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内容：标号迁移系统与-自动机

• 标号迁移系统(LTS)
• Büchi自动机(BA)
• 泛Büchi自动机(GBA)
• -自动机(BA,GBA,MA,SA,RA,PA)



(I) Labeled Transition Systems 

Definition
A labeled transition system is a quadruple <,S,,I>
–  : A finite set of symbols
– S : A finite set of states
–   S x  x S : A transition relation
– I  S : A set of initial states

Remark：
Let R = { (s,s’) | (s,a,s’)  }. 
Then (S,R,I) is a Kripke structure, and  : R  (2 \ ) 



(I) Labeled Transition Systems 

• Basic Concepts
• Labels, States, Labeled Transition Relation, Initial States
• Words, Runs 
• Language 

• Deterministic vs Non-deterministic LTS
• Comparison with Labeled KS



Example: 

{a,b,c}
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Notation
sa s’: (s,a,s’)
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Words, Runs on Words, Runs
Given a LTS A=<,S,,I>
A word is an infinite sequence of 
Let w=w[1]w[2]w[3]…… be a word. 

Definition
A run of A on w is an infinite sequence s0 s1 s2 …. of S 
such that s0  I, and (si ,w[i+1],si+1)  for all i  0.

Definition
A run of A is an infinite sequence s0 s1 s2 …. of S 
such that there is a w and s0 s1 s2 …. is a run on w.



Words over Runs

Definition
A word over a run r of A is 
an infinite sequence of : a1a2 …. 
such that r is a run on a1a2 …. 



Example: Words, Runs
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words: a, (bc), a(bc)

runs: (s0s2), s0(s1s3)



Language

Definition
The language of A is 
the set of words over runs of A.

The language of A is denoted L(A).



Example: Language
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words over runs:
(bc), (cb),
(bc)*a (bc), (bc)*ba(cb), (cb)*a (cb), (cb)*ca(bc)



Deterministic vs Non-deterministic LTS

Given A=<,S,,I>

Definition
A is deterministic, if 
|I|=1 and |(s,a)|  1 for all sS and a.

Theorem
For a deterministic LTS, 
for any word w, there is at most one run on w. 
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Comparison with Labeled KS

AP
K = <S,R,I,L>
L: S 2AP

K = <S,R,I> + <AP,L>

LTS = <,S,,I>
R = { (s,s’) | (s,a,s’)   }
 : R  (2 \ )
LTS = <S,R,I> + <,> s2

s0

s3

s1
a

b

a

bc c
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s3

s1

{} {q}

{p,q}{p}



(II) Büchi Automata

LTS + Acceptance Condition
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Büchi Automata

Definition
A Büchi automaton (BA) is a quintuple <,S,,I,F>
– <,S,,I> is a labeled transition system
– F  S : A set of acceptance states



Büchi Automata

• Basic Concepts
• Labels, States, Labeled Transition Relation, Initial States
• Words, Runs 
• Accepting Runs, Accepting Words, Language
• Comparison with LTS

• Emptiness
• Basic Operations
• Language Inclusion



Example: ,S,,I
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Example: F={s1,s3}
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Words, Runs on Words, Runs
Given a LTS A=<,S,,I>
A word is an infinite sequence of 
Let w=w[1]w[2]w[3]…… be a word. 

Definition
A run of A on w is an infinite sequence s0 s1 s2 …. of S 
such that s0  I, and (si ,w[i+1],si+1)  for all i  0.

Definition
A run of A is an infinite sequence s0 s1 s2 …. of S 
such that there is a w and s0 s1 s2 …. is a run on w.



Words over Runs

Definition
A word over a run r of A is 
an infinite sequence of : a1a2 …. 
such that r is a run on a1a2 …. 



Accepting Runs, Accepting Words

Let inf() be the set of states 
that appear infinitely many times on  .

Definition
An accepting run of A is a run  of A 
such that inf()F.

Definition
An accepting word of A is 
a word over some accepting run of A.



Language

Definition
The language of A is 
the set of accepting words of A.

The language of A is denoted L(A).



Example: Words, Runs
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words: a, (bc), a(bc)

runs: (s0s2), s0(s1s3)



Example: Accepting Runs
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words: a, (bc), a(bc)

runs: (s0s2), s0(s1s3)

accepting runs: s0(s1s3)



Example: Accepting Words and Language
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b

a
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accepting words:
(bc)*a (bc), (bc)*ba(cb), (cb)*a (cb), (cb)*ca(bc)



Comparison with LTS

Given an LTS:  M=<,S,,I>
–  : A finite set of symbols
– S : A finite set of states
–   S x  x S : A transition relation
– I  S : A set of initial states

Let A =<,S,,I,S> be a BA. 
Then L(M) = L(A).



Emptiness Problem

Let A be a BA.

L(A)=?



Emptiness Check

Given A=<,S,,I,F>

Define R={ (s,s’) | (s,a,s’)  , s Σ}

L(A) is empty iff <S,R,I,{F}> is empty.

A better algorithm is known as double DFS. 

ddfs



Basic Operations

Preliminaries: Ramsey Theorem
Union
Intersection
Complementation

50



Ramsey Theorem



Two Colors

A group of 6 people:
3 of them know each other or do not know each other

A complete graph with 6 vertices, edges with 2 colors:
there is a triangle of which the 3 edges has the same color

R(3,3)=6
R(4,4)=18 (a complete subgraph with 4 vertices)
R(5,5)≤48



Three Colors

A complete graph with 17 vertices, edges with 3 colors:
there is a triangle of which the 3 edges has the same color

R(3,3,3)=17



Infinite Number of Vertices

A complete graph with infinite number of vertices, 
edges with finite number of colors:
there is a complete subgraph with infinite number of 
vertices such that the edges of the graph are colored with 
the same color



Ramsey Theorem

A k–coloring C of [X]n is a function 
from [X]n into a set of size k.

H is homogeneous for C if C is constant on [H]n, i.e. 
all n–element subsets of H are assigned the same 
color by C.

Ramsey Theorem RT(n,k)
Every k–coloring of [N]n has an infinite 
homogeneous set.
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Proof (by induction on n) 

EE

For n = 1: [X] is infinite, k is finite  OK
Assuming n=r+1 and the theorem is true for n ≤ r: 
Given a C-coloring of the (r + 1)-element subsets of X.

Let a0 be an element of X and let Y = X \ {a0}.  We have a C-
coloring of the r-element subsets of Y, by deleting a0 from 
each (r + 1)-element subset of X. 

By the induction hypothesis, there exists an infinite subset Y1
of Y such that every r-element subset of Y1 is colored the 
same color in the induced coloring. 



Proof

There is an element a0 and an infinite subset Y1 such that all 
the (r + 1)-element subsets of X consisting of a0 and r
elements of Y1 have the same color. 

By the same argument, there is an element a1 in Y1 and an 
infinite subset Y2 of Y1 with the same properties. 

Inductively, we obtain a sequence {a0, a1, a2, …} such that the 
color of each (r + 1)-element subset (ai(1), ai(2), …, ai(r + 1)) 
with i(1) < i(2) < ... < i(r + 1) depends only on the value of 
i(1). 

Further, there are infinitely many values of i(n) such that this 
color will be the same. Take these ai(n)'s to get the desired 
monochromatic set.
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Y1’

[Y1’]r

Y1’

[Y1’]r

a1a1

Y1

[Y1]r+1

Y1

[Y1]r+1

c1
Y2

[Y2]r

c1
Y2

[Y2]r

a1a1

CC CC CC

Proof



Then we have 

Let Jm (1mk) be the set of aj

such that cm is consistent with the selection of aj .

Then one of such is an infinite set.  Let it be Z. 

Then C is constant on [Z]n

a0,a1,a2,a3,…
c0,c1,c2,c3,…
a0,a1,a2,a3,…
c0,c1,c2,c3,…

Proof



Corollary
Suppose that * is divided into 
finitely many equivalent classes.
Let w=w[1]w[2]w[3]w[4]… be an infinite word over .
Then there is a pair of equivalent classes U,V 
such that w  U.V.

Proof.
Let f(x,y) = equivalent class of w[x…y-1] for y>x1.
Then the corollary follows from Ramsey theorem
for pairs. 

x y z
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Union: Example
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Union
Given two BAs
A1=<,S1,1,I1,F1>,  A2=<,S2,2,I2,F2>. 
Suppose that S1 and S2 are disjoint.

Define  A1A2= <,S,,I,F> where
S = S1 S2

 = 1 2

I = I1 I2

F = F1 F2



Union

Theorem
L(A1A2 ) = L(A1 )  L(A2)



Intersection: Example
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Intersection
Given BAs
A1=<,S1,1,I1,F1>,  A2=<,S2,2,I2,F2>. 

Attempt 1: Define  A1A2= <,S,,I,F> where

S = S1 x S2

 = { ((s1,s2),a,(s1’,s2’)) |(s1,a,s1’)1, (s2,a,s2’)2}   
I =  I1 x I2

F = ? 



Intersection
Given BAs
A1=<,S1,1,I1,F1>,  A2=<,S2,2,I2,F2>. 

Define  A1A2= <,S,,I,F> where

S = S1 x S2 x {0,1,2}
 = { ((s1,s2,i),a,(s1’,s2’,j)) |(s1,a,s1’)1, (s2,a,s2’)2, ?? }
I =  I1 x I2 x {0}
F = S1 x S2 x {2} {0} {1} {2}



Intersection
 =

{ ((s1,s2,0),a,((s1’,s2’,0)) | (s1,a,s1’)1, (s2,a,s2’)2 } 
{ ((s1,s2,0),a,((s1’,s2’,1)) |(s1,a,s1’)1, (s2,a,s2’)2, s1F1}

{ ((s1,s2,1),a,((s1’,s2’,1)) | (s1,a,s1’)1, (s2,a,s2’)2 } 
{ ((s1,s2,1),a,((s1’,s2’,2)) |(s1,a,s1’)1, (s2,a,s2’)2, s2F2}

{ ((s1,s2,2),a,((s1’,s2’,0)) | (s1,a,s1’)1, (s2,a,s2’)2 }



Intersection

Theorem
L(A1  A2 ) = L(A1 )  L(A2)



Complementation

The set of BAs  is closed under complementation.

Given A=<,S,,I,F>.
There exists a BA B such that 
L(B) =  \L(A) 

rs



Proof

Definition
A congruence '~' over a set of strings is 
an equivalence relation such that  
(x1 ~ y1 and x2 ~ y2)  x1.x2 ~ y1.y2



Proof

Given A=<,S,,I,F>.

Define  over *. 

uv, iff for all q,q’: q --------> q’  and q --------> q’. 

v(F)u(F)



Proof

 is a congruence, i.e.,
u1v1 and u2v2 implies u1u2v1v2

The number of such equivalence classes is finite.



Proof
Suppose that U,V are equivalent classes.

Lemma
U.V L(A) or U.V L(A).

Lemma
Let w be an infinite word over .
Then there is a pair of equivalent classes U,V 
such that w  U.V.



Proof

Theorem
L(A) can be represented by a Büchi automaton.

Proof.
Each of U.V L(A) can be represented by 
an Büchi automata. The union of such automata 
is also representable by a Büchi automaton. 
We have: L(A)=  { U.V | U.V  L(A) =  }. 

rr=



Proof

Reference
D. A. Peled. Software Reliability Methods. 
2001. pp.151-152.



Language Inclusion

Let A and B be a BAs.

L(A)  L(B) ?
L(A)  ( \L(B)) =  ?
L(A)  L(B) =  ?
A B =  ?
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Design of Mutual Exclusion

work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

Process A Process B

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0

x:=0y:=0
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work in CR

wait

[x=0 or t=0]
[x=1 and t=1]

work in NCR

initialization

work in CR

wait

work in NCR

[y=0 or t=1]
[y=1 and t=0]

Process A Process B

x:=0;y:=0

y:=1;t:=1 x:=1;t:=0
a1a1

x:=0y:=0
b4b4

b1b1

a3a3

a4a4

a2a2

b3b3

b2b2

Design of Mutual Exclusion
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Büchi Automaton

Definition
A Büchi automaton is a quintuple <,S,,I,F>

–  : A finite set of symbols
– S : A finite set of states
–   S x  x S : A transition relation
– I  S : A set of initial states
– F  S : A set of acceptance states



The Set of Actions: 

{ ai, bi| i=1,2,3,4 }



The Set of States: S

{(a,b,x,y,t) | a,b{NCR,wait,CR} and x,y,t{0,1}}



Transition Relation: R

(NCR,b,x,y,t) a1  (wait,b,x,1,1)
(wait,b,1,y,1) a2  (wait,b,1,y,1)
(wait,b,0,y,t) a3  (CR,b,0,y,t)
(wait,b,x,y,0) a3  (CR,b,x,y,0)
(CR,b,x,y,t) a4  (NCR,b,x,0,t)

(a,NCR,x,y,t) b1  (a,wait,1,y,0)
(a,wait,x,1,0) b2  (a,wait,x,1,0)
(a,wait,x,1,t) b3  (a,CR,x,1,t)
(a,wait,x,y,1) b3  (a,CR,x,y,1)
(a,CR,x,y,t) b4  (a,NCR,0,y,t)



The Set of Initial States: I

{ (NCR,NCR,0,0,0), (NCR,NCR,0,0,1) }



The Set of Accepting States: F

F = S



82

NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

Büchi Automata

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1
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NCR,NCR,0,0,0

NCR,wait,1,0,0wait,NCR,0,1,1

CR,NCR,0,1,1 wait,wait,1,1,0
NCR,CR,1,0,0

wait,wait,1,1,1

Büchi Automata

CR,wait,1,1,0 wait,CR,1,1,1

NCR,NCR,0,0,1

a1a1

a3a3

a4a4
b1b1 a1a1 b1b1

a3a3b1b1

b1b1

b2b2

b2b2a4a4

a2a2

a2a2

a1a1
b3b3

b4b4

a1a1b3b3

b4b4



Specification of a Safety Property

(\{a3,b3})

(\{a3,b3})*b3.(\{a3,b3,b4})

(\{a3,b3})*a3.(\{b3,a3,a4})

(\{a3,b3})*b3.(\{a3,b3,b4})*.b4……
(\{a3,b3})*a3.(\{b3,a3,a4})*.a4……



Specification of a Safety Property

X=(\{a3,b3})
Y=(\{a3,b3,b4})
Z=(\{b3,a3,a4})

U=X*((b3.Y*.b4)|(a3.Z*.a4))

U |U*X|U*X*b3.Y|U*X*a4.Z



s0

s2s1

a1a1 b1b1 a3a3
b2b2

a4a4

a2a2
b3b3

b4b4b4b4

a1a1 b1b1
b2b2a2a2

b4b4

a4a4
a1a1 b1b1

b2b2
a4a4

a2a2

F = {s0,s1,s2}

Büchi Automaton of the Safety Spec.



s0

s2

Büchi Automaton of the Safety Spec.

s1

a1a1 b1b1 a3a3
b2b2

a4a4

a2a2
b3b3

b4b4b4b4

a1a1 b1b1
b2b2a2a2

b4b4

a4a4
a1a1 b1b1

b2b2
a4a4

a2a2

s3

a3a3
b3b3

a3a3
b3b3

F = {s0,s1,s2}





Inevitability Property

*(a3|b3).



s0

Specification of an Inevitability Property

s1

a1a1 b1b1 a3a3
b2b2

a3a3

a2a2
b3b3

b3b3
a4a4 b4b4

a1a1 b1b1
b2b2

a3a3

a2a2

b3b3
a4a4 b4b4

F = {s1}
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Emptiness Checking

A: model automaton
B: specification automaton

L(A)  L(B)
L(A)  (\L(B)) = 
L(A)  L(B) = 
A  B = 



Example: Properties and Emptiness

Contents

Mutual Exclusion

Büchi Automata

Emptiness Checking

Summary
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(III) Generalized Büchi Automaton

EE

Definition
A GBA is a quintuple <,S,,I,F>

–  : A finite set of symbols
– S : A finite set of states
–   S x  x S : A transition relation
– I  S : A set of initial states
– F  2S : A set of sets of acceptance states



Example: ,S,,I

s2

s0

s3

s1
a

b

a

bc c



Example: F={{s1,s3},{s2}}

s2

s0

s3

s1
a

b

a

bc c



Basic Concepts



Accepting Runs

Let inf() be the set of states 
that appear infinitely many times on  .

Definition
An accepting run of A is a run  of A
such that for each fF, inf()f.



Language

Definition
The language of A is 
the set of accepting words of A.

The language of A is denoted L(A).



Expressiveness of GBAs
Theorem
Every language expressible by a BA is also
expressible by a GBA.

Proof
Given a BA A=<,S,,I,F>.
Let B=<,S,,I,{F}> be a GBA.
Then L(B)=L(A).



Expressiveness of GBAs
Theorem
Every language expressible by a GBA is also
expressible by a BA.

Proof
Given a GBA A=<,S,,I,{f1,…,fn}>.
We can construct a BA B=<,S’,’,I’,F’>
such that L(B)=L(A). 
The proof is left as an exercise.



Basic Operations

The set of GBAs is closed under 
union, intersection and complementation.



Fair Labeled Kripke Structures and -Automata
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Fair Labeled Kripke Structures and -Automata

Let AP be given. Let K=<S,R,I,L,> over AP.
Let A=<,S,,I,F> be a GBA.

Let  be a mapping between 2AP and .

A and K are -equivalent, if L(A)= (L(K)),
i.e, for every fair computation c of K, 
there is an accepting run r of A such that L(r) = (L(c)), 
and vice versa. 
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Fair Labeled Kripke Structures and -Automata
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Fair Labeled Kripke Structures  -Automata

Let AP be given.
Let K=<S,R,I,L,{1,…, n}> 
be a fair labeled Krikpe structure.

Let =2AP.
Let A=<,S,,I,{f1,…,fn}> be a GBA where
={ (s,a,s’) | (s,s’)R, a=L(s) } and fi =[[i]]



Fair Labeled Kripke Structures  -Automata

 is a computation of K, iff
L() is a word over some runs of A.

 is a fair computation of K, iff
L() is an accepting word of A.

L(A) = L(K)   (and =ID)



-Automata  Fair Labeled Kripke Structures 

Let A=<,S,,I,{f1,…,fn}> be a GBA.

We may defined a corresponding 
fair labeled Kripke structure K for A, such that 
L(K) = L(A).



-Automata  Fair Labeled Kripke Structures 

Let A=<,S,,I,{f1,…,fn}> be a GBA.

AP=  {p1,…,pn}
S’= { (s,a,s’) | (s,a,s’)   } 
R’ = { ((s,a,s’),(s’,b,s’’)) | (s,a,s’),(s’,b,s’’)  S’ } 
I’ = { (s,a,s’) | (s,a,s’)  , s  I } 
Initially, L((s,a,s’)) = {a}, add pi to L((s,a,s’)), if s  fi

K=<S’,R’,I’,L,{p1,…,pn}>
Define : 2AP  such that (X)=a where {a}=X
Then (L(K)) = L(A)



Comparison of LTS and Labeled KS 

Let K=<S,R,I,L> be a labeled kripke structure over AP .
Then there is an LTS A=<,S,,I> with =2AP

such that L(A)=L(K).

Let A=<,S,,I> be an LTS.
Then there is a labeled kripke structure 
K=<S’,R,I’,L> over AP = 
such that (L(K)) = L(A) where ({a})=a for all a



(IV) -Automata (BA,GBA,MA,SA,RA,PA)



-Automaton

Defines a language 
Recognizes whether a word is in the language
---------------------------------------------------------------------
Emptiness 
Language inclusion  emptiness
Correctness  language inclusion
---------------------------------------------------------------------
M |=  --- [[M]]  [[]]



Büchi Automaton (BA)

Definition
A BA is a quintuple <,S,,I,F>

–  : A finite set of symbols
– S : A finite set of states
–   S x  x S : A transition relation
– I  S : A set of initial states
– F  S : A set of acceptance states



Büchi Automaton (BA)

Definition
A BA is a quintuple <,S,,I,F>

–  : A finite set of symbols
– S : A finite set of states
–   S x  x S : A transition relation
– I  S : A set of initial states
– F  S : A set of acceptance states

Labeled 
Transition 

System 
(LTS) 

Labeled 
Transition 

System 
(LTS) 



-Automaton

Büchi-Condition: 
An accepting run of A is a run  of A, such that 
inf()F.

LTS   + F  S Büchi-Condition BA



-Automaton

Generalized B.-Condition: 
An accepting run of A is a run  of A, such that 
for each fF, inf()f.

LTS   + F  S Büchi-Condition BA
LTS   + F  2S Generalized B.-Condition GBA



-Automaton

Muller-Condition: 
An accepting run of A is a run  of A, such that 
there exists fF, inf()=f.

LTS   + F  S Büchi-Condition BA
LTS   + F  2S Generalized B.-Condition GBA
LTS   + F  2S Muller-Condition MA



-Automaton

Streett-Condition: 
An accepting run of A is a run  of A, such that 
for each (f,g)F, inf()f inf()g.

LTS   + F  S Büchi-Condition BA
LTS   + F  2S Generalized B.-Condition GBA
LTS   + F  2S Muller-Condition MA
LTS   + F  2S x 2S Streett-Condition SA



-Automaton

Rabin-Condition: 
An accepting run of A is a run  of A, such that 
there exists (f,g)F, inf()f inf()g=.

LTS   + F  S Büchi-Condition BA
LTS   + F  2S Generalized B.-Condition GBA
LTS   + F  2S Muller-Condition MA
LTS   + F  2S x 2S Streett-Condition SA
LTS   + F  2S x 2S Rabin-Condition RA



-Automaton

Parity-Condition: 
An accepting run of A is a run  of A, such that 
the minimum of { F(s) | s inf() } is even.

LTS   + F  S Büchi-Condition BA
LTS   + F  2S Generalized B.-Condition GBA
LTS   + F  2S Muller-Condition MA
LTS   + F  2S x 2S Streett-Condition SA
LTS   + F  2S x 2S Rabin-Condition RA
LTS   + F: SN Parity-Condition PA



Expressivity

Büchi Automata  (1)
Generalized Büchi Automata  (2)
Streett Automata  (3)
Muller Automata  Büchi Automata (4)

Büchi  Parity  Rabin  Muller 



Expressivity (1) 

Büchi Automata  Generalized Büchi Automata

BA = <,S,,I,F>

GBA = <,S,,I,{F}>



Expressivity (2) 

Generalized Büchi Automata  Streett Automata

GBA = <,S,,I,F>, F={f1,f2,…,fn}

SA = <,S,,I,F’>,
F’={(S,f1),(S,f2),…,(S,fn)}



Expressivity (3) 
Streett Automata  Muller Automata

SA = <,S,,I,F>, F={(f1,g1),(f2,g2),…,(fn,gn)}

MA = <,S,,I,F’>, F’=h1h2  … hn

h1 = { Y | Yf1 =  }  { Y | Yg1 ≠  }



Expressivity (4) 

Muller Automata  Büchi Automata 

MA = <,S,,I,F>, F={f1,f2,…,fn}
BA = <,S’,’,I’,F’>

Only need to consider:
MA = <,S,,I,F>, F={f1} 



Expressivity (4a)
MA 
A= <,S,,I,F>, F={f1,…,fm}
A1 = <,S,,I,{f1}>, …, Am = <,S,,I,{fm}>

L(A) = L(A1)  …  L(Am)

Let MA A = <,S,,I,F> where F={f}.
How to construct a BA B= <,S’,’,I’,F’> such that 
L(B)=L(A)



Expressivity (4b) 
MA = <,S,,I,F>; F={f}; f={s1,…,sn}

S’ = S  S x {0,….,n}
’=   {(s,a,(s’,0)) | (s,a,s’)   } 

{(s,i),a,(s’,i)) | (s,a,s’)  , s,s’ f, i=0,…,n-1} 
{(s,0),a,(s’,1)) | (s,a,s’)  , s=s1, s’f} …
{(s,n-1),a,(s’,n)) | (s,a,s’)  , s=sn , s’f} 
{(s,n),a,(s’,0)) | (s,a,s’) , s’f } 

BA = <,S’,’,I,Sx{n}>



Expressivity (Directly From BA to MA) 

Büchi Automata  Muller Automata 

BA B= <,S,,I,F> with a Büchi-condition F

MA A= <,S,,I,F’> with 
Muller-condition: F’ = { f | f  F ≠  } 



Expressivity

 Büchi Automata 
 Generalized Büchi Automata 
 Streett Automata 
 Muller Automata  Büchi Automata 

Büchi  Parity  Rabin  Muller 



Expressivity (1) 

Büchi Automata  Parity Automata

BA = <,S,,I,F>
PA = <,S,,I,F’> with F’(s)=0 when s in F

F’(s)=1 otherwise.

The minimum of { F’(s) | s inf() } is even iff
inf()   F  



Expressivity (2) 

Parity Automata  Rabin Automata

PA = <,S,,I,{ f0,f1,…,f2n} > 

RA = <,S,,I,F>
F= { (f0,),(f2,f1),(f4,f1f3),…,(f2n, f1 … f2n-1) }



Expressivity (3) 

Rabin Automata  Muller Automata

RA = <,S,,I,F>, F={(f1,g1),(f2,g2),…,(fn,gn)}

MA = <,S,,I,F’>, F’=h1  h2  …  hn

h1 = { YS | Yf1, Yg1=}



Expressivity

 Büchi Automata 
 Generalized Büchi Automata 
 Streett Automata 
 Muller Automata  Büchi Automata 

 Büchi  Parity  Rabin  Muller 



Deterministic -Automaton

Deterministic LTS + Acceptance Condition



Deterministic -Automaton

L(B) = (α*β)ω

S0 S1S0

β α

α

β

L(A) = L(B) = (α+β)*αω

S0 S1S1

α,β α

α

D:

ND:



Deterministic -Automaton

• Closed under complementation
– Deterministic Muller
– Deterministic Streett
– Deterministic Rabin
– Deterministic Parity 

• Not closed under complementation
– Deterministic Büchi
– Deterministic Generalized Büchi



Deterministic -Automaton

A Büchi automaton is equivalent to, respectively, 
a deterministic Muller automaton, 
a deterministic Rabin automaton, and 
a deterministic Streett automaton, and 
a deterministic parity automaton.



(V) Summary

• 标号迁移系统(LTS)
• Büchi自动机(BA)
• 泛Büchi自动机(GBA)
• -自动机(BA,GBA,MA,SA,RA,PA)

表达能力问题 表达方式问题



练习：

1。
给定GBA A=<,S,,I,{f1,…,fn}>.
构造BA B=<,S’,’,I’,F’> 使得 L(B)=L(A).

2。
给定GBA A1, A2. 定义GBA的交和并运算.
即
a) 定义A1A2 使得L(A1A2 ) = L(A1 )L(A2);
b) 定义A1A2 使得L(A1A2 ) = L(A1 )L(A2);


