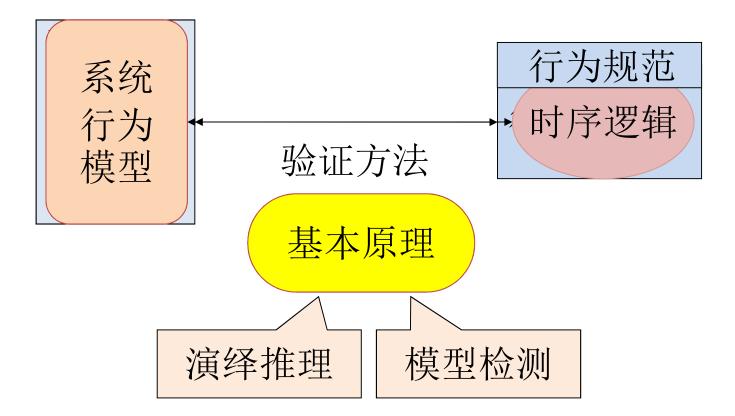
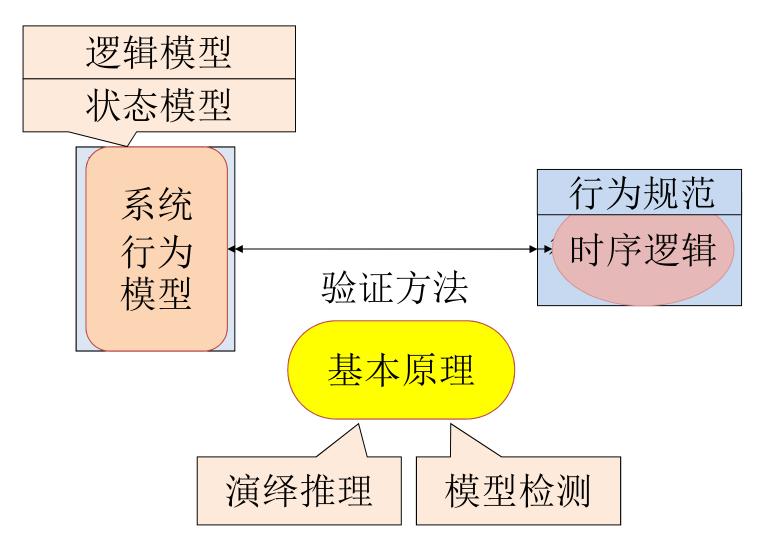
#### Kripke Structures

# 中国科学院软件研究所 计算机科学国家重点实验室 张文辉 http://lcs.ios.ac.cn/~zwh/

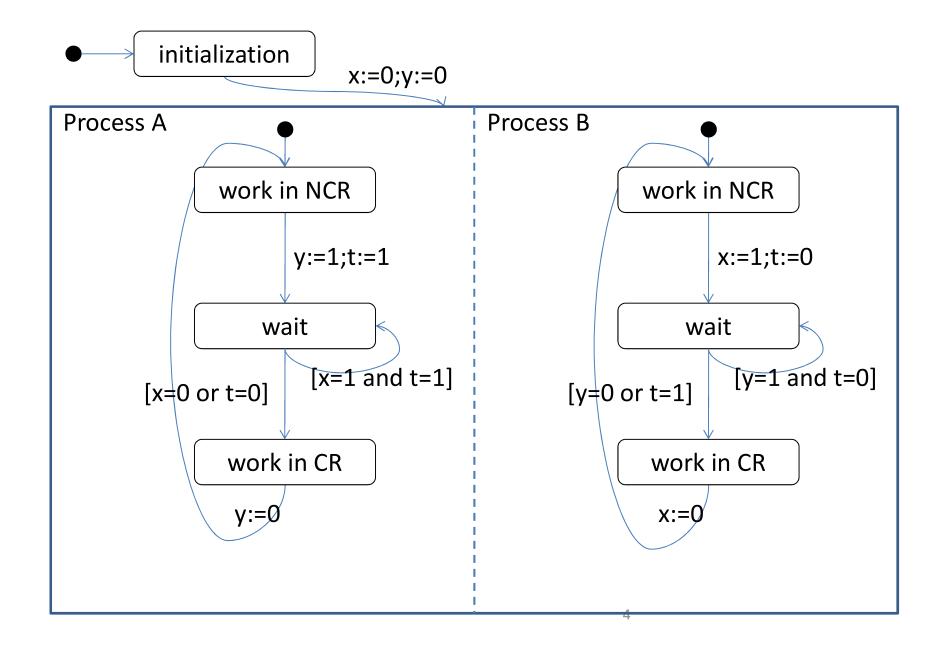








# 例子-互斥: 状态图(State Diagram)



例子-互斥: 算法

```
VAR: x: 0..1; y: 0..1; t: 0..1;
a: {NCR,wait,CR}; b: {NCR,wait,CR};
INIT: x=0; y=0;
a=NCR; b=NCR;
```

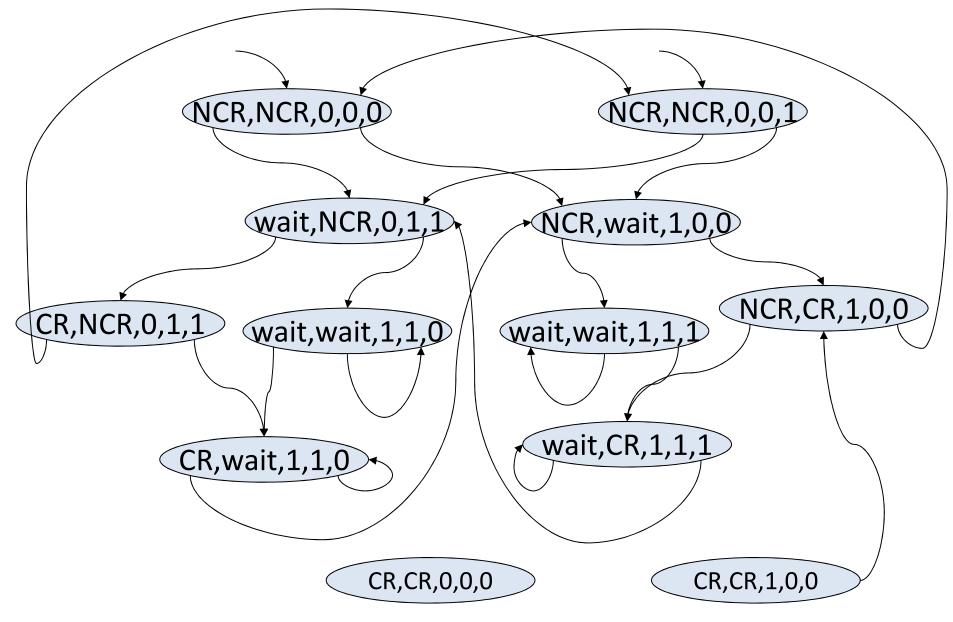
#### Process A:

| a=NCR             | $\rightarrow$ (a,y,t):=(wait,1,1); |
|-------------------|------------------------------------|
| a=wait∧(x=0∨t=0)  | $\rightarrow$ (a):=(CR);           |
| a=wait∧¬(x=0∨t=0) | $\rightarrow$ (a):=(wait);         |
| a=CR              | $\rightarrow$ (a,y):=(NCR,0);      |

#### Process B:

```
b=NCR \rightarrow (b,x,t):=(wait,1,0);
b=wait\land(y=0\lort=1) \rightarrow (b):=(CR);
b=wait\land \neg(y=0\lort=1) \rightarrow (b):=(wait);
b=CR \rightarrow (b,x):=(NCR,0);
```

例子-互斥: 可达状态 + 部分不可达状态



例子-互斥: 状态集合

#### $S = \{ s_0, s_1, ..., s_{71} \}$

#### s<sub>i</sub>对应于五元组(a,b,x,y,t)的一个元素

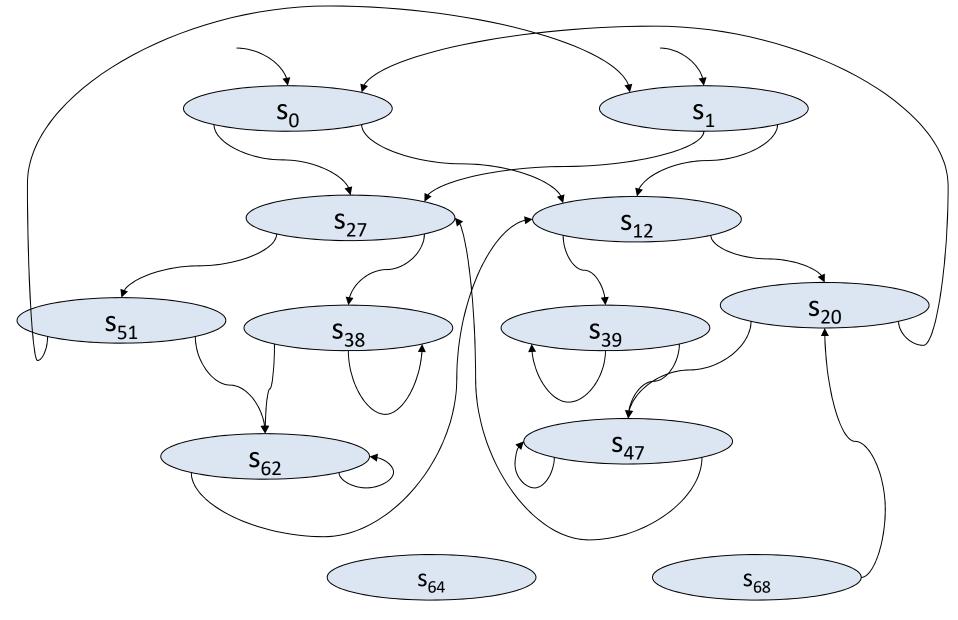
#### 其中s<sub>i</sub>代表 (a,b,x,y,t) 当且仅当 i=a\*24+b\*8+x\*4+y\*2+t

其中NCR代表0, wait代表1, CR代表2

例如:

 $s_0 = (0,0,0,0,0) = (NCR,NCR,0,0,0)$  $s_{48} = (2,0,0,0,0) = (CR,NCR,0,0,0)$ 

# 例子-互斥: 状态迁移图(Kripke结构)



8



- Kripke结构
- 安全性质相关概念及验证方法
- 必达性质相关概念及验证方法

# (I) Kripke Structures

#### Definition

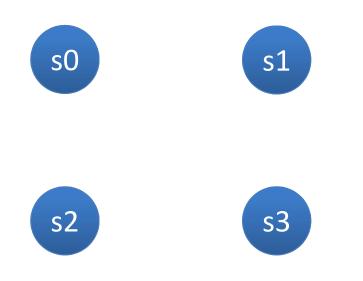
- A Kripke structure is a triple K=<S,R,I>
- S : A set of states
- $R \subseteq S \mathrel{x} S$  : A total transition relation
- $-\operatorname{I}\subseteq\operatorname{S}$  : A set of initial states

#### R is total, if $\forall$ s.∃s'.(s,s')∈R

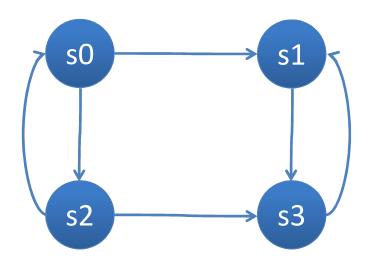
# **Kripke Structures**

- Basic Concepts
  - States, Transition Relation, Initial States
  - Successors, Predecessors
  - Reachable States, Reachability Relation
  - Paths (Finite and Infinite), Computation, Behavior
  - Properties
- Basic System Properties
  - Reachability, Safety
  - Avoidability, Inevitability

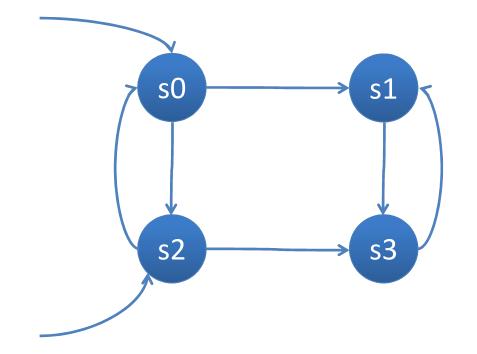
# Example: S



# Example: R



# Example: I



# **Basic Concepts**

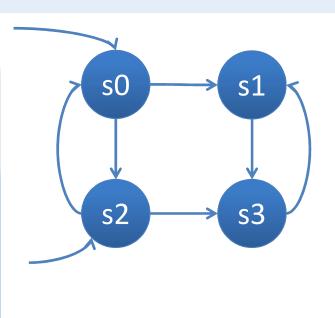
# 1. Successors

s' is a successor of s, if s  $\rightarrow$  s', i.e., R(s,s')

```
The set of successors of s:
R(s)
```

The set of successors of X:  $R(X) = \bigcup_{s \in X} R(s)$ 

R is total if  $R(s) \neq \emptyset$  for all  $s \in S$ 



Example:

 $R(s0) = \{ s1, s2 \}$ 

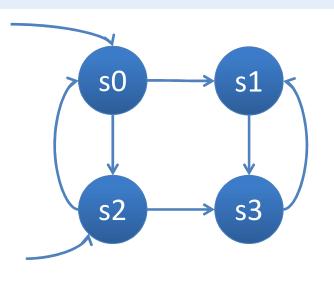
R({s0,s1}) = { s1,s2, s3 }

## 1a. Predecessors

s is a predecessor of s', if s  $\rightarrow$  s', i.e., R(s,s'), R<sup>-1</sup>(s',s)

The set of predecessors of s:  $R^{-1}(s)$ 

The set of predecessors of X :  $R^{-1}(X) = \bigcup_{s \in X} R^{-1}(s)$ 



Example:  $R^{-1}(s0) = \{ s2 \}$  $R^{-1}(\{s0,s1\}) = \{ s0,s2, s3 \}$ 

# 2. Reachable States (from s)

$$\rightarrow^*$$
 :

the reflexive and transitive closure of  $\rightarrow$ 

s' is reachable from s, if  $s \rightarrow s'$ 

The set of states reachable from s is  $\{s' \mid s \rightarrow *s'\}$ : R\*(s).

# 2. Reachable States (from A,K)

s' is reachable from A, if s $\rightarrow$ \*s' for some s  $\in$  A

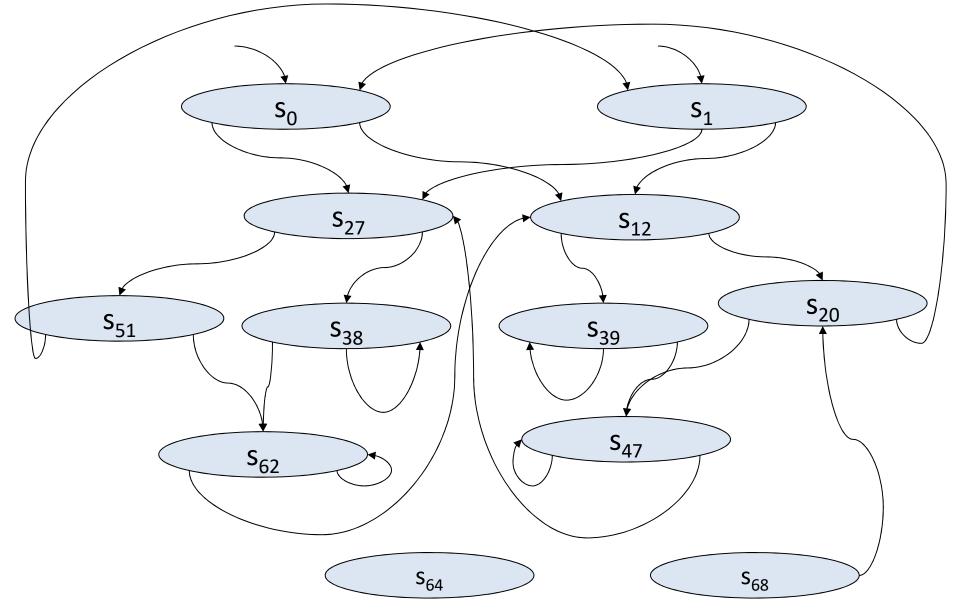
The set of states reachable from A is  $\{s' \mid s \rightarrow *s', s \in A\}$ : R\*(A).

The set of states reachable in K is  $R^*(I)=\{s' \mid s \rightarrow *s', s \in I\}$ : Rh(K). Reachable states of s:  $R^*(s) = \{ s' \mid s \rightarrow *s' \}$ 

Reachable states of X:  $R^*(X) = \bigcup_{s \in X} R^*(s)$ 

Reachable states of K:  $Rh(K) = R^*(I)$ 

# 例子-互斥: 状态迁移图(Kripke结构)

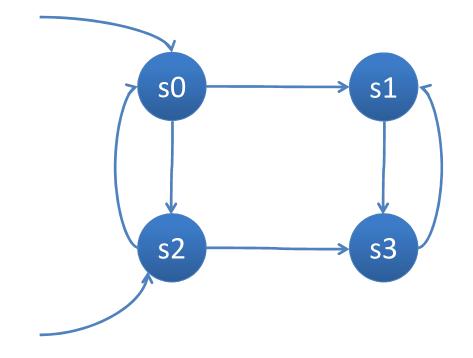


```
A set Y is reachable from s,
if there is a state s' of Y,
such that s \rightarrow s'
```

```
A set Y is reachable from X,
if there is a state s' of Y and a state s of X,
such that s \rightarrow * s'
```

$$X \rightarrow * Y$$

## Example:



The set of reachable states (Y=R\*(X)): X = { s1 }, Y = { s1, s3 }; X = { s0,s1 }, Y = { s0,s1,s2,s3 }

Reachability relation  $(X \rightarrow * Y)$ : X = { s1 }, Y = { s2, s3 }; X = { s0,s1,s2 }, Y = { s3 }

# 3. Path

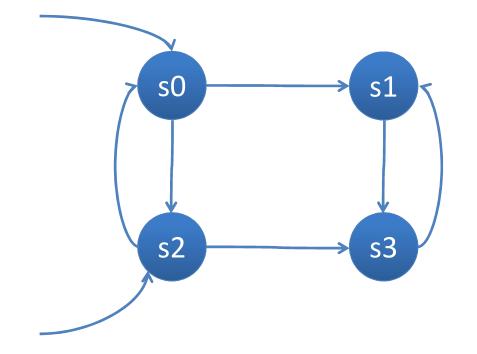
# Definition An infinite path is an infinite sequence of S: $s_0 s_1 s_2 \dots$ such that $s_i \rightarrow s_{i+1}$ for all $i \ge 0$

#### Definition

A finite path is a finite prefix of an infinite path:

 $s_0 \dots s_n$ 

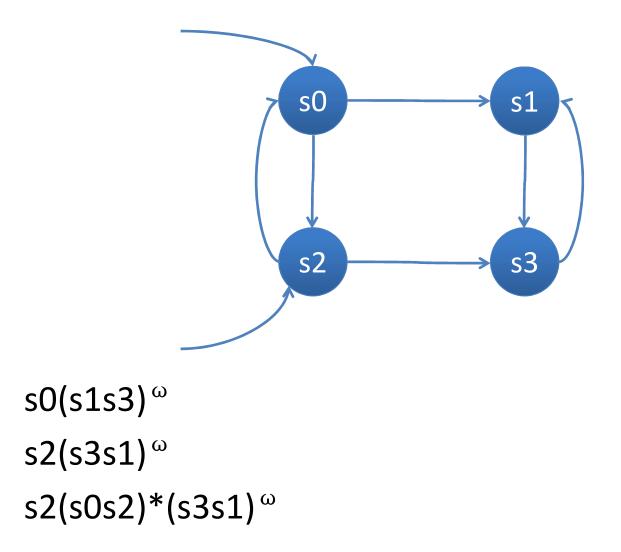
#### Example: Paths



Infinite paths: s0s1s3s1s3s1... s0(s1s3)<sup>ω</sup> s1s3s1s3s1s3s1... Finite paths: s0s1s3s1 s1s3s1s3s1

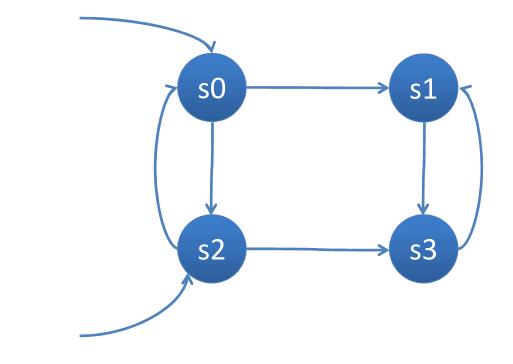
# A computation of K is an infinite path $s_0 s_1 s_2 \dots$ such that $s_0 \in I$

#### **Example: Computations**



# The behavior of K is the set of computations of K, denoted [[K]].

### Example: Behavior



(s0s2)<sup>ω</sup> s0(s2s0)\*(s1s3)<sup>ω</sup> s0s2(s0s2)\*(s3s1)<sup>ω</sup> (s2s0)<sup>ω</sup> s2(s0s2)\*(s3s1)<sup>ω</sup> s2s0(s2s0)\*(s1s3)<sup>ω</sup> A property is represented by a set of states

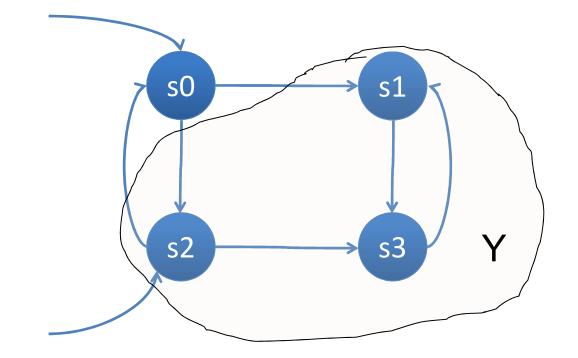
- X
- Y

#### DEF: s satisfies Y, if $s \in Y$ .

DEF: X satisfies Y, if for all  $s \in X$ , s satisfies Y, i.e.,  $X \subseteq Y$ 

s is called a Y-state, if s satisfies Y.

#### Example: Y-States

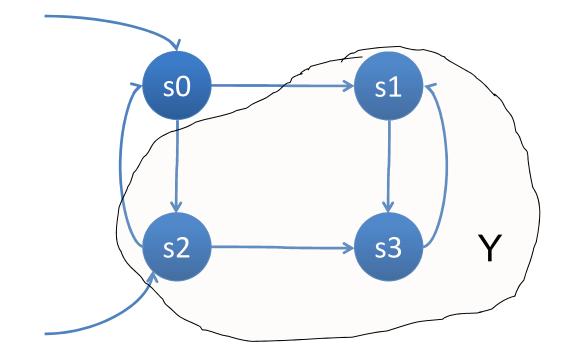


#### s1, s2 and s3 are Y-states

A path (computation)  $\pi$ is called a Y-path (Y-computation), if all states appear on  $\pi$  satisfy Y.

A path (computation)  $\pi$  reaches (passes) Y-states, if some state appears on  $\pi$  satisfies Y.

#### Example: Y-Paths, Y-Computations



(s1s3) is a finite Y-path
(s1s3)<sup>ω</sup> is a Y-path
s2(s1s3)<sup>ω</sup> is a Y-computation

### **Complementary Sets - Negation**

Y-States, Y-Paths, Y-Computations

Notation:  $\neg Y \equiv (S \setminus Y)$ 

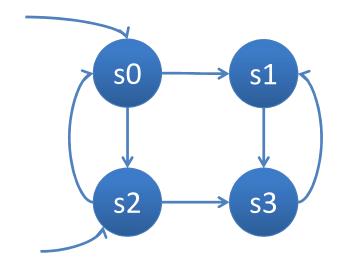
¬Y-States, ¬Y-Paths, ¬Y-Computations

Y is a reachable, if

there is a computation of K that reaches a Y-state.

Reachability Problem:

Given a set Y. Is Y reachable?

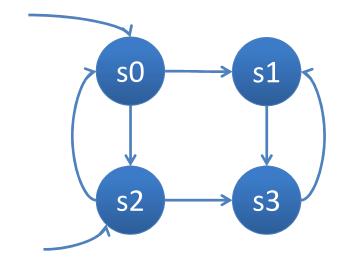


Y is avoidable, if

there a computation that does not reach any Y-state.

Avoidability Problem:

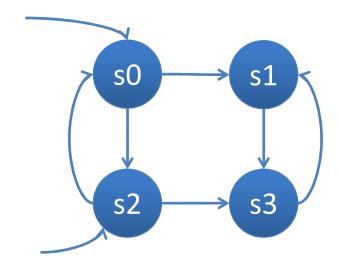
Given a set Y. Is Y avoidable?



### **Basic System Properties**

(1) Reachability, Safety

(2) Avoidability, Inevitability



# (II) Reachability Property - Possibility

Let Y be a set of states.

Y is a reachability property, if there is a computation of K that reaches a Y-state.

# Example: {s0,s2}, {s0,s1,s2}



### **Reachability Problem**

## Given a set $A \subseteq S$ . Is A a reachability property?

# **Reachability Analysis**

```
Let K=<S,R,I> and A \subsetS.
                                                 s0
                                                           s1
BOOL ReachabilityAnalysis(K,A)
  ł
      w:=l;
                                                 s2
                                                           s3
      repeat until w={};
             s:=w.getElement(); if (s in A) return true;
             visited[s]:=true;
             for each (s' in R(s)),
                    if (visited[s']=false) w.putElement(s');
             w.removeElement(s);
      return false;
```

### Let K=<S,R,I> be a Kripke structure, and A $\subseteq$ S.

### **Proposition:**

ReachabilityAnalysis(K,A) =true Iff

A is a reachability property

## Reachability Analysis (Alternatively)

### Let K=<S,R,I> be a Kripke structure, and A $\subseteq$ S.

### **Proposition:**

A is a reachability property, iff Rh(K) $\cap A \neq \emptyset$ 

➔ Reachability analysis based on fixpoint computation

### **Fixpoints**

- Let f:  $A \rightarrow A$  be a function.
- $a \in A$  is a fixpoint of f, if f(a)=a
- Questions:

Existence of a fixpoint? Computation of a fixpoint?

## Fixpoints

- Let S be a finite set and  $(2^{S}, \subseteq)$  be a lattice.
- Let f:  $2^{S} \rightarrow 2^{S}$  be a monotonic function.
- The least fixpoint of f denoted  $\mu$ f (or  $\mu$ Z.f(Z)) is:  $\mu$ f =  $\cup$  { f<sup>k</sup> ( $\emptyset$ ) | k=0,1,2,... }
- The greatest fixpoint of f denoted vf (or vZ.f(Z)) is: vf =  $\cap \{ f^k(S) \mid k=0,1,2,... \}$

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

Let f:  $2^{S} \rightarrow 2^{S}$  be defined by  $f(w) = I \cup R(w)$ 

THEN Rh(K) =  $\mu f$ 

A is a reachability property, iff  $\mu f \cap A \neq \emptyset$ 

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

```
SET leastfixpoint(f,K)
{
  w={};
  repeat
      w':=w;
      w :=f(w,K);
  until w'=w;
  return w;
}
```

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

| SET leastfixpoint(f,K) | SET f(w,K)                               |
|------------------------|------------------------------------------|
| {                      | {                                        |
| w={};                  | return I $\cup$ R(w);                    |
| repeat                 | }                                        |
| w':=w;                 |                                          |
| w :=f(w,K);            | BOOL ReachabilityAnalysisFP(K,A)         |
| until w'=w;            | {                                        |
| return w;              | w=leastfixpoint(f,K);                    |
| }                      | return ( w $\cap$ A $\neq \emptyset$ ) ; |
|                        | }                                        |

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

#### **Proposition:**

ReachabilityAnalysisFP(K,A) =true Iff

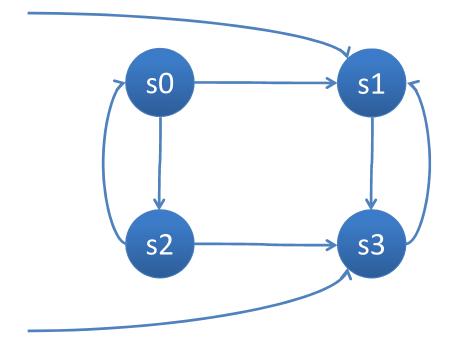
A is a reachability property

## Safety Property - Universality

Let Y be a set of states.

Y is a safety property, if every computation is a Y-computation.

# Example: {s2,s3}, {s1,s2,s3}



## Reachability & Safety

Safety is a dual property of reachability.

#### **Proposition**

A system K=<S,R,I> is safe with respect to Y, iff  $Rh(K) \subseteq Y$ .

### **Corollary** [Duality]

A system K=<S,R,I> is safe with respect to Y, iff  $\neg$ Y is not reachable in K.

# Safety Analysis

```
Let K=<S,R,I> be a Kripke structure, and A \subseteqS.
```

```
BOOL SafetyAnalysis(K,A)
   w:=l;
   repeat until w={};
       s:=w.getElement(); if (s not in A) return false;
           visited[s]:=true;
           for each (s' in R(s)),
                 if (visited[s']=false) w.putElement(s');
           w.removeElement(s);
    return true;
```

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

#### **Proposition:**

SafetyAnalysis(K,A) =true Iff

A is a safety property

# Safety Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

| SET leastfixpoint(f,K) | SET f(w,K)                                      |
|------------------------|-------------------------------------------------|
| {                      | {                                               |
| w={};                  | return I $\cup$ R(w);                           |
| repeat                 | }                                               |
| w':=w;                 |                                                 |
| w :=f(w,K);            | BOOL SafetyAnalysisFP(K,A)                      |
| until w'=w;            | {                                               |
| return w;              | w=leastfixpoint(f,K);                           |
| }                      | return ( w $\cap$ ( $\neg$ A) = $\emptyset$ ) ; |
|                        | }                                               |

## Safety Analysis (FP)

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

#### **Proposition:**

SafetyAnalysisFP(K,A) =true Iff

A is a safety property

## Reachability & Safety

### SafetyAnalysis(K,A) =true $\Leftrightarrow$ ReachabilityAnalysis(K, $\neg$ A) =false

## **Deductive Safety Analysis**

- Transition invariant
- System invariant
- Inductive invariant

### **Transition Invariant**

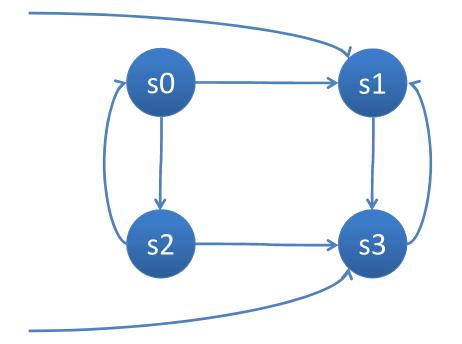
K=(S,R,I)

Definition X is a transition invariant, if for every  $s \in X$ , if  $s \rightarrow s'$ , then  $s' \in X$ .

Lemma

If  $R(X) \subseteq X$ , then X is a transition invariant.

# Example: {s1,s2,s3}×, {s0,s2,s3}×, {s1,s3}√



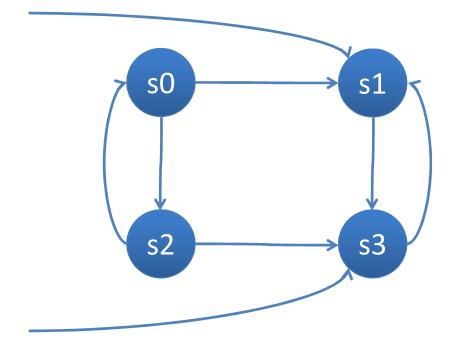
### Definition

- X is a system invariant, if
- $I \subseteq X$  and  $X \cap Rh(K)$  is a transition invariant.

Lemma

X is a system invariant iff X is safety property.

# Example: $\{s1,s2,s3\}\sqrt{}, \{s0,s2,s3\}\times, \{s1,s3\}\sqrt{}$



Definition

X is an inductive invariant, if

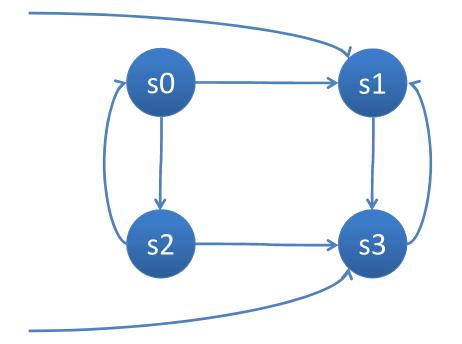
 $I \subseteq X$  and X is a transition invariant.

Lemma

X is an inductive invariant iff

X is a system invariant and a transition invariant.

# Example: {s1,s2,s3}×, {s0,s2,s3}×, {s1,s3}√



### Rh(K) is an inductive Invariant;

### an inductive invariant is a system invariant;

X is a system invariant iff X is a safety property.

### **Proof of Safety**

Given X.

Question: is X a safety property of K?

## Proof of Safety (1)

Given X.

Question: is X a safety property of K?

Lemma If X is an inductive invariant, then K is safe w.r.t. X.

# Proof of Safety (1)

Given X.

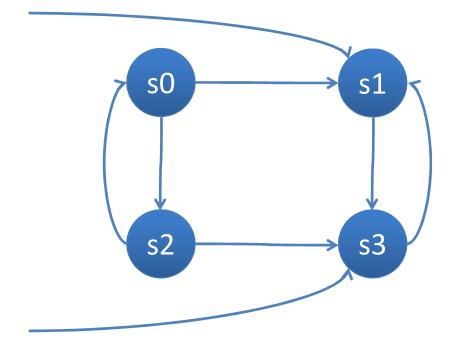
Question: is X a safety property of K?

 $I \subseteq X$  $R(X) \subseteq X$ 

X is a safety property

(not always applicable)

# Example: {s1,s3}, {s1,s2,s3}



# Proof of Safety (2)

Given X.

Question: is X a safety property of K?

Lemma If there is an inductive invariant Y such that  $Y \subseteq X$ , then K is safe w.r.t. X.

Completeness

If the conclusion holds, then such a Y exists.

# Proof of Safety (2)

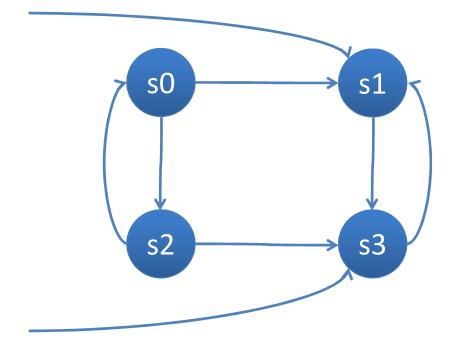
Given X.

Question: is X a safety property of K?

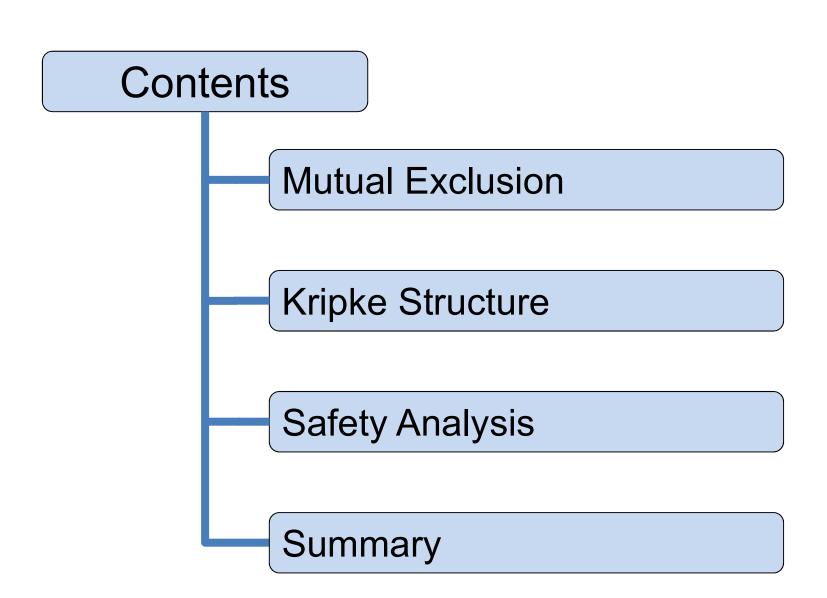
 $I \subseteq Y$  $R(Y) \subseteq Y$  $Y \subseteq X$ 

X is a safety property

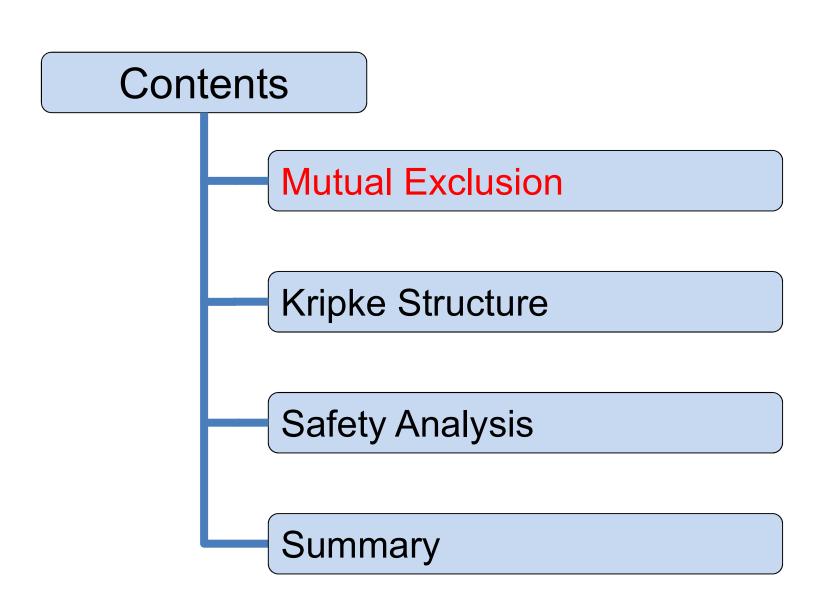
# Example: {s1,s3}, {s1,s2,s3}



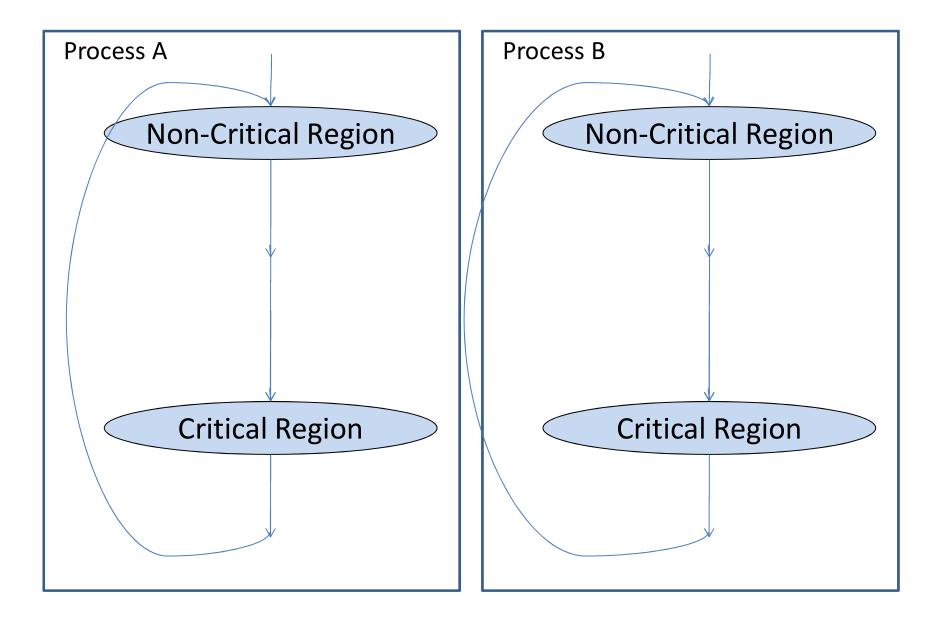
### Safety Analysis – An Example



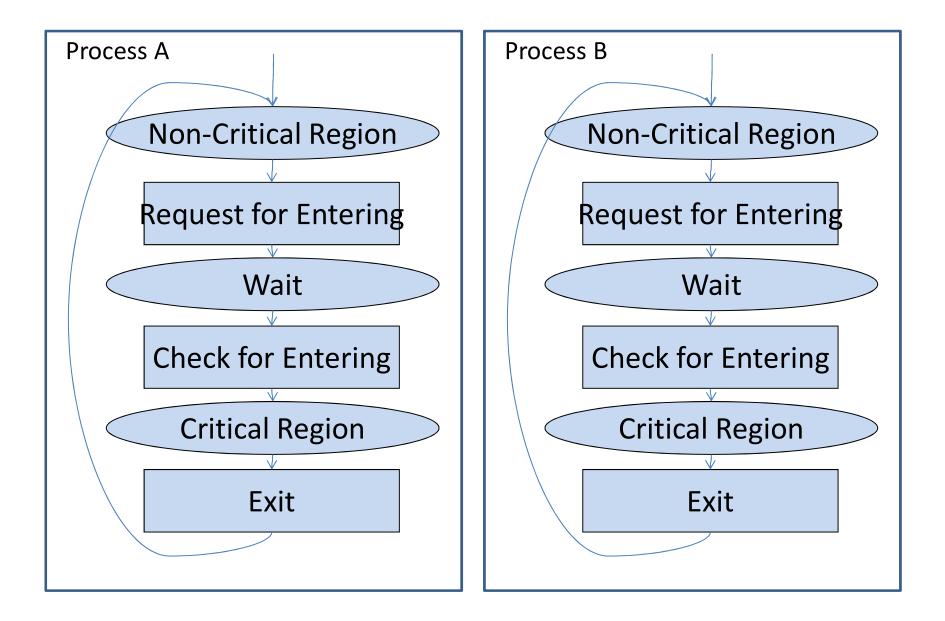
### Safety Analysis – An Example



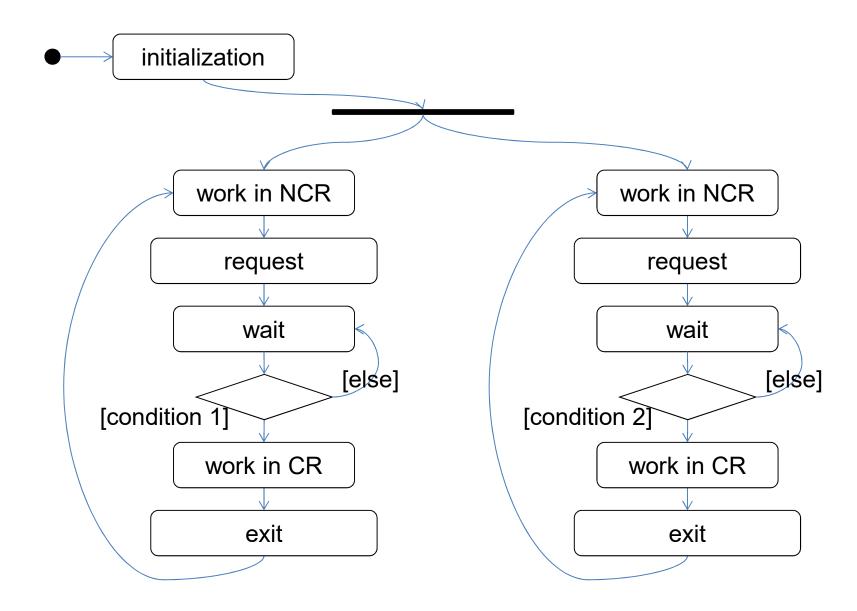
### **Example: Mutual Exclusion**



### **Example: Mutual Exclusion**



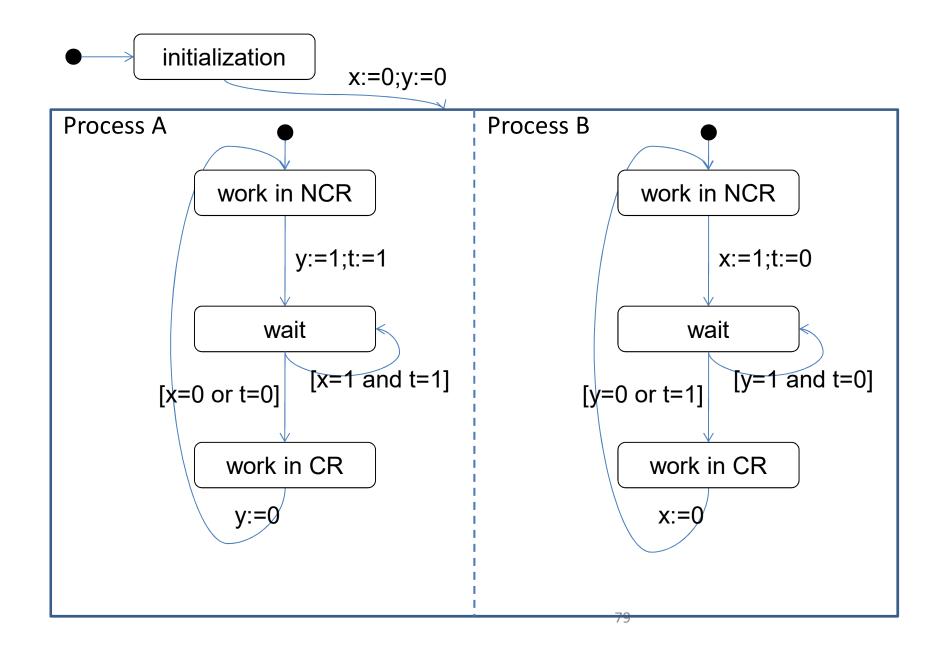
# Design of Mutual Exclusion (Activity)



# **Design of Mutual Exclusion**

- Purpose:
  - ensure that not both processes are working in the critical region (CR)
- Mechanism:
  - use shared variables
  - y=1: the first process is applying for entering CR or it is in CR
  - x=1: the second process is applying for entering CR or it is in CR
  - t=(i-1): the i-th process has priority for entering CR

# Design of Mutual Exclusion (State)



## Correctness of the Design

• How do we know that the design is correct?

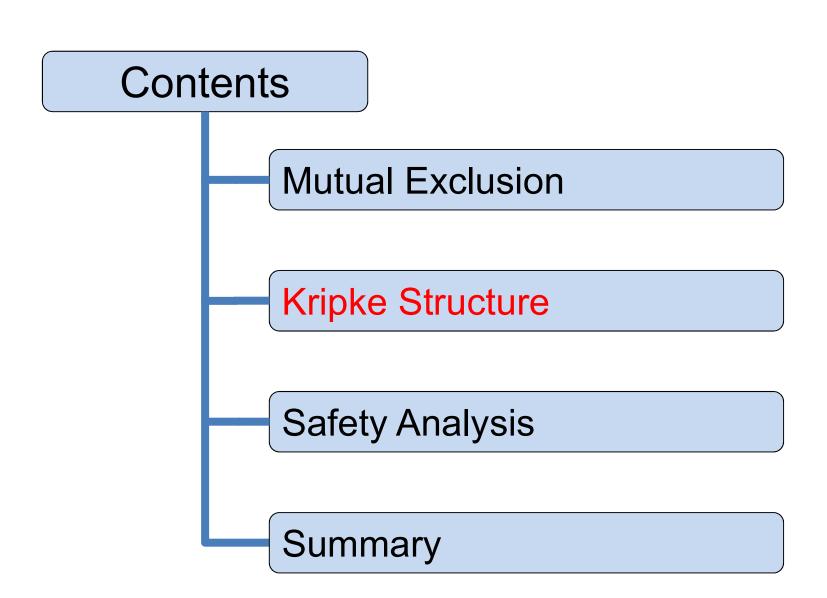
### Combined States of the Two Processes

| Process A | Process B | x,y,t | Remark    |
|-----------|-----------|-------|-----------|
| NCR       | NCR       |       |           |
| NCR       | wait      |       |           |
| NCR       | CR        |       |           |
| wait      | NCR       |       |           |
| wait      | wait      |       |           |
| wait      | CR        |       |           |
| CR        | NCR       |       |           |
| CR        | wait      |       |           |
| CR        | CR        |       | Bad state |

## Correctness of the Design

- How do we know that the design is correct?
  - We have to be sure that the bad state is not reachable in all possible executions of the algorithm
  - We may use state exploration (model checking) techniques or deductive proof methods

### Safety Analysis – An Example



### **Kripke Structures**

A Kripke structure is a triple K=<S,R,I>

- S : A finite set of states
- $R \subseteq S \mathrel{x} S$  : A total transition relation
- $-\operatorname{I}\subseteq\operatorname{S}$  : A set of initial states

### **Domains of Process and Variable States**

| Process A | Process B | X | У | t |
|-----------|-----------|---|---|---|
| NCR       | NCR       | 1 | 1 | 1 |
| wait      | wait      | 0 | 0 | 0 |
| CR        | CR        |   |   |   |

(a,b,x,y,t)

### The Set of States: S

### {(a,b,x,y,t) | $a,b \in \{NCR,wait,CR\}$ and $x,y,t \in \{0,1\}$ }

# Transition Relation: R

| (NCR,b,x,y,t)                    | $\rightarrow$ (wait,b,x,1,1)                                         |
|----------------------------------|----------------------------------------------------------------------|
| (wait,b,0,y,t)                   | $\rightarrow$ (CR,b,0,y,t)                                           |
| (wait,b,x,y,0)                   | $\rightarrow$ (CR,b,x,y,0)                                           |
| (wait,b,1,y,1)                   | → (wait,b,1,y,1)                                                     |
| (CR,b,x,y,t)                     | $\rightarrow$ (NCR,b,x,0,t)                                          |
|                                  |                                                                      |
|                                  |                                                                      |
| (a,NCR,x,y,t)                    | → (a,wait,1,y,0)                                                     |
| (a,NCR,x,y,t)<br>(a,wait,x,0,t)  | <ul> <li>→ (a,wait,1,y,0)</li> <li>→ (a,CR,x,0,t)</li> </ul>         |
|                                  | _                                                                    |
| (a,wait,x,0,t)                   | $\rightarrow$ (a,CR,x,0,t)                                           |
| (a,wait,x,0,t)<br>(a,wait,x,y,1) | $ \rightarrow (a, CR, x, 0, t) $<br>$ \rightarrow (a, CR, x, y, 1) $ |

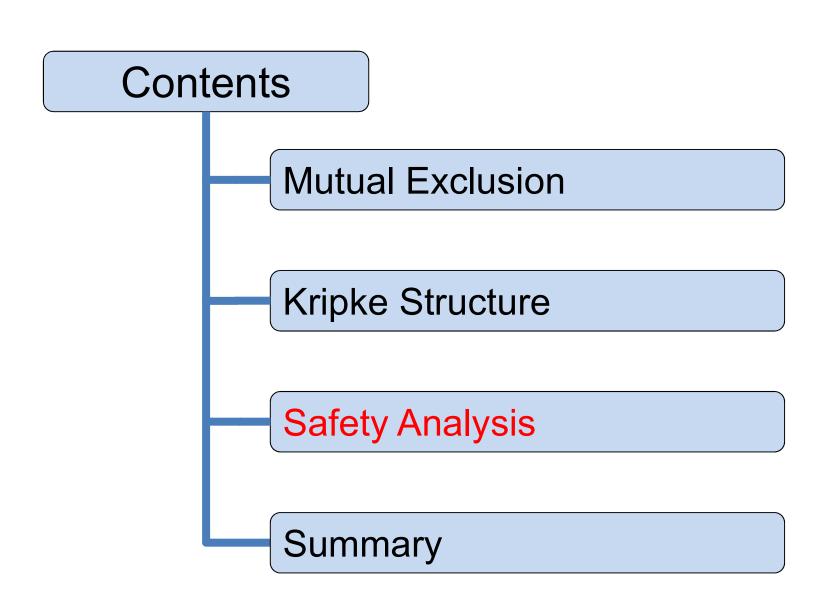
### The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

(NCR,b,x,y,t) (wait,b,x,y,t) (CR,NCR,x,y,t) (CR,wait,x,y,t)

The set of unsafe states: (CR,CR,x,y,t)

### Safety Analysis – An Example



```
Let K=<S,R,I> be a Kripke structure, and A \subseteqS.
```

```
BOOL SafetyAnalysis(K,A)
   w:=l;
   repeat until w={};
       s:=w.getElement(); if (s not in A) return false;
           visited[s]:=true;
           for each (s' in R(s)),
                 if (visited[s']=false) w.putElement(s');
           w.removeElement(s);
    return true;
```

Let K=<S,R,I> be a Kripke structure, and  $Y \subseteq S$ .

#### **Proposition:**

SafetyAnalysis(K,Y) =true

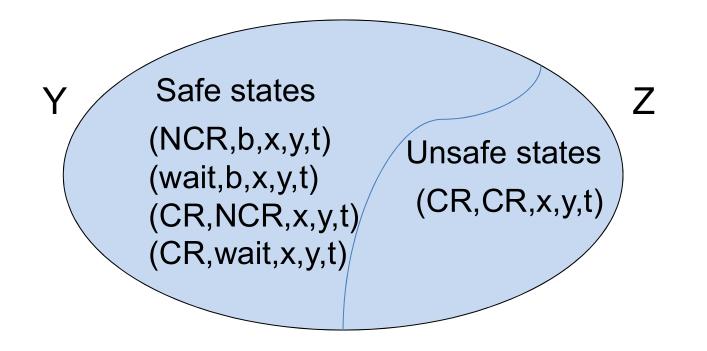
lff

Y is a safety property

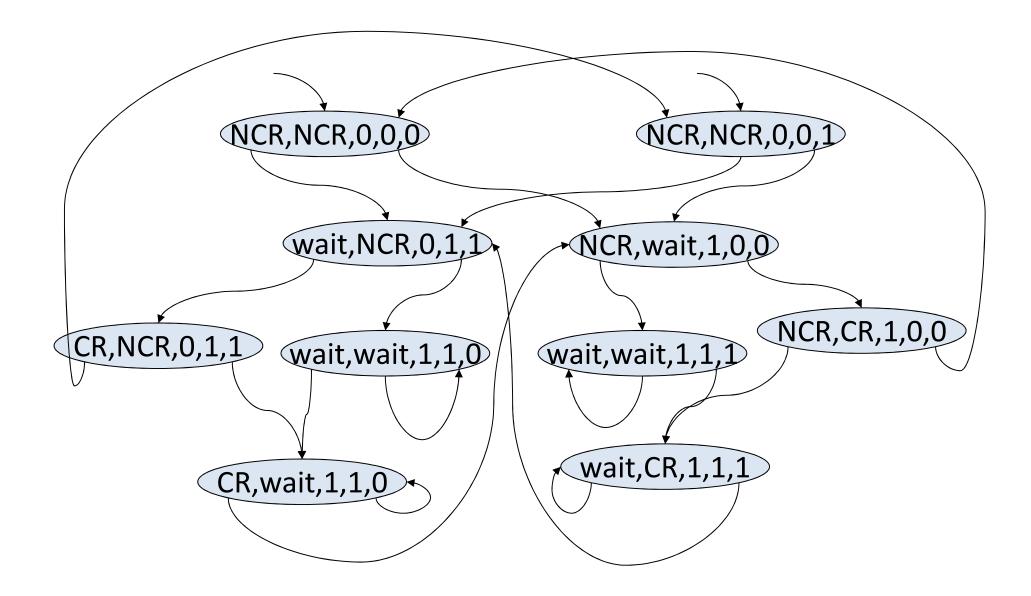
lff

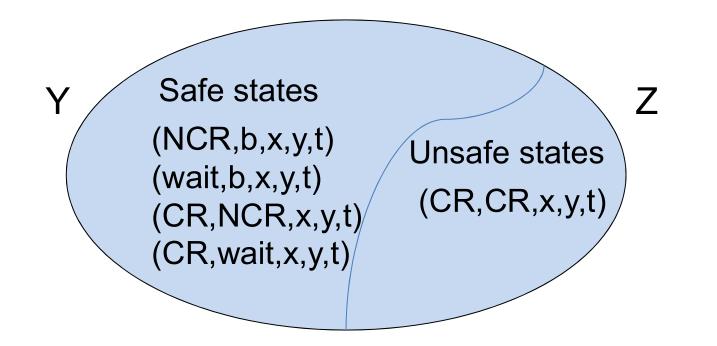
Every reachable state of K is in Y

(K is safe with respect to Y)



SafetyAnalysis(K,Y)=?





SafetyAnalysis(K,Y)=true ⇔ Every reachable state is a Y-state (safe state) ⇔ K is safe w.r.t. Y

## Deductive Proof of the Safety Property

(NCR,b,x,y,t) (wait,b,x,y,t) (CR,NCR,x,y,t) (CR,wait,x,y,t)

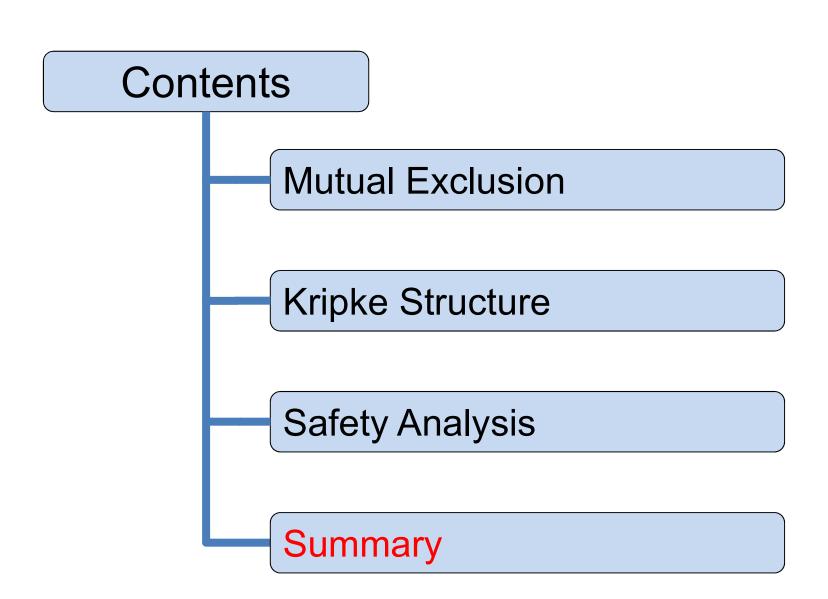
Is this set (Y) a tranition invariant? No, e.g., (CR,wait,x,y,1) $\rightarrow$  (CR,CR,x,y,1)

# Inductive Set (X)

```
(NCR,NCR,0,0,t)
(NCR, wait, 1, 0, t)
(wait, NCR, 0, 1, t)
(NCR,CR,1,0,t)
(CR,NCR,0,1,t)
(wait, wait, 1, 1, t)
(CR, wait, 1, 1, 0)
(wait,CR,1,1,1)
```

 $I \subset X$  $s \in X \Longrightarrow ((s \rightarrow s') \Longrightarrow s' \in X)$  $X \subset Y$ Y is a safety property

### Safety Analysis – An Example



# Correctness of the Design

- How do we know that the design is correct?
  - We have to be sure that the bad state is not reachable in all possible executions of the algorithm
  - We may use state exploration (model checking) techniques, or deductive proof methods
  - We have shown that the bad states are not reachable

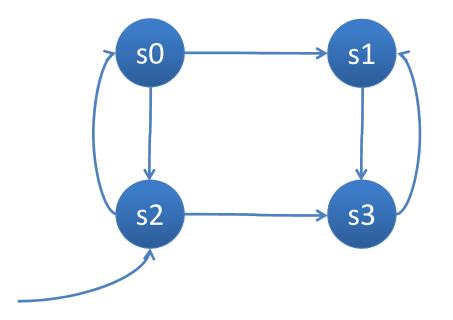
# (III) Avoidability Property

Let Y be a set of states.

Y is avoidable, if

there a computation that does not reach any Y-state.

### Example: {s1,s3}V, {s0}V, {s0,s1} x



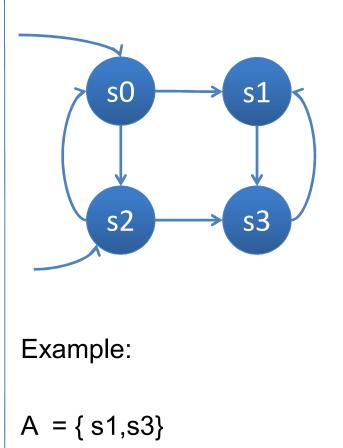
### Given a set $A \subseteq S$ . Is A an avoidability property?

# **Avoidability Problem**

Lemma

For a finite state system <S,R,I>: A is avoidable iff

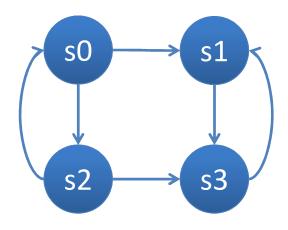
there is a (¬A)-computation



 $(\neg A)$ -computation:  $(s0s2)^{(i)}$ 

# Directed Graphs, G=(V,E)

- Strongly connected graphs
- Subgraphs
- Strongly connected subgraphs
- Derived subgraphs
- Strongly connected components
- Non-trivial Strongly connected components



# **Avoidability Problem**

```
Let R | Y = R \cap (Y \times Y)
```

```
A is avoidable
```

```
iff
```

```
there is a (¬A)-computation
```

#### iff

```
there is a (\negA)-path starting from I that reaches
a non-trivial strongly connected component of
< \negA, R|\negA >.
```

For a finite state system K=<S,R,I>:

```
Let K | X = \langle X, R | X, I \cap X \rangle
```

Let  $K' = \langle S', R', I' \rangle = K | \neg A$ 

A is avoidable, iff

there is a reachable non-trivial SCC of (S',R') in K'.



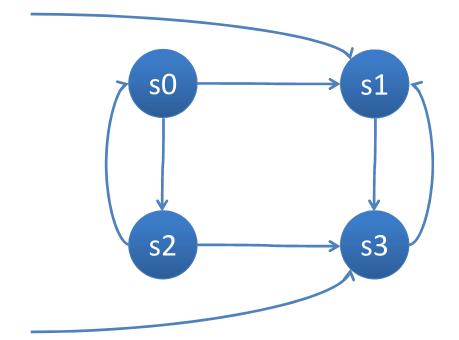
# Tarjan Algorithm (scctarjan)

```
algorithm scctarjan; input: G = (V, E); output: A set of SCCs;
index := 0; S := empty;
for each v in V do if (v.index is undefined) strongconnect(v) endif endfor
```

```
currentSCC := empty;
repeat w := S.pop(); add w to currentSCC; until (w = v);
output currentSCC
```

```
endif
```

# Example:



{s0,s2}, {s1,s3}

Given G=(V,E). The output of scctarjan(G) is a set of SCCs that is a partition of G.

The complexity of scctarjan(G) is O(|V|+|E|).

## **Avoidability Analysis**

```
Let K=<S,R,I> and A \subseteqS.
```

```
BOOL AvoidabilityAnalysis(K,A)
    K':=(S',R',I'):= K | ¬A;
{
                                                 s2
    G:=(S',R');
    scclist:=scctarjan(G);
    w:={};
    for each (e in scclist) if (nontrivial(e)) w:=w\cupe;
    return ReachbilityAnalysis(K',w);
}
```

s0

s1

s3

#### **Avoidability Analysis**

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

#### **Proposition:**

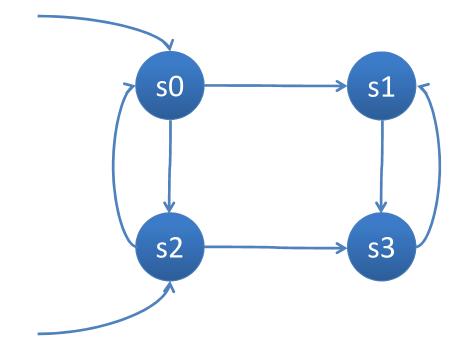
AvoidabilityAnalysis(K,A) =true iff

A is an avoidability property

Given a set Y.

Y is an inevitability property, if every computation reaches a Y-state

## Example: {s1,s3}, {s2,s3}



## Avoidability & Inevitability

Inevitability is a negation of avoidability.

#### Proposition

- Y is an inevitability property of K, iff
- Y is not an avoidability property.

#### **Inevitability Analysis**

```
Let K=<S,R,I> be a Kripke structure, and A \subseteqS.
```

```
BOOL InevitabilityAnalysis(K,A)
   K':=(S',R',I'):=K|−A;
{
   G:=(S',R');
   scclist:=scctarjan(G);
   w:={};
   for each (e in scclist) if (nontrivial(e)) w:=w \cup e;
   return (not ReachbilityAnalysis(K',w));
 }
```

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

#### **Proposition:**

# InevitabilityAnalysis(K,A) =true

A is an inevitability property

Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

InevitabilityAnalysis(K,A) =true ⇔ AvoidabilityAnalysis(K,A) =false

#### **Deductive Inevitability Analysis**

## Proof of Inevitability

If there is a sequence of sets of states:

 $X_0, X_1, \dots, X_n$  such that

$$\begin{split} & I \subseteq X_0, \\ & R(X_i \setminus Y) \subseteq X_{i+1}, \text{ for } i=0,1,...,n-1 \\ & X_n \subseteq Y, \end{split}$$

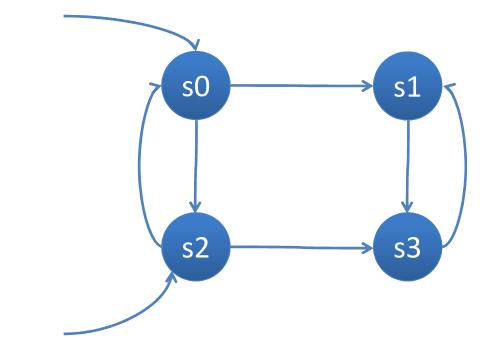
Then Y an inevitability property.

Completeness

For finite state systems,

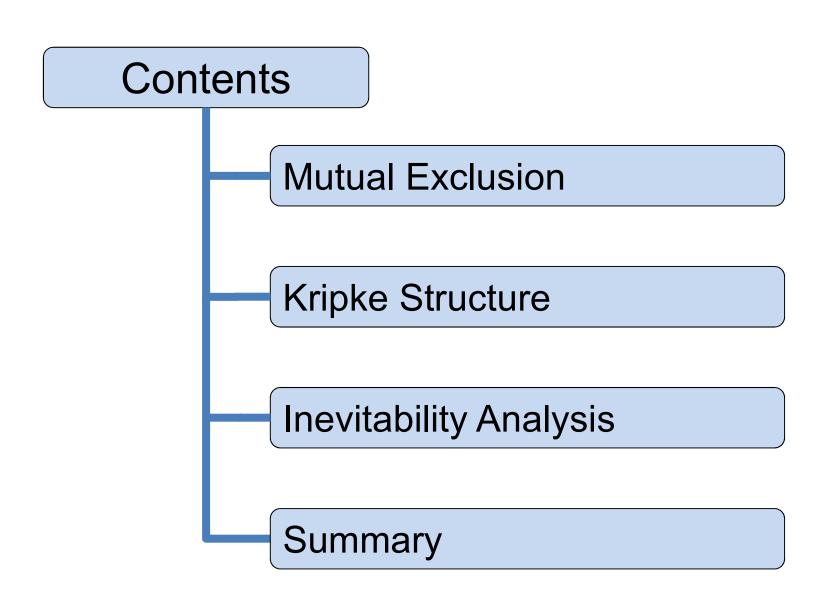
if the conclusion holds, then such a sequence exists.

#### Example: Y={s2,s3}

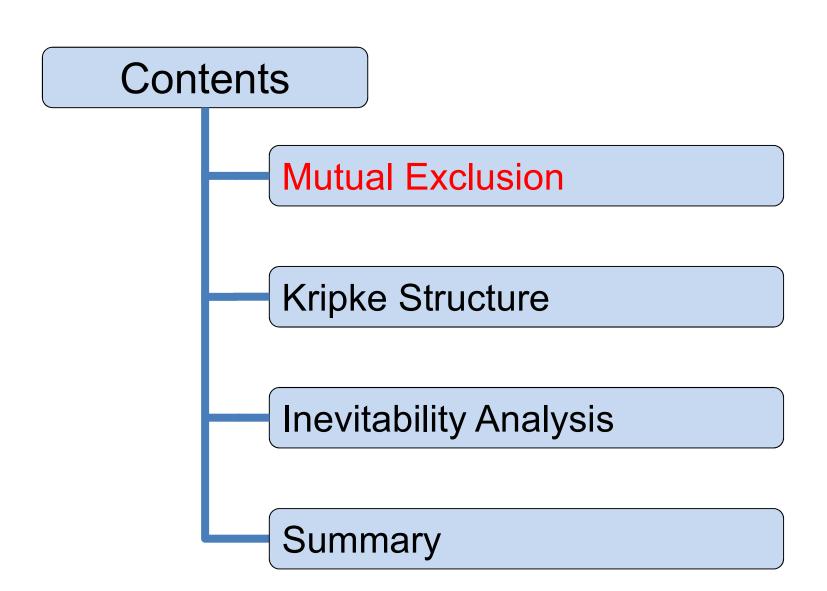


#### $X_0 = \{s0, s2\}, X_1 = \{s1, s2\}, X_2 = \{s3\}$

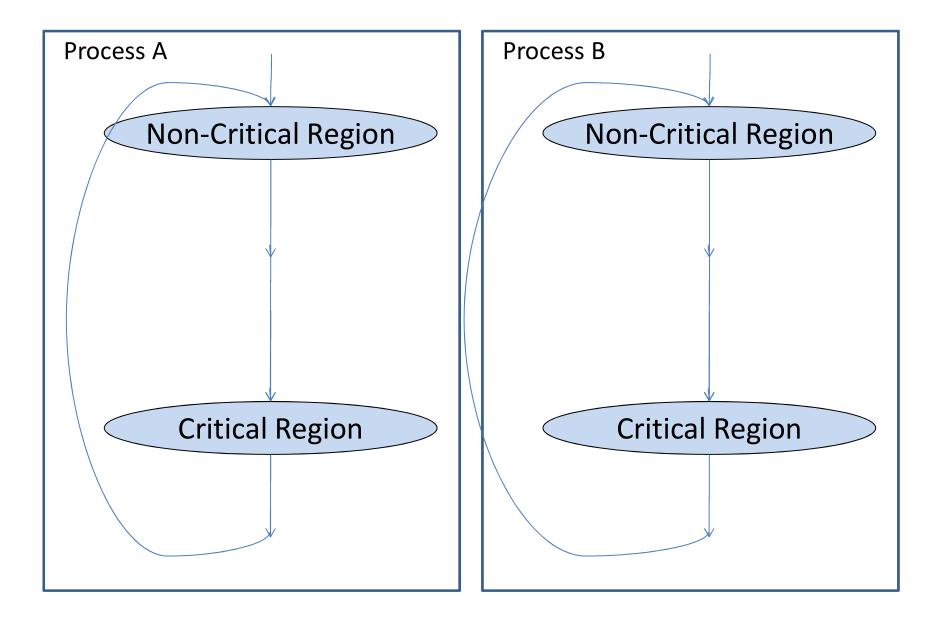
#### Inevitability Analysis – An Example



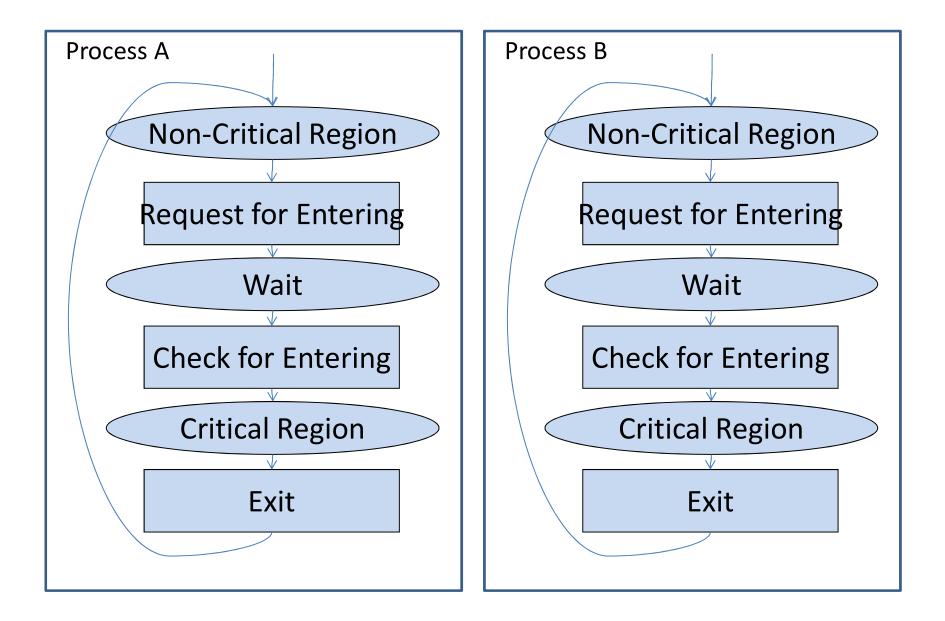
#### Inevitability Analysis – An Example



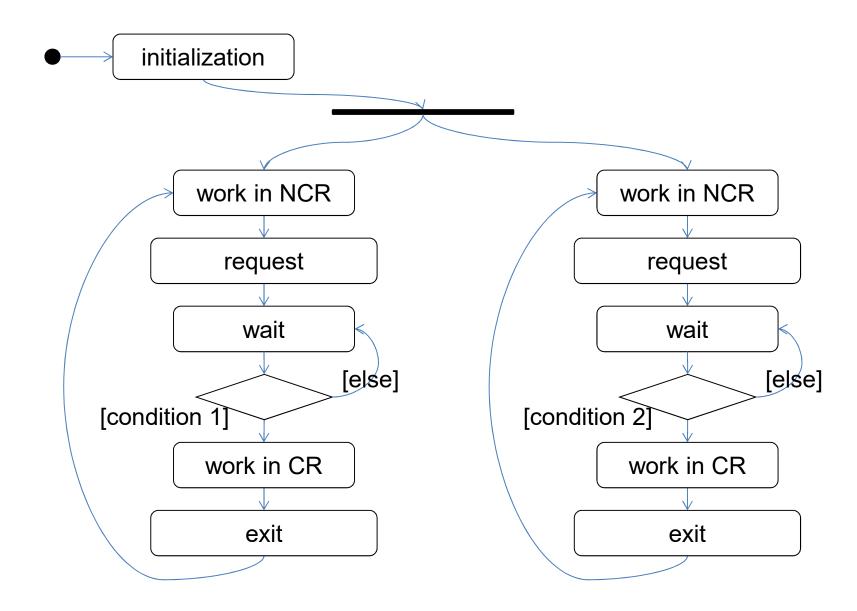
#### **Example: Mutual Exclusion**



#### **Example: Mutual Exclusion**



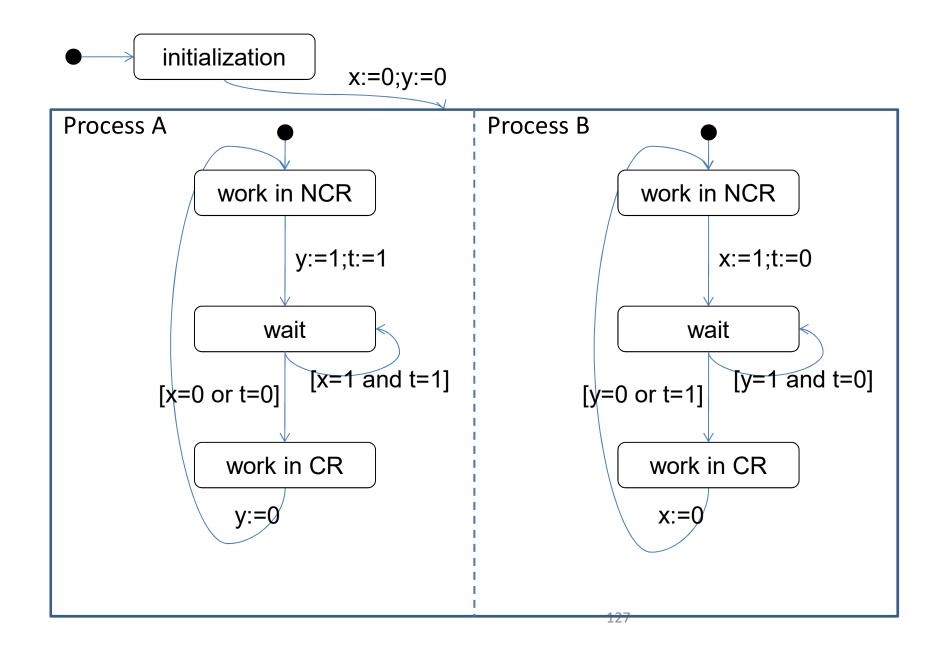
### Design of Mutual Exclusion (Activity)



## **Design of Mutual Exclusion**

- Purpose:
  - ensure that not both processes are working in the critical region (CR)
- Mechanism:
  - use shared variables
  - y=1: the first process is applying for entering CR or it is in CR
  - x=1: the second process is applying for entering CR or it is in CR
  - t=(i-1): the i-th process has priority for entering CR

## Design of Mutual Exclusion (State)



#### Correctness of the Design

- Ensure that not both processes are working in the critical region (CR)
- Ensure that at least one process reaches CR

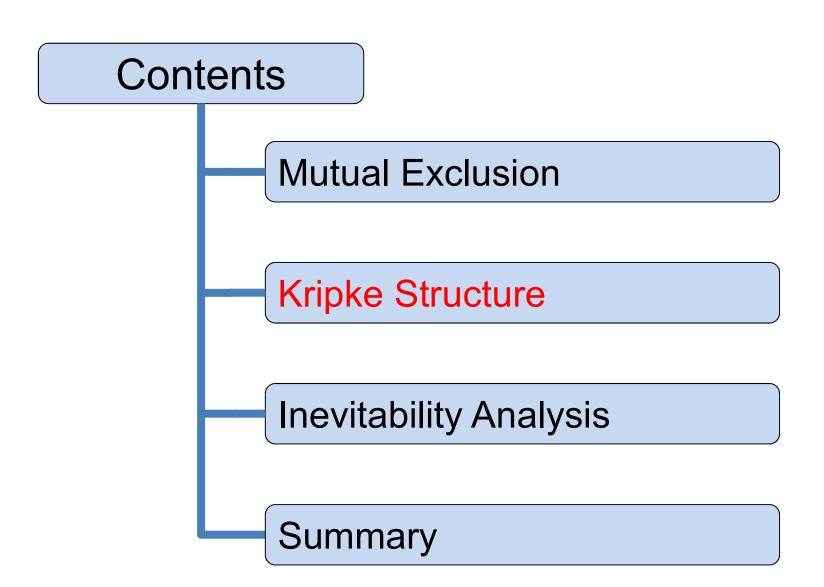
#### Combined States of the Two Processes

| Process A | Process B | x,y,t | Remark      |
|-----------|-----------|-------|-------------|
| NCR       | NCR       |       |             |
| NCR       | wait      |       |             |
| NCR       | CR        |       | Good states |
| wait      | NCR       |       |             |
| wait      | wait      |       |             |
| wait      | CR        |       | Good states |
| CR        | NCR       |       | Good states |
| CR        | wait      |       | Good states |
| CR        | CR        |       | Good states |

#### Correctness of the Design

- How do we know that the design is correct?
  - We have to be sure that the good states are inevitable,
     i.e., reachable in all possible executions of the algorithm
  - We may use state exploration (model checking) techniques or deductive proof methods

#### Inevitability Analysis – An Example



#### **Kripke Structures**

A Kripke structure is a triple K=<S,R,I>

- S : A finite set of states
- $R \subseteq S \mathrel{x} S$  : A total transition relation
- $-\operatorname{I}\subseteq\operatorname{S}$  : A set of initial states

#### **Domains of Process and Variable States**

| Process A | Process B | X | У | t |
|-----------|-----------|---|---|---|
| NCR       | NCR       | 1 | 1 | 1 |
| wait      | wait      | 0 | 0 | 0 |
| CR        | CR        |   |   |   |

(a,b,x,y,t)

#### The Set of States: S

#### {(a,b,x,y,t) | $a,b \in \{NCR,wait,CR\}$ and $x,y,t \in \{0,1\}$ }

## Transition Relation: R

| (NCR,b,x,y,t)                    | $\rightarrow$ (wait,b,x,1,1)                                         |
|----------------------------------|----------------------------------------------------------------------|
| (wait,b,0,y,t)                   | $\rightarrow$ (CR,b,0,y,t)                                           |
| (wait,b,x,y,0)                   | $\rightarrow$ (CR,b,x,y,0)                                           |
| (wait,b,1,y,1)                   | → (wait,b,1,y,1)                                                     |
| (CR,b,x,y,t)                     | $\rightarrow$ (NCR,b,x,0,t)                                          |
|                                  |                                                                      |
|                                  |                                                                      |
| (a,NCR,x,y,t)                    | → (a,wait,1,y,0)                                                     |
| (a,NCR,x,y,t)<br>(a,wait,x,0,t)  | <ul> <li>→ (a,wait,1,y,0)</li> <li>→ (a,CR,x,0,t)</li> </ul>         |
|                                  | _                                                                    |
| (a,wait,x,0,t)                   | $\rightarrow$ (a,CR,x,0,t)                                           |
| (a,wait,x,0,t)<br>(a,wait,x,y,1) | $ \rightarrow (a, CR, x, 0, t) $<br>$ \rightarrow (a, CR, x, y, 1) $ |

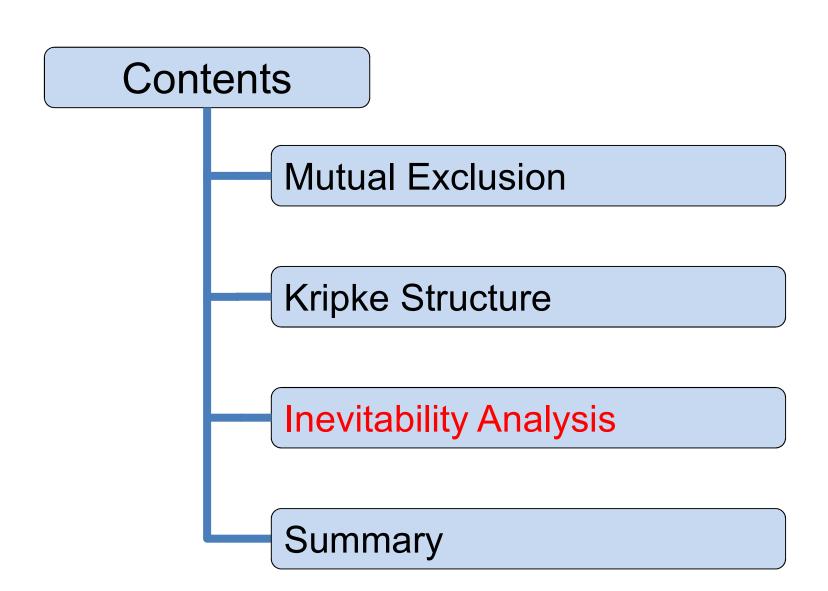
#### The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

(CR,b,x,y,t) (a,CR,x,y,t)

The set of other states: (NCR,NCR,x,y,t) (wait,wait,x,y,t) (wait,NCR,x,y,t) (NCR,wait,x,y,t)

#### Inevitability Analysis – An Example



#### **Inevitability Analysis**

```
Let K=<S,R,I> be a Kripke structure, and A \subseteqS.
```

```
BOOL InevitabilityAnalysis(K,A)
   K':=(S',R',I'):=K|−A;
{
   G:=(S',R');
   scclist:=scctarjan(G);
   w:={};
   for each (e in scclist) if (nontrivial(e)) w:=w \cup e;
   return (not ReachbilityAnalysis(K',w));
 }
```

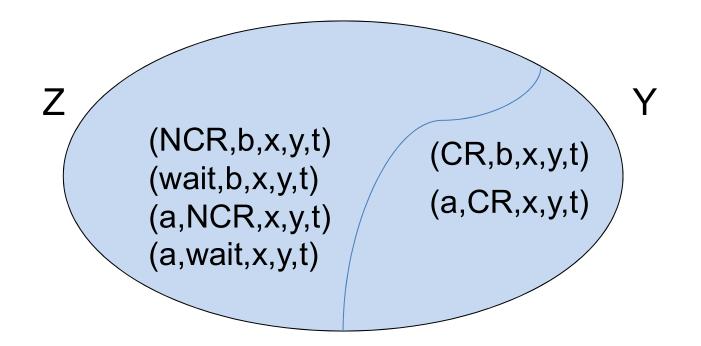
Let K=<S,R,I> be a Kripke structure, and A  $\subseteq$ S.

#### **Proposition:**

# InevitabilityAnalysis(K,A) =true

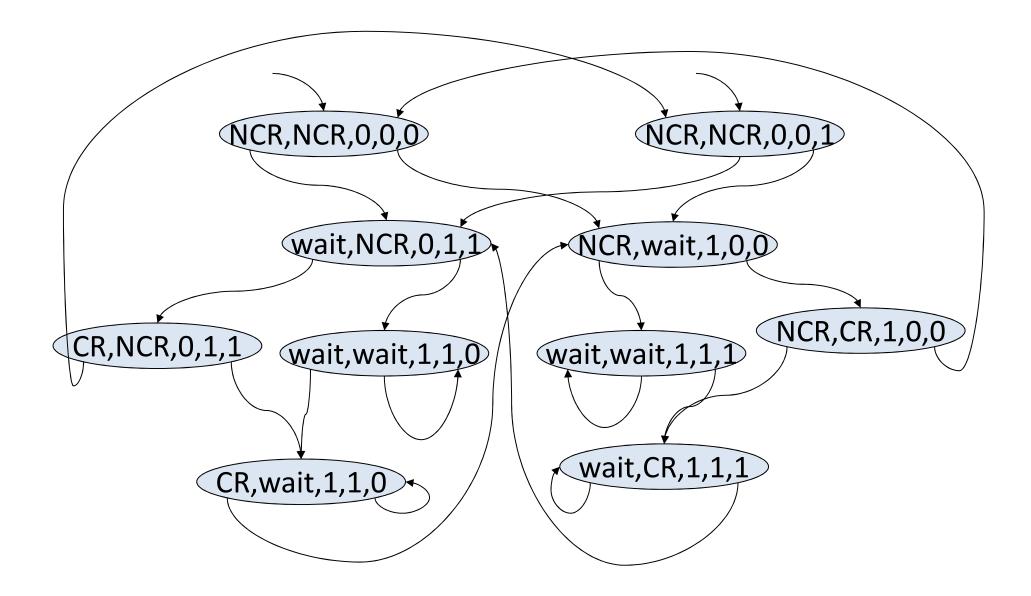
A is an inevitability property

#### **Inevitability Analysis**

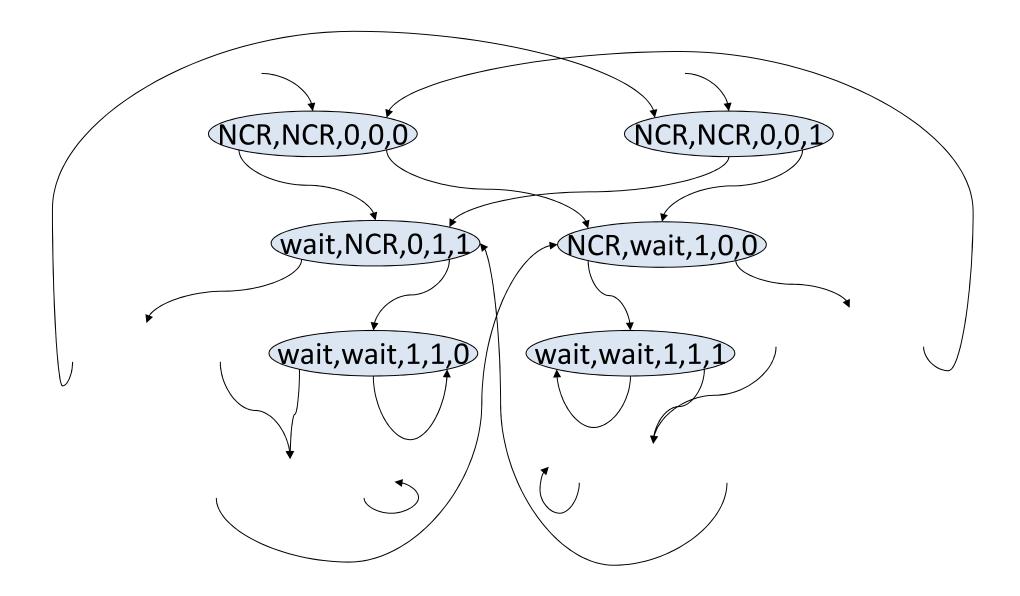


InivitabilityAnalysis(K,Y)=?

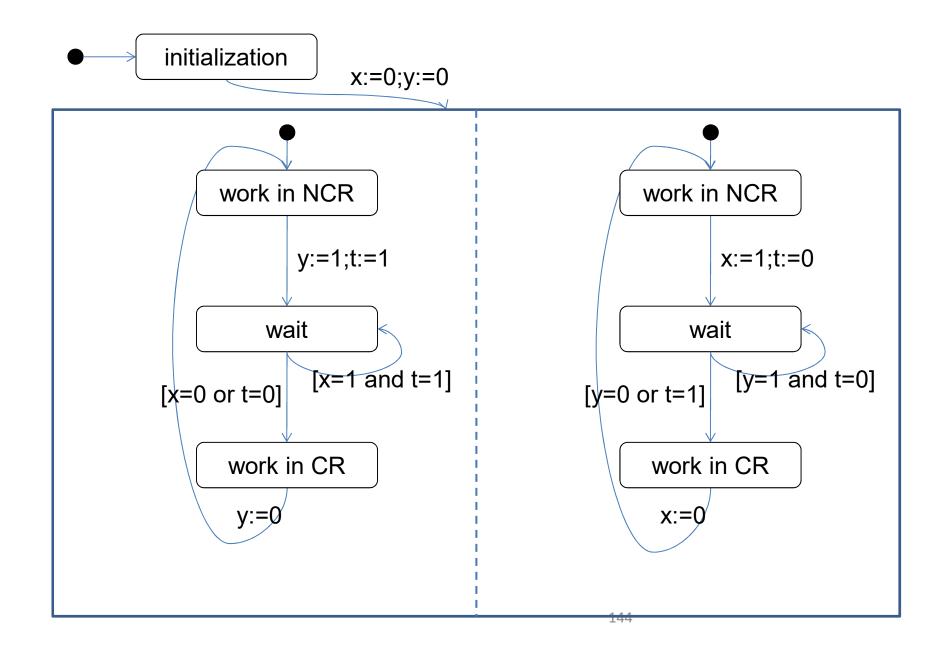
#### **Inevitability Analysis**



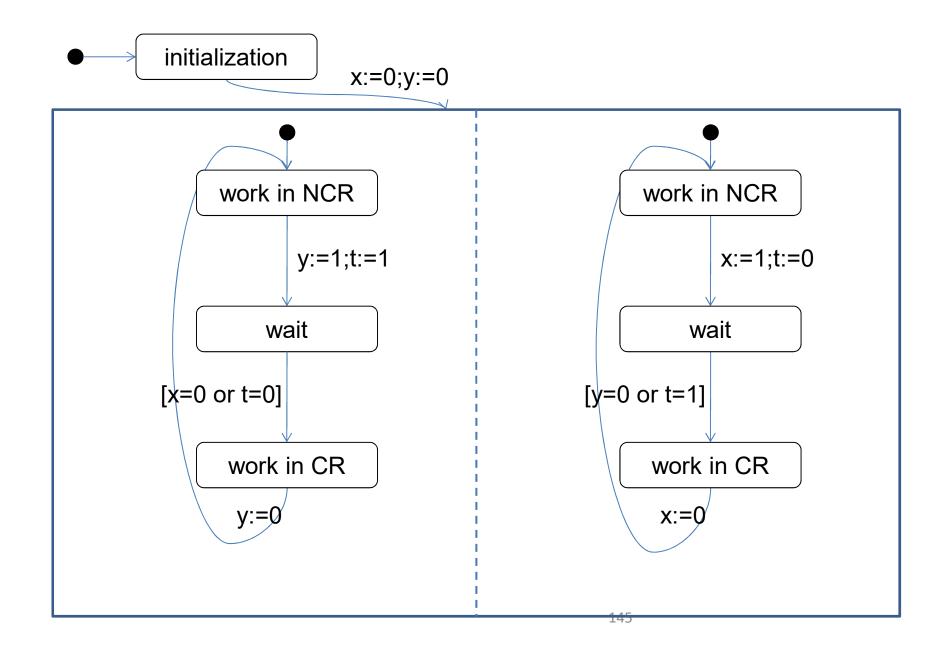
#### Inevitability Analysis (Returns False ??)



### Design of Mutual Exclusion (State)



#### **Revised Model of Mutual Exclusion**

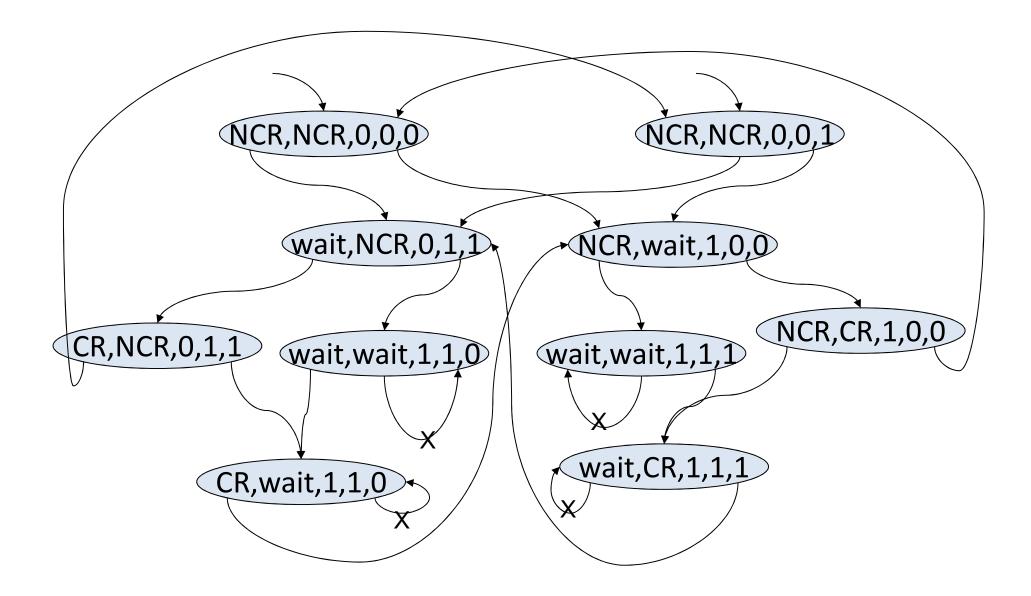


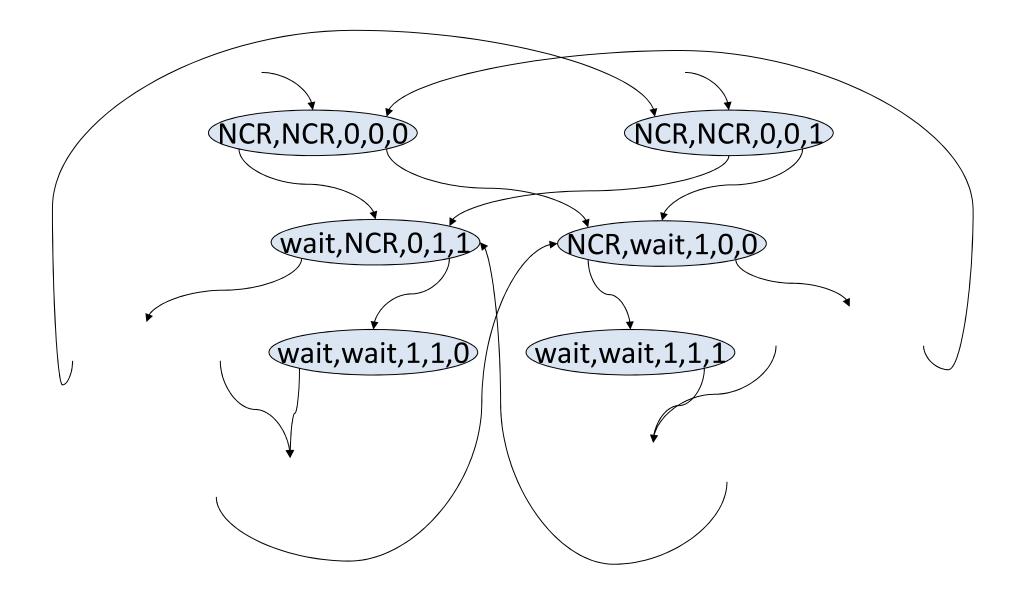
# **Transition Relation: R**

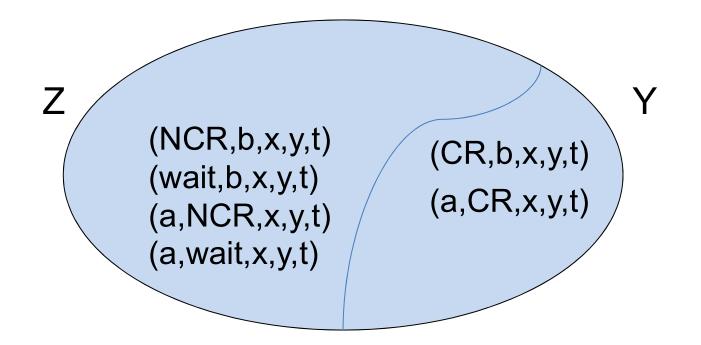
(NCR,b,x,y,t)(wait,b,0,y,t) (wait,b,x,y,0) (wait,b,1,y,1) (CR,b,x,y,t)(a,NCR,x,y,t) (a,wait,x,1,t) (a,wait,x,y,1) (a,wait,x,1,0)

(a,CR,x,y,t)

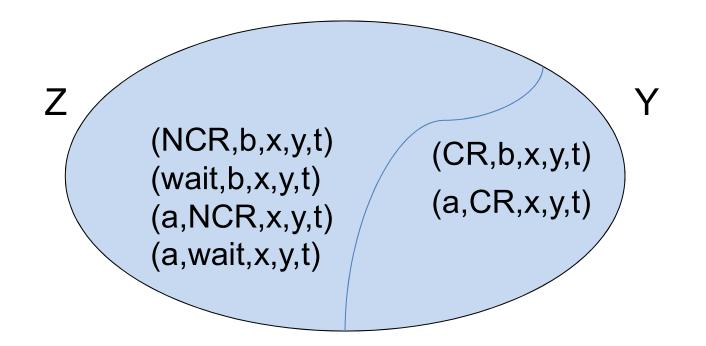
- $\rightarrow$  (wait,b,x,1,1)
- $\rightarrow$  (CR,b,0,y,t)
- $\rightarrow$  (CR,b,x,y,0)
- → (wait,b,1,y,1)
  - $\rightarrow$  (NCR,b,x,0,t)
  - $\rightarrow$  (a,wait,1,y,0)
  - $\rightarrow$  (a,CR,x,1,t)
  - $\rightarrow$  (a,CR,x,y,1)
  - → (a,wait,x,1,0)
    - $\rightarrow$  (a,NCR,0,y,t)







InivitabilityAnalysis(K',Y)=?



InevitabilityAnalysis(K',Y)=true  $\Leftrightarrow$ Every computation reaches a Y-states  $\Leftrightarrow$ Y is inevitable in K'

#### **Deductive Proof of Inevitability**

$$X_{0} = \{ (NCR, NCR, 0, 0, 0), (NCR, NCR, 0, 0, 1) \}$$
  

$$X_{1} = \{ (wait, NCR, 0, 1, 1), (NCR, wait, 1, 0, 0) \}$$
  

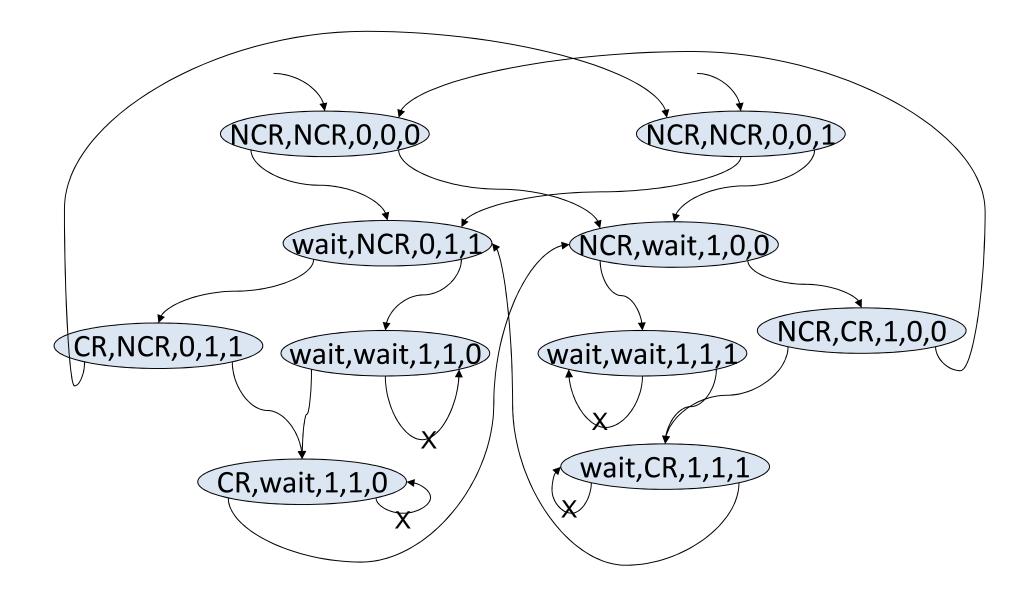
$$X_{2} = \{ (wait, wait, 1, 0, 0), (wait, wait, 1, 1, 1) \} \cup Y$$
  

$$X_{3} = \{ (CR, wait, 1, 1, 0), (wait, CR, 1, 1, 1) \}$$
  
We have

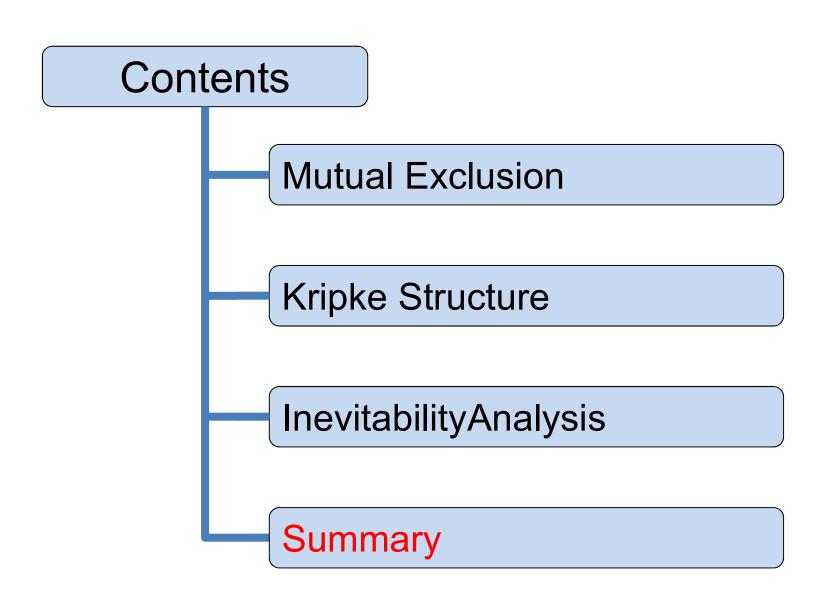
$$I \subseteq X_0$$
,  
R(X<sub>i</sub>\Y)  $\subseteq X_{i+1}$ , for i=0,1,2  
X<sub>3</sub> $\subseteq$ Y,

Therefore Y an inevitability property of K'.

#### **Deductive Proof of Inevitability**



## Inevitability Analysis – An Example



### Correctness of the Design

- How do we know that the design is correct?
  - We have to be sure that the good states are inevitable,
     i.e., reachable in all possible executions of the algorithm
  - We may use state exploration (model checking) techniques or deductive proof methods
  - We have shown that the good states are inevitable.

# (IV) Summary

- Kripke结构 --- 基本概念
- 安全性质 --- 模型检测算法、推理方法
- 必达性质 --- 模型检测算法、推理方法



思考:

给定一个Kripke结构K=<S,R,I>和集合B,A⊂S. (1)判断以下说法的正确性: A是可避免性质,当且仅当 K有一条由I可达非A非平凡强连通分量的非A路径。 (2)定义(B,A)路径为满足以下条件的路径: 至少一个B状态出现在该路径且同时或之后有A状态出现。 设计基于不动点计算的算法以检查K中是否存在 初始状态为起点的(B,A)路径。