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内容

• 公平Kripke结构

• 标号Kripke结构

• 公平标号Kripke结构



(I) Fair Kripke Structures

• Motivation 



例子-互斥：状态图(State Diagram)
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work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B
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NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Kripke Structures



例子-互斥：状态图(State Diagram)
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work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B

X X

？
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NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

X
X

X X

Kripke Structure (Modified)



Motivation

Restrict relevant computations to fair computations.



Fair Kripke Structures

• Formulation
• Basic Concepts
• Basic System Properties



Fair Kripke Structures

Definition
A fair Kripke structure is a quadruple <S,R,I,F>

– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states
– F  2S : A set of sets of states



Example: S,R,I

s2

s0

s3

s1



Example: F={{s2,s3},{s0,s2}}

s2

s0

s3

s1
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NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example: 
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NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example: 



Basic Concepts



Basic Concepts

• Basic Concepts (Kripke Structures)
• States, Transition Relation, Initial States
• Successors, Predecessors, 
• Reachable States, Reachability Relation,
• Paths (Finite and Infinite), Computation, Behavior 
• Properties

• Basic Concepts (Fair Kripke Structures)
• Paths – Fair Paths
• Computations – Fair Computations
• States – Fair States 



Paths 

Definition
An infinite path is an infinite sequence of S:
s0 s1 s2 ….
such that si si+1 for all i  0

Definition
A finite path is a finite prefix of an infinite path:
s0 …sn



Definition
A fair (infinite) path is a path such that
for every f F, there is an infinite number of states
on the path satisfying f.

Fair Paths



s2

s0

s3

s1

Infinite paths: 
s0s1s3s1s3s1…
s0(s1s3)ω

s1s3s1s3s1s3s…

Finite paths: 
s0s1s3s1
s1s3s1s3s1

Example: Paths

F={{s2,s3},{s0,s2}}



Given a Kripke structure K=<S,R,I>.

Definition
A computation of K is an infinite sequence of S:
s0 s1 s2 ….
such that s0  I, and si  si+1 for all i  0

Computations



Definition
A fair computation is a computation such that
for every f F, there is an infinite number of states
on the computation satisfying f.

Fair Computations



s2

s0

s3

s1

s0(s1s3)ω

s2(s3s1)ω

s2(s0s2)*(s1s3)ω

Example: Computations

F={{s2,s3},{s0,s2}}



System behavior = the set of fair computations

[[K]]

System Behavior



s2

s0

s3

s1

(s0s2)ω

s0(s2s0)*(s1s3)ω

s0s2(s0s2)*(s3s1)ω

Example: Behavior

(s2s0)ω

s2(s0s2)*(s3s1)ω

s2s0(s2s0)*(s1s3)ω

F={{s2,s3},{s0,s2}}



Definition
A fair state is a starting state of some fair path. 

Fair States



s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: Fair States
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NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example：F={ {..}, {..} }



Definition
A fair SCC is a non-trivial SCC 
such that each fairness requirement is satisfied by 
some state of the SCC.

Lemma
A state is fair, iff it may reach a fair SCC.

Checking Fair States (Fair SCC)



Let K=<S,R,I,F> be a Kripke structure, and e an SCC.

bool Fairscc(K,e) 
{   if (nontrivial(K,e)=false) return false; 

for (each f in F) if (ef= ) { return false; }
return true; 

}  

Fair SCC



Let K=<S,R,I,F> be a Kripke structure, and A a set of states.

bool ExistFairState(K,A) 
{   G:=(S,R); scclist:=scctarjan(G);

w:={}; 
for (each e in scclist) if (Fairscc(K,e)) w=we; 
K'=(S,R,A); 
return ReachbilityAnalysis(K',w);

}

Fair States



Let K=<S,R,I,F> be a Kripke structure, A a set and s a state.

Proposition
There exists some fair state in A iff
ExistFairState(K,A)=true.

Proposition
s is a fair state iff
ExistFairState(K,{s})=true.

Fair States



• Fair Reachability, Fair Safety
• Fair Avoidability, Fair Inevitability
• Emptiness

Basic Properties



• Fair Reachability, Fair Safety

Basic Properties (1)



Let X be a set of states.

X is a fair reachability property, if 
There is a fair computation of K that reaches 
an X-state.

Fair Reachability Property - Possibility



s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: {s0,s2}, {s0,s1,s2}



s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: {s0,s2}x, {s0,s1,s2}x



Given a set XS. 
Is X a fair reachability property?

Fair Reachability Problem



Let K=<S,R,I> be a Kripke structure, and A S.

bool ReachabilityAnalysis(K,A) 
{   w:=I;

repeat until w={};
s:=w.getElement(); if (s in A) return true;
visited[s]:=true; 
for each (s' in R(s)), 

if (visited[s']=false) w.putElement(s');
w.removeElement(s);

return false;
}

Reachability Analysis (Existing One)



• Is AS a fair reachability property?

• Is there a state s such that the following holds?
– s satisfies A
– s is fair
– s is reachable (from I)

Fair Reachability Analysis



Let K=<S,R,I,F> be a Kripke structure, and A S.
bool FairReachabilityAnalysis(K,A) 
{   w:=I;

repeat until w={};
s:=w.getElement(); 
if (s in A) and ExistFairState(K,{s}) return true;
visited[s]:=true; 
for each (s' in R(s)), 

if (visited[s']=false) w.putElement (s');
w.removeElement(s);

return false;
}

Fair Reachability Analysis



Let K=<S,R,I,F> be a Kripke structure, and A S.

Proposition:
FairReachabilityAnalysis(K,A) =true
Iff 
A is a fair reachability property

Fair Reachability Analysis



Let Y be a set of states.

Y is a fair safety property, if
every fair computation is a Y-computation.

Fair Safety Property - Universality



s2

s0

s3

s1

F={{s2,s3},{s0,s2}}

Example: {s0,s2}, {s1,s2,s3}x



Let K=<S,R,I,F> be a Kripke structure, and A S.

bool FairSafetyAnalysis(K,A) 
{   w:=I;

repeat until w={};
s:=w.getElement(); 
if (s not in A) and ExistFairState(K,{s}) return false;
visited[s]:=true; 
for each (s' in R(s)), 

if (visited[s']=false) w.putElement(s');
w.removeElement(s);

return true;
}

Fair Safety Analysis



Let K=<S,R,I,F> be a Kripke structure, and A S.

Proposition:
FairSafetyAnalysis(K,A) =true
Iff
A is a fair Safety property

Basic Fair Safety Analysis



Fair safety is a dual property of fair reachability.

Proposition
A is a fair safety property of a system K=<S,R,I,F>,
iff S\A is not a fair reachability property of K.

FairSafetyAnalysis(K,A) =true 
FairReachabilityAnalysis(K,S\A) =false

Reachability & Safety



• Fair Avoidability, Fair Inevitability

Basic Properties (2)



Avoidability Property

Let X be a set of states.

X is a fair avoidability property, if 
there exists some fair computation of K that 
does not pass any X-state.



Example: {s0,s2}x

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}



Example: {s1,s3}

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}



Fair Avoidability Problem

Given a set XS. 
Is X a fair avoidability property?



Fair Avoidability Problem

For a finite state system <S,R,I,F>:
Define R|Y=R(YxY);  {f1,…,fn}|Y={f1Y,…,fnY}

Define K|Y = <Y,R|Y,IY,F|Y>
Let AS. Let K’= <S’,R’,I’,F’> = K|(S\A)

A is a fair avoidability property,  iff
there is a reachable fair SCC of K’ .



Fair Avoidability Analysis

Let K=<S,R,I,F> be a Kripke structure, and A S.

bool FairAvoidabilityAnalysis(K,A) 
{  K':=(S',R',I’,F’):=K|(S\A); G:=(S',R');  K‘’:=(S',R',I’);

scclist:=scctarjan(G);
w:={}; for each (e in scclist) if (Fairscc(K’,e)) w:=we;
return ReachbilityAnalysis(K‘’,w);

}
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Fair Avoidability: A Simpler Formulation

For a finite state system <S,R,I,F>:
Let AS. Let K’= <S’,R’,I’,F’> = K|(S\A)

A is a fair avoidability property,  iff
there is a reachable fair SCC of K’, iff
there is a reachable fair state of K’, iff
there is a fair state in I’, iff
ExistFairState(K’,I’)=true.

xEE



Fair Avoidability: A Simpler Formulation

Let K=<S,R,I,F> be a Kripke structure, and A S.

bool FairAvoidabilityAnalysis(K,A) 
{

K’:= (S’,R’,I’,F’) := K|(S\A);
return (ExistFairState(K’,I’));

}



Fair Avoidability Analysis

Let K=<S,R,I,F> be a fair Kripke structure, and A S.

Proposition:
FairAvoidabilityAnalysis(K,A) =true
iff 
A is a fair avoidability property



Fair Inevitability

Given a set Y. 

Y is a fair inevitability property, if
every fair computation passes a Y-state



Example: {s1,s3}, {s2,s3}

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}



Inevitability & Avoidability

Fair inevitability is the negation of fair avoidability.

Proposition
A is a fair inevitability property of a system K,
iff A is not  a fair avoidability property of K.



Fair Inevitability Analysis

Let K=<S,R,I> be a Kripke structure, and A S.

bool FairInevitabilityAnalysis(K,A) 
{  K':=(S',R',I’,F’):=K|(S\A); G:=(S',R'); 

scclist:=scctarjan(G);
w:={}; for each (e in scclist) if (Fairscc(K’,e)) w:=we;
return (not ReachbilityAnalysis(K',w));

}



Fair Inevitability Analysis

Let K=<S,R,I,F> be a Kripke structure, and A S.

Proposition:
FairInevitabilityAnalysis(K,A) =true
Iff
A is a fair inevitability property



Inevitability & Avoidability

Fair inevitability is the negation of fair avoidability.

FairInevitabilityAnalysis(K,A) =true 
FairAvoidabilityAnalysis(K,A) =false


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Basic Properties (3)

EE

• Emptiness



Emptiness

Let K=<S,R,I,F> .

K is empty, 
the set of fair computations of K is empty,
[[K]] = 



Example:  Empty 

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}



Example:  Non-empty 

s2

s0

s3

s1

F={{s2,s3},{s0,s2}}



Emptiness Problem

Given  K=<S,R,I,F> .

Is K empty?



Emptiness Problem

Given  K=<S,R,I,F> .

Is K empty?

K is nonempty, iff
there is an I-state that reaches a fair SCC, iff
there is a fair initial state.



Emptiness Checking

Let K=<S,R,I,F> be a fair Kripke structure. 

bool EmpChecking(K) 
{   

return ExistFairState(K,I)=false;
}



Emptiness Checking

Let K=<S,R,I,F> be a fair Kripke structure.

Proposition:
EmpChecking(K) =true
iff 
K is empty



Application to Reachability

Given K=<S,R,I>, and AS.

Define S',R',I',F as follows:
• S'=S{t}
• R'= R  { (s,t) | sA }  { (t,t) } 
• I'=I
• F={{t}}

A is a reachability property, iff <S’,R’,I’,F> 
is nonempty

t

A



Application to Avoidability

Given K=<S,R,I>, and AS.

Define S',R',I',F as follows:
• S'=S{t}
• R'= { (s,s’) | (s,s’)R, sA }  { (s,t) | sA}  { (t,t) } 
• I'=I
• F={S}

A is an avoidability property, iff <S’,R’,I’,F> is 
nonempty

t

A
x
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An Example

Contents

Mutual Exclusion

Kripke Structure

Summary



例子-互斥：状态图(State Diagram)

77

work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B
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NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example



An Example

Contents

Mutual Exclusion

Kripke Structure

Summary



Fair Kripke Structures

Definition
A fair Kripke structure is a quintuple <S,R,I,F>

– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states
– F  2S : A set of sets of states



{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}

The Set of States: S



(NCR,b,x,y,t)  (wait,b,x,1,1)
(wait,b,0,y,t)  (CR,b,0,y,t)
(wait,b,x,y,0)  (CR,b,x,y,0)
(wait,b,1,y,1)  (wait,b,1,y,1)
(CR,b,x,y,t)  (NCR,b,x,0,t)

(a,NCR,x,y,t)  (a,wait,1,y,0)
(a,wait,x,1,t)  (a,CR,x,1,t)
(a,wait,x,y,1)  (a,CR,x,y,1)
(a,wait,x,1,0)  (a,wait,x,1,0)
(a,CR,x,y,t)  (a,NCR,0,y,t)

Transition Relation: R



{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

The Set of Initial States: I



The Set of Fairness Constraints: F

Apparently, we need fairness constraints:

wait,wait,1,1,1

wait,wait,1,1,0



例子-互斥：状态图(State Diagram)

85

work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B



The Set of Fairness Constraints: F

In fact, we may construct 6 fairness constraints for:

(a=NCR)
(a=wait and x=0|t=0)
(a=CR)

(b=NCR)
(b=wait and y=0|t=1)
(b=CR)



The Set of Fairness Constraints: F

S1 = { (a,b,x,y,t) | a=NCR }  
S2 = { (a,b,x,y,t) |  a=wait and x=0|t=0 } 
S3 = { (a,b,x,y,t) | a=CR }

S4 = { (a,b,x,y,t) | b=NCR}
S5 = { (a,b,x,y,t) | b=wait and y=0|t=1 } 
S6 = { (a,b,x,y,t) | b=CR } 

wait,wait,1,1,0

wait,wait,1,1,1



The Set of Fairness Constraints: F

S1 = { (a,b,x,y,t) | a=NCR }  
S2 = { (a,b,x,y,t) |  a=wait and x=0|t=0 } 
S3 = { (a,b,x,y,t) | a=CR }

S4 = { (a,b,x,y,t) | b=NCR}
S5 = { (a,b,x,y,t) | b=wait and y=0|t=1 } 
S6 = { (a,b,x,y,t) | b=CR } 

wait,wait,1,1,0

wait,wait,1,1,1

F={ S\S1, S\S2, S\S3, S\S4, S\S5, S\S6 }
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NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

(a=wait and x=0|t=0):

Example



Example: Properties

• Emptiness
• Reachability & Safety
• Inevitability & Avoidability



Example: Emptiness

K = { S, R, I, F }

THEN 
EmpChecking(K) = false



Example: Reachability & Safety

K = { S, R, I, F }
Y= { (a,b,x,y,t) | a!=CR or b!=CR }

THEN
FairSafetyAnalysis(K,Y) =true



Example: Inevitability & Avoidability

K = { S, R, I, F }
Y= { (a,b,x,y,t) | a=CR or b=CR }

THEN 
FairInevitabilityAnalysis(K,A) = true



An Example

Contents

Mutual Exclusion

Kripke Structure

Summary



(II) Labeled Kripke Structures

• Motivation



例子-互斥：状态图(State Diagram)

96

work in CR

wait

[x=0 or t=0] [x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1] [y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0

Process A Process B



例子-互斥：状态迁移图(Kripke结构)

97

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1



例子-互斥：状态迁移图(Kripke结构)

98

s0

s12s27

s51 s38
s20s39

s62
s47

s1



例子-互斥：状态迁移图(Kripke结构)

99

s0

s12s27

s51 s38
s20s39

s62
s47

s1

Good,Bad,Neutral?



Motivation

Distinguish states based on a set of basic 
properties (labels).



Labeled Kripke Structures

• Formulation
• Basic Concepts
• Basic System Properties



Labeled Kripke Structures

AP: a finite set of propositions.

Definition
A (Labeled) Kripke structure is a quadruple K=<S,R,I,L>
• S : A finite set of states
• R  S x S : A total transition relation
• I  S : A set of initial states
• L: S  2AP is a labeling function



Example: S,R,I

s2

s0

s3

s1



s2

s0

s3

s1

AP: {p,q}

{} {q}

{p,q}{p}

Example: L



AP: {p,q}

Example: Paths, Computations, Behavior

s2

s0

s3

s1

(s0s2)ω

s0(s2s0)*(s1s3)ω

s0s2(s0s2)*(s3s1)ω

(s2s0)ω

s2(s0s2)*(s3s1)ω

s2s0(s2s0)*(s1s3)ω

{} {q}

{p,q}{p}



Basic Concepts

• Basic Concepts (Kripke Structures)
• States, Transition Relation, Initial States
• Successors, Predecessors, 
• Reachable States, Reachability Relation,
• Paths (Finite and Infinite), Computation, Behavior 
• Properties

• Basic Concepts (Labeled Kripke Structures)
• Labels
• Properties – Propositional Symbols – Formulas 
• Sets – Propositional Formulas 



Labels

A proposition  a set of states:  Sp= { s | p L(s) }

A set of states  a proposition: 

Given X={x1,x2,…,xn}, we create a proposition px as follows.

Add px to AP, 
Add px to L(x1), L(x2), …, L(xn)

X = Spx = { s | px L(s) }



Satisfiability Relation (State-based)

Let X,Y be sets of states.  Let s be a state.

Definition
s satisfies Y (or s is a Y-state),  if s  Y,

Definition
X satisfies Y, if for all sX, s satisfies Y, i.e., XY



Satisfiability with Formulas

Definition
Let  be a formula. 
s |=  is defined as follows.

 s |= p       if p L(s)
 s |=  if s |=   and s |= 
 s |=  if s | =  or s|= 
 s |= :       if s | 

X |= , if for all sX, s|= 



Correspondence: Formulas to Sets

Definition: 
[[]] is defined as follows.
 [[p]]       = { s | p  L(s) }
 [[]] = [[]] [[]] 
 [[]] = [[]] [[]]  
 [[]]   = S\[[]]  

Lemma:  s |=  iff s[[]], i.e., [[]] = { s | s|= }. 

Definition: s is a -state, if s is a [[]]-state.



Example: Correspondence

s2

s0

s3

s1

{} {q}

{p,q}{p}

[[pq]]={s3}, [[pq]]={s1,s2,s3}



Correspondence: Sets to Formulas

Construction
[[{s}]] = (rL(s)r)  (rL(s)r) 
[[XY]] = [[X]][[Y]]

Lemma: 
if sX, then s |= [[X]], i.e., X  [[ ([[X]]) ]]. 

X |=  iff [[X]]  
X  Y    [[X]]  [[Y]]

Abstraction



Correspondence: Sets to Formulas

Suppose that the function L: S  2AP is one-to-one. 

Then for each XS,  
there is a formula characterizing the set X.

Lemma: 
sX iff s |= [[X]], i.e.,
X = [[ ([[X]]) ]]. 



Example: Correspondence

s2

s0

s3

s1

{} {q}

{p,q}{p}

[[{s3}]]=pq, [[{s1,s2,s3}]]=pq



Correspondence: non-one-to-one

Suppose that the function L: S  2AP is not 
one-to-one (i.e., a kind of abstraction). 

Then:

sX  s |= [[X]], i.e.,
X  [[ ([[X]]) ]]. 



Example: L is not one-to-one

s2

s0

s3

s1

{q} {q}

{p,q}{}

[[{s0}]]=qp, [[{s1}]]=qp, [[qp]]={s0,s1}
[[{s1,s3}]]=q, [[{s0,s1,s3}]]=q, [[q]]={s0,s1,s3}



• Reachability, Safety
• Avoidability, Inevitability

Basic Properties



• Reachability, Safety

Basic Properties (1)



Reachability Property

Let K=<S,R,I,L> and  be a formula.

 is a reachability property, if 
there is a computation of K that passes a -state.

Proposition
 is a reachability property, iff
[[]] is a reachability property of K’=<S,R,I> 



Reachability Property

Let K=<S,R,I,L> and  be a formula.

Proposition
 is a reachability property, 
iff
ReachabilityAnalysis(K’,[[]]) = true
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Safety Property

EE

Let K=<S,R,I,L> and  be a formula.

 is a safety property, if
every state on every computation is a -state.

Proposition
 is a safety property, iff
[[]] is a safety property of K’=<S,R,I> 



Safety Property

Let K=<S,R,I,L> and  be a formula.

Proposition
 is a safety property, 
iff
SafetyAnalysis(K’,[[]]) = true



Q

Let K=<S,R,I,L> and  be a formula.

How to develop a safety analysis algorithm 
with (K,) as input without calculating [[]] ?

This problem is left to the readers.



Safety & Reachability 

Safety is a dual property of reachability.

Proposition
 is a safety property of K=<S,R,I,L>, 
iff
 is not reachable in K. 



Deductive Safety Analysis



Successors

Define: 

R() = [[ { s’ | ss’, s |=  } ]]



Invariant

Definition
 is a transition invariant, if R() .



Inductive Invariant

Definition
 is an inductive invariant, if
[[I]],  and  is a transition invariant.



Proof of Safety

Given .

If there is a ’ such that
’ is an inductive invariant and ’, 
then K is safe w.r.t. .

Relative Completeness
Suppose that L is a one-to-one mapping.
If the conclusion holds, then such a ’ exists. 



Example: =pq=[[{s1,s2,s3}]]

s2

s0

s3

s1

{} {q}

{p,q}{p}

(1) We need ’ satisfying ([[I]] ’) and (’) for the rule.
(2) We may choose ’ = q, which is transition invariant.



Example: =pq=[[{s1,s2,s3}]]

s2

s0

s3

s1

{} {q}

{p,q}{p}

(1) We need ’ satisfying ([[I]] ’) and (’) for the rule.
(2) We may choose ’ = q or ’ = pq, which are transition invariant.

x



Proof of Safety

Not complete, if L is not a one-to-one map.



Example: =q=[[{s0,s1,s3}]] is a safety property

s2

s0

s3

s1

{q} {q}

{p,q}{}

(1) We need ’ satisfying ([[I]] ’) and (’) for the rule.
(2) Since [[I]] = q = ,  ’ must be q.
(3) However q is not transition invariant. 

(L is not one-to-one) 



Basic Properties (2)

• Avoidability, Inevitability



Avoidability Property

Let K=<S,R,I,L> and  be a formula.

 is an avoidability property, if 
there exists some computation of K that 
does not pass any -state.

Proposition
 is an avoidability property, iff
[[]] is an avoidability property of K’=<S,R,I>



Avoidability Property

Let K=<S,R,I,L> and  be a formula.

Proposition:
 is an avoidability property
iff
AvoidabilityAnalysis(K’, [[]]) =true



Let K=<S,R,I,L> and  be a formula.

Definition
 is an inevitability property, if
every computation passes a -state

Proposition
 is an inevitability property of K, iff
[[]] is an inevitability property of K’=<S,R,I>. 

Inevitability



Let K=<S,R,I,L> and  be a formula.

Proposition:
 is an inevitability property
iff
InevitabilityAnalysis(K’, [[]]) =true

Inevitability



Inevitability & Avoidability

Inevitability is the negation of avoidability.

Proposition
 is an inevitability property of K, 
iff
 is not avoidable in K. 



Q

Let K=<S,R,I,L> and  be a formula.

Is it easy (or possible) to develop 
an inevitability analysis algorithm 
with (K,) as input without calculating [[]] ?

This problem is left to the readers.



Deductive Inevitability Analysis



Proof of Inevitability 

If there is a sequence of sets of states:
0, 1,…, n such that 

[[I]] 0, 
R(i) i+1, for i=0,1,…,n-1
n,

Then  is an inevitability property.

Relative Completeness 
Suppose that L is a one-to-one mapping.
For finite state systems, if the conclusion holds, then such a 
sequence exists. 



Example: =p={s2,s3}

s2

s0

s3

s1

X0={s0,s2}, X1={s1,s2}, X2={s3}

{} {q}

{p,q}{p}

0=q, 1=(pq)(qp), 2= pq



Proof of Inevitability 

Not complete, if L is not a one-to-one map.



Example: =p={s2,s3} is an inevitability property

s0

s3

s1

{q} {q}

{p,q}

We have [[ I ]] = (qp).
(qp)  0,   
(qp)(p)  1, 
(qp)(p)  2, …..

(L is not one-to-one) 

s2
{p}
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Design of Mutual Exclusion (State)

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

Process A Process B

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0



149

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

Example



An Example

Contents

Mutual Exclusion

Kripke Structure

Summary



Labeled Kripke Structures

AP: a finite set of propositions.

Definition
A (Labeled) Kripke structure is a quadruple K=<S,R,I,L>
• S : A finite set of states
• R  S x S : A total transition relation
• I  S : A set of initial states
• L: S  2AP is a labeling function



The Set of States: S

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}



Transition Relation: R

(NCR,b,x,y,t)  (wait,b,x,1,1)
(wait,b,0,y,t)  (CR,b,0,y,t)
(wait,b,x,y,0)  (CR,b,x,y,0)
(wait,b,1,y,1)  (wait,b,1,y,1)
(CR,b,x,y,t)  (NCR,b,x,0,t)

(a,NCR,x,y,t)  (a,wait,1,y,0)
(a,wait,x,1,t)  (a,CR,x,1,t)
(a,wait,x,y,1)  (a,CR,x,y,1)
(a,wait,x,1,0)  (a,wait,x,1,0)
(a,CR,x,y,t)  (a,NCR,0,y,t)



The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }



Labeling Function

AP={
a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR,
x=1,x=0,y=1,y=0,t=1,t=0

}

L(NCR,NCR,0,0,0) = {a=NCR,b=NCR,x=0,y=0,t=0}
L(NCR,NCR,0,0,1) = {a=NCR,b=NCR,x=0,y=0,t=1}
…



Labeling Function

AP={ p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12 }

L(NCR,NCR,0,0,0) = {p1,p4,p7,p9,p11}
L(NCR,NCR,0,0,1) = {p1,p4,p7,p9,p12}
…

L(NCR,NCR,0,0,0) = {a=NCR,b=NCR,x=0,y=0,t=0}
L(NCR,NCR,0,0,1) = {a=NCR,b=NCR,x=0,y=0,t=1}
…



Labeling Function (with Abstraction)

OR

AP={ a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR }

L(NCR,NCR,x,y,t) = {a=NCR,b=NCR}
L(NCR,wait,x,y,t) = {a=NCR,b=wait}
L(NCR,CR,x,y,t) = {a=NCR,b=CR}
…



Labeling Function (with Abstraction)

OR

AP={ p1,p2,p3,p4,p5,p6 }

L(NCR,NCR,x,y,t) = {p1,p4}
L(NCR,wait,x,y,t) = {p1,p5}
L(NCR,CR,x,y,t) = {p1,p6}
…



Reachability & Safety

AP = {p1,p2,p3,p4,p5,p6 }

K = { S, R, I, L }
φ = ( p3  p6 }

THEN
SafetyAnalysis(K,[[φ]]) =true



Inevitability & Avoidability

AP = {p1,p2,p3,p4,p5,p6 }

K = { S, R, I, L }
φ = ( p3  p6 }

THEN 
InevitabilityAnalysis(K,[[φ]]) = false



An Example

Contents

Mutual Exclusion

Kripke Structure

Summary



(III) Fair Labeled Kripke Structures

A fair labeled KS 
= 
a labeled KS + a fair KS



Fair Labeled Kripke Structures

AP: A set of propositions.

Definition
A fair Kripke structure is a quintuple <S,R,I,L,F>

– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states
– L: S  2AP is a labeling function
– F: A set of formulas over AP



Example: S,R,I

s2

s0

s3

s1



Example: L

s2

s0

s3

s1

AP: {p,q}

{} {q}

{p,q}{p}



Example: F={p,q}

s2

s0

s3

s1

{} {q}

{p,q}{p}

AP: {p,q}



Basic Concepts

• Basic Concepts (Kripke Structures)
• States, Transition Relation, Initial States
• Successors, Predecessors, 
• Reachable States, Reachability Relation,
• Paths (Finite and Infinite), Computation, Behavior 
• Properties

• Basic Concepts (Fair Kripke Structures)
• Paths – Fair Paths
• Computations – Fair Computations
• Behavior - Language
• States – Fair States 



Fair Labeled Kripke Structures

F = { f1,…,fn }, a set of propositional formulas

<S,R,I,L,F>  
=
a labeled KS + a fair KS
<S,R,I,L> + <S,R,I,{[[f1]],…,[[fn]]}>



Paths 

Definition
An infinite path is an infinite sequence of S:
s0 s1 s2 ….
such that si si+1 for all i  0

Definition
A finite path is a finite prefix of an infinite path:
s0 …sn



Definition
A fair (infinite) path is a path such that
for every f F, there is an infinite number of states
on the path satisfying f.

Fair Paths



s2

s0

s3

s1

Infinite paths: 
s0s1s3s1s3s1…
s0(s1s3)ω

s1s3s1s3s1s3s…

Finite paths: 
s0s1s3s1
s1s3s1s3s1

Example: Paths

F={p,q}
{} {q}

{p,q}{p}



Given a Kripke structure K=<S,R,I>.

Definition
A computation of K is an infinite sequence of S:
s0 s1 s2 ….
such that s0  I, and si  si+1 for all i  0

Computations



Definition
A fair computation is a computation such that
for every f F, there is an infinite number of states
on the computation satisfying f.

Fair Computations



s2

s0

s3

s1

s0(s1s3)ω

s2(s3s1)ω

s2(s0s2)*(s1s3)ω

Example: Computations

F={p, q}
{} {q}

{p,q}{p}

[p]]      = {s2,s3}
[[q]] = {s0,s2}



System behavior = the set of fair computations

[[K]]

System Behavior



s2

s0

s3

s1

(s0s2)ω

s0(s2s0)*(s1s3)ω

s0s2(s0s2)*(s3s1)ω

Example: Behavior

(s2s0)ω

s2(s0s2)*(s3s1)ω

s2s0(s2s0)*(s1s3)ω

F={p,q}
{} {q}

{p,q}{p}



Language

Given AP.
Let K=<S,R,I,L,F> .

L(K)  (2AP)ω

L(s0s1s2……) = L(s0)L(s1)L(s2) ……

L(K) = { L(π) | π [[K]] } 



AP: {p,q}

Example: Language

s2

s0

s3

s1

(s0s2)ω

(s2s0)ω

{} {q}

{p,q}{p}

F={p, q}

({} {p})ω

({p} {})ω



Definition
A fair state is a starting state of some fair path. 

Fair States



s2

s0

s3

s1

Example: Fair States

{} {q}

{p,q}{p}

F={p,q}



• Fair Reachability, Fair Safety
• Fair Avoidability, Fair Inevitability
• Emptiness

Basic Properties



• Fair Reachability, Fair Safety

Basic Properties (1)



Fair Reachability Property 

Let K=<S,R,I,L,F> and  be a formula.

 is a fair reachability property, if 
there is a fair computation of K that passes an -state.

Define [[F]] = { [[f]] | f  F }
Proposition
 is a fair reachability property, iff
[[]] is a fair reachability property of K’=<S,R,I,[[F]]> 



Fair Reachability Property

Let K=<S,R,I,L,F> and  be a formula.

Proposition:
Let K’=<S,R,I,[[F]]>.
 is a fair reachability property of K
iff
FairReachabilityAnalysis(K’,[[]]) =true



Fair Safety Property

Let K=<S,R,I,L,F> and  be a formula.

 is a fair safety property, if
every state on every fair computation is a -states.

Proposition
 is a fair safety property of K, iff
[[]] is a fair safety property of K’=<S,R,I,[[F]]> 



Fair Safety Property

Let K=<S,R,I,L,F> and  be a formula.

Proposition:
Let K’=<S,R,I,[[F]]>.
 is a fair safety property of K
iff
FairSafetyAnalysis(K’,[[]]) =true



Reachability & Safety

Fair safety is a dual property of fair reachability.

Proposition
 is a fair safety property of K=<S,R,I,L,F>, iff
 is not a fair reachability property.



• Fair Avoidability, Fair Inevitability

Basic Properties (2)



Fair Avoidability Property 

Let K=<S,R,I,L,F> and  be a formula.

 is a fair avoidability property, if 
there exists some fair computation of K that 
does not pass any -states.

Proposition
 is a fair avoidability property, iff 
[[]] is a fair avoidability property of K’=<S,R,I,[[F]]> 



Fair Avoidability Property

Let K=<S,R,I,L,F> and  be a formula.

Proposition
Let K’=<S,R,I,[[F]]>.
 is a fair avoidability property of K, 
iff 
FairAvoidabilityAnalysis(K’,[[]]) =true



Fair Inevitability

Let K=<S,R,I,L,F> and  be a formula.

 is a fair inevitability property, if
every fair computation passes a -state

Proposition
 is a fair inevitability property of K, iff
[[]] is a fair inevitability property of K’=<S,R,I,[[F]]>. 



Fair Inevitability

Let K=<S,R,I,L,F> and  be a formula.

Proposition
Let K’=<S,R,I,[[F]]>.
 is a fair inevitability property of K, 
iff 
FairInevitabilityAnalysis(K’,[[]]) =true



Avoidability & Inevitability

fair inevitability is a negation of fair avoidability.

Proposition
 is a fair inevitability property of K, iff
 is not a fair avoidability property. 



• Emptiness

Basic Properties (3)



Emptiness

Let K=<S,R,I,L,F> .

L(K) is empty, iff 
the set of fair computations of K is empty, iff
K’=<S,R,I,[[F]]> is empty, iff
EmpChecking(K’)



(IV) An Example



An Example

Contents

Mutual Exclusion

Kripke Structure

Model Checking

Summary
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Example: Mutual Exclusion

Non-Critical Region

Critical Region

Process A

Non-Critical Region

Critical Region

Process B
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Example: Mutual Exclusion

Request for Entering

Non-Critical Region

Wait

Check for Entering

Critical Region

Exit

Process A

Request for Entering

Non-Critical Region

Wait

Check for Entering

Critical Region

Exit

Process B



201

Design of Mutual Exclusion (Activity)

request

exit

work in CR

wait

[condition 1]

[else]

work in NCR

initialization

request

exit

work in CR

wait

[condition 2]

[else]

work in NCR



Design of Mutual Exclusion

• Purpose: 
– ensure that not both processes are working in the 

critical region (CR)
• Mechanism: 

– use shared variables
– y=1: the first process is applying for entering CR or 

it is in CR
– x=1: the second process is applying for entering 

CR or it is in CR
– t=(i-1): the i-th process has priority for entering CR
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Design of Mutual Exclusion (State)

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0



204

Design of Mutual Exclusion (State)

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

Process A Process B

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0



Correctness of the Design

• How do we know that the design is correct? 



Combined States of the Two Processes

Process A Process B Remark
NCR NCR
NCR wait
NCR CR
wait NCR
wait wait
wait CR
CR NCR
CR wait
CR CR Bad state



Correctness of the Design

• How do we know that the design is correct? 
– We have to be sure that the bad state is not 

reachable in all possible executions of the 
algorithm

– We may use state exploration (model checking) 
techniques or deductive proof methods



Contents

Mutual Exclusion

Kripke Structure

Model Checking

Summary



Fair Kripke Structures

AP: A set of propositions.

A Kripke structure is a triple K=<S,R,I,L>
– S : A finite set of states
– R  S x S : A total transition relation
– I  S : A set of initial states
– L: S  2AP is a labeling function
– F: A set of formulas over AP



Process States and Variable States

Process A Process B x y t

NCR NCR 1 1 1

wait wait 0 0 0

CR CR

(a,b,x,y,t)



The Set of States: S

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}



Transition Relation: R

(NCR,b,x,y,t)  (wait,b,x,1,1)
(wait,b,0,y,t)  (CR,b,0,y,t)
(wait,b,x,y,0)  (CR,b,x,y,0)
(wait,b,1,y,1)  (wait,b,1,y,1)
(CR,b,x,y,t)  (NCR,b,x,0,t)

(a,NCR,x,y,t)  (a,wait,1,y,0)
(a,wait,x,1,t)  (a,CR,x,1,t)
(a,wait,x,y,1)  (a,CR,x,y,1)
(a,wait,x,1,0)  (a,wait,x,1,0)
(a,CR,x,y,t)  (a,NCR,0,y,t)



The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }



Labeling Function

AP={
a=NCR,a=wait,a=CR,b=NCR,b=wait,b=CR,
x=1,x=0,y=1,y=0,t=1,t=0

}

L(NCR,NCR,0,0,0)={a=NCR,b=NCR,x=0,y=0,t=0}
L(NCR,NCR,0,0,1)={a=NCR,b=NCR,x=0,y=0,t=1}
…



Fairness

F={
(b=NCR),
((x=0t=0)a=wait),
(a=CR),
(b=NCR),
((y=0t=1)b=wait),
(b=CR)

}
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NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

Example

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1



Safety Property

 = (a=CRb=CR)

Is  a safety property?



Inevitability Property

 = (a=CRb=CR)

Is  an inevitability property?
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Modeling and Model Checking

• Model Checking with VERDS
– http://lcs.ios.ac.cn/~zwh/verds

• Input to VERDS 
– VVM (VERDS verification model)

• Modeling Language
– VML (VERDS modeling langauge)



Without Fairness Specifications



Modeling in VML

VVM
VAR

x: 0..1; 
y: 0..1;
t: 0..1;

INIT
x=0; 
y=0;

PROC
p0: p0m();
p1: p1m();

SPEC 
AG(!(p0.a=c0&p1.b=c0));

Safety: 
Mutual exclusion



Modeling in VML

MODULE  p0m()
VAR 

a: {n0,w0,c0};
INIT

a=n0;
TRANS 

a=n0:                        (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0):  (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0:                        (y,a):=(0,n0);

MODULE  p1m()
VAR 

b: {n0,w0,c0};
INIT

b=n0;
TRANS 

b=n0:                      (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1):  (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0:                       (x,b):=(0,n0);



The Complete Model in VML

VVM
VAR

x: 0..1; 
y: 0..1;
t: 0..1;

INIT
x=0; 
y=0;

PROC
p0: p0m();
p1: p1m();

SPEC 
AG(!(p0.a=c0&p1.b=c0));

MODULE  p0m()
VAR 

a: {n0,w0,c0};
INIT

a=n0;
TRANS 

a=n0:                        (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0):  (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0:                        (y,a):=(0,n0);

MODULE  p1m()
VAR 

b: {n0,w0,c0};
INIT

b=n0;
TRANS 

b=n0:                      (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1):  (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0:                       (x,b):=(0,n0);



Verification with VERDS
./verds -ck 1 mutex3.vvm
VERSION:    verds 1.46 - JAN 2015
FILE:       mutex3.vvm
INFO:       int=i0
PROPERTY:   A G ! ((p0.a = 2 )& (p1.b = 2 ))
check:   0  
----------
check:   1  
----------
…
...
check:   5  
----------
CONCLUSION: TRUE



Consider the Inevitability Property

VVM
VAR

x: 0..1; 
y: 0..1;
t: 0..1;

INIT
x=0; 
y=0;

PROC
p0: p0m();
p1: p1m();

SPEC 
AG(!(p0.a=c0&p1.b=c0));
AF((p0.a=c0)|(p1.b=c0));

Inevitability:
Working in critical region



Verification with VERDS
./verds -ck 2  mutex3.vvm
VERSION:    verds 1.46 - JAN 2015
FILE:       mutex3.vvm
INFO:       int=i0
PROPERTY:   A F ((p0.a = 2 )| (p1.b = 2 ))
check:   0  
----------
check:   1  
----------
…
…
check:   4  
----------
The property is false, preparing mutex3.cex ...
CONCLUSION: FALSE



Verification with VERDS
LOOP starts from STATE 2:

--- STATE 0 ---
x       =0
y       =0
t       =1
p0.a    =0
p1.b    =0
--- TRANS 5 ---
--- STATE 1 ---
x       =1
y       =0
t       =0
p0.a    =0
p1.b    =1

--- TRANS 1 ---
--- STATE 2 ---
x       =1
y       =1
t       =1
p0.a    =1
p1.b    =1
--- TRANS 3 ---
--- STATE 3 ---
x       =1
y       =1
t       =1
p0.a    =1
p1.b    =1
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Checking the Model

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

Process A Process B

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0



With Fairness Specifications



Modified Model (with Fairness)

MODULE  p0m()
VAR 

a: {n0,w0,c0};
INIT

a=n0;
TRANS 

a=n0:                        (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0):  (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0:                        (y,a):=(0,n0);

FAIRNESS
!(a=n0);

!((x=0|t=0)&(a=w0));
!(a=c0);

MODULE  p1m()
VAR 

b: {n0,w0,c0};
INIT

b=n0;
TRANS 

b=n0:                      (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1):  (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0:                       (x,b):=(0,n0);

FAIRNESS

!(b=n0);

!((y=0|t=1)&(b=w0));

!(b=c0);



Verification with VERDS
./verds -ck 1 mutex3f.vvm
VERSION:    verds 1.46 - JAN 2015
FILE:       mutex3f.vvm
INFO:       int=i0
PROPERTY:   A G ! ((p0.a = 2 )& (p1.b = 2 ))
check:   0  
----------
check:   1  
----------
…
...
check:   19
----------
CONCLUSION: TRUE



Verification with VERDS
./verds -ck 2 mutex3f.vvm
VERSION:    verds 1.46 - JAN 2015
FILE:       mutex3f.vvm
INFO:       int=i0
PROPERTY:   A F ((p0.a = 2 )| (p1.b = 2 )) 
check:   0  
----------
check:   1  
----------
…
...
check:  99  
----------
CONCLUSION: TRUE



Correctness of the Design

• How do we know that the design is correct? 
– Safety property: (a=CRb=CR)
– Inevitability property: (a=CRb=CR)
– We have shown that a safety property  holds, i.e., 

the bad states are not reachable 
– We have also shown that an inevitability property 

holds under a fairness assumption, i.e., some good 
states must be reached in every computation



Remarks on the Correctness

• Only verified against the given properties:
– The safety property
– The inevitability property

• Rely on:
– The model
– The verification tool
– The fairness assumption as a part of the model, 

for the verification of 
the inevitability property



Modified Model (with Inappropr. Fairness)

MODULE  p0m()
VAR 

a: {n0,w0,c0};
INIT

a=n0;
TRANS 

a=n0:                        (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0):  (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0:                        (y,a):=(0,n0);

FAIRNESS

!(a=c0|a=w0|a=n0);

MODULE  p1m()
VAR 

b: {n0,w0,c0};
INIT

b=n0;
TRANS 

b=n0:                      (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1):  (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0:                       (x,b):=(0,n0);

FAIRNESS

!(b=n0);

!((y=0|t=1)&(b=w0));

!(b=c0);



Verification with VERDS
../verds -ck 1 mutex3fw.vvm
VERSION:    verds 1.46 - JAN 2015
FILE:       mutex3wf.vvm
INFO:       int=i0
PROPERTY:   A G ! ((p0.a = 2 )& (p1.b = 2 )) 
check:   0  
----------
check:   1  
----------
…
...
check:   25
----------
CONCLUSION: TRUE



Verification with VERDS
./verds -ck 2 mutex3fw.vvm
VERSION:    verds 1.46 - JAN 2015
FILE:       mutex3wf.vvm
INFO:       int=i0
PROPERTY:   A F ((p0.a = 2 )| (p1.b = 2 )) 
check:   0  
----------
check:   1  
----------
…
...
check:   40
----------
CONCLUSION: TRUE



Modified Model (with Inappropr. Fairness)

MODULE  p0m()
VAR 

a: {n0,w0,c0};
INIT

a=n0;
TRANS 

a=n0:                        (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0):  (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0:                        (y,a):=(0,n0);

FAIRNESS

!(a=c0|a=w0|a=n0);

MODULE  p1m()
VAR 

b: {n0,w0,c0};
INIT

b=n0;
TRANS 

b=n0:                      (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1):  (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0:                       (x,b):=(0,n0);

FAIRNESS

!(b=n0);

!((y=0|t=1)&(b=w0));

!(b=c0);



Modified Model (with Inappropr. Fairness)

MODULE  p0m()
VAR 

a: {n0,w0,c0};
INIT

a=n0;
TRANS 

a=n0:                        (y,t,a):=(1,1,w0);
a=w0&(x=0|t=0):  (a):=(c0);
a=w0&!(x=0|t=0): (a):=(w0);
a=c0:                        (y,a):=(0,n0);

FAIRNESS

!(a=c0|a=w0|a=n0);

MODULE  p1m()
VAR 

b: {n0,w0,c0};
INIT

b=n0;
TRANS 

b=n0:                      (x,t,b):=(1,0,w0);
b=w0&(y=0|t=1):  (b):=(c0);
b=w0&!(y=0|t=1): (b):=(w0);
b=c0:                       (x,b):=(0,n0);

FAIRNESS

!(b=n0);

!((y=0|t=1)&(b=w0));

!(b=c0);

This model 
is empty
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(V) Summary

• Fair Kripke Structures
• Labeled Kripke Structures
• Fair Labeled Kripke Structures
• An Example



思考题：

给定一个公平Kripke模型K=<S,R,I,F>和一个集合AS.

(1)
通过对模型进行改造，用公平Kripke模型非空问题算法
验证A是否是K的公平可达性质

(2)
通过对模型进行改造，用公平Kripke模型非空问题算法
验证A是否是K的公平可避免性质


