## 基于迁移标号的迁移系统

# 中国科学院软件研究所 计算机科学国家重点实验室 张文辉 http://lcs.ios.ac.cn/~zwh/













# 例子: 自动售茶机的设计



例子: 自动售茶机的设计



# 内容: 标号迁移系统与ω-自动机

- 标号迁移系统(LTS)
- Büchi自动机(BA)
- 泛Büchi自动机(GBA)
- ω-自动机(BA,GBA,MA,SA,RA,PA)

## (I) Labeled Transition Systems

#### Definition

A labeled transition system is a quadruple < $\Sigma$ ,S, $\Delta$ ,I>

- $-\Sigma$ : A finite set of symbols
- S : A finite set of states
- $-\Delta \subseteq S \times \Sigma \times S$ : A transition relation
- $-\operatorname{I}\subseteq\operatorname{S}:\operatorname{A}$  set of initial states

Remark: Let R = { (s,s') | (s,a,s')  $\in \Delta$  }. Then (S,R,I) is a Kripke structure, and  $\Delta$  : R  $\rightarrow$  (2<sup> $\Sigma$ </sup> \  $\emptyset$ )

# (I) Labeled Transition Systems

- Basic Concepts
  - Labels, States, Labeled Transition Relation, Initial States
  - Words, Runs
  - Language
- Deterministic vs Non-deterministic LTS
- Comparison with Labeled KS

#### Example: $\Sigma$

#### a,b,c

# Example: S



# Example: $\Delta$



Notation  $s \rightarrow a s': (s,a,s') \in \Delta$ 

# Example: I



# Words, Runs on Words, Runs

```
Given a LTS A=<\Sigma,S,\Delta,I>
```

```
A word is an infinite sequence of \Sigma
```

```
Let w=w[1]w[2]w[3].....\in \Sigma^{\omega} be a word.
```

```
Definition
A run of A on w is an infinite sequence s_0 s_1 s_2 \dots of S
such that s_0 \in I, and (s_i, w[i+1], s_{i+1}) \in \Delta for all i \ge 0.
```

Definition

A **run** of A is an infinite sequence  $s_0 s_1 s_2 \dots$  of S such that there is a w and  $s_0 s_1 s_2 \dots$  is a run on w.

# Words over Runs

Definition A **word** over a run r of A is an infinite sequence of  $\Sigma$ :  $a_1a_2...$ such that r is a run on  $a_1a_2...$ 

#### Example: Words, Runs



words: $a^{\omega}$ , $(bc)^{\omega}$ , $a(bc)^{\omega}$ runs: $(s0s2)^{\omega}$ , $s0(s1s3)^{\omega}$ 



Definition The language of A is the set of words over runs of A.

The language of A is denoted L(A).

#### Example: Language



words over runs: (bc)<sup>ω</sup>, (cb)<sup>ω</sup>, (bc)\*a (bc)<sup>ω</sup>, (bc)\*ba(cb)<sup>ω</sup>, (cb)\*a (cb)<sup>ω</sup>, (cb)\*ca(bc)<sup>ω</sup>

# Deterministic vs Non-deterministic LTS

Given A=< $\Sigma$ ,S, $\Delta$ ,I>

Definition A is deterministic, if |I|=1 and  $|\Delta(s,a)| \leq 1$  for all  $s \in S$  and  $a \in \Sigma$ .

Theorem

For a deterministic LTS, for any word w, there is at most one run on w.

# **Deterministic LTS**



# β α β β α α s0s0s1s0s0s1s1

#### Non-deterministic LTS



βαβ βαα

s0s0s0s0s0s0 s0s0s0s0s0s1

例子: 自动售茶机的设计



例子: 自动售茶机的设计



例子: 自动售茶机的设计



# **Comparison with Labeled KS**

AP  $K = \langle S, R, I, L \rangle$   $L: S \rightarrow 2^{AP}$  $K = \langle S, R, I \rangle + \langle AP, L \rangle$ 

LTS =  $\langle \Sigma, S, \Delta, I \rangle$ R = { (s,s') | (s,a,s')  $\in \Delta$  }  $\Delta : R \rightarrow (2^{\Sigma} \setminus \emptyset)$ LTS =  $\langle S, R, I \rangle + \langle \Sigma, \Delta \rangle$ 





#### (II) Büchi Automata

LTS + Acceptance Condition

例子: 自动售茶机的设计



#### Definition

A Büchi automaton (BA) is a quintuple < $\Sigma$ ,S, $\Delta$ ,I,F>

- $<\Sigma,S,\Delta,I>$  is a labeled transition system
- $F \subseteq S$ : A set of acceptance states

#### Büchi Automata

- Basic Concepts
  - Labels, States, Labeled Transition Relation, Initial States
  - Words, Runs
  - Accepting Runs, Accepting Words, Language
  - Comparison with LTS
- Emptiness
- Basic Operations
- Language Inclusion

# Example: $\Sigma$ ,S, $\Delta$ ,I



# Example: F={s1,s3}



# Words, Runs on Words, Runs

```
Given a LTS A=<\Sigma,S,\Delta,I>
```

```
A word is an infinite sequence of \Sigma
```

```
Let w=w[1]w[2]w[3].....\in \Sigma^{\omega} be a word.
```

```
Definition
A run of A on w is an infinite sequence s_0 s_1 s_2 \dots of S
such that s_0 \in I, and (s_i, w[i+1], s_{i+1}) \in \Delta for all i \ge 0.
```

Definition

A **run** of A is an infinite sequence  $s_0 s_1 s_2 \dots$  of S such that there is a w and  $s_0 s_1 s_2 \dots$  is a run on w.

# Words over Runs

Definition A **word** over a run r of A is an infinite sequence of  $\Sigma$ :  $a_1a_2...$ such that r is a run on  $a_1a_2...$ 

# Accepting Runs, Accepting Words

Let  $inf(\pi)$  be the set of states

that appear infinitely many times on  $\pi$ .

Definition An **accepting run** of A is a run  $\pi$  of A such that  $inf(\pi) \cap F \neq \emptyset$ .

Definition

An accepting word of A is

a word over some accepting run of A.



Definition The language of A is the set of accepting words of A.

The language of A is denoted L(A).

#### Example: Words, Runs



words: $a^{\omega}$ , $(bc)^{\omega}$ , $a(bc)^{\omega}$ runs: $(s0s2)^{\omega}$ , $s0(s1s3)^{\omega}$
### **Example: Accepting Runs**



runs: $(s0s2)^{\omega}$ , $s0(s1s3)^{\omega}$ accepting runs: $s0(s1s3)^{\omega}$ 

#### Example: Accepting Words and Language



accepting words: (bc)\*a (bc)<sup>ω</sup>, (bc)\*ba(cb)<sup>ω</sup>, (cb)\*a (cb)<sup>ω</sup>, (cb)\*ca(bc)<sup>ω</sup>

# Comparison with LTS

Given an LTS:  $M = \langle \Sigma, S, \Delta, I \rangle$ 

- $-\Sigma$ : A finite set of symbols
- S : A finite set of states
- $-\Delta \subseteq S \times \Sigma \times S$ : A transition relation
- $-I \subseteq S$ : A set of initial states

Let A =< $\Sigma$ ,S, $\Delta$ ,I,S> be a BA. Then L(M) = L(A).

## **Emptiness Problem**

Let A be a BA.

L(A)=Ø?

## **Emptiness Check**

Given A=< $\Sigma$ ,S, $\Delta$ ,I,F>

Define R={ (s,s') | (s,a,s')  $\in \Delta$ , s  $\in \Sigma$ }

#### L(A) is empty iff <S,R,I,{F}> is empty.

A better algorithm is known as double DFS.



## **Basic Operations**

Preliminaries: Ramsey Theorem

Union

Intersection

Complementation

# **Ramsey Theorem**

A group of 6 people:

3 of them know each other or do not know each other

A complete graph with 6 vertices, edges with 2 colors: there is a triangle of which the 3 edges has the same color

R(3,3)=6 R(4,4)=18 (a complete subgraph with 4 vertices) R(5,5)≤48

## **Three Colors**

A complete graph with 17 vertices, edges with 3 colors: there is a triangle of which the 3 edges has the same color

R(3,3,3)=17

A complete graph with infinite number of vertices, edges with finite number of colors: there is a complete subgraph with infinite number of vertices such that the edges of the graph are colored with the same color

## **Ramsey Theorem**

A k-coloring C of  $[X]^n$  is a function from  $[X]^n$  into a set of size k.

H is homogeneous for C if C is constant on [H]<sup>n</sup>, i.e. all n-element subsets of H are assigned the same color by C.

Ramsey Theorem *RT(n,k)* Every *k–coloring of* [**N**]<sup>*n*</sup> *has* an infinite homogeneous set.

### **Proof** (by induction on *n*)

For n = 1: [X] is infinite, k is finite  $\rightarrow$  OK Assuming n=r+1 and the theorem is true for  $n \le r$ : Given a C-coloring of the (r + 1)-element subsets of X.

Let  $a_0$  be an element of X and let  $Y = X \setminus \{a_0\}$ . We have a C-coloring of the r-element subsets of Y, by deleting  $a_0$  from each (r + 1)-element subset of X.

By the induction hypothesis, there exists an infinite subset  $Y_1$ of Y such that every r-element subset of  $Y_1$  is colored the same color in the induced coloring.

- There is an element  $a_0$  and an infinite subset  $Y_1$  such that all the (r + 1)-element subsets of X consisting of  $a_0$  and r elements of  $Y_1$  have the same color.
- By the same argument, there is an element  $a_1$  in  $Y_1$  and an infinite subset  $Y_2$  of  $Y_1$  with the same properties.
- Inductively, we obtain a sequence  $\{a_0, a_1, a_2, ...\}$  such that the color of each (r + 1)-element subset  $(a_{i(1)}, a_{i(2)}, ..., a_{i(r + 1)})$  with i(1) < i(2) < ... < i(r + 1) depends only on the value of i(1).
- Further, there are infinitely many values of i(n) such that this color will be the same. Take these  $a_{i(n)}$ 's to get the desired monochromatic set.





Then we have

a0,a1,a2,a3,... c0,c1,c2,c3,...

Let  $J_m$  (1 $\le$ m $\le$ k) be the set of  $a_j$ such that  $c_m$  is consistent with the selection of  $a_j$ .

Then one of such is an infinite set. Let it be Z.

Then C is constant on  $[Z]^n$ 

# Corollary

Suppose that  $\Sigma^*$  is divided into

finitely many equivalent classes.

Let w=w[1]w[2]w[3]w[4]... be an infinite word over  $\Sigma$ .

Then there is a pair of equivalent classes U,V

such that  $w \in U.V^{\omega}$ .



Proof.

Let  $f(x,y) = equivalent class of w[x...y-1] for y>x\geq 1$ . Then the corollary follows from Ramsey theorem for pairs.

# **Basic Operations**

Preliminaries: Ramsey Theorem

Union

Intersection

Complementation

# Union: Example



# Union

Given two BAs  $A_1 = \langle \Sigma, S_1, \Delta_1, I_1, F_1 \rangle$ ,  $A_2 = \langle \Sigma, S_2, \Delta_2, I_2, F_2 \rangle$ . Suppose that  $S_1$  and  $S_2$  are disjoint.

Define  $A_1 \cup A_2 = \langle \Sigma, S, \Delta, I, F \rangle$  where  $S = S_1 \cup S_2$   $\Delta = \Delta_1 \cup \Delta_2$   $I = I_1 \cup I_2$  $F = F_1 \cup F_2$ 

# Union

### Theorem L(A<sub>1</sub> $\cup$ A<sub>2</sub>) = L(A<sub>1</sub>) $\cup$ L(A<sub>2</sub>)

#### Intersection: Example



Given BAs  $A_1 = \langle \Sigma, S_1, \Delta_1, I_1, F_1 \rangle$ ,  $A_2 = \langle \Sigma, S_2, \Delta_2, I_2, F_2 \rangle$ .

Attempt 1: Define  $A_1 \cap A_2 = \langle \Sigma, S, \Delta, I, F \rangle$  where

$$S = S_1 \times S_2$$
  

$$\Delta = \{ ((s_1, s_2), a, (s_1', s_2')) | (s_1, a, s_1') \in \Delta_1, (s_2, a, s_2') \in \Delta_2 \}$$
  

$$I = I_1 \times I_2$$
  

$$F = ?$$

Given BAs  $A_1 = \langle \Sigma, S_1, \Delta_1, I_1, F_1 \rangle$ ,  $A_2 = \langle \Sigma, S_2, \Delta_2, I_2, F_2 \rangle$ .

Define  $A_1 \cap A_2 = \langle \Sigma, S, \Delta, I, F \rangle$  where

$$S = S_{1} \times S_{2} \times \{0, 1, 2\}$$
  

$$\Delta = \{ ((s_{1}, s_{2}, i), a, (s_{1}', s_{2}', j)) | (s_{1}, a, s_{1}') \in \Delta_{1}, (s_{2}, a, s_{2}') \in \Delta_{2}, ?? \}$$
  

$$I = I_{1} \times I_{2} \times \{0\}$$
  

$$F = S_{1} \times S_{2} \times \{2\}$$
  

$$\longrightarrow \{0\} \longrightarrow \{1\} \longrightarrow \{2\}$$

#### $\Delta =$

 $\{ ((s_1, s_2, 0), a, ((s_1', s_2', 0)) \mid (s_1, a, s_1') \in \Delta_1, (s_2, a, s_2') \in \Delta_2 \} \cup \\ \{ ((s_1, s_2, 0), a, ((s_1', s_2', 1)) \mid ((s_1, a, s_1') \in \Delta_1, (s_2, a, s_2') \in \Delta_2, s_1 \in F_1 \} \cup$ 

 $\{ ((s_1, s_2, 1), a, ((s_1', s_2', 1)) \mid (s_1, a, s_1') \in \Delta_1, (s_2, a, s_2') \in \Delta_2 \} \cup \\ \{ ((s_1, s_2, 1), a, ((s_1', s_2', 2)) \mid (s_1, a, s_1') \in \Delta_1, (s_2, a, s_2') \in \Delta_2, s_2 \in F_2 \} \cup$ 

{ ((s<sub>1</sub>,s<sub>2</sub>,2),a,((s<sub>1</sub>',s<sub>2</sub>',0)) | (s<sub>1</sub>,a,s<sub>1</sub>') $\in \Delta_1$ , (s<sub>2</sub>,a,s<sub>2</sub>') $\in \Delta_2$  }

Theorem L(A<sub>1</sub>  $\cap$  A<sub>2</sub>) = L(A<sub>1</sub>)  $\cap$  L(A<sub>2</sub>) The set of BAs is closed under complementation.

Given A=< $\Sigma$ ,S, $\Delta$ ,I,F>. There exists a BA B such that L(B) =  $\Sigma^{\omega} \setminus L(A)$ 



#### Definition

A congruence '~' over a set of strings is an equivalence relation such that  $(x1 \sim y1 \text{ and } x2 \sim y2) \rightarrow x1.x2 \sim y1.y2$ 

Given A=< $\Sigma$ ,S, $\Delta$ ,I,F>.

Define  $\approx$  over  $\Sigma^*$ .



 $\approx$  is a congruence, i.e.,

u1≈v1 and u2≈v2 implies u1u2≈v1v2

The number of such equivalence classes is finite.

Suppose that U,V are equivalent classes.

Lemma U.V $^{\omega} \subseteq L(A)$  or U.V $^{\omega} \subseteq \overline{L(A)}$ .

Lemma

Let w be an infinite word over  $\Sigma$ .

Then there is a pair of equivalent classes U,V such that  $w \in U.V^{\omega}$ .

# Theorem L(A) can be represented by a Büchi automaton.

#### Proof.

Each of  $U.V^{\omega} \subseteq \overline{L(A)}$  can be represented by an Büchi automata. The union of such automata is also representable by a Büchi automaton. We have:  $\overline{L(A)} = \bigcup \{ U.V^{\omega} \mid U.V^{\omega} \cap L(A) = \emptyset \}.$ 

Reference D. A. Peled. Software Reliability Methods. 2001. pp.151-152.

# Language Inclusion

Let A and B be a BAs.

$$L(A) \subseteq L(B) ?$$
  

$$L(A) \cap (\Sigma^{(i)} \setminus L(B)) = \emptyset ?$$
  

$$L(A) \cap L(\neg B) = \emptyset ?$$
  

$$A \cap \neg B = \emptyset ?$$

# **Example: Properties and Emptiness**



# **Example: Properties and Emptiness**


### **Design of Mutual Exclusion**



# **Design of Mutual Exclusion**



## **Example: Properties and Emptiness**



# Büchi Automaton

Definition

A Büchi automaton is a quintuple < $\Sigma$ ,S, $\Delta$ ,I,F>

- $-\Sigma$ : A finite set of symbols
- S : A finite set of states
- $-\Delta \subseteq \mathsf{S} \ \mathsf{x} \ \Sigma \ \mathsf{x} \ \mathsf{S}$  : A transition relation
- $-\operatorname{I}\subseteq\operatorname{S}$  : A set of initial states
- $F \subseteq S$ : A set of acceptance states

### The Set of Actions: $\boldsymbol{\Sigma}$

#### { a<sub>i</sub>, b<sub>i</sub> | i=1,2,3,4 }

### The Set of States: S

#### {(a,b,x,y,t) | $a,b \in \{NCR,wait,CR\}$ and $x,y,t \in \{0,1\}$ }

## Transition Relation: R

| (NCR,b,x,y,t)                                                       | →a1                      | (wait,b,x,1,1)                                                   |  |
|---------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|--|
| (wait,b,1,y,1)                                                      | →a2                      | (wait,b,1,y,1)                                                   |  |
| (wait,b,0,y,t)                                                      | →a3                      | (CR,b,0,y,t)                                                     |  |
| (wait,b,x,y,0)<br>(CR,b,x,y,t)                                      | →a3                      | (CR,b,x,y,0)                                                     |  |
|                                                                     | →a4                      | (NCR,b,x,0,t)                                                    |  |
|                                                                     |                          |                                                                  |  |
| (a,NCR,x,y,t)                                                       | →b1                      | (a,wait,1,y,0)                                                   |  |
| (a,NCR,x,y,t)<br>(a,wait,x,1,0)                                     | →b1<br>→b2               | (a,wait,1,y,0)<br>(a,wait,x,1,0)                                 |  |
| (a,NCR,x,y,t)<br>(a,wait,x,1,0)<br>(a,wait,x,1,t)                   | →b1<br>→b2<br>→b3        | (a,wait,1,y,0)<br>(a,wait,x,1,0)<br>(a,CR,x,1,t)                 |  |
| (a,NCR,x,y,t)<br>(a,wait,x,1,0)<br>(a,wait,x,1,t)<br>(a,wait,x,y,1) | →b1<br>→b2<br>→b3<br>→b3 | (a,wait,1,y,0)<br>(a,wait,x,1,0)<br>(a,CR,x,1,t)<br>(a,CR,x,y,1) |  |

## The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }

## The Set of Accepting States: F

F = S

### Büchi Automata



### Büchi Automata



## Specification of a Safety Property

 $(\Sigma \{a3,b3\})^{\omega}$  $(\Sigma \{a3,b3\})^{*}b3.(\Sigma \{a3,b3,b4\})^{\omega}$  $(\Sigma \{a3,b3\})^{*}a3.(\Sigma \{b3,a3,a4\})^{\omega}$ 

 $(\Sigma \{a3,b3\}) * b3.(\Sigma \{a3,b3,b4\}) * .b4.....$  $(\Sigma \{a3,b3\}) * a3.(\Sigma \{b3,a3,a4\}) * .a4.....$ 

### **Specification of a Safety Property**

 $X=(\Sigma \setminus \{a3,b3\})$  $Y = (\Sigma \setminus \{a3, b3, b4\})$  $Z=(\Sigma \setminus \{b3,a3,a4\})$ 

 $U=X^{*}((b3.Y^{*}.b4)|(a3.Z^{*}.a4))$ 

 $U^{\omega} | U^*X^{\omega} | U^*X^*b3.Y^{\omega} | U^*X^*a4.Z^{\omega}$ 

## Büchi Automaton of the Safety Spec.

 $F = \{s0, s1, s2\}$ 



## Büchi Automaton of the Safety Spec.

 $F = \{s0, s1, s2\}$ 



## **Inevitability Property**

 $\Sigma$ \*(a3|b3). $\Sigma$ <sup>ω</sup>

### Specification of an Inevitability Property





## **Example: Properties and Emptiness**



## **Emptiness Checking**

- A: model automaton
- B: specification automaton

```
L(A) \subseteq L(B)L(A) \cap (\Sigma^{\omega} \setminus L(B)) = \emptysetL(A) \cap L(\neg B) = \emptysetA \cap \neg B = \emptyset
```

## **Example: Properties and Emptiness**



## (III) Generalized Büchi Automaton

Definition

A GBA is a quintuple < $\Sigma$ ,S, $\Delta$ ,I,F>

- $-\Sigma$ : A finite set of symbols
- S : A finite set of states
- $-\Delta \subseteq S \times \Sigma \times S$ : A transition relation
- $-I \subseteq S$ : A set of initial states
- $F \subseteq 2^S$  : A set of sets of acceptance states

# Example: $\Sigma$ ,S, $\Delta$ ,I



# Example: F={{s1,s3},{s2}}



# **Basic Concepts**

### **Accepting Runs**

Let  $inf(\pi)$  be the set of states that appear infinitely many times on  $\pi$ .

Definition An **accepting run** of A is a run  $\pi$  of A such that for each  $f \in F$ ,  $inf(\pi) \cap f \neq \emptyset$ .



Definition The language of A is the set of accepting words of A.

The language of A is denoted L(A).

### **Expressiveness of GBAs**

Theorem

Every language expressible by a BA is also expressible by a GBA.

Proof Given a BA A=< $\Sigma$ ,S, $\Delta$ ,I,F>. Let B=< $\Sigma$ ,S, $\Delta$ ,I,{F}> be a GBA. Then L(B)=L(A).

### **Expressiveness of GBAs**

Theorem

Every language expressible by a GBA is also expressible by a BA.

Proof Given a GBA A=< $\Sigma$ ,S, $\Delta$ ,I,{f<sub>1</sub>,...,f<sub>n</sub>}>. We can construct a BA B=< $\Sigma$ ,S', $\Delta$ ',I',F'> such that L(B)=L(A).

The proof is left as an exercise.

### **Basic Operations**

The set of GBAs is closed under union, intersection and complementation.

#### Fair Labeled Kripke Structures and $\omega\textsc{-Automata}$



Let AP be given. Let K=<S,R,I,L, $\Phi$ > over AP. Let A=< $\Sigma$ ,S, $\Delta$ ,I,F> be a GBA.

Let  $\zeta$  be a mapping between 2<sup>AP</sup> and  $\Sigma$ .

A and K are  $\zeta$ -equivalent, if L(A)=  $\zeta$ (L(K)),

i.e, for every fair computation c of K,

there is an accepting run r of A such that  $L(r) = \zeta(L(c))$ , and vice versa.

#### Fair Labeled Kripke Structures and $\omega\textsc{-Automata}$



#### Fair Labeled Kripke Structures and $\omega\textsc{-Automata}$





AP: {p,q}

Let AP be given. Let K=<S,R,I,L, $\{\phi_1,...,\phi_n\}$ > be a fair labeled Krikpe structure.

Let  $\Sigma = 2^{AP}$ . Let  $A = \langle \Sigma, S, \Delta, I, \{f_1, \dots, f_n\} \rangle$  be a GBA where  $\Delta = \{ (s, a, s') \mid (s, s') \in \mathbb{R}, a = L(s) \}$  and  $f_i = [[\phi_i]]$   $\pi$  is a computation of K, iff L( $\pi$ ) is a word over some runs of A.

 $\pi$  is a fair computation of K, iff L( $\pi$ ) is an accepting word of A.

L(A) = L(K) (and  $\zeta = ID$ )

#### $\omega$ -Automata $\rightarrow$ Fair Labeled Kripke Structures

Let  $A = \langle \Sigma, S, \Delta, I, \{f_1, \dots, f_n\} \rangle$  be a GBA.

We may defined a corresponding fair labeled Kripke structure K for A, such that L(K) = L(A).
### $\infty$ -Automata $\rightarrow$ Fair Labeled Kripke Structures

Let 
$$A = \langle \Sigma, S, \Delta, I, \{f_1, \dots, f_n\} \rangle$$
 be a GBA.

$$\begin{split} \mathsf{AP} &= \Sigma \cup \{\mathsf{p}_1, \dots, \mathsf{p}_n\} \\ \mathsf{S'} &= \{ (\mathsf{s}, \mathsf{a}, \mathsf{s'}) \mid (\mathsf{s}, \mathsf{a}, \mathsf{s'}) \in \Delta \} \\ \mathsf{R'} &= \{ ((\mathsf{s}, \mathsf{a}, \mathsf{s'}), (\mathsf{s'}, \mathsf{b}, \mathsf{s''})) \mid (\mathsf{s}, \mathsf{a}, \mathsf{s'}), (\mathsf{s'}, \mathsf{b}, \mathsf{s''}) \in \mathsf{S'} \} \\ \mathsf{I'} &= \{ (\mathsf{s}, \mathsf{a}, \mathsf{s'}) \mid (\mathsf{s}, \mathsf{a}, \mathsf{s'}) \in \Delta, \mathsf{s} \in \mathsf{I} \} \\ \mathsf{Initially}, \mathsf{L}((\mathsf{s}, \mathsf{a}, \mathsf{s'})) &= \{\mathsf{a}\}, \mathsf{add} \mathsf{p}_i \mathsf{to} \mathsf{L}((\mathsf{s}, \mathsf{a}, \mathsf{s'})), \mathsf{if} \mathsf{s} \in \mathsf{f}_i \\ \mathsf{K} &= <\mathsf{S'}, \mathsf{R'}, \mathsf{I'}, \mathsf{L}, \{\mathsf{p}_1, \dots, \mathsf{p}_n\} > \\ \mathsf{Define} \ \zeta \colon 2^{\mathsf{AP}} \xrightarrow{} \Sigma \mathsf{such} \mathsf{that} \zeta(\mathsf{X}) = \mathsf{a} \mathsf{ where} \ \{\mathsf{a}\} = \mathsf{X} \cap \Sigma \\ \mathsf{Then} \ \zeta(\mathsf{L}(\mathsf{K})) = \mathsf{L}(\mathsf{A}) \end{split}$$

Let K=<S,R,I,L> be a labeled kripke structure over AP . Then there is an LTS A=< $\Sigma$ ,S, $\Delta$ ,I> with  $\Sigma$ =2<sup>AP</sup> such that L(A)=L(K).

Let A=< $\Sigma$ ,S, $\Delta$ ,I> be an LTS. Then there is a labeled kripke structure K=<S',R,I',L> over AP =  $\Sigma$ such that  $\zeta$ (L(K)) = L(A) where  $\zeta$ ({a})=a for all  $a \in \Sigma$ 

### (IV) ω-Automata (BA,GBA,MA,SA,RA,PA)

Defines a language

Recognizes whether a word is in the language

Emptiness Language inclusion  $\rightarrow$  emptiness Correctness  $\rightarrow$  language inclusion

-----

 $\mathsf{M} \models \varphi \quad --- \quad [[\mathsf{M}]] \subseteq [[\varphi]]$ 

# Büchi Automaton (BA)

Definition

- A BA is a quintuple < $\Sigma$ ,S, $\Delta$ ,I,F>
  - $-\Sigma$ : A finite set of symbols
  - S : A finite set of states
  - $-\Delta \subseteq \mathsf{S} \ \mathsf{x} \ \Sigma \ \mathsf{x} \ \mathsf{S}$  : A transition relation
  - $-\operatorname{I}\subseteq\operatorname{S}$  : A set of initial states
  - $F \subseteq S$  : A set of acceptance states

# Büchi Automaton (BA)

#### Definition

#### A BA is a quintuple < $\Sigma$ ,S, $\Delta$ ,I,F>

| $-\Sigma$ : A finite set of symbols                                  | Labeled    |
|----------------------------------------------------------------------|------------|
| - S : A finite set of states                                         | Transition |
| $-\Delta \subseteq S \times \Sigma \times S$ : A transition relation | System     |
| $-I \subseteq S$ : A set of initial states                           | (LTS)      |
|                                                                      |            |

 $- F \subseteq S : A$  set of acceptance states

| LTS + | $F \subseteq S$ | Büchi-Condition | BA |
|-------|-----------------|-----------------|----|
|       |                 |                 |    |
|       |                 |                 |    |
|       |                 |                 |    |
|       |                 |                 |    |
|       |                 |                 |    |

#### **Büchi-Condition:**

# An **accepting run** of A is a run $\pi$ of A, such that $inf(\pi) \cap F \neq \emptyset$ .

| LTS + | $F \subseteq S$   | Büchi-Condition        | BA  |
|-------|-------------------|------------------------|-----|
| LTS + | $F \subseteq 2^S$ | Generalized BCondition | GBA |
|       |                   |                        |     |
|       |                   |                        |     |
|       |                   |                        |     |
|       |                   |                        |     |

Generalized B.-Condition:

An **accepting run** of A is a run  $\pi$  of A, such that for each  $f \in F$ ,  $inf(\pi) \cap f \neq \emptyset$ .

| LTS + | $F \subseteq S$   | Büchi-Condition        | BA  |
|-------|-------------------|------------------------|-----|
| LTS + | $F \subseteq 2^S$ | Generalized BCondition | GBA |
| LTS + | $F \subseteq 2^S$ | Muller-Condition       | MA  |
|       |                   |                        |     |
|       |                   |                        |     |
|       |                   |                        |     |

#### **Muller-Condition**:

An **accepting run** of A is a run  $\pi$  of A, such that there exists  $f \in F$ ,  $inf(\pi)=f$ .

| LTS + | $F \subseteq S$                  | Büchi-Condition        | BA  |
|-------|----------------------------------|------------------------|-----|
| LTS + | $F \subseteq 2^S$                | Generalized BCondition | GBA |
| LTS + | $F \subseteq 2^S$                | Muller-Condition       | MA  |
| LTS + | $F \subseteq 2^{S} \times 2^{S}$ | Streett-Condition      | SA  |
|       |                                  |                        |     |
|       |                                  |                        |     |

Streett-Condition:

An **accepting run** of A is a run  $\pi$  of A, such that for each (f,g)  $\in$  F, inf( $\pi$ ) $\cap$ f $\neq \emptyset \rightarrow$  inf( $\pi$ ) $\cap$ g $\neq \emptyset$ .

| LTS + | $F \subseteq S$                  | Büchi-Condition        | BA  |
|-------|----------------------------------|------------------------|-----|
| LTS + | $F \subseteq 2^S$                | Generalized BCondition | GBA |
| LTS + | $F \subseteq 2^S$                | Muller-Condition       | MA  |
| LTS + | $F \subseteq 2^{S} \times 2^{S}$ | Streett-Condition      | SA  |
| LTS + | $F \subseteq 2^S \times 2^S$     | Rabin-Condition        | RA  |
|       |                                  |                        |     |

**Rabin-Condition**:

An **accepting run** of A is a run  $\pi$  of A, such that there exists  $(f,g) \in F$ ,  $inf(\pi) \cap f \neq \emptyset \land inf(\pi) \cap g = \emptyset$ .

| LTS | + | $F \subseteq S$              | Büchi-Condition        | BA  |
|-----|---|------------------------------|------------------------|-----|
| LTS | + | $F \subseteq 2^S$            | Generalized BCondition | GBA |
| LTS | + | $F \subseteq 2^S$            | Muller-Condition       | MA  |
| LTS | + | $F \subseteq 2^S \times 2^S$ | Streett-Condition      | SA  |
| LTS | + | $F \subseteq 2^S \times 2^S$ | Rabin-Condition        | RA  |
| LTS | + | F: S→N                       | Parity-Condition       | PA  |

**Parity-Condition**:

An **accepting run** of A is a run  $\pi$  of A, such that the minimum of { F(s) |  $s \in inf(\pi)$  } is even.

# Expressivity

| Büchi Automata ⊆             |                    | (1) |
|------------------------------|--------------------|-----|
| Generalized Büchi Au         | tomata $\subseteq$ | (2) |
| Streett Automata $\subseteq$ |                    | (3) |
| Muller Automata $\subseteq$  | Büchi Automata     | (4) |

 $\mathsf{B\"uchi} \subseteq \mathsf{Parity} \subseteq \mathsf{Rabin} \subseteq \mathsf{Muller}$ 



#### Büchi Automata $\ \subseteq$ Generalized Büchi Automata

 $BA = \langle \Sigma, S, \Delta, I, F \rangle$ 

 $GBA = \langle \Sigma, S, \Delta, I, \{F\} \rangle$ 



#### 

 $GBA = \langle \Sigma, S, \Delta, I, F \rangle$ ,  $F = \{f1, f2, ..., fn\}$ 

SA = <Σ,S,Δ,I,F'>, F'={(S,f1),(S,f2),...,(S,fn)}

# Expressivity (3)

#### Streett Automata ⊆ Muller Automata

 $SA = \langle \Sigma, S, \Delta, I, F \rangle$ ,  $F = \{(f1,g1), (f2,g2), ..., (fn,gn)\}$ 

 $MA = \langle \Sigma, S, \Delta, I, F' \rangle, \qquad F' = h1 \cap h2 \cap ... \cap hn$ 

 $h1 = \{ Y \mid Y \cap f1 = \emptyset \} \cup \{ Y \mid Y \cap g1 \neq \emptyset \}$ 

# Expressivity (4)

#### Muller Automata $\subseteq$ Büchi Automata

 $MA = \langle \Sigma, S, \Delta, I, F \rangle, \qquad F = \{f1, f2, ..., fn\}$  $BA = \langle \Sigma, S', \Delta', I', F' \rangle$ 

Only need to consider:

 $\mathsf{MA} = \langle \Sigma, \mathsf{S}, \Delta, \mathsf{I}, \mathsf{F} \rangle, \qquad \mathsf{F} = \{\mathsf{f1}\}$ 

### Expressivity (4a)

MA  
A= 
$$<\Sigma,S,\Delta,I,F>$$
, F={f1,...,fm}  
A1 =  $<\Sigma,S,\Delta,I,{f1}>$ , ..., Am =  $<\Sigma,S,\Delta,I,{fm}>$ 

 $L(A) = L(A1) \cup ... \cup L(Am)$ 

Let MA A =  $\langle \Sigma, S, \Delta, I, F \rangle$  where F={f}. How to construct a BA B=  $\langle \Sigma, S', \Delta', I', F' \rangle$  such that L(B)=L(A)

# Expressivity (4b)

 $MA = \langle \Sigma, S, \Delta, I, F \rangle;$   $F = \{f\};$   $f = \{s1, ..., sn\}$ 

$$\begin{aligned} \mathsf{S}' &= \mathsf{S} \cup \mathsf{S} \times \{0, \dots, \mathsf{n}\} \\ \Delta' &= \Delta \cup \{(\mathsf{s}, \mathsf{a}, (\mathsf{s}', \mathsf{0})) \mid (\mathsf{s}, \mathsf{a}, \mathsf{s}') \in \Delta \} \cup \\ &\{(\mathsf{s}, \mathsf{i}), \mathsf{a}, (\mathsf{s}', \mathsf{i})) \mid (\mathsf{s}, \mathsf{a}, \mathsf{s}') \in \Delta, \, \mathsf{s}, \mathsf{s}' \in \mathsf{f}, \, \mathsf{i}=0, \dots, \mathsf{n}-1\} \cup \\ &\{(\mathsf{s}, \mathsf{0}), \mathsf{a}, (\mathsf{s}', \mathsf{1})) \mid (\mathsf{s}, \mathsf{a}, \mathsf{s}') \in \Delta, \, \mathsf{s}=\mathsf{s}\mathsf{1}, \, \mathsf{s}' \in \mathsf{f}\} \cup \dots \cup \\ &\{(\mathsf{s}, \mathsf{n}, \mathsf{a}, (\mathsf{s}', \mathsf{n})) \mid (\mathsf{s}, \mathsf{a}, \mathsf{s}') \in \Delta, \, \mathsf{s}=\mathsf{s}\mathsf{n}, \, \mathsf{s}' \in \mathsf{f}\} \cup \\ &\{(\mathsf{s}, \mathsf{n}), \mathsf{a}, (\mathsf{s}', \mathsf{0})) \mid (\mathsf{s}, \mathsf{a}, \mathsf{s}') \in \Delta, \, \mathsf{s}=\mathsf{s}\mathsf{n}, \, \mathsf{s}' \in \mathsf{f}\} \end{aligned}$$

 $BA = \langle \Sigma, S', \Delta', I, Sx\{n\} \rangle$ 

# Expressivity (Directly From BA to MA)

Büchi Automata  $\subseteq$  Muller Automata

BA B=  $\langle \Sigma, S, \Delta, I, F \rangle$  with a Büchi-condition F

MA A=  $\langle \Sigma, S, \Delta, I, F' \rangle$  with Muller-condition: F' = { f | f  $\cap$  F  $\neq \emptyset$  }

# Expressivity

 $\mathbf{N}$ 

 $\sqrt{}$ 

1

- $\sqrt{}$  Büchi Automata  $\subseteq$ 
  - Generalized Büchi Automata  $\subseteq$ 
    - Streett Automata  $\subseteq$ 
      - Muller Automata  $\subseteq$

Büchi Automata

 $\mathsf{B\"{u}chi} \subseteq \mathsf{Parity} \subseteq \mathsf{Rabin} \subseteq \mathsf{Muller}$ 

# Expressivity (1)

Büchi Automata C Parity Automata

BA = 
$$\langle \Sigma, S, \Delta, I, F \rangle$$
  
PA =  $\langle \Sigma, S, \Delta, I, F' \rangle$  with F'(s)=0 when s in F  
F'(s)=1 otherwise.

The minimum of { F'(s) |  $s \in inf(\pi)$  } is even iff inf( $\pi$ )  $\cap$  F  $\neq \emptyset$ 

# Expressivity (2)

#### Parity Automata $\ \subseteq$ Rabin Automata

$$PA = \langle \Sigma, S, \Delta, I, \{ f_0, f_1, ..., f_{2n} \} >$$

$$RA = \langle \Sigma, S, \Delta, I, F \rangle$$
  
F= { (f<sub>0</sub>, Ø), (f<sub>2</sub>, f<sub>1</sub>), (f<sub>4</sub>, f<sub>1</sub> \cup f<sub>3</sub>), ..., (f<sub>2n</sub>, f<sub>1</sub> \cup ... \cup f<sub>2n-1</sub>) }

# Expressivity (3)

Rabin Automata  $\subseteq$  Muller Automata

 $RA = \langle \Sigma, S, \Delta, I, F \rangle$ ,  $F = \{(f1,g1), (f2,g2), ..., (fn,gn)\}$ 

 $MA = \langle \Sigma, S, \Delta, I, F' \rangle, \qquad F' = h1 \cup h2 \cup ... \cup hn$ 

h1 = { Y  $\subseteq$  S | Y  $\cap$  f1 $\neq \emptyset$ , Y  $\cap$  g1= $\emptyset$ }

# Expressivity

1

- $\sqrt{}$  Büchi Automata  $\subseteq$
- $\sqrt{}$  Generalized Büchi Automata  $\subseteq$
- $\sqrt{}$  Streett Automata  $\subseteq$ 
  - Muller Automata  $\subseteq$

Büchi Automata

 $\sqrt{}$  Büchi  $\subseteq$  Parity  $\subseteq$  Rabin  $\subseteq$  Muller

Deterministic LTS + Acceptance Condition





 $L(A) = L(\neg B) = (\alpha + \beta) * \alpha^{\omega}$ 

- Closed under complementation
  - Deterministic Muller
  - Deterministic Streett
  - Deterministic Rabin
  - Deterministic Parity

- Not closed under complementation
  - Deterministic Büchi
  - Deterministic Generalized Büchi

- A Büchi automaton is equivalent to, respectively,
- a deterministic Muller automaton,
- a deterministic Rabin automaton, and
- a deterministic Streett automaton, and
- a deterministic parity automaton.

### (V) Summary

- 标号迁移系统(LTS)
- Büchi自动机(BA)
- 泛Büchi自动机(GBA)
- ω-自动机(BA,GBA,MA,SA,RA,PA)



练习:

```
1.
给定GBA A=<Σ,S,Δ,I,{f<sub>1</sub>,...,f<sub>n</sub>}>.
构造BA B=<Σ,S',Δ',I',F'> 使得 L(B)=L(A).
2。
给定GBA A<sub>1</sub>, A<sub>2</sub>. 定义GBA的交和并运算.
即
a) 定义A<sub>1</sub>∩A<sub>2</sub> 使得L(A<sub>1</sub>∩A<sub>2</sub>) = L(A<sub>1</sub>)∩L(A<sub>2</sub>);
b) 定义A<sub>1</sub>∪A<sub>2</sub> 使得L(A<sub>1</sub>∪A<sub>2</sub>) = L(A<sub>1</sub>)∪L(A<sub>2</sub>);
```