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(1) Labeled Transition Systems

Definition

A labeled transition system is a quadruple <2,S,A,I>
— 2 : Afinite set of symbols

— S : A finite set of states

— AcSx2xS:Atransition relation
— | < S : A set of initial states

Remark:
LetR={(s,s’) | (s,a,s") €A}.
Then (S,R,1) is a Kripke structure, and A: R =2 (2> \ &)



(1) Labeled Transition Systems

* Basic Concepts
* Labels, States, Labeled Transition Relation, Initial States
 Words, Runs
* Language
* Deterministic vs Non-deterministic LTS
 Comparison with Labeled KS



Example: X

{a,b,c}



Example: S




Example: A

Notation
s—>2 s’: (s,a,5’)eA



Example: |




Words, Runs on Words, Runs

Given a LTS A=<2,S A, I>
A word is an infinite sequence of X
Let w=w[1l]w[2]w[3]......eX? be a word.

Definition
A run of A on w is an infinite sequence s;s; S, .... Oof S
such that s, € I, and (s,,w[i+1],s,,,) €A foralli= 0.

Definition
A run of A is an infinite sequence s;s, S, .... of S

such that there is aw and s;s;s,.... isarun on w.



Words over Runs

Definition

A word over arunrof Ais

an infinite sequence of X: a,a, ....
such thatrisarunonaja,...



Example: Words, Runs

words: a®, (bc)e, a(bc)®
runs: (s0s2)®,  sO(s1s3)®



Language

Definition
The language of A is
the set of words over runs of A.

The language of A is denoted L(A).



Example: Language

words over runs:
(bc)®, (cb)®,
(bc)*a (bc)®, (bc)*ba(cb)®, (cb)*a(cb)®, (cb)*ca(bc)®



Deterministic vs Non-deterministic LTS

Given A=<2,S A, I>

Definition
A is deterministic, if
|[I]=1and |A(s,a)| £1forall seSand acZ.

Theorem

For a deterministic LTS,
for any word w, there is at most one run on w.



Deterministic LTS

B
-

B

BaP Baa
s0s0s1s0s0s1s1

20



Non-deterministic LTS

a, B a
@D

BaB Baa

s0s0s0s0s0s0
s0s0s0s0s0s1

21



BB




AL T




AL T




Comparison with Labeled KS

AP U {q}
K =<§,R,l,L>
1S > 2AP
K =<§,R,|I> + <APL>
{p} p,q}
a
C b b C
a

LTS = <2,S,A, 1>
R={(s,s") | (s,a,s’) € A}
A:R =2 (22\ )

LTS =<S,R,I> + <X, A>




(11) Blichi Automata

LTS + Acceptance Condition



By BHaERI BT
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Buchi Automata

Definition

A Bluchi automaton (BA) is a quintuple <2,S,A,I,F>
—<2,5,A,1> is a labeled transition system

— F < S : A set of acceptance states



Buchi Automata

* Basic Concepts
* Labels, States, Labeled Transition Relation, Initial States

 Words, Runs
* Accepting Runs, Accepting Words, Language
 Comparison with LTS

* Emptiness

* Basic Operations

* Language Inclusion



Example: 2.,S,A,




Example: F={s1,s3}




Words, Runs on Words, Runs

Given a LTS A=<2,S A, I>
A word is an infinite sequence of X
Let w=w[1l]w[2]w[3]......eX? be a word.

Definition
A run of A on w is an infinite sequence s;s; S, .... Oof S
such that s, € I, and (s,,w[i+1],s,,,) €A foralli= 0.

Definition
A run of A is an infinite sequence s;s, S, .... of S

such that there is aw and s;s;s,.... isarun on w.



Words over Runs

Definition

A word over arunrof Ais

an infinite sequence of X: a,a, ....
such thatrisarunonaja,...



Accepting Runs, Accepting Words

Let inf(t) be the set of states
that appear infinitely many times on .

Definition
An accepting run of Ais a run t of A
such that inf(t)"F£J.

Definition
An accepting word of A is

a word over some accepting run of A.



Language

Definition
The language of A is
the set of accepting words of A.

The language of A is denoted L(A).



Example: Words, Runs

words: a®, (bc)e, a(bc)®
runs: (s0s2)®,  sO(s1s3)®



Example: Accepting Runs

words: a®, (bc)e, a(bc)®
runs: (s0s2)®,  sO(s1s3)®
accepting runs: sO(s1s3)®



Example: Accepting Words and Language

accepting words:
(bc)*a (bc)®, (bc)*ba(cb)®, (cb)*a(cb)®, (cb)*ca(bc)®



Comparison with LTS

Given an LTS: M=<2,5A,I>
— 2 : Afinite set of symbols
— S : A finite set of states
— AcSx2xS:Atransition relation
— | < S : A set of initial states

Let A =<2,S,A,1,S> be a BA.
Then L(M) = L(A).



Emptiness Problem

Let A be a BA.

L(A)=D?



Emptiness Check

Given A=<2,S,A,lF>
Define R={ (s,s’) | (s,a,s’) € A, s €2}
L(A) is empty iff <S,R,I,{F}> is empty.

A better algorithm is known as double DFS.



Basic Operations

Preliminaries: Ramsey Theorem

Jnion

ntersection

Complementation

50



Ramsey Theorem



Two Colors

A group of 6 people:
3 of them know each other or do not know each other

A complete graph with 6 vertices, edges with 2 colors:
there is a triangle of which the 3 edges has the same color

R(3,3)=6
R(4,4)=18 (a complete subgraph with 4 vertices)
R(5,5)<48




Three Colors

A complete graph with 17 vertices, edges with 3 colors:
there is a triangle of which the 3 edges has the same color

R(3,3,3)=17



Infinite Number of Vertices

A complete graph with infinite number of vertices,

edges with finite number of colors:

there is a complete subgraph with infinite number of
vertices such that the edges of the graph are colored with
the same color



Ramsey Theorem

A k—coloring C of [X]" is a function
from [X]" into a set of size k.

H is homogeneous for C if C is constant on [H]", i.e.
all n—element subsets of H are assigned the same
color by C.

Ramsey Theorem RT(n,k)

Every k—coloring of [N]" has an infinite
homogeneous set.



Proof (by induction on n)

For n = 1: [X] is infinite, k is finite = OK
Assuming n=r+1 and the theorem is true forn <r:
Given a C-coloring of the (r + 1)-element subsets of X.

Let a, be an element of Xand let Y =X\ {a,}. We have a C-
coloring of the r-element subsets of Y, by deleting a, from
each (r + 1)-element subset of X.

By the induction hypothesis, there exists an infinite subset Y,
of Y such that every r-element subset of Y, is colored the
same color in the induced coloring.

EE



Proof

There is an element a, and an infinite subset Y, such that all
the (r + 1)-element subsets of X consisting of a, and r
elements of Y, have the same color.

By the same argument, there is an element a, in Y, and an
infinite subset Y, of Y, with the same properties.

Inductively, we obtain a sequence {a,, a,, a,, ...} such that the
color of each (r + 1)-element subset (a; ), G;5), -+ Ui+ 1))

with i(1) <i(2) < ... <i(r + 1) depends only on the value of
i(1).

Further, there are infinitely many values of i(n) such that this

color will be the same. Take these g, 's to get the desired
monochromatic set.



Proof

X=Y,

[X] r+1

a0

[Yol'

a0

cO

[Y, '




Proof

[Yl] r+1

al

[Y.I

al

cl

Y]




Proof

Then we have

a0,al,a2,a3,...
cO,cl,c2,c3,...

Let J,, (1<m<k]) be the set of g,
such that c,, is consistent with the selection of g;.

Then one of such is an infinite set. Let it be Z.

Then C is constant on [Z]"



Corollary

Suppose that 2* is divided into
finitely many equivalent classes.
Let w=w[1]w[2]w][3]w][4]... be an infinite word over 2.
Then there is a pair of equivalent classes U,V
such that w € U.V®,

© 000000 00 000 00000000000 00 0 0
X y Z

Proof.
Let f(x,y) = equivalent class of w[x...y-1] for y>x>1.
Then the corollary follows from Ramsey theorem

for pairs.



Basic Operations

Union
Intersection
Complementation

50



Union: Example

a a
c b b| s 5 |P b| .
a a




Union

Given two BAs
A=<X,S5,A,1LF >, A=<2,S,,ALLLF>.
Suppose that S, and S, are disjoint.

Define A;UA,=<X,S,A,ILF> where
$=5,US,
A=AUA,
I=1,Ul,
F=F,UF,



Union

Theorem
L(A,UA, ) =L(A;) U L(A,)



Intersection: Example

a a
c b b| s 5 |P b| |,
a a




Intersection

Given BAs
A=<2,5,A,1LF >, A=<2,S,,ALLL RS>

Attempt 1: Define A;NA,=<2,S,AlLF> where

S=5,xS,
A = { ((51,52),3,(51’,52’)) |(Slia151’)€A1) (SZIaISZ’)EAZ}
= 1,x1,

F=?



Intersection

Given BAs
A=<2,5,A,1LF >, A=<2,S,,ALLL RS>

Define A;NA,=<X,S,A,lLF> where

S=5,xS,x{0,1,2}

A = { ((S]_ISZIi)IaI(S]_’ISz’Ij)) |(511a151’)€A1) (SZIaISZ’)EAZI ?? }
= 1,x 1, x{0}

'\




Intersection

A =

{ ((5115210)1a1((51’152’10)) | (Sllazsll)EAlr (521a152’)€A2 } U
{ ((51,52,0),3,((51’,52’,1)) |(Sl,a,51’)EA1, (SZIaISZ’)EAZI SleFl}u

{ ((51152;1)rai((51’152’)1)) | (Sllazsll)EAlr (521a152’)€A2 } U
{ ((51152;1)rai((51’152’)2)) |(Sl,a,51’)EA1, (SZIaISZ’)EAZI SZEFZ}U

{ ((51152;2)1a1((51’152’10)) | (Sllazsll)EAlr (521a152’)€A2 }



Intersection

Theorem
LA, NA,)=L(A;) N L(A,)



Complementation

The set of BAs is closed under complementation.

Given A=<2,S Al F>.
There exists a BA B such that
L(B) = X© \L(A)



Proof

Definition

A congruence '~' over a set of strings is
an equivalence relation such that
(x1~vyland x2~y2) = x1.x2~yl.y?2



Proof

Given A=<2,S Al F>.

Define =~ over X *.

u(F)

u~v, iff for all q,q": q --—------

v(F)



Proof

X~ IS @ congruence, i.e.,
ul=vl and u2=v2 implies ulu2=vlv2

The number of such equivalence classes is finite.



Proof

Suppose that U,V are equivalent classes.

Lemma
U.Vec L(A) or UVe c L(A).

Lemma

Let w be an infinite word over 2.

Then there is a pair of equivalent classes U,V
such that w € U.V®,



Proof

Theorem
TA) can be represented by a Blichi automaton.

Proof.

Each of UV®c L(A) can be represented by

an Buchi automata. The union of such automata
is also representable by a Bichi automaton.

We have: L(A)= U {UV® | UVe N L(A) = D L.



Proof

Reference
D. A. Peled. Software Reliability Methods.
2001. pp.151-152.



Language Inclusion

Let A and B be a BAs.

L(A) c L(B)

(A) M (22 \L(B)) = @
(A) N L(—B) =D
AN—-B=9




Example: Properties and Emptiness

L Contents ]

Mutual Exclusion J
Buchi Automata J
Emptiness Checking }

Summary J




Example: Properties and Emptiness

L Contents ]

Mutual Exclusion J
Buchi Automata J
Emptiness Checking }

Summary J




Design of Mutual Exclusion

cﬁ[ initialization ] -
X:=0;y:=

——

Process A P

Process B /ﬂ

work in NCR ]

work in NCR ]

x:=1:t:=0

wait : { Waiwb
p=0ort=0] X7 and =1l [y=0 or t=1] Y71 andt=0]

y:=1;t:=1

{ work in CR J




Design of Mutual Exclusion

cﬁ[ initialization ] -
X:=0;y:=

——

Process A ® ' Process B N
/{ work in NCR | /{ work in NCR |
CH y:=1:t:=1 bl x:=1:t:=0
a, | b,
[ wait : { wait ]&
[x=0 or t=0] =tand t=1] | [y=0 or t=1] M t=0]
d3 b,

\ work in CR J i [ work in CR J
dy . /O/ b, \X/z/O/




Example: Properties and Emptiness

L Contents ]

Mutual Exclusion J
Buchi Automata J
Emptiness Checking }

Summary J




Buchi Automaton

Definition
A Buchi automaton is a quintuple <2,S,A,l,F>
— 2 : Afinite set of symbols
— S : A finite set of states
— AcSx2xS:Atransition relation
— | < S : A set of initial states
— F < S : A set of acceptance states



The Set of Actions: X

{ ai) b|| i=1/213;4 }



The Set of States: S

{(a,b,x,y,t) | a,be{NCR,wait,CR} and x,y,t{0,1}}



Transition Relation: R

(NCR,b,x,V,t) —al (wait,b,x,1,1)
(wait,b,1,y,1) —a2 (wait,b,1,y,1)
(wait,b,0,y,t) —a3 (CR,b,0,y,t)
(wait,b,x,y,0) —>a3 (CR,b,x,y,0)
(CR,b,x,y,t) — a4 (NCR,b,x,0,t)
(a,NCR,x,y,t) —2bl (a,wait,1,y,0)
(a,wait,x,1,0) —2b2 (a,wait,x,1,0)
(a,wait,x,1,t) —2b3 (a,CR,x,1,t)
(a,wait,x,y,1) —2b3 (a,CR,x,y,1)
(a,CR,x,y,t) —2>b4 (a,NCR,0,y,t)




The Set of Initial States: |

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }



The Set of Accepting States: F



Buchi Automata

CR NCR,0,0,

CRNCROOO

ait, NCROlCR wait,1,0,0
RNCROLL aitwait 10| aitwait1, 1D )R

Y

CR,wait,l,l,




Buchi Automata

CR,NCR,0,0,0
b

a, a,




Specification of a Safety Property

(Z\{a3,
(Z\{a3,
(Z\{a3,

03})®
03} *b3.(2\{a3,b3,b4})®

03})*a3.(2\{b3,a3,a4})®

(2\{a3,b3})*b3.(Z\{a3,b3,b4})*.b4......
(2\{a3,b3})*a3.(X\{b3,a3,a4})*.a4......



Specification of a Safety Property

X=(x\{a3,b3})
Y=(2\{a3,b3,b4})
Z=(>\{b3,a3,a4})
U=X*((b3.Y*.b4)|(a3.2*.a4))

U |U*XO|U*X*b3.Y® | U*X*ad.Zo



Blchi Automaton of the Safety Spec.

F ={s0,s1,s2}




Blchi Automaton of the Safety Spec.

F ={s0,s1,s2}




Inevitability Property

>*(@3|b3).2°



Specification of an Inevitability Property

F={s1}




Example: Properties and Emptiness

L Contents ]

Mutual Exclusion J
Buchi Automata J
Emptiness Checking ]

Summary J




Emptiness Checking

A: model automaton
B: specification automaton

L(A) c L(B)

(A) N (Z2\L(B)) = &
(A) N L(—B) = &
AN—B=C




Example: Properties and Emptiness

L Contents ]

Mutual Exclusion J
Buchi Automata J
Emptiness Checking }

Summary J




(111) Generalized Buichi Automaton

Definition
A GBA is a quintuple <2,S,A, I F>
— 2 : Afinite set of symbols
— S : A finite set of states
— AcSx2xS:Atransition relation
— | < S : A set of initial states
— F < 2°: A set of sets of acceptance states

EE



Example: 2.,S,A,




Example: F={{s1,s3},{s2}}




Basic Concepts



Accepting Runs

Let inf(rt) be the set of states
that appear infinitely many times on .

Definition
An accepting run of Ais a run w of A
such that for each feF, inf(n)f~J.



Language

Definition
The language of A is
the set of accepting words of A.

The language of A is denoted L(A).



Expressiveness of GBAS

Theorem
Every language expressible by a BA is also
expressible by a GBA.

Proof

Given a BA A=<X,S Al F>.
Let B=<2,5,A,1,{F}> be a GBA.
Then L(B)=L(A).



Expressiveness of GBAS

Theorem
Every language expressible by a GBA is also

expressible by a BA.

Proof

Given a GBA A=<X,S,A,L{f,,...f.}>.

We can construct a BA B=<X2,S’A’l',F'>
such that L(B)=L(A).

The proof is left as an exercise.



Basic Operations

The set of GBAs is closed under

union, intersection and complementation.



Fair Labeled Kripke Structures and ®»-Automata

AP: {p,q} >={a,b,c,d}




Fair Labeled Kripke Structures and m-Automata

Let AP be given. Let K=<S,R,|,L,D> over AP.
Let A=<>,S,A,|,F> be a GBA.

Let £ be a mapping between 2A7 and .

A and K are C-equivalent, if L(A)= C(L(K)),
i.e, for every fair computation c of K,

there is an accepting run r of A such that L(r) = C(L(c)),
and vice versa.



Fair Labeled Kripke Structures and ®»-Automata

AP: {p,q} >={a,b,c,d}




Fair Labeled Kripke Structures and ®»-Automata

"0
oy | |V {q}‘ {é,q}
{p}

AP: {p,qa} 2={{},{p}.{a}.{p,a}}




Fair Labeled Kripke Structures = m-Automata

et AP be given.
et K=<S,R,I,L{®p,,..., 9, }>
oe a fair labeled Krikpe structure.

Let X=2AP
Let A=<X,S,AL{f,,...,f }> be a GBA where
A={(s,a,s’) | (s,5’)€R, a=L(s) } and f; =[[@;]]



Fair Labeled Kripke Structures = m-Automata

7 is @ computation of K, iff
L(7t) is a word over some runs of A.

7 is a fair computation of K, iff
L(t) is an accepting word of A.

L(A) = L(K) (and C=ID)



o-Automata = Fair Labeled Kripke Structures

Let A=<2,S,A,L{f,,....f }> be a GBA.

We may defined a corresponding
fair labeled Kripke structure K for A, such that
L(K) = L(A).



®-Automata =2 Fair Labeled Kripke Structures

Let A=<2,S,A,L{f,,....f }> be a GBA.

AP=2U {p4,...,P,}

S'={(s,a,s’) | (s,a,s’) € A}
R ={((s,a,s’),(s’,b,s”’)) | (s,a,s’),(s’,b,s”’) € S’ }

"={(s,a,5') | (s,a,s’) € A,s e}
nitially, L((s,a,s’)) = {a}, add p;to L((s,a,s’)), if s € f,

K=<S',R%I,L{P -, Pp}>
Define C: 2AP—> ¥ such that {(X)=a where {a}=XnX
Then (L(K)) = L(A)




Comparison of LTS and Labeled KS

Let K=<S,R,|,L> be a labeled kripke structure over AP .
Then there is an LTS A=<X,S,A,I> with X=2AP
such that L(A)=L(K).

Let A=<X,S,A,I> be an LTS.

Then there is a labeled kripke structure
K=<S’,R,I’L> over AP =X

such that C(L(K)) = L(A) where (({a})=a for all aeX



(IV) o-Automata (BA,GBA,MA,SA,RA,PA)



m-Automaton

Defines a language
Recognizes whether a word is in the language

Emptiness
Language inclusion = emptiness
Correctness = language inclusion



Blchi Automaton (BA)

Definition
A BA is a quintuple <2,5,A,lF>
— 2 : Afinite set of symbols
— S : A finite set of states
— AcSx2xS:Atransition relation
— | < S : A set of initial states
— F < S : A set of acceptance states



Blchi Automaton (BA)

Definition

A BA is a quintuple <2,5,A,lF>
— 2. : A finite set of symbols Labeled
— S : A finite set of states Transition
— Ac Sx2xS:Atransition relation System
— | < S : A set of initial states (LTS)

— F < S : A set of acceptance states



w-Automaton

LTS + FcS Bluchi-Condition

Blchi-Condition:
An accepting run of Ais a run i of A, such that
inf(t)NF£J.



w-Automaton

LTS + FcS Buchi-Condition
LTS + Fc2° Generalized B.-Condition GBA

Generalized B.-Condition:

An accepting run of Ais a run i of A, such that
for each feF, inf(n)Nf2J.



w-Automaton

LTS + FcS Blchi-Condition
LTS + Fc2° Generalized B.-Condition GBA
LTS + Fc 2° Muller-Condition MA

Muller-Condition:
An accepting run of Ais a run i of A, such that
there exists feF, inf(n)=f.



w-Automaton

+ FcS Blichi-Condition
LTS + Fc2° Generalized B.-Condition GBA
LTS + Fc 2° Muller-Condition MA
LTS + Fc2°x2° Streett-Condition SA

Streett-Condition:
An accepting run of Ais a run i of A, such that
for each (f,g) eF, inf(n) 20> inf(t)NgzJ.



w-Automaton

+ FcS Blichi-Condition
LTS + Fc2° Generalized B.-Condition GBA
LTS + Fc 2° Muller-Condition MA
LTS + Fc2°x2° Streett-Condition SA
LTS + Fc2°x2° Rabin-Condition RA

Rabin-Condition:

An accepting run of Ais a run i of A, such that
there exists (f,g) eF, inf(nt)f2IA inf(nt)Ng=L



m-Automaton

+ FcS Blichi-Condition
LTS + Fc2° Generalized B.-Condition GBA
LTS + Fc 2° Muller-Condition MA
LTS + Fc2°x2° Streett-Condition SA
LTS + Fc2°x2° Rabin-Condition RA
LTS + F:S—=>N Parity-Condition PA

Parity-Condition:
An accepting run of Ais a run i of A, such that

the minimum of { F(s) | s €inf(x) } is even.



Expressivity

BlUchi Automata
Generalized Blchi Automata
Streett Automata

Muller Automata — Bichi Automata

Blchi < Parity < Rabin < Muller

(1)
(2)
(3)



Expressivity (1)

Bichi Automata — Generalized Blchi Automata
BA = <2,S,A,lLF>

GBA =<2,5,A,1L{F}>



Expressivity (2)

Generalized Biichi Automata c Streett Automata
GBA =<X,S,A, 1L F>, F={f1,f2,...,fn}

SA = <Z;S)Al Il F’>’
F’:{(S’fl),(s’fZ),_..,(S,fn)}



Expressivity (3)

Streett Automata — Muller Automata
SA =<X.S,A,ILF>, F={(f1,g1),(f2,g2),...,(fn,gn)}
MA =<2,SALF'>, F'=h1~h2 N ... hn

hl1= {Y|Yf1=8}u{Y|Ynglz}



Expressivity (4)

Muller Automata c— Buichi Automata

MA =<2,S ALF>, F={f1,f2,...,fn}
BA =<>,S A F'>

Only need to consider:
MA =<2,SALF>, F={f1}



Expressivity (4a)

MA
A= <> S,ALF>, F={f1,...,fm}
Al =<2, S,AL{f1}>, ..., Am =<2,S A, L{fm}>

L(A) = L(A1) U ... U L(Am)
et MA A =<2,S,A,lLF> where F={f}.

How to construct a BA B=<>,S" A’ I, F’> such that
L(B)=L(A)




Expressivity (4b)

MA =<X,S A LF>; F={f}; f={s1,...,sn}

S =SuSx{0,...,n}

AN=AuU{(s,a,(s,0)) | (s,a,s’) e A}
{(s,i),a,(s},i)) | (s,a,s") € A, s,s" €f, i=0,...,n-1} U
{(s,0),3,(s",1)) | (s,a,s") € A, s=s1, s’ ef} U...L
{(s,n-1),a,(s’,n)) | (s,a,s’) € A, s=sn, s’ ef} U
{(s,n),a,(s’,0)) | (s,a,s’) €A, s’ ef}

BA = <2,S A’,1,LSx{n}>



Expressivity (Directly From BA to MA)

Bichi Automata — Muller Automata
BA B=<>,5,A,|,F> with a Buchi-condition F

MA A= <25 A,lLF'> with
Muller-condition: FF ={f | fnFz# O}



Expressivity

Buchi Automata

Generalized Blchi Automata

Streett Automata
Muller Automata BlUchi Automata

S A -

Blchi < Parity < Rabin < Muller



Expressivity (1)

Blichi Automata < Parity Automata

BA = <2,S,A,lLF>
PA = <>,S,A,lLF’> with F’(s)=0 when sin F
F'(s)=1 otherwise.

The minimum of { F'(s) | s €inf(r) } is even iff
inf(t) "F#J



Expressivity (2)

Parity Automata < Rabin Automata
PA = <X, S,A 4 o, 1,010 >

RA - <Z;S;A)|)F>
F= { (fo;@);(fzrfl);(f4lf1Uf3)l"'l(on' fl ... Uon-l) }



Expressivity (3)

Rabin Automata — Muller Automata
RA = <%,5,A,1F>, F={(f1,g1),(f2,g2),...,(fn,gn)}
MA =<2,S ALF'>, FF'=hl1uh2uU..Uhn

hl= {YcS | YNfl£d, YNngl=J}



Expressivity

\ BlUchi Automata

\ Generalized Blchi Automata

\ Streett Automata

\ Muller Automata BlUchi Automata
\ Blchi < Parity < Rabin < Muller



Deterministic ®-Automaton

Deterministic LTS + Acceptance Condition



Deterministic ®-Automaton

L(B) = (a*B)*

L(A) = L(=B) = (a+p)*avw



Deterministic ®-Automaton

* Closed under complementation
— Deterministic Muller
— Deterministic Streett
— Deterministic Rabin
— Deterministic Parity

* Not closed under complementation
— Deterministic Buchi
— Deterministic Generalized Buchi



Deterministic ®-Automaton

A Blchi automaton is equivalent to, respectively,
a deterministic Muller automaton,
a deterministic Rabin automaton, and

a deterministic Streett automaton, and

a deterministic parity automaton.



(V) Summary

o IRTITFE RG(LTS)

e Biichi[H Bh#H1(BA)

e 77 BichiH 3hHL(GBA)

« - H3IHL(BA,GBA MA,SA RA,PA)

S VLIS e




25> :

1,

25 "EGBA A=<X,S,AL{f,,...f }>.
)15 BA B=<X,S A’ I, F’> 1§15 L(B)=L(A).

2,

/5 EGBA A, A,. & XGBAMZZ FIFfia 5.

il

a) & LAINA, FEFRL(A;NA, ) = L(A; )NL(A):
b) & XLA;UA, [H15L(A;UA, ) = L(A, )JUL(A,);




