.getElement();
if (s in A) and ExistFairState(K,{s}) return true;
visited[s]:=true;
for each (s' in R(s)),

if (visited[s']=false) w.putElement (s');
w.removeElement(s);

return false;
}

Fair Reachability Analysis

Let K=<S,R,I,F> be a Kripke structure, and A S.

Proposition:
FairReachabilityAnalysis(K,A) =true
Iff
A is a fair reachability property

Fair Reachability Analysis

Let Y be a set of states.

Y is a fair safety property, if
every fair computation is a Y-computation.

Fair Safety Property - Universality

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: {s0,s2}, {s1,s2,s3}x

Let K=<S,R,I,F> be a Kripke structure, and A S.

bool FairSafetyAnalysis(K,A)
{ w:=I;

repeat until w={};
s:=w.getElement();
if (s not in A) and ExistFairState(K,{s}) return false;
visited[s]:=true;
for each (s' in R(s)),

if (visited[s']=false) w.putElement(s');
w.removeElement(s);

return true;
}

Fair Safety Analysis

Let K=<S,R,I,F> be a Kripke structure, and A S.

Proposition:
FairSafetyAnalysis(K,A) =true
Iff
A is a fair Safety property

Basic Fair Safety Analysis

Fair safety is a dual property of fair reachability.

Proposition
A is a fair safety property of a system K=<S,R,I,F>,
iff S\A is not a fair reachability property of K.

FairSafetyAnalysis(K,A) =true 
FairReachabilityAnalysis(K,S\A) =false

Reachability & Safety

• Fair Avoidability, Fair Inevitability

Basic Properties (2)

Avoidability Property

Let X be a set of states.

X is a fair avoidability property, if
there exists some fair computation of K that
does not pass any X-state.

Example: {s0,s2}x

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: {s1,s3}

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Fair Avoidability Problem

Given a set XS.
Is X a fair avoidability property?

Fair Avoidability Problem

For a finite state system <S,R,I,F>:
Define R|Y=R(YxY); {f1,…,fn}|Y={f1Y,…,fnY}

Define K|Y = <Y,R|Y,IY,F|Y>
Let AS. Let K’= <S’,R’,I’,F’> = K|(S\A)

A is a fair avoidability property, iff
there is a reachable fair SCC of K’ .

Fair Avoidability Analysis

Let K=<S,R,I,F> be a Kripke structure, and A S.

bool FairAvoidabilityAnalysis(K,A)
{ K':=(S',R',I’,F’):=K|(S\A); G:=(S',R'); K‘’:=(S',R',I’);

scclist:=scctarjan(G);
w:={}; for each (e in scclist) if (Fairscc(K’,e)) w:=we;
return ReachbilityAnalysis(K‘’,w);

}

56

Fair Avoidability: A Simpler Formulation

For a finite state system <S,R,I,F>:
Let AS. Let K’= <S’,R’,I’,F’> = K|(S\A)

A is a fair avoidability property, iff
there is a reachable fair SCC of K’, iff
there is a reachable fair state of K’, iff
there is a fair state in I’, iff
ExistFairState(K’,I’)=true.

xEE

Fair Avoidability: A Simpler Formulation

Let K=<S,R,I,F> be a Kripke structure, and A S.

bool FairAvoidabilityAnalysis(K,A)
{

K’:= (S’,R’,I’,F’) := K|(S\A);
return (ExistFairState(K’,I’));

}

Fair Avoidability Analysis

Let K=<S,R,I,F> be a fair Kripke structure, and A S.

Proposition:
FairAvoidabilityAnalysis(K,A) =true
iff
A is a fair avoidability property

Fair Inevitability

Given a set Y.

Y is a fair inevitability property, if
every fair computation passes a Y-state

Example: {s1,s3}, {s2,s3}

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Inevitability & Avoidability

Fair inevitability is the negation of fair avoidability.

Proposition
A is a fair inevitability property of a system K,
iff A is not a fair avoidability property of K.

Fair Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

bool FairInevitabilityAnalysis(K,A)
{ K':=(S',R',I’,F’):=K|(S\A); G:=(S',R');

scclist:=scctarjan(G);
w:={}; for each (e in scclist) if (Fairscc(K’,e)) w:=we;
return (not ReachbilityAnalysis(K',w));

}

Fair Inevitability Analysis

Let K=<S,R,I,F> be a Kripke structure, and A S.

Proposition:
FairInevitabilityAnalysis(K,A) =true
Iff
A is a fair inevitability property

Inevitability & Avoidability

Fair inevitability is the negation of fair avoidability.

FairInevitabilityAnalysis(K,A) =true 
FairAvoidabilityAnalysis(K,A) =false



65

Basic Properties (3)

EE

• Emptiness

Emptiness

Let K=<S,R,I,F> .

K is empty,
the set of fair computations of K is empty,
[[K]] = 

Example: Empty

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: Non-empty

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Emptiness Problem

Given K=<S,R,I,F> .

Is K empty?

Emptiness Problem

Given K=<S,R,I,F> .

Is K empty?

K is nonempty, iff
there is an I-state that reaches a fair SCC, iff
there is a fair initial state.

Emptiness Checking

Let K=<S,R,I,F> be a fair Kripke structure.

bool EmpChecking(K)
{

return ExistFairState(K,I)=false;
}

Emptiness Checking

Let K=<S,R,I,F> be a fair Kripke structure.

Proposition:
EmpChecking(K) =true
iff
K is empty

Application to Reachability

Given K=<S,R,I>, and AS.

Define S',R',I',F as follows:
• S'=S{t}
• R'= R  { (s,t) | sA }  { (t,t) }
• I'=I
• F={{t}}

A is a reachability property, iff <S’,R’,I’,F>
is nonempty

t

A

Application to Avoidability

Given K=<S,R,I>, and AS.

Define S',R',I',F as follows:
• S'=S{t}
• R'= { (s,s’) | (s,s’)R, sA }  { (s,t) | sA}  { (t,t) }
• I'=I
• F={S}

A is an avoidability property, iff <S’,R’,I’,F> is
nonempty

t

A
x

An Example

Contents

Mutual Exclusion

Kripke Structure

Summary

An Example

Contents

Mutual Exclusion

Kripke Structure

Summary

例子-互斥：状态图(State Diagram)

77

work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B

78

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example

An Example

Contents

Mutual Exclusion

Kripke Structure

Summary

Fair Kripke Structures

Definition
A fair Kripke structure is a quintuple <S,R,I,F>

– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states
– F  2S : A set of sets of states

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}

The Set of States: S

(NCR,b,x,y,t)  (wait,b,x,1,1)
(wait,b,0,y,t)  (CR,b,0,y,t)
(wait,b,x,y,0)  (CR,b,x,y,0)
(wait,b,1,y,1)  (wait,b,1,y,1)
(CR,b,x,y,t)  (NCR,b,x,0,t)

(a,NCR,x,y,t)  (a,wait,1,y,0)
(a,wait,x,1,t)  (a,CR,x,1,t)
(a,wait,x,y,1)  (a,CR,x,y,1)
(a,wait,x,1,0)  (a,wait,x,1,0)
(a,CR,x,y,t)  (a,NCR,0,y,t)

Transition Relation: R

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

The Set of Initial States: I

The Set of Fairness Constraints: F

Apparently, we need fairness constraints:

wait,wait,1,1,1

wait,wait,1,1,0

例子-互斥：状态图(State Diagram)

85

work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B

The Set of Fairness Constraints: F

In fact, we may construct 6 fairness constraints for:

(a=NCR)
(a=wait and x=0|t=0)
(a=CR)

(b=NCR)
(b=wait and y=0|t=1)
(b=CR)

The Set of Fairness Constraints: F

S1 = { (a,b,x,y,t) | a=NCR }
S2 = { (a,b,x,y,t) | a=wait and x=0|t=0 }
S3 = { (a,b,x,y,t) | a=CR }

S4 = { (a,b,x,y,t) | b=NCR}
S5 = { (a,b,x,y,t) | b=wait and y=0|t=1 }
S6 = { (a,b,x,y,t) | b=CR }

wait,wait,1,1,0

wait,wait,1,1,1

The Set of Fairness Constraints: F

S1 = { (a,b,x,y,t) | a=NCR }
S2 = { (a,b,x,y,t) | a=wait and x=0|t=0 }
S3 = { (a,b,x,y,t) | a=CR }

S4 = { (a,b,x,y,t) | b=NCR}
S5 = { (a,b,x,y,t) | b=wait and y=0|t=1 }
S6 = { (a,b,x,y,t) | b=CR }

wait,wait,1,1,0

wait,wait,1,1,1

F={ S\S1, S\S2, S\S3, S\S4, S\S5, S\S6 }

89

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

(a=wait and x=0|t=0):

Example

Example: Properties

• Emptiness
• Reachability & Safety
• Inevitability & Avoidability

Example: Emptiness

K = { S, R, I, F }

THEN
EmpChecking(K) = false

Example: Reachability & Safety

K = { S, R, I, F }
Y= { (a,b,x,y,t) | a!=CR or b!=CR }

THEN
FairSafetyAnalysis(K,Y) =true

Example: Inevitability & Avoidability

K = { S, R, I, F }
Y= { (a,b,x,y,t) | a=CR or b=CR }

THEN
FairInevitabilityAnalysis(K,A) = true

An Example

Contents

Mutual Exclusion

Kripke Structure

Summary

(II) Labeled Kripke Structures

• Motivation

例子-互斥：状态图(State Diagram)

96

work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B

例子-互斥：状态迁移图(Kripke结构)

97

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

例子-互斥：状态迁移图(Kripke结构)

98

s0

s12s27

s51 s38
s20s39

s62
s47

s1

例子-互斥：状态迁移图(Kripke结构)

99

s0

s12s27

s51 s38
s20s39

s62
s47

s1

Good,Bad,Neutral?

Motivation

Distinguish states based on a set of basic
properties (labels).

Labeled Kripke Structures

• Formulation
• Basic Concepts
• Basic System Properties

Labeled Kripke Structures

AP: a finite set of propositions.

Definition
A (Labeled) Kripke structure is a quadruple K=<S,R,I,L>
• S : A finite set of states
• R  S x S : A total transition relation
• I  S : A set of initial states
• L: S  2AP is a labeling function

Example: S,R,I

s2

s0

s3

s1

s2

s0

s3

s1

AP: {p,q}

{} {q}

{p,q}{p}

Example: L

AP: {p,q}

Example: Paths, Computations, Behavior

s2

s0

s3

s1

(s0s2)ω

s0(s2s0)*(s1s3)ω

s0s2(s0s2)*(s3s1)ω

(s2s0)ω

s2(s0s2)*(s3s1)ω

s2s0(s2s0)*(s1s3)ω

{} {q}

{p,q}{p}

Basic Concepts

• Basic Concepts (Kripke Structures)
• States, Transition Relation, Initial States
• Successors, Predecessors,
• Reachable States, Reachability Relation,
• Paths (Finite and Infinite), Computation, Behavior
• Properties

• Basic Concepts (Labeled Kripke Structures)
• Labels
• Properties – Propositional Symbols – Formulas
• Sets – Propositional Formulas

Labels

A proposition  a set of states: Sp= { s | p L(s) }

A set of states  a proposition:

Given X={x1,x2,…,xn}, we create a proposition px as follows.

Add px to AP,
Add px to L(x1), L(x2), …, L(xn)

X = Spx = { s | px L(s) }

Satisfiability Relation (State-based)

Let X,Y be sets of states. Let s be a state.

Definition
s satisfies Y (or s is a Y-state), if s  Y,

Definition
X satisfies Y, if for all sX, s satisfies Y, i.e., XY

Satisfiability with Formulas

Definition
Let  be a formula.
s |=  is defined as follows.

 s |= p if p L(s)
 s |=  if s |=  and s |= 
 s |=  if s | =  or s|= 
 s |= : if s | 

X |= , if for all sX, s|= 

Correspondence: Formulas to Sets

Definition:
[[]] is defined as follows.
 [[p]] = { s | p  L(s) }
 [[]] = [[]] [[]]
 [[]] = [[]] [[]]
 [[]] = S\[[]]

Lemma: s |=  iff s[[]], i.e., [[]] = { s | s|= }.

Definition: s is a -state, if s is a [[]]-state.

Example: Correspondence

s2

s0

s3

s1

{} {q}

{p,q}{p}

[[pq]]={s3}, [[pq]]={s1,s2,s3}

Correspondence: Sets to Formulas

Construction
[[{s}]] = (rL(s)r)  (rL(s)r)
[[XY]] = [[X]][[Y]]

Lemma:
if sX, then s |= [[X]], i.e., X  [[([[X]])]].

X |=  iff [[X]]  
X  Y  [[X]]  [[Y]]

Abstraction

Correspondence: Sets to Formulas

Suppose that the function L: S  2AP is one-to-one.

Then for each XS,
there is a formula characterizing the set X.

Lemma:
sX iff s |= [[X]], i.e.,
X = [[([[X]])]].

Example: Correspondence

s2

s0

s3

s1

{} {q}

{p,q}{p}

[[{s3}]]=pq, [[{s1,s2,s3}]]=pq

Correspondence: non-one-to-one

Suppose that the function L: S  2AP is not
one-to-one (i.e., a kind of abstraction).

Then:

sX  s |= [[X]], i.e.,
X  [[([[X]])]].

Example: L is not one-to-one

s2

s0

s3

s1

{q} {q}

{p,q}{}

[[{s0}]]=qp, [[{s1}]]=qp, [[qp]]={s0,s1}
[[{s1,s3}]]=q, [[{s0,s1,s3}]]=q, [[q]]={s0,s1,s3}

• Reachability, Safety
• Avoidability, Inevitability

Basic Properties

• Reachability, Safety

Basic Properties (1)

Reachability Property

Let K=<S,R,I,L> and  be a formula.

 is a reachability property, if
there is a computation of K that passes a -state.

Proposition
 is a reachability property, iff
[[]] is a reachability property of K’=<S,R,I>

Reachability Property

Let K=<S,R,I,L> and  be a formula.

Proposition
 is a reachability property,
iff
ReachabilityAnalysis(K’,[[]]) = true

121

Safety Property

EE

Let K=<S,R,I,L> and  be a formula.

 is a safety property, if
every state on every computation is a -state.

Proposition
 is a safety property, iff
[[]] is a safety property of K’=<S,R,I>

Safety Property

Let K=<S,R,I,L> and  be a formula.

Proposition
 is a safety property,
iff
SafetyAnalysis(K’,[[]]) = true

Q

Let K=<S,R,I,L> and  be a formula.

How to develop a safety analysis algorithm
with (K,) as input without calculating [[]] ?

This problem is left to the readers.

Safety & Reachability

Safety is a dual property of reachability.

Proposition
 is a safety property of K=<S,R,I,L>,
iff
 is not reachable in K.

Deductive Safety Analysis

Successors

Define:

R() = [[{ s’ | ss’, s |=  }]]

Invariant

Definition
 is a transition invariant, if R() .

Inductive Invariant

Definition
 is an inductive invariant, if
[[I]], and  is a transition invariant.

Proof of Safety

Given .

If there is a ’ such that
’ is an inductive invariant and ’,
then K is safe w.r.t. .

Relative Completeness
Suppose that L is a one-to-one mapping.
If the conclusion holds, then such a ’ exists.

Example: =pq=[[{s1,s2,s3}]]

s2

s0

s3

s1

{} {q}

{p,q}{p}

(1) We need ’ satisfying ([[I]] ’) and (’) for the rule.
(2) We may choose ’ = q, which is transition invariant.

Example: =pq=[[{s1,s2,s3}]]

s2

s0

s3

s1

{} {q}

{p,q}{p}

(1) We need ’ satisfying ([[I]] ’) and (’) for the rule.
(2) We may choose ’ = q or ’ = pq, which are transition invariant.

x

Proof of Safety

Not complete, if L is not a one-to-one map.

Example: =q=[[{s0,s1,s3}]] is a safety property

s2

s0

s3

s1

{q} {q}

{p,q}{}

(1) We need ’ satisfying ([[I]] ’) and (’) for the rule.
(2) Since [[I]] = q = , ’ must be q.
(3) However q is not transition invariant.

(L is not one-to-one)

Basic Properties (2)

• Avoidability, Inevitability

Avoidability Property

Let K=<S,R,I,L> and  be a formula.

 is an avoidability property, if
there exists some computation of K that
does not pass any -state.

Proposition
 is an avoidability property, iff
[[]] is an avoidability property of K’=<S,R,I>

Avoidability Property

Let K=<S,R,I,L> and  be a formula.

Proposition:
 is an avoidability property
iff
AvoidabilityAnalysis(K’, [[]]) =true

Let K=<S,R,I,L> and  be a formula.

Definition
 is an inevitability property, if
every computation passes a -state

Proposition
 is an inevitability property of K, iff
[[]] is an inevitability property of K’=<S,R,I>.

Inevitability

Let K=<S,R,I,L> and  be a formula.

Proposition:
 is an inevitability property
iff
InevitabilityAnalysis(K’, [[]]) =true

Inevitability

Inevitability & Avoidability

Inevitability is the negation of avoidability.

Proposition
 is an inevitability property of K,
iff
 is not avoidable in K.

Q

Let K=<S,R,I,L> and  be a formula.

Is it easy (or possible) to develop
an inevitability analysis algorithm
with (K,) as input without calculating [[]] ?

This problem is left to the readers.

Deductive Inevitability Analysis

Proof of Inevitability

If there is a sequence of sets of states:
0, 1,…, n such that

[[I]] 0,
R(i) i+1, for i=0,1,…,n-1
n,

Then  is an inevitability property.

Relative Completeness
Suppose that L is a one-to-one mapping.
For finite state systems, if the conclusion holds, then such a
sequence exists.

Example: =p={s2,s3}

s2

s0

s3

s1

X0={s0,s2}, X1={s1,s2}, X2={s3}

{} {q}

{p,q}{p}

0=q, 1=(pq)(qp), 2= pq

Proof of Inevitability

Not complete, if L is not a one-to-one map.

Example: =p={s2,s3} is an inevitability property

s0

s3

s1

{q} {q}

{p,q}

We have [[I]] = (qp).
(qp)  0,
(qp)(p)  1,
(qp)(p)  2, …..

(L is not one-to-one)

s2
{p}

An Example

Contents

Mutual Exclusion

Kripke Structure

Summary

An Example

Contents

Mutual Exclusion

Kripke Structure

Summary

148

Design of Mutual Exclusion (State)

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

Process A Process B

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

149

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example

An Example

Contents

Mutual Exclusion

Kripke Structure

Summary

Labeled Kripke Structures

AP: a finite set of propositions.

Definition
A (Labeled) Kripke structure is a quadruple K=<S,R,I,L>
• S : A finite set of states
• R  S x S : A total transition relation
• I  S : A set of initial states
• L: S  2AP is a labeling function

The Set of States: S

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}

Transition Relation: R

(NCR,b,x,y,t)  (wait,b,x,1,1)
(wait,b,0,y,t)  (CR,b,0,y,t)
(wait,b,x,y,0)  (CR,b,x,y,0)
(wait,b,1,y,1)  (wait,b,1,y,1)
(CR,b,x,y,t)  (NCR,b,x,0,t)

(a,NCR,x,y,t)  (a,wait,1,y,0)
(a,wait,x,1,t)  (a,CR,x,1,t)
(a,wait,x,y,1)  (a,CR,x,y,1)
(a,wait,x,1,0)  (a,wait,x,1,0)
(a,CR,x,y,t)  (a,NCR,0,y,t)

The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

Labeling Function

AP={
a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR,
x=1,x=0,y=1,y=0,t=1,t=0

}

L(NCR,NCR,0,0,0) = {a=NCR,b=NCR,x=0,y=0,t=0}
L(NCR,NCR,0,0,1) = {a=NCR,b=NCR,x=0,y=0,t=1}
…

Labeling Function

AP={ p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12 }

L(NCR,NCR,0,0,0) = {p1,p4,p7,p9,p11}
L(NCR,NCR,0,0,1) = {p1,p4,p7,p9,p12}
…

L(NCR,NCR,0,0,0) = {a=NCR,b=NCR,x=0,y=0,t=0}
L(NCR,NCR,0,0,1) = {a=NCR,b=NCR,x=0,y=0,t=1}
…

Labeling Function (with Abstraction)

OR

AP={ a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR }

L(NCR,NCR,x,y,t) = {a=NCR,b=NCR}
L(NCR,wait,x,y,t) = {a=NCR,b=wait}
L(NCR,CR,x,y,t) = {a=NCR,b=CR}
…

Labeling Function (with Abstraction)

OR

AP={ p1,p2,p3,p4,p5,p6 }

L(NCR,NCR,x,y,t) = {p1,p4}
L(NCR,wait,x,y,t) = {p1,p5}
L(NCR,CR,x,y,t) = {p1,p6}
…

Reachability & Safety

AP = {p1,p2,p3,p4,p5,p6 }

K = { S, R, I, L }
φ = (p3  p6 }

THEN
SafetyAnalysis(K,[[φ]]) =true

Inevitability & Avoidability

AP = {p1,p2,p3,p4,p5,p6 }

K = { S, R, I, L }
φ = (p3  p6 }

THEN
InevitabilityAnalysis(K,[[φ]]) = false

An Example

Contents

Mutual Exclusion

Kripke Structure

Summary

(III) Fair Labeled Kripke Structures

A fair labeled KS
=
a labeled KS + a fair KS

Fair Labeled Kripke Structures

AP: A set of propositions.

Definition
A fair Kripke structure is a quintuple <S,R,I,L,F>

– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states
– L: S  2AP is a labeling function
– F: A set of formulas over AP

Example: S,R,I

s2

s0

s3

s1

Example: L

s2

s0

s3

s1

AP: {p,q}

{} {q}

{p,q}{p}

Example: F={p,q}

s2

s0

s3

s1

{} {q}

{p,q}{p}

AP: {p,q}

Basic Concepts

• Basic Concepts (Kripke Structures)
• States, Transition Relation, Initial States
• Successors, Predecessors,
• Reachable States, Reachability Relation,
• Paths (Finite and Infinite), Computation, Behavior
• Properties

• Basic Concepts (Fair Kripke Structures)
• Paths – Fair Paths
• Computations – Fair Computations
• Behavior - Language
• States – Fair States

Fair Labeled Kripke Structures

F = { f1,…,fn }, a set of propositional formulas

<S,R,I,L,F>
=
a labeled KS + a fair KS
<S,R,I,L> + <S,R,I,{[[f1]],…,[[fn]]}>

Paths

Definition
An infinite path is an infinite sequence of S:
s0 s1 s2 ….
such that si si+1 for all i  0

Definition
A finite path is a finite prefix of an infinite path:
s0 …sn

Definition
A fair (infinite) path is a path such that
for every f F, there is an infinite number of states
on the path satisfying f.

Fair Paths

s2

s0

s3

s1

Infinite paths:
s0s1s3s1s3s1…
s0(s1s3)ω

s1s3s1s3s1s3s…

Finite paths:
s0s1s3s1
s1s3s1s3s1

Example: Paths

F={p,q}
{} {q}

{p,q}{p}

Given a Kripke structure K=<S,R,I>.

Definition
A computation of K is an infinite sequence of S:
s0 s1 s2 ….
such that s0  I, and si  si+1 for all i  0

Computations

Definition
A fair computation is a computation such that
for every f F, there is an infinite number of states
on the computation satisfying f.

Fair Computations

s2

s0

s3

s1

s0(s1s3)ω

s2(s3s1)ω

s2(s0s2)*(s1s3)ω

Example: Computations

F={p, q}
{} {q}

{p,q}{p}

[p]] = {s2,s3}
[[q]] = {s0,s2}

System behavior = the set of fair computations

[[K]]

System Behavior

s2

s0

s3

s1

(s0s2)ω

s0(s2s0)*(s1s3)ω

s0s2(s0s2)*(s3s1)ω

Example: Behavior

(s2s0)ω

s2(s0s2)*(s3s1)ω

s2s0(s2s0)*(s1s3)ω

F={p,q}
{} {q}

{p,q}{p}

Language

Given AP.
Let K=<S,R,I,L,F> .

L(K)  (2AP)ω

L(s0s1s2……) = L(s0)L(s1)L(s2) ……

L(K) = { L(π) | π [[K]] }

AP: {p,q}

Example: Language

s2

s0

s3

s1

(s0s2)ω

(s2s0)ω

{} {q}

{p,q}{p}

F={p, q}

({} {p})ω

({p} {})ω

Definition
A fair state is a starting state of some fair path.

Fair States

s2

s0

s3

s1

Example: Fair States

{} {q}

{p,q}{p}

F={p,q}

• Fair Reachability, Fair Safety
• Fair Avoidability, Fair Inevitability
• Emptiness

Basic Properties

• Fair Reachability, Fair Safety

Basic Properties (1)

Fair Reachability Property

Let K=<S,R,I,L,F> and  be a formula.

 is a fair reachability property, if
there is a fair computation of K that passes an -state.

Define [[F]] = { [[f]] | f  F }
Proposition
 is a fair reachability property, iff
[[]] is a fair reachability property of K’=<S,R,I,[[F]]>

Fair Reachability Property

Let K=<S,R,I,L,F> and  be a formula.

Proposition:
Let K’=<S,R,I,[[F]]>.
 is a fair reachability property of K
iff
FairReachabilityAnalysis(K’,[[]]) =true

Fair Safety Property

Let K=<S,R,I,L,F> and  be a formula.

 is a fair safety property, if
every state on every fair computation is a -states.

Proposition
 is a fair safety property of K, iff
[[]] is a fair safety property of K’=<S,R,I,[[F]]>

Fair Safety Property

Let K=<S,R,I,L,F> and  be a formula.

Proposition:
Let K’=<S,R,I,[[F]]>.
 is a fair safety property of K
iff
FairSafetyAnalysis(K’,[[]]) =true

Reachability & Safety

Fair safety is a dual property of fair reachability.

Proposition
 is a fair safety property of K=<S,R,I,L,F>, iff
 is not a fair reachability property.

• Fair Avoidability, Fair Inevitability

Basic Properties (2)

Fair Avoidability Property

Let K=<S,R,I,L,F> and  be a formula.

 is a fair avoidability property, if
there exists some fair computation of K that
does not pass any -states.

Proposition
 is a fair avoidability property, iff
[[]] is a fair avoidability property of K’=<S,R,I,[[F]]>

Fair Avoidability Property

Let K=<S,R,I,L,F> and  be a formula.

Proposition
Let K’=<S,R,I,[[F]]>.
 is a fair avoidability property of K,
iff
FairAvoidabilityAnalysis(K’,[[]]) =true

Fair Inevitability

Let K=<S,R,I,L,F> and  be a formula.

 is a fair inevitability property, if
every fair computation passes a -state

Proposition
 is a fair inevitability property of K, iff
[[]] is a fair inevitability property of K’=<S,R,I,[[F]]>.

Fair Inevitability

Let K=<S,R,I,L,F> and  be a formula.

Proposition
Let K’=<S,R,I,[[F]]>.
 is a fair inevitability property of K,
iff
FairInevitabilityAnalysis(K’,[[]]) =true

Avoidability & Inevitability

fair inevitability is a negation of fair avoidability.

Proposition
 is a fair inevitability property of K, iff
 is not a fair avoidability property.

• Emptiness

Basic Properties (3)

Emptiness

Let K=<S,R,I,L,F> .

L(K) is empty, iff
the set of fair computations of K is empty, iff
K’=<S,R,I,[[F]]> is empty, iff
EmpChecking(K’)

(IV) An Example

An Example

Contents

Mutual Exclusion

Kripke Structure

Model Checking

Summary

An Example

Contents

Mutual Exclusion

Kripke Structure

Model Checking

Summary

199

Example: Mutual Exclusion

Non-Critical Region

Critical Region

Process A

Non-Critical Region

Critical Region

Process B

200

Example: Mutual Exclusion

Request for Entering

Non-Critical Region

Wait

Check for Entering

Critical Region

Exit

Process A

Request for Entering

Non-Critical Region

Wait

Check for Entering

Critical Region

Exit

Process B

201

Design of Mutual Exclusion (Activity)

request

exit

work in CR

wait

[condition 1]

[else]

work in NCR

initialization

request

exit

work in CR

wait

[condition 2]

[else]

work in NCR

Design of Mutual Exclusion

• Purpose:
– ensure that not both processes are working in the

critical region (CR)
• Mechanism:

– use shared variables
– y=1: the first process is applying for entering CR or

it is in CR
– x=1: the second process is applying for entering

CR or it is in CR
– t=(i-1): the i-th process has priority for entering CR

203

Design of Mutual Exclusion (State)

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

204

Design of Mutual Exclusion (State)

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

Process A Process B

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Correctness of the Design

• How do we know that the design is correct?

Combined States of the Two Processes

Process A Process B Remark
NCR NCR
NCR wait
NCR CR
wait NCR
wait wait
wait CR
CR NCR
CR wait
CR CR Bad state

Correctness of the Design

• How do we know that the design is correct?
– We have to be sure that the bad state is not

reachable in all possible executions of the
algorithm

– We may use state exploration (model checking)
techniques or deductive proof methods

Contents

Mutual Exclusion

Kripke Structure

Model Checking

Summary

Fair Kripke Structures

AP: A set of propositions.

A Kripke structure is a triple K=<S,R,I,L>
– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states
– L: S  2AP is a labeling function
– F: A set of formulas over AP

Process States and Variable States

Process A Process B x y t

NCR NCR 1 1 1

wait wait 0 0 0

CR CR

(a,b,x,y,t)

The Set of States: S

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}

Transition Relation: R

(NCR,b,x,y,t)  (wait,b,x,1,1)
(wait,b,0,y,t)  (CR,b,0,y,t)
(wait,b,x,y,0)  (CR,b,x,y,0)
(wait,b,1,y,1)  (wait,b,1,y,1)
(CR,b,x,y,t)  (NCR,b,x,0,t)

(a,NCR,x,y,t)  (a,wait,1,y,0)
(a,wait,x,1,t)  (a,CR,x,1,t)
(a,wait,x,y,1)  (a,CR,x,y,1)
(a,wait,x,1,0)  (a,wait,x,1,0)
(a,CR,x,y,t)  (a,NCR,0,y,t)

The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

Labeling Function

AP={
a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR,
x=1,x=0,y=1,y=0,t=1,t=0

}

L(NCR,NCR,0,0,0)={a=NCR,b=NCR,x=0,y=0,t=0}
L(NCR,NCR,0,0,1)={a=NCR,b=NCR,x=0,y=0,t=1}
…

Fairness

F={
(b=NCR),
((x=0t=0)a=wait),
(a=CR),
(b=NCR),
((y=0t=1)b=wait),
(b=CR)

}

216

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

Example

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Safety Property

 = (a=CRb=CR)

Is  a safety property?

Inevitability Property

 = (a=CRb=CR)

Is  an inevitability property?

An Example

Contents

Mutual Exclusion

Kripke Structure

Model Checking

Summary

Modeling and Model Checking

• Model Checking with VERDS
– http://lcs.ios.ac.cn/~zwh/verds

• Input to VERDS
– VVM (VERDS verification model)

• Modeling Language
– VML (VERDS modeling langauge)

Without Fairness Specifications

Modeling in VML

VVM
VAR

x: 0..1;
y: 0..1;
t: 0..1;

INIT
x=0;
y=0;

PROC
p0: p0m();
p1: p1m();

SPEC
AG(!(p0.a=c0&p1.b=c0));

Safety:
Mutual exclusion

Modeling in VML

MODULE p0m()
VAR

a: {n0,w0,c0};
INIT

a=n0;
TRANS

a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0: (y,a):=(0,n0);

MODULE p1m()
VAR

b: {n0,w0,c0};
INIT

b=n0;
TRANS

b=n0: (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1): (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0: (x,b):=(0,n0);

The Complete Model in VML

VVM
VAR

x: 0..1;
y: 0..1;
t: 0..1;

INIT
x=0;
y=0;

PROC
p0: p0m();
p1: p1m();

SPEC
AG(!(p0.a=c0&p1.b=c0));

MODULE p0m()
VAR

a: {n0,w0,c0};
INIT

a=n0;
TRANS

a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0: (y,a):=(0,n0);

MODULE p1m()
VAR

b: {n0,w0,c0};
INIT

b=n0;
TRANS

b=n0: (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1): (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0: (x,b):=(0,n0);

Verification with VERDS
./verds -ck 1 mutex3.vvm
VERSION: verds 1.46 - JAN 2015
FILE: mutex3.vvm
INFO: int=i0
PROPERTY: A G ! ((p0.a = 2)& (p1.b = 2))
check: 0

check: 1

…
...
check: 5

CONCLUSION: TRUE

Consider the Inevitability Property

VVM
VAR

x: 0..1;
y: 0..1;
t: 0..1;

INIT
x=0;
y=0;

PROC
p0: p0m();
p1: p1m();

SPEC
AG(!(p0.a=c0&p1.b=c0));
AF((p0.a=c0)|(p1.b=c0));

Inevitability:
Working in critical region

Verification with VERDS
./verds -ck 2 mutex3.vvm
VERSION: verds 1.46 - JAN 2015
FILE: mutex3.vvm
INFO: int=i0
PROPERTY: A F ((p0.a = 2)| (p1.b = 2))
check: 0

check: 1

…
…
check: 4

The property is false, preparing mutex3.cex ...
CONCLUSION: FALSE

Verification with VERDS
LOOP starts from STATE 2:

--- STATE 0 ---
x =0
y =0
t =1
p0.a =0
p1.b =0
--- TRANS 5 ---
--- STATE 1 ---
x =1
y =0
t =0
p0.a =0
p1.b =1

--- TRANS 1 ---
--- STATE 2 ---
x =1
y =1
t =1
p0.a =1
p1.b =1
--- TRANS 3 ---
--- STATE 3 ---
x =1
y =1
t =1
p0.a =1
p1.b =1

229

Checking the Model

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

Process A Process B

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

With Fairness Specifications

Modified Model (with Fairness)

MODULE p0m()
VAR

a: {n0,w0,c0};
INIT

a=n0;
TRANS

a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0: (y,a):=(0,n0);

FAIRNESS
!(a=n0);

!((x=0|t=0)&(a=w0));
!(a=c0);

MODULE p1m()
VAR

b: {n0,w0,c0};
INIT

b=n0;
TRANS

b=n0: (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1): (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0: (x,b):=(0,n0);

FAIRNESS

!(b=n0);

!((y=0|t=1)&(b=w0));

!(b=c0);

Verification with VERDS
./verds -ck 1 mutex3f.vvm
VERSION: verds 1.46 - JAN 2015
FILE: mutex3f.vvm
INFO: int=i0
PROPERTY: A G ! ((p0.a = 2)& (p1.b = 2))
check: 0

check: 1

…
...
check: 19

CONCLUSION: TRUE

Verification with VERDS
./verds -ck 2 mutex3f.vvm
VERSION: verds 1.46 - JAN 2015
FILE: mutex3f.vvm
INFO: int=i0
PROPERTY: A F ((p0.a = 2)| (p1.b = 2))
check: 0

check: 1

…
...
check: 99

CONCLUSION: TRUE

Correctness of the Design

• How do we know that the design is correct?
– Safety property: (a=CRb=CR)
– Inevitability property: (a=CRb=CR)
– We have shown that a safety property holds, i.e.,

the bad states are not reachable
– We have also shown that an inevitability property

holds under a fairness assumption, i.e., some good
states must be reached in every computation

Remarks on the Correctness

• Only verified against the given properties:
– The safety property
– The inevitability property

• Rely on:
– The model
– The verification tool
– The fairness assumption as a part of the model,

for the verification of
the inevitability property

Modified Model (with Inappropr. Fairness)

MODULE p0m()
VAR

a: {n0,w0,c0};
INIT

a=n0;
TRANS

a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0: (y,a):=(0,n0);

FAIRNESS

!(a=c0|a=w0|a=n0);

MODULE p1m()
VAR

b: {n0,w0,c0};
INIT

b=n0;
TRANS

b=n0: (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1): (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0: (x,b):=(0,n0);

FAIRNESS

!(b=n0);

!((y=0|t=1)&(b=w0));

!(b=c0);

Verification with VERDS
../verds -ck 1 mutex3fw.vvm
VERSION: verds 1.46 - JAN 2015
FILE: mutex3wf.vvm
INFO: int=i0
PROPERTY: A G ! ((p0.a = 2)& (p1.b = 2))
check: 0

check: 1

…
...
check: 25

CONCLUSION: TRUE

Verification with VERDS
./verds -ck 2 mutex3fw.vvm
VERSION: verds 1.46 - JAN 2015
FILE: mutex3wf.vvm
INFO: int=i0
PROPERTY: A F ((p0.a = 2)| (p1.b = 2))
check: 0

check: 1

…
...
check: 40

CONCLUSION: TRUE

Modified Model (with Inappropr. Fairness)

MODULE p0m()
VAR

a: {n0,w0,c0};
INIT

a=n0;
TRANS

a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0: (y,a):=(0,n0);

FAIRNESS

!(a=c0|a=w0|a=n0);

MODULE p1m()
VAR

b: {n0,w0,c0};
INIT

b=n0;
TRANS

b=n0: (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1): (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0: (x,b):=(0,n0);

FAIRNESS

!(b=n0);

!((y=0|t=1)&(b=w0));

!(b=c0);

Modified Model (with Inappropr. Fairness)

MODULE p0m()
VAR

a: {n0,w0,c0};
INIT

a=n0;
TRANS

a=n0: (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0): (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0: (y,a):=(0,n0);

FAIRNESS

!(a=c0|a=w0|a=n0);

MODULE p1m()
VAR

b: {n0,w0,c0};
INIT

b=n0;
TRANS

b=n0: (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1): (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0: (x,b):=(0,n0);

FAIRNESS

!(b=n0);

!((y=0|t=1)&(b=w0));

!(b=c0);

This model
is empty

An Example

Contents

Mutual Exclusion

Kripke Structure

Model Checking

Summary

(V) Summary

• Fair Kripke Structures
• Labeled Kripke Structures
• Fair Labeled Kripke Structures
• An Example

思考题：

给定一个公平Kripke模型K=<S,R,I,F>和一个集合AS.

(1)
通过对模型进行改造，用公平Kripke模型非空问题算法
验证A是否是K的公平可达性质

(2)
通过对模型进行改造，用公平Kripke模型非空问题算法
验证A是否是K的公平可避免性质

