
Checking Multi-Agent Systems against Temporal-Epistemic Specifications

Ran Chen1,2 , Wenhui Zhang1,2

1SKLCS, Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

Abstract
This work is on methodologies for checking multi-
agent systems against temporal-epistemic spec-
ifications. Since behaviors that comply with
temporal-epistemic specifications in general (or
theoretically) involve infinite sequences of action-
s of the involved agents, we must avoid check-
ing such specifications based on such infinite se-
quences. This work at the theoretical side provides
a bounded semantics for the temporal-epistemic
specification formalism CTLK such that checking
an infinite number of steps can be reduced to check-
ing a finite number of steps, and at the practical
side develops an approach based on the semantic-
s and QBF-solving techniques for the verification
purpose. The approach has been implemented and
experimental data show that there exist verification
problems that can be verified by this new approach
more efficiently than BDD based symbolic model
checking.

1 Introduction
Multi-agent systems are concurrent systems composed of
multiple interacting agents within an environment [Shoham
and Leyton-Brown, 2008; Wooldridge, 2009]. They can be
used to solve problems that are difficult for an individual
agent to solve, and can be deployed in safety, mission, or
business critical scenarios, and therefore methodologies for
checking the behavior of such systems are of great impor-
tance. Since knowledge is the main concept to model in-
telligence, reasoning about knowledge plays an importan-
t role in analyzing multi-agent systems. For such a pur-
pose, many formalisms based on formal logics have been
studied. Modal logic is generally used to specify agents.
Many extensions of modal logic, such as combining epis-
temic logic with other modal logics, have been develope-
d to specify multi-agent systems. Model checking against
LDLK which is a logic combining epistemic logic with dy-
namic logic has been studied in [Kong and Lomuscio, 2018;
Kong and Lomuscio, 2017a]. There is also work about mod-
el checking against ATLK [Lomuscio and Michaliszyn, 2016]
which combines epistemic logic with strategy logic ATL [Be-
lardinelli et al., 2018]. Another variant is to combine epis-

temic logic with temporal logic [Kong and Lomuscio, 2017b;
Penczek et al., 2012; Meski et al., 2014] and it has been
widely used to model and reason about multi-agent system-
s. To verify multi-agent systems which use temporal epis-
temic logic as their specification language, a number of model
checking methods are adapted to check the properties of such
systems. Such methods include BDD-based model check-
ing, bounded model checking, unbounded model checking,
and many tools based on such methods have been devel-
oped over the years. In [Penczek and Lomuscio, 2003],
bounded semantics has been developed and a bounded model
checking approach has been proposed, and verification based
on fixpoint computations has been proposed in [Kacprzak
et al., 2004b]. Verification based on BDDs was discussed
in [Gammie and Meyden, 2004; Meyden and Su, 2004;
Raimondi and Lomuscio, 2007], and the complexity issues
discussed in [Lomuscio and Raimondi, 2006]. For dealing
with the efficiency of verification, integration of abstraction
[Dam et al., 2009], symmetry reduction [Cohen et al., 2009],
and parallel executions [Kwiatkowska et al., 2010] have been
proposed.

This work focuses on the basic methodologies for check-
ing multi-agent systems against temporal-epistemic specifi-
cations, in particular, CTLK, a computation tree logic of
knowledge [Penczek and Lomuscio, 2003]. The behaviors
that comply with temporal-epistemic specifications involve
infinite sequences of actions such that we must avoid check-
ing such specifications based on such infinite sequences. For
the existential fragment of CTLK (denoted ECTLK), bound-
ed semantics that tries to reduce the problem of checking the
infinite behavior to checking a finite number of steps has al-
ready been suggested [Penczek and Lomuscio, 2003], how-
ever bounded semantics for the full CTLK has not been avail-
able.

For successfully defining such a bounded semantics, we
make the use of a combination of paths on the state transition
relations and knowledge-paths on epistemic relations, and the
contributions of this work are as follows.

• A bounded semantics for CTLK such that for every spec-
ification in CTLK, we are able to use bounded semantics
to check whether the behavior of a multi-agent system is
consistent with CTLK specifications;

• A verification approach based on the bounded semantic-

s, such that the problem of checking multi-agent systems
against CTLK properties is reduced into the problem of
checking the validity of QBF formulas;

• An implementation of the approach, such that the com-
plementary nature of such an approach and BDD based
symbolic model checking is demonstrated based on ex-
perimental analysis of test cases.

2 Preliminaries
Multi-agent systems may be represented by interpreted sys-
tems [Fagin et al., 2004]. In such a representation, at any
point of time, each of the agents is in some state referred to
as the agent’s local state. In addition, the environment is in-
cluded and viewed as “everything else that is relevant”. The
environment can be omitted if necessary. Assume a set of
agents A = {1, . . . , n}, a set of local states Li for each agent
i ∈ A, and a set Le of local states for the environment. The
set of possible global states for the system is then defined as
G ⊆ L1×· · ·×Ln×Le, where each element (l1, . . . , ln, le)
of G represents a computational state for the system.

A transition occurs when some actions are performed,
and those actions are performed according to some protocol
which is encoded by a function Pi : Li → 2Acti for each
agent i ∈ A, and a function Pe : Le → 2Acte for the
environment. Then we can have the transition function
t : G × Act → G, where Act ⊆ Act1 × · · · × Actn × Acte
is the set of joint actions. A joint protocol P is a tuple
(P1, . . . , Pn) consisting of protocols Pi for i ∈ A. Pe is
not included in the joint protocol while Acte is in the joint
action. This is because when designing multi-agent systems,
the environment is often viewed as an opposing player to the
agents. There is also a set I of initial states. We assume a set
AP of primitive propositions and a function L which assigns
truth values to the primitive propositions on every state.

2.1 Kripke Structures
For representation of multi-agent systems facilitating auto-
mated analysis of temporal-epistemic properties of the sytem-
s, we may use a Kripke structure, which can be constructed
from interpreted systems [Lomuscio and Ryan, 1997].

Definition 2.1. LetA = {1, . . . , n} be a set of agents and AP
be a set of propositions. A Kripke structure over A and AP is
represented as M = (S, T, I,∼1, . . . ,∼n, L), where S is a
finite set of the reachable global states in the interpreted sys-
tem; T ⊆ S × S is a total transition relation (serial relation)
on S which is determined by the transition function, joint ac-
tions and the joint protocol in the interpreted system; I ⊆ S
is a non-empty set of initial states; for each i ∈ A,∼i⊆ S×S
is an equivalence relation on S, that is, a set of pairs of ele-
ments of S which is defined by s ∼i s′ iff li(s) = li(s

′) where
the function li : S → Li returns the local state of agent i from
a global state s; and L : S → 2AP is a valuation function
that maps each state to a subset of propositions of AP.

A Kripke structure is also called a model.
We use |M | to denote the size of the model, which is de-

fined as the number of states in S. The relation ∼i is referred
to as the accessibility relation for agent i. Notice that the

set S is the set of reachable states of the intended interpreted
system, which is consistent with the definition of the Kripke
structures in [Penczek and Lomuscio, 2003]. This simplifies
the model in the sense that we can focus the reasoning on
the epistemic properties without arguing whether a state is
reachable. A Kripke structure M = (S, T, I,∼1, . . . ,∼n, L)
is usually viewed as a directed graph (S, T) with additional
information on the set of agents. According to this point of
view, state transition paths (or simply, paths) on such a graph
are defined as follows.

A path inM is an infinite sequence of states π = π0π1 . . .
such that (πu, πu+1) ∈ T for each u ∈ N. A finite path π
of M is a finite prefix of an infinite path of M. We use π(s)
to denote a path π with π0 = s. A computation of M is an
infinite path π = π0π1 . . . of M such that π0 ∈ I .

On the other hand, M = (S, T, I,∼1, . . . ,∼n, L) can also
be viewed as an epistemic graph with its nodes being S, and
with ∼i as edges labeled by agent i for i ∈ A. The epistemic
graph describes the epistemic relation of the system. Follow-
ing this point of view, we define common-knowledge-paths
as follows.

A common-knowledge-path, CK-path for short, for a group
Γ of agents is an infinite sequence of states ξCΓ = ξ0ξ1 . . .
such that (ξu, ξu+1) ∈

⋃
i∈Γ ∼i for each u ∈ N. We use

ξCΓ(s) to denote a CK-path ξCΓ with ξ0 = s.

2.2 The Temporal-Epistemic Logic CTLK
Computation Tree Logic of Knowledge, CTLK for short
[Penczek and Lomuscio, 2003], is a logic that uses CTL
[Clarke and Emerson, 1981; Emerson and Clarke, 1982] as
a basic temporal language and extends it with epistemic com-
ponents.

Definition 2.2 (Syntax of CTLK). Let AP be a set of propo-
sitional variables andA a set of agents. Let p range overAP ,
i over A, Γ over subsets of A. The set of CTLK formulas φ
(written in negation normal form) is defined by the following
BNF syntax.

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ |
AXφ | A(φRφ) | A(φUφ) |
EXφ | E(φRφ) | E(φUφ) |
Kiφ | EΓφ | CΓφ | DΓφ |
Kiφ | EΓφ | CΓφ | DΓφ

In addition, we may use EFφ,EGφ,AFφ,AGφ as ab-
breviations for E(>Uφ), E(¬>Rφ), A(>Uφ), A(¬>Rφ)
where> represents p∨¬p (meaning true) for some p ∈ AP .

We may as well also use ¬φ as an abbreviation of the nega-
tion normal form formula equivalent to ¬φ.

Definition 2.3 (Semantics of CTLK). Let M be a model, s ∈
S a state, and ϕ and ψ formulas of CTLK. Let π = π0π1 . . .
denote an infinite path of M , and ξCΓ = ξ0ξ1 . . . denote an
infinite CK-path of M . The relation M, s |= ϕ denotes that
ϕ is true at the state s in the model M . The relation |= is
defined in Table 1.

This definition of the semantics of CTLK is slightly differ-
ent from that defined in [Penczek and Lomuscio, 2003] for

Table 1: Semantics of CTLK

M, s |= p iff p ∈ L(s), for p ∈ AP
M, s |= ¬ϕ iffM, s 6|= ϕ
M, s |= ϕ ∧ ψ iff (M, s |= ϕ) and (M, s |= ψ)
M, s |= ϕ ∨ ψ iff (M, s |= ϕ) or (M, s |= ψ)
M, s |= AXϕ iff ∀π(s).(M,π1 |= ϕ)
M, s |= A(ϕUψ) iff ∀π(s).(∃u ≥ 0.

(M,πu |= ψ∧ ∀w < u.(M,πw |= ϕ)))
M, s |= A(ϕRψ) iff ∀π(s).((∀u ≥ 0.

(M,πu |= ψ∨ ∃w < u.(M,πw |= ϕ)))
M, s |= EXϕ iff ∃π(s).(M,π1 |= ϕ)
M, s |= E(ϕUψ) iff ∃π(s).(∃u ≥ 0.

(M,πu |= ψ∧ ∀w < u.(M,πw |= ϕ)))
M, s |= E(ϕRψ) iff ∃π(s).((∀u ≥ 0.

(M,πu |= ψ∨ ∃w < u.(M,πw |= ϕ)))
M, s |= Kiϕ iff ∀s′ ∈ S.((s, s′) ∈∼i→ (M, s′ |= ϕ))
M, s |= DΓϕ iff ∀s′ ∈ S.((s, s′) ∈

⋂
i∈Γ ∼i→ (M, s′ |= ϕ))

M, s |= EΓϕ iff ∀s′ ∈ S.((s, s′) ∈
⋃

i∈Γ ∼i→ (M, s′ |= ϕ))

M, s |= CΓϕ iff ∀ξCΓ (s).∀u ≥ 0.(M, ξu |= ϕ)

M, s |= Kiϕ iff ∃s′ ∈ S.((s, s′) ∈∼i ∧(M, s′ |= ϕ))

M, s |= DΓϕ iff ∃s′ ∈ S.((s, s′) ∈
⋂

i∈Γ ∼i ∧(M, s′ |= ϕ))

M, s |= EΓϕ iff ∃s′ ∈ S.((s, s′) ∈
⋃

i∈Γ ∼i ∧(M, s′ |= ϕ))

M, s |= CΓϕ iff ∃ξCΓ (s).∃u ≥ 0.(M, ξu |= ϕ)

the epistemic operator CΓϕ and CΓϕ. In this definition, we
have avoided the use of the transitive closure of the union of
the accessibility relations of the agents of Γ. Instead, we use
CK-paths. This follows from that we view the Kripke model
as two types of graphs, and this viewpoint allows us to manip-
ulate temporal operators and epistemic operators on different
graphs and simplify the formulation of the bounded semantic-
s and the verification of CTLK that we will demonstrate later
on. The definition is consistent with that defined in [Fagin et
al., 2004] as follows.

M, s |= CΓϕ iff M, s |= EkΓϕ for k = 1, 2, . . .

The above definition has a graph-theoretical interpretation,
that is, M, s |= CΓϕ iff M, t |= ϕ for all the states t that
exists a path from s to t whose edges are labeled by mem-
bers of Γ. We refer to Lemma 2.2.1 in [Shoham and Leyton-
Brown, 2008] for details. Thus in our case, the definitions of
M, s |= CΓϕ and M, s |= CΓϕ in Table 1 are consistent with
the graph-theoretical interpretation.

Definition 2.4. A CTLK formula ϕ is valid in M , denoted
M |= ϕ, if ϕ is true at all initial states of M .

3 Bounded Semantics
The semantics defined in Table 1 involves infinite paths. In
this section, we define bounded semantics for CTLK such that
we can check whether a property is satisfied by only looking
at finite paths. This formalism can be seen as an extension
of that of ECTLK [Penczek and Lomuscio, 2003] and also of
that of CTL [Zhang, 2015]. For the epistemic operators, we
define their bounded semantics on knowledge-paths, which
are paths build on epistemic relation of the system. Thus,
before defining the bounded semantics, we define a set of no-
tions as follows.

Distributed-Knowledge-Paths Since distributed knowl-
edge DΓϕ is defined upon a different epistemic relation,
we define another type of knowledge-path on the epistemic

graph, i.e., distributed-knowledge-path (DK-paths), defined
as follows. A DK-path for a group Γ of agents is an infinite
sequence of states ξDΓ = ξ0ξ1 . . . such that (ξu, ξu+1) ∈⋂
i∈Γ ∼i for each u ∈ N. We use ξDΓ(s) to denote a DK-

path ξDΓ with ξ0 = s.

Knowledge-Paths For convenience, both CK-paths and
DK-paths are referred to as knowledge-paths.

k-Paths and Paths with Repeating States (rs-Paths) A
k-path is a finite path with length k + 1 [Biere et al., 1999].
Likewise, we may use k-CK-path and k-DK-path to denote
CK-path and DK-path with length k + 1.

To specify whether a path has a state that occurs more than
once, we define rs-path as a path that has a state that occurs
at least twice. Let |π| be the length of π. Formally, we have
the following definition of rs(π).

rs(π) :=

|π|−1∨
u=0

|π|−1∨
w=u+1

πu = πw

If π is a prefix of π′, then rs(π)→ rs(π′). In this paper, this
notion applies to the usual paths as well as to the knowledge-
paths.

On Defining Bounded Semantics The basic idea of bound-
ed semantics is to identify a witness for a property with a giv-
en bound on the length of the paths. The main objective is
then to define a bounded semantics suitable for arguing that
if a property is satisfied on all paths with a given bound (with
the bounded semantics), then it is satisfied on all infinite paths
(with the original semantics). On the other hand (though it is
easier to handle), we also need that if a property is satisfied
on some path with a given bound, then it is satisfied on some
infinite path.

Definition 3.1 (Bounded Semantics of CTLK). Let M be a
Kripke model, s ∈ S be a state, ϕ and ψ be CTLK formulas.
|=k denotes the bounded semantics with respect to |=. Let
k ≥ 1. Let π = π0 . . . πk denote k-paths, ξDΓ = ξ0 . . . ξk and
ξCΓ = ξ0 . . . ξk denote k-knowledge-paths in which Γ ⊆ A.
The semantics relation M, s |=k ϕ is defined in Table 2.

Notice that we defined epistemic operators on knowledge-
paths rather than on normal transition paths as in [Penczek
and Lomuscio, 2003]. In this way, the semantics of the oper-
ators namely K, K, D, D, E, E are similar to the semantics
of temporal operatorX which would simplify the verification
because only the next states on the knowledge-paths need to
be checked. The bounded semantics of Kiϕ and Kiϕ is de-
fined on CK-paths with Γ being exactly {i}. This can as well
be done on DK-paths with Γ being {i}, since the two types of
knowledge-paths coincide when there is only one agent in Γ.
The relation between the bounded semantics and the standard
semantics is to be established as follows.

Remark The proofs of the following lemmas are all based
on structural induction, and since the bounded semantics can
be seen as an extension of the one for CTL and the treatment
of propositional formulas and temporal operators is similar to
that in [Zhang, 2015], we only consider the knowledge oper-
ators in the proofs of the following lemmas.

Table 2: Bounded Semantics of CTLK

M, s |=k p iff p ∈ L(s), for p ∈ AP
M, s |=k ¬p iff p 6∈ L(s)
M, s |=k ϕ ∧ ψ iff (M, s |=k ϕ) and (M, s |=k ψ)
M, s |=k ϕ ∨ ψ iff (M, s |=k ϕ) or (M, s |=k ψ)
M, s |=k AXϕ iff ∀π(s).(M,π1 |=k ϕ)
M, s |=k A(ϕUψ) iff ∀π(s).(∃u ≤ k.

(M,πu |=k ψ∧ ∀w < u.(M,πw |=k ϕ)))
M, s |=k A(ϕRψ) iff ∀π(s).((rs(π) ∧ ∀u ≤ k.(M,πu |=k ψ))∨

∃u ≤ k.(M,πu |=k ϕ ∧ ∀w ≤ u.(M,πw |=k ψ)))
M, s |=k EXϕ iff ∃π(s).(M,π1 |=k ϕ)
M, s |=k E(ϕUψ) iff ∃π(s).(∃u ≤ k.

(M,πu |=k ψ∧ ∀w < u.(M,πw |=k ϕ)))
M, s |=k E(ϕRψ) iff ∃π(s).((rs(π) ∧ ∀u ≤ k.(M,πu |=k ψ))∨

∃u ≤ k.(M,πu |=k ϕ ∧ ∀w ≤ u.(M,πw |=k ψ)))

M, s |=k Kiϕ iff ∀ξC{i} (s).(M, ξ1 |=k ϕ)

M, s |=k DΓϕ iff ∀ξDΓ (s).(M, ξ1 |=k ϕ)

M, s |=k EΓϕ iff ∀ξCΓ (s).(M, ξ1 |=k ϕ)

M, s |=k CΓϕ iff ∀ξCΓ (s).(rs(ξ) ∧ ∀u ≤ k.(M, ξu |=k ϕ))

M, s |=k Kiϕ iff ∃ξC{i} (s).(M, ξ1 |=k ϕ)

M, s |=k DΓϕ iff ∃ξDΓ (s).(M, ξ1 |=k ϕ)

M, s |=k EΓϕ iff ∃ξCΓ (s).(M, ξ1 |=k ϕ)

M, s |=k CΓϕ iff ∃ξCΓ (s).(∃u ≤ k.(M, ξu |=k ϕ))

Lemma 3.1. Let k ≥ 1. If M, s |=k ϕ, then M, s |=k+1 ϕ.

Proof by induction. The knowledge operators are dealt
with as follows.

• For EΓϕ, suppose that M, s |=k EΓϕ holds and
M, s |=k+1 EΓϕ does not hold. Then there exists a
(k+1)-knowledge-path ξCΓ(s) such thatM, ξ1 |=k+1 ϕ

doesn’t hold. On the other hand, since ξCΓ
0 · · · ξ

CΓ

k is a
k-knowledge-path, and therefore according to M, s |=k

EΓϕ, we have M, ξ1 |=k ϕ. By the induction hypoth-
esis, we have M, ξ1 |=k+1 ϕ and therefore a contradic-
tion.

• For Kiϕ and DΓϕ, the proof is the similar to the case
of EΓϕ, except that Γ is {i} in the case of Kiϕ, and the
knowledge-path is ξDΓ in the case of DΓϕ.

• For CΓϕ, suppose that M, s |=k CΓϕ holds and
M, s |=k+1 CΓϕ does not hold. Then there is a (k+ 1)-
knowledge-path ξCΓ(s) such that rs(ξ) ∧ ∀u ≤ (k +
1).(M, ξu |=k+1 ϕ) does not hold.
We consider two cases.
(a) rs(ξ) does not hold.
Then rs(ξ0 · · · ξk) does not hold. Since M, s |=k CΓϕ,
for every k-CK-path ξ′ starting at s, rs(ξ′) holds. This
contradicts to that rs(ξ) does not hold.
(b) rs(ξ) holds and there is a u such that M, ξu |=k+1 ϕ
does not hold.
We consider two subcases.
(b1) u ≤ k.
Then ξu is in ξ0 · · · ξk. Since M, s |=k CΓϕ, for ev-
ery k-CK-path ξ′ starting at s, ∀v ≤ k.(M, ξv |=k ϕ)
holds, and therefore ∀v ≤ k.(M, ξv |=k+1 ϕ) hold-
s by the induction hypothesis. This contradicts to that
M, ξu |=k+1 ϕ does not hold.
(b2) u = k + 1.

Since rs(ξ) holds, there are x < y ≤ k + 1 such that
ξx = ξy . In this case we can construct a k-CK-path ξ′
such that ξ0 · · · ξx−1ξy · · · ξk+1 is a prefix of ξ′ and ξu
appears in ξ′. Similar to the argument of the case (b1),
we have ∀v ≤ k.(M, ξ′v |=k+1 ϕ) holds and therefore a
contradiction to that M, ξu |=k+1 ϕ does not hold.

• For EΓϕ, suppose that M, s |=k EΓϕ holds. Then there
is a k-knowledge-path ξCΓ(s) and M, ξ1 |=k ϕ. By the
induction hypothesis, we have M, ξ1 |=k+1 ϕ. Since
the epistemic relations ∼i for i ∈ Γ are all equivalence
relations, we can extend ξCΓ(s) to a k + 1 knowledge-
path (ξ′)CΓ(s) such that M, ξ′1 |=k+1 ϕ. Therefore, we
have M, s |=k+1 EΓϕ

• For Kiϕ and DΓϕ, the proof is similar to the case of
EΓϕ, except that Γ is {i} in the case of Kiϕ, and the
knowledge-path is ξDΓ in the case of DΓϕ.

• For CΓϕ, suppose that M, s |=k CΓϕ holds. Then there
is a k-knowledge-path ξCΓ(s) = ξ0 . . . ξk and a state ξu
with u ≤ k such that M, ξu |=k ϕ. By the induction
hypothesis, we have M, ξu |=k+1 ϕ. By extending ξ
to a (k + 1)-knowledge-path ξ′, we have ∃u ≤ k +
1.(M, (ξ′)u |=k+1 ϕ). Therefore we have M, s |=k+1

CΓϕ.

For an intuitive understanding of the fact that M, s |=k ϕ
implies M, s |=k+1 ϕ, we may take the case ϕ = CΓϕ0

as an example, since CΓ is the most complicated knowledge
operator.

Following fromM, s |=k CΓϕ0, we have that (c1)ϕ0 hold-
s on every position on every k-CK-path ξCΓ (starting at s)
and that (c2) every such ξCΓ satisfies rs(ξCΓ), i.e., there are
at least two states on the path that are the same.

By c2, every state on any position j on a (k + 1)-CK-path
(or an infinite CK-path) s0s1s2 · · · sj · · · (where s0 = s) is on
some position on some k-CK-path starting at s. The reason is
as follows. (a) if j is less than or equal to k, then s0s1s2 · · · sj
is a prefix of some k-CK-path starting at s; (b) otherwise,
the path s0s1s2 · · · sj must have at least two states that are
the same, and then it can be compressed to a shorter path by
removing the circuiting part such that (or repeatedly until) all
states in the shorter path are different, and the path (still with
sj being the last state) becomes necessarily a prefix of some
k-CK-path starting at s.

By c1, every state on every k-CK-path starting at s satisfies
ϕ0.

Therefore every state on any position j on a (k + 1)-CK-
path starting at s satisfies ϕ0. Therefore M, s |=k CΓϕ0 im-
plies M, s |=k+1 CΓϕ0.

Similar arguments also apply to temporal operators such as
AR and the derived operator AG.

Example Assume that we have a Kripke structure of a MAS
with agents 1 and 2 shown in Figure 1 where the transition re-
lation T is omitted, since the transition relation is not relevant
to this particular example with the given property.

Consider the problem M, s0 |= C{1,2}p. To prove this, we
first take k = 1. Remember that the bounded semantics of

Figure 1: A Kripke structure {S, T, I,∼1,∼2, L} with reachable
states S being {s0, s1, s2, s3}, and equivelance relations shown with
the labeling lines.

common knowledge requires all the k-knowledge-paths to be
rs-paths. But 1-knowledge-path {s0, s1} is not an rs-path.
Thus we increase k. For the same reason, we keep increasing
k until k = 4. Since all the 4-knowledge-paths are rs-paths,
the property is verified. For comparison, we also consider the
negated property C{1,2}¬p, and we have the following table.

Property k = 1 k = 2 k = 3 k ≥ 4
C{1,2}p F F F T
C{1,2}¬p F F F F

On the other hand, if we change the label on s2 to {}, i.e.,
p is false on s2, we have the following table.

Property k = 1 k = 2 k = 3 k ≥ 4
C{1,2}p F F F F
C{1,2}¬p F T T T

Lemma 3.1 is a statement of the incremental nature of the
bounded semantics. With this lemma in hand, we are ready
to prove the following lemma relating satisfiability under |=k

to satisfiability under the standard semantics |=.
Lemma 3.2. If M, s |=k ϕ for some k ≥ 1, then M, s |= ϕ.

Proof by Induction. According to Lemma 3.1, if M, s |=k

ϕ for some k ≥ 1, then M, s |=k′ ϕ holds for a larger k′. Let
k′ be the larger number of |M | and k. We have M, s |=k′ ϕ.

• For EΓϕ, suppose that M, s |= EΓϕ doesn’t hold while
M, s |=k′ EΓϕ holds. Then there exists s′ that (s, s′) ∈⋃
i∈Γ ∼i and M, s′ |= ϕ doesn’t hold. On the other

hand, since the relations ∼i for i ∈ Γ are all equiva-
lence relations, we can construct a k′-knowledge-path
ξCΓ(s) = ξ0ξ1 . . . ξk′ with ξ1 = s′. Since M, s |=k′

EΓϕ holds and ξCΓ(s) is a k′-CK-path starting at s, we
haveM, s′ |=k′ ϕ. By the induction hypothesis, we have
M, s′ |= ϕ and therefore there is a contradiction.

• For Kiϕ and DΓϕ, the proof is similar to the case of
EΓϕ, except that Γ is {i} in the case of Kiϕ, and the
knowledge-path is ξDΓ and hence the epistemic relation
is
⋂
i∈Γ ∼i in the case of DΓϕ.

• For CΓϕ, suppose that M, s |= CΓϕ doesn’t hold while
M, s |=k′ CΓϕ holds. Then there exists a knowledge-
path ξCΓ(s) = s . . . s′ where M, s′ |= ϕ doesn’t hold.
We consider two cases.
(1) The length of ξCΓ(s) is less than or equal to k′.
Let the k′-knowledge-path (ξ′)CΓ = s . . . s′ . . . ξ′k′ be
an extension of ξCΓ . Since M, s |=k′ CΓϕ holds and
(ξ′)CΓ is a k′-CK-path starting at s, we have M, s′ |=k′

ϕ. By the induction hypothesis we have M, s′ |= ϕ and
therefore there is a contradiction.

(2) The length of ξCΓ(s) is greater than k′.
Then there are duplicated states on the knowledge-path.
Thus, we can contract the knowledge-path until the
length of the knowledge-path is less than or equal to k′.
Similar to case (1), there is a contradiction also in this
case.

• For EΓϕ, suppose that M, s |=k′ EΓϕ. Then there ex-
ists a k′-knowledge-path ξCΓ(s) that M, ξ1 |=k′ ϕ. And
then we have M, ξ1 |= ϕ. From the definition of the
common-knowledge-path, we have (s, ξ1) ∈

⋃
i∈Γ ∼i.

Hence we have M, s |= EΓ.

• For Kiϕ and DΓϕ, the proof is similar to the case of
EΓϕ, except that Γ is {i} in the case of Kiϕ, and the
knowledge-path is ξDΓ and hence the epistemic relation
is
⋂
i∈Γ ∼i in the case of DΓϕ.

• For CΓϕ, suppose that M, s |=k′ CΓϕ. Then
there exists a k′-knowledge-path ξCΓ(s) that ∃u ≤
k.(M, ξu |=k′ ϕ). By the induction hypothesis,
(M, ξu |= ϕ) holds on the k′-knowledge-path. By
extending ξ to an infinite knowledge-path ξ′, we have
∃u ≥ 0.(M, (ξ′)u |=k′ ϕ). Therefore we have M, s |=
CΓϕ.

Lemma 3.3. If M, s |= ϕ, then M, s |=k ϕ for some k ≥ 1.

Proof by induction. Let k = |M |. The knowledge opera-
tors are dealt with as follows.

• ForEΓϕ, suppose thatM, s |=k EΓϕ doesn’t hold while
M, s |= EΓϕ holds. Then there exists a k-knowledge-
path ξCΓ(s) on which M, ξ1 |=k ϕ doesn’t hold. By
the induction hypothesis, we have that M, ξ1 |= ϕ does-
n’t hold. By the definition of CK-paths, we also have
(s, ξ1) ∈

⋃
i∈Γ ∼i, which contradicts M, s |= EΓϕ.

• For Kiϕ and DΓϕ, the proof is similar to the case of
EΓϕ, except that Γ is {i} in the case of Kiϕ, and the
knowledge-path is ξDΓ and hence the epistemic relation
is
⋂
i∈Γ ∼i in the case of DΓϕ.

• ForCΓϕ, suppose thatM, s |=k CΓϕ doesn’t hold while
M, s |= CΓϕ holds. Then there exists a k-knowledge-
path ξCΓ(s) that rs(ξ) holds since k = |M |, and then
there exists some u ≤ k that M, ξu |=k ϕ doesn’t hold.
By the induction hypothesis, M, ξu |= ϕ doesn’t hold,
which contradicts M, s |= CΓϕ.

• For EΓϕ, suppose that M, s |= EΓϕ. Then there ex-
ists s′ that (s, s′) ∈

⋃
i∈Γ ∼i and M, s′ |= ϕ. By the

induction hypothesis, we have M, s′ |=k ϕ. Since the
relations ∼i for i ∈ Γ are all equivalence relations, we
can construct a k-knowledge-path ξCΓ(s) = ξ0ξ1 . . . ξk
with ξ1 = s′. Then we have M, s |=k EΓϕ.

• For Kiϕ and DΓϕ, the proof is similar to the case of
EΓϕ, except that Γ is {i} in the case of Kiϕ, and the
epistemic relation is

⋂
i∈Γ ∼i and hence the knowledge-

path is ξDΓ in the case of DΓϕ.

• For CΓϕ, suppose that M, s |= CΓϕ. Then there exists
a knowledge-path ξCΓ(s) = s . . . s′ that M, s′ |= ϕ.
By the induction hypothesis, we have M, s′ |=k ϕ. We
consider two cases.
(1) The length of ξCΓ(s) is less than or equal to k.
Then we can construct a k-knowledge-path (ξ′)CΓ(s) =
s . . . s′ . . . ξ′k with its prefix being exactly ξCΓ(s).
Therefore we have M, s |=k CΓ.
(2) The length of ξCΓ(s) is greater than k.
Then there are duplicated states on the knowledge-path.
Thus, we can contract the knowledge-path until the
length of the knowledge-path is less than or equal to k.
Similar to case (1), we have M, s |=k CΓϕ also in this
case.

Theorem 3.1. M, s |= ϕ iff M, s |=k ϕ for some k ≥ 1.

Proof. Lemma 3.2 is a statement of a kind of soundness
of the bounded semantics and Lemma 3.3 is a statement of
completeness. This theorem is a combination of the two facts
and follows from Lemmas 3.2 and Lemma 3.3.

Definition 3.2. Let k ≥ 1. M |=k ϕ, if M, ι |=k ϕ for all
ι ∈ I .

Corollary 3.1. M |= ϕ iff M |=k ϕ for some k ≥ 1.

We present the following two simple examples for demon-
strating the application of Theorem 3.1.

Example 1 Consider the modelM with S = {s, t, u} being
the set of states; T = {(s, t), (t, u), (u, u)}; L(s) = L(t) =
{p} and L(u) = {}, i.e., s and t satisfy p while u satisfies
¬p.

Let φ = E(pU¬p). We have M, s |= φ. This is demon-
strated as follows.

For k = 1, both of M, s |=1 φ and M, s |=1 ¬φ are e-
valuated to false, and no conclusion can be achieved in this
step.

For k = 2, M, s |=2 φ is evaluated to true, while M, s |=2

¬φ is evaluated to false, and we conclude that M, s |= φ
holds (the one that evaluates to true counts).

Example 2 Consider the model M with S = {s0, s1, s2}
being the set of states; T = {(s0, s0), (s0, s1),
(s1, s2), (s2, s2)}; L(s0) = L(s1) = {p} and L(s2) = {},
i.e., s0 and s1 satisfy p while s2 satisfies ¬p.

(i) Let φ = AGp. We have M, s0 6|= φ.
This is demonstrated as follows.
For k = 1, M, s0 |=1 φ does not hold, due to that some

k-path π(s0) does not satisfy rs(π).
For k ≥ 2, M, s0 |=k φ does not hold, due to that s2

appears on some such k-path starting at s0.
The two facts alone do not certify that M, s0 6|= φ holds.

For showing M, s0 6|= φ, we have to prove M, s0 |= ¬φ, i.e.,
to prove that there is a k ≥ 1 such that M, s0 |=k ¬φ holds.
Since it is easily seen that M, s0 |=2 ¬φ holds, and then it
follows that we have M, s0 |= ¬φ, i.e., M, s0 6|= φ.

(ii) For epistemic properties, we consider two agents
{a, b}, and add to the previous structure the equivalence re-
lation that partitions {s0, s1, s2} into two groups {s0} and

{s1, s2} for agent a, and that partitions {s0, s1, s2} into
{s0, s1} and {s2} for agent b.

(ii.a) Let φ′ = C{a,b}p. We have M, s0 6|= φ′.
This is demonstrated as follows.
Since the equivalence relations are used as accessibility re-

lations, every state has at least one successor (a self-loop).
For k = 1, M, s0 |=1 φ

′ is false, since we have a knowl-
edge path (s0, s1) that does not satisfy the rs-requirement.

For k ≥ 2, M, s0 |=k φ
′ is false, since we have a knowl-

edge path (s0, s1, s2, ...) that not all states on the path satisfy
p.

Similarly, the two facts alone do not certify that M, s0 6|=
φ′ holds. For showing M, s0 6|= φ′, we have to prove
M, s0 |= ¬φ′, i.e., to prove that there is a k ≥ 1 such that
M, s0 |=k ¬φ′ holds.

For k = 1, M, s0 |=1 ¬φ′ does not hold, since all knowl-
edge paths with 2 states are not able to reach s2.

For k = 2, M, s0 |=2 ¬φ′ holds with the witness path
being (s0, s1, s2).

Therefore M, s0 |= ¬φ′, i.e., M, s0 6|= φ′.
(ii.b) On the other hand, suppose that φ′′ = E{a,b}p, then

we have M, s0 |= φ′′.
For k = 1, we have M, s0 |=1 φ′′, since we only have

two k-CK paths (s0, s0) and (s0, s1) starting from s0 for the
set {a, b} of agents, and both of M, s0 |=1 p and M, s1 |=1

p hold. Then by the theorem, this is sufficient for proving
M, s0 |= φ′′.
Remark Notice that although we have M, s 6|= ϕ if-
f M, s |= ¬ϕ, we do not have M, s 6|=k ϕ iff M, s |=k ¬ϕ.
According to the bounded semantics, both of M, s |=k ϕ and
M, s |=k ¬ϕ may be false. On the other hand, at most one of
them can be true.

4 Checking Temporal-Epistemic Properties
By Theorem 3.1 (and Corollary 3.1), we are able to check-
ing temporal-epistemic properties with a bounded correctness
checking approach. Let M be a Kripke structure and ϕ a
CTLK formula in NNF. The algorithmic formulation of the
verification approach is presented as a pseudo-algorithm as
follows, where ¬ϕ denote the NNF formula equivalent to ¬ϕ.

1: k := 1;
2: while true do
3: if M |=k ϕ, report M |= ϕ and return;
4: if ∃ι ∈ I.(M, ι |=k ¬ϕ), report M 6|= ϕ and return;
5: k := k+1;
6: end while

The correctness of line 3 of the pseudo-algorithm follows
from Corollary 3.1. The correctness of line 4 follows from
the following equivalences.
M 6|= ϕ
iff ∃ι ∈ I.(M, ι |= ¬ϕ) (the semantics of |=)
iff ∃ι ∈ I.(M, ι |=k ¬ϕ) for some k ≥ 1 (Theorem 3.1)

The termination of the verification approach follows from
the fact that we have either M |= ϕ or M 6|= ϕ, and in the

former case, there is a k ≥ 1 such thatM |=k ϕ (by Corollary
3.1) and in the latter case, there is an ι ∈ I such that M, ι |=k

¬ϕ and then there is a k ≥ 1 such that M, s |=k ¬ϕ (by
Theorem 3.1).

Remark Notice that in the algorithmic formulation, the in-
put is M and ϕ, the variable k is an internal variable, and the
output is a report on whether M |= ϕ holds.

Transformation of Problems In the algorithmic formula-
tion, we need subroutines for the evaluation of M, s |=k ϕ.
It would not be efficient to enumerate all k-paths starting at
s and then check the satisfiability according to the bounded
semantics.

Similar to the bounded model checking approaches pre-
sented in e.g., [Biere et al., 1999; Penczek and Lomus-
cio, 2003], we have to transform the problem of verifying
M, s |=k ϕ into the checking of the satisfiability of logical
formulas. In this case, it is natural to use quantified Boolean
formulas instead of propositional formulas, since we have al-
ternations of path quantifiers in the temporal formulas.

By adapting the ideas presented in [Clarke et al.,
1999] on symbolic models, we can encode the Krip-
ke structure (S, T, I,∼1, . . . ,∼n, L) by a symbolic model
(V, ρT , ρI , ρ1, . . . , ρn, ρL) with V = {v1, ..., vm} being a set
of m Boolean variables with |S| ≤ 2m such that we have the
following.

• A state s ∈ S maps to a Boolean formula fs(v1, ..., vm),
such that there is a unique assignment of the Boolean
variables v1, ..., vm that satisfies fs(v1, ..., vm), and the
assignment represents the state s;

• A setX ⊆ S maps to a Boolean formula fX(v1, ..., vm);

• A pair (s, s′) maps to a Boolean formula

g(s,s′)(v1, ..., vm, v
′
1, ..., v

′
m)

such that there is a unique assignment of the Boolean
variables that satisfies g(s,s′)(v1, ..., vm, v

′
1, ..., v

′
m), and

the part of the assignment of v1, ..., vm represents the
state s, and the assignment of the primed variables
v′1, ..., v

′
m represents the successor state s′.

• A set Y of pairs maps to gY (v1, ..., vm, v
′
1, ..., v

′
m).

Accordingly, we have the following.

• The transition relation T is represented by
ρT = gT (v1, ..., vm, v

′
1, ..., v

′
m);

• The set I of initial states is represented by ρI =
fI(v1, ..., vm);

• For each i ∈ {1, ..., n}, the equivalence ∼i is represent-
ed by ρi = g∼i

(v1, ..., vm, v
′
1, ..., v

′
m);

• The labeling function L : S → 2AP is represented by
ρL defined by: ρL(p) = fX(v1, ..., vm), where X =
{s | p ∈ L(s)}, for each p ∈ AP .

The construction of fs, fX , gs, gX follows from the stan-
dard encoding techniques [Clarke et al., 1999] for construc-
tion of symbolic models, and the details are omitted.

In the following, we assume that we have the symbolic
model (V, ρT , ρI , ρ1, . . . , ρn, ρL).

Then we can encode that ϕ is satisfied on a state repre-
sented by v1, ..., vm under the bounded semantics |=k by a
QBF-formula hϕ,k(v1, ..., vm) such that the following holds.

M, s |=k ϕ iff
∀v1 · · · vm.(fs(v1, ..., vm)→ hϕ,k(v1, ..., vm)) is valid.

The encoding function hϕ,k(v1, ..., vm) is defined as fol-
lows.

Suppose that ϕ is given as the property to be verified.
Let a ∈ ϕ denote that a appears in ϕ.
Let γD = {Γ | SΓ ∈ ϕ, S ∈ {D,D}} and γC = {Γ | SΓ ∈

ϕ, S ∈ {K,K,E,E,C,C}}. Then we have the following
definitions.
• ρDΓ

=
∧
i∈Γ ρi for Γ ∈ γD.

• ρCΓ
=

∨
i∈Γ ρi for Γ ∈ γC .

ρDΓ
represents the conjunction of the equivalence relations

in the group of agents Γ. ρCΓ
represents the disjunction of the

equivalence relations in Γ.
Let k ≥ 1. Let −→u = u0, . . . , uk be a finite sequence of

state variables, where ui = (ui,l, ..., ui,m) such that an as-
signment to ui represents a state of the system.

When q is a formula over {v1, ..., vm}, we use
q(ui) to denote the formula with {v1, ..., vm} replaced
by (ui,1, ..., ui,m), and when q is a formula over
{v1, ..., vm, v

′
1, ..., v

′
m}, we use q(ui, ui+1) to denote

the formula with {v1, ..., vm, v
′
1, ..., v

′
m} replaced by

(ui,1, ..., ui,m, ui+1,1, ..., ui+1,m).
We use Pk(−→u) to represent a k-path. For a group of agents

Γ, we use PCΓ

k (−→u) and PDΓ

k (−→u) to represent a k-CK-path
and a k-DK-path respectively.

Formally, we have Pk(−→u) =
∧k−1
j=0 ρT (uj , uj+1),

PCΓ

k (−→u) =
∧k−1
j=0 ρCΓ

(uj , uj+1), and PDΓ

k (−→u) =∧k−1
j=0 ρDΓ

(uj , uj+1).
Let ux = uy denote (ux,1 ↔ uy,1) ∧ · · · ∧ (ux,m ↔

uy,m). That a k-path represented by−→u is an rs-path, denoted
rsk(−→u), is defined by: rsk(−→u) :=

∨k−1
x=0

∨k
y=x+1 ux = uy .

Definition 4.1 (Encoding of CTLK Formulas). Let k ≥ 1.
Let w = ({w1, ..., wm}) be a state variable and ϕ be a
CTLK formula. The encoding [[ϕ,w]]k is defined as in Ta-
ble 3.

Let hϕ,k(w1, ..., wm) = [[ϕ,w]]k. Following from the en-
coding, we have the following theorem and the corollary.
Theorem 4.1. Let k ≥ 1. M, s |=k ϕ if-
f ∀v1 · · · vm.(fs(v1, ..., vm)→ hϕ,k(v1, ..., vm)) is valid.

Corollary 4.1. The following hold.

• M |=k ϕ iff
∀v1 · · · vm.(ρI(v1, ..., vm)→ hϕ,k(v1, ..., vm)));

• ∃ι ∈ I.(M, ι |=k ¬ϕ) iff
∃v1 · · · vm.(ρI(v1, ..., vm) ∧ h¬ϕ,k(v1, ..., vm))).

Then accordingly, checking whether a temporal-epistemic
formula is satisfied on a Kripke structure produced from an
interpreted system can be turned into checking the validity of
QBF-formulas (via the bounded semantics and the encoding),
by the following verification procedure (which is a modifica-
tion of the one presented at the beginning of this section).

Table 3: Encoding Scheme

[[p, w]]k = ρL(p)(w)
[[¬p, w]]k = ¬ρL(p)(w)
[[ϕ ∧ ψ,w]]k = [[ϕ,w]]k ∧ [[ψ,w]]k
[[ϕ ∨ ψ,w]]k = [[ϕ,w]]k ∨ [[ψ,w]]k
[[AXϕ,w]]k = ∀−→u .(Pk(−→u) ∧ w = u0 → [[ϕ, u1]]k)
[[A(ϕUψ), w]]k = ∀−→u .(Pk(−→u) ∧ w = u0 →

(
∨k

j=0([[ψ, uj]]k ∧
∧j−1

t=0 [[ϕ, ut]]k))

[[A(ϕRψ), w]]k = ∀−→u .(Pk(−→u) ∧ w = u0 →
((rsk(−→u) ∧

∧k
j=0[[ψ, uj]]k∨

(
∨k

j=0([[ϕ, uj]]k ∧
∧j−1

t=0 [[ψ, ut]]k))))

[[EXϕ,w]]k = ∃−→u .(Pk(−→u) ∧ w = u0 ∧ [[ϕ, u1]]k)
[[E(ϕUψ), w]]k = ∃−→u .(Pk(−→u) ∧ w = u0∧

(
∨k

j=0([[ψ, uj]]k ∧
∧j−1

t=0 [[ϕ, ut]]k))

[[E(ϕRψ), w]]k = ∃−→u .(Pk(−→u) ∧ w = u0∧
((rsk(−→u) ∧

∧k
j=0[[ψ, uj]]k∨

(
∨k

j=0([[ϕ, uj]]k ∧
∧j−1

t=0 [[ψ, ut]]k))))

[[Kiϕ,w]]k = ∀−→u .(P
C{i}
k (−→u) ∧ w = u0 → [[ϕ, u1]]k)

[[DΓϕ,w]]k = ∀−→u .(PDΓ
k (−→u) ∧ w = u0 → [[ϕ, u1]]k)

[[EΓϕ,w]]k = ∀−→u .(PCΓ
k (−→u) ∧ w = u0 → [[ϕ, u1]]k)

[[CΓϕ,w]]k = ∀−→u .(PCΓ
k (−→u) ∧ w = u0 →

(rsk(−→u) ∧
∧k

j=0[[ϕ, uj]]k))

[[Kiϕ,w]]k = ∃−→u .(P
C{i}
k (−→u) ∧ w = u0 ∧ [[ϕ, u1]]k)

[[DΓϕ,w]]k = ∃−→u .(PDΓ
k (−→u) ∧ w = u0 ∧ [[ϕ, u1]]k)

[[EΓϕ,w]]k = ∃−→u .(PCΓ
k (−→u) ∧ w = u0 ∧ [[ϕ, u1]]k)

[[CΓϕ,w]]k = ∃−→u .(PCΓ
k (−→u) ∧ w = u0 ∧

∨k
j=0[[ϕ, uj]]k))

1: k := 1;
2: while true do
3: if ∀v1 · · · vm.(ρI(v1, ..., vm)→ hϕ,k(v1, ..., vm))),
4: report M |= ϕ and return;
5: if ∃v1 · · · vm.(ρI(v1, ..., vm) ∧ h¬ϕ,k(v1, ..., vm))),
6: report M 6|= ϕ and return;
7: k := k+1;
8: end while

Corollary 4.1 together with the correctness of the verifica-
tion approach presented at the beginning of this section guar-
antees that this verification procedure always terminates and
returns with the correct answer.

5 Examples and Experimental Comparison
In this section, we first present two examples for demonstrat-
ing the use of the bounded semantics as a verification method,
and then present an experimental comparison of an imple-
mentation of this approach and an implementation of BDD
based symbolic model checking approach.

5.1 An Example with the Train Controller System
In this subsection, we consider the train controller system
[Hoek and Wooldridge, 2002; Kacprzak et al., 2004a]. The
system consists of two trains and a controller. It assumed that
the two trains from opposite directions have to pass through
a tunnel which has only one track inside. In this case, two
trains cannot pass through the tunnel at the same time, and
the purpose of the controller is to make sure that there is at
most one train inside the tunnel at a time. There are traffic

lights on both sides of the tunnel which can be either red or
green. When the trains approach or leave the tunnel, they will
notify the controller, and the controller can control the color
of the traffic lights accordingly.

Let t1, t2 and c0 be three agents representing respectively
the two trains and the controller. The system can be expressed
with an interpreted system as follows.

• The local states of each of the agents:

– Lt1 = {aw,wt, tunl}
– Lc0 = {r, g}
– Lt2 = {aw,wt, tunl}

• The set of global states, S = Lt1 × Lc0 × Lt2 .

• The set of the initial states of the system, I =
{(aw, g, aw)}.
• The actions of each of the agents:

– Actt1 = {none, aprch, request, leave}
– Actc0 = {none, tr, tg}
– Actt2 = {none, aprch, request, leave}

• The protocols for each of the agents:

– pt1(aw) = {null, aprch},
pt1(wt) = {null, request},
pt1(tunl) = {null, leave}

– pt2(aw) = {null, aprch},
pt2(wt) = {null, request},
pt2(tunl) = {null, leave}

– pc0(red) = {null, tg},
pc0(green) = {null, tr}

Then we have the transition relation of the reachable states
of the system shown in Figure 2.

Figure 2: the train controller system

For the agent c0, we have ∼c0 as follows: s ∼c0 s′ iff
s, s′ ∈ {s0, s1, s2, s3} or s, s′ ∈ {s4, s5, s6, s7}, when s, s′
are restricted to those of the reachable states.

For the agent t1, we have ∼t1 as follows: s ∼t1 s′ iff
s, s′ ∈ {s0, s2, s5} or s, s′ ∈ {s1, s3, s7} or s, s′ ∈ {s4, s6}
when s, s′ are restricted to those of the reachable states.

For the agent t2, we have∼c as follows: s ∼t2 s′ iff s, s′ ∈
{s0, s1, s4} or s, s′ ∈ {s2, s3, s6} or s, s′ ∈ {s5, s7}, when
s, s′ are restricted to those of the reachable states.

Let AP = {t1tunnel, t2tunnel} be a set of proposition
symbols representing the basic properties of the states. Let
L : S → 2AP be defined as follows.

• t1tunnel ∈ L(s) iff lt1(s) = tunl

• t2tunnel ∈ L(s) iff lt2(s) = tunl

Then the system satisfies the the following properties.

• (a) ψ1 = AG(t1tunnel→ Kt1(¬t2tunnel))
• (b) ψ2 = EF (Kt1(t1tunnel ∧Kt2(¬t1tunnel)))
In the following, we demonstrate how ψ1 and ψ2 are veri-

fied by using the bounded semantics.
(a) Verification of ψ1.
Let ϕ = t1tunnel→ Kt1(¬t2tunnel).
We start with k = 1, and for k = 1, 2, .., 6, we neither

have M |=k ψ1, nor ∃ι ∈ I.(M, ι |=k ¬ψ1), and we have to
consider the case where k = 7.

For k = 7, we have to check all the rs-paths starting from
the initial state s0. It is easily seen that all the rs-paths cov-
er all eight reachable states from s0 to s7. Then we verify
whether ϕ holds at all these states.

It is easily seen that ϕ is true on the states on which
t1tunnel does not hold. The states on which t1tunnel hold
are s4 and s6, and for these two states, it is easily seen that
¬t2tunnel holds on all the next states on the knowledge-
paths starting from s4 and s6. HenceM |=k ψ1, and therefore
M |= ψ1.

(b) Verification of ψ2.
Let ϕ = Kt1(t1tunnel ∧Kt2(¬t1tunnel)).
We start with k = 1, and consider the k-paths starting from

the initial state s0. The k-paths are s0s1, s0s2 and s0s3.
Then we need (s0 |= ϕ) ∨ (s1 |= ϕ) or (s0 |= ϕ) ∨ (s2 |=

ϕ) or (s0 |= ϕ) ∨ (s3 |= ϕ).
It’s easy to see that Kt1(t1tunnel) doesn’t hold on any of

the four states s0, s1, s2 or s3. Thus, k = 1 is not enough to
prove EFϕ.

Then we take k = 2 and now the k-paths are s0s1s1,
s0s1s3, s0s1s4, s0s1s6, s0s2s2, s0s2s3, s0s2s5, s0s2s7,
s0s3s3, s0s3s6 and s0s3s7.

Then we find that s0s1s4 is a path where ϕ holds on s4.
For a proof of this, we have to look at all the k-CK-paths
for the agent t1 starting from s4, which are s4s4s4, s4s4s6,
s4s6s4and s4s6s6, and check whether s4 |= t1tunnel ∧
Kt2(¬t1tunnel) and s6 |= t1tunnel ∧ Kt2(¬t1tunnel)
hold.

It is easily verified that t1tunnel holds on s4 and s6.
For proving that Kt2(¬t1tunnel) also holds on s4 and s6,

we have to consider all the k-CK-paths for the agent t2 start-
ing from s4 and s6, and check ¬t1tunnel holds on at least
one state on at least one of these paths. s4s1s0 and s6s3s2

can be two witnesses. Then this can be successfully verified,
and therefore the property is true.

5.2 The Dining Cryptographers
In this subsection, we consider the dining cryptographers
[Raimondi and Lomuscio, 2007; Chaum, 1988]. There are
three cryptographers having a dinner in a round table and
the bill is supposed to be paid anonymously by one of the
cryptographers or NSA (the agency). A protocol is execut-
ed to figure out whether NSA is paying or one of the three
cryptographers is paying. Each cryptographer flips a coin be-
tween him and the cryptographer on his right hand side such
that only these two cryptographers can see the outcome, i.e.,
each cryptographer can see the coins on his left hand side and
that on his right hand side. Then the cryptographers report
whether the two coins he sees fell on the same side or not.
The rule is that a cryptographer only reports the truth if he
is not the payer (otherwise he reports the opposite of the fact
he sees). An odd number of differences of the reported facts
indicates that a cryptographer is paying, an even number indi-
cates that the payer is NSA. For the formal description of the
interpreted system, we take the three cryptographers as three
agents c1, c2 and c3.

• The local state of each agent ci ∈ {c1, c2, c3}
is Lci = (Payer, SeeDifferent,NumberOfOdd)
where Payer ∈ {y, n} indicates whether or not the a-
gent is the payer, SeeDifferent ∈ {none, y, n} indi-
cates whether the two coins seen by the agent are dif-
ferent and NumberOfOdd ∈ {none, odd, even} indi-
cates the number of differences of the reported facts is
even or odd, where none is the initial value.

• The actions of each agent ci ∈ {c1, c2, c3} is as follows.

– Actci = {checkCoins, sayDiff, saySame}
• The protocol of each agent ci ∈ {c1, c2, c3} is as fol-

lows.

– Pci(n, none, none) = Pci(y, none, none) =
{checkCoins}

– Pci(n, y, none) = Pci(y, n, none) = {sayDiff}
– Pci(n, n, none) = Pci(y, y, none) = {saySame}

• Then the set of global states is S = Lc1 × Lc2 × Lc3
• There are four initial states : either one of the cryptogra-

phers is paying or NSA is paying (i.e., none of the cryp-
tographers is paying), and both SeeDifferent = none
and NumberOfOdd = none at the beginning for all
the three agents.

The reachable states of the system is shown in Figure 3,
where the second and the third trees are similar to the first
one.

The Kripke structure consists of four trees with four ini-
tial states as their roots. The first three trees represent the
cases in which ci (with i = 1, 2, 3) is the payer, while
the last tree represents the case in which NSA is the pay-
er. Each state has 9 attributes, and the initial state s1 repre-
sents (y, none, none, n, none, none, n, none, none), where
the values of the first three attributes represent the local s-
tate of c1, i.e., Lc1(s1) = (y, none, none), and at state s1,
it can only perform the action checkCoins and then lead-
s to the four successor-states which represent additionally

Figure 3: The dining cryptographers

the possibility of the outcome of the coins seen by the a-
gents (i.e., leading to a change of the value of the attribute
SeeDifferent). Since three coins can only be three in the
same side or two in the same side, the outcome would be two
of the agents see different sides or none of them see different
sides which are the four cases. Then the system takes ac-
tions sayDiff or saySame according to the protocols from
these four cases to the leaves of the trees. The other trees fol-
low the same approach. Only the leaves of the last tree have
NumberOfOdd = evenwhile the leaves of other trees have
NumberofOdd = odd. Note that we add a self loop to ev-
ery leaf because the transition relation in a Kripke model is
required to be total.

Let nd denote the number of differences of the reported
facts from the dinning cryptographers. The equivalence rela-
tion of ∼c1 is represented by a partition of the states as fol-
lows (it is similar for the other two agents, which are omitted
for brevity).

• {s1} where c1 is the payer

• {s2, s3, s4} where c1 is not the payer

• {s11, s12} where c1 is the payer and he sees different
side of coins

• {s13, s14} where c1 is the payer and he sees same side
of coins

• {s21, s22, s31, s32, s41, s42} where c1 is not the payer
and he sees different side of coins

• {s23, s24, s33, s34, s43, s44} where c1 is not the payer
and he sees same side of coins

• {s11odd, s12odd} where nd is odd, with other properties
inherited from {s11, s12}
• {s13odd, s14odd} where nd is odd, with other properties

inherited from {s13, s14}
• {s21odd, s22odd, s31odd, s32odd} where nd is odd, other

properties inherited from {s21, s22, s31, s32}
• {s23odd, s24odd, s33odd, s34odd} where nd is odd, other

properties inherited from {s23, s24, s33, s34}
• {s41even, s42even}where nd is even, other properties in-

herited from {s41, s42}
• {s43even, s44even}where nd is even, other properties in-

herited from {s43, s44}
Let AP = {paynsa, payc1 , payc2} be a set of proposition

symbols representing the basic properties of the states. Let

L : S → 2AP be defined as follows (where the place holder
represents any value of the attribute).

• paynsa ∈ L(s) iff Lc1(s), Lc2(s) and Lc3(s) are all of
the form (n, ,),

• for each i ∈ {1, 2, 3}, payci ∈ L(s) iff Lci(s) is of the
form (y, ,) .

Then we consider the following properties.

• (a) ψ1 = AF (Kc1(paynsa) ∨Kc1(¬paynsa))

• (b) ψ2 = AG¬Kc1(pay2)

• (c) ψ3 = AG¬Kc1(paynsa)

• (d) ψ4 = AG¬C{c1,c2,c3}(paynsa)

The first property states the fact that this protocol can help
c1 finding out whether NSA is paying. The second proper-
ty states that for all reachable states, agent c1 does not know
that agent c2 is paying, or equivalently, there does not exist-
s any reachable state where agent c1 knows that agent c2 is
paying. The third property states that there does not exists
any reachable state where agent c1 knows that NSA is pay-
ing. This property does not hold, since it is not necessary to
keep anonymity when NSA is paying the bill. The last prop-
erty does not hold either, and the negation of the last property
states further that there is a state where the agents will have
a common knowledge on that NSA is paying. We demon-
strate how these properties are verified or falsified by using
the bounded semantics.

(a) ψ1 = AF (Kc1(paynsa) ∨Kc1(¬paynsa))

Proof. Let ϕ = Kc1(paynsa) and φ = Kc1(¬paynsa).
We start with k = 1. We have to consider the 16 k-paths

(cf. Figure 3) starting from the initial states, and prove that
there exists a state on every k-paths such that ϕ ∨ φ holds.

Then for the k-path s2s21, we find that s2 6|= ϕ ∨ φ and
s21 6|= ϕ ∨ φ. This is because proving s2 |= ϕ ∨ φ and
s21 |= ϕ ∨ φ requires considering all k-CK-paths starting
from s2 and s21. For the CK-path s2s4, s2 6|= ϕ ∨ φ be-
cause s2 |= ¬paynsa while s4 |= paynsa. For the CK-path
s21s41, we have s21 6|= ϕ ∨ φ because s21 |= ¬paynsa while
s41 |= paynsa. Hence, k = 1 is not sufficient for proving the
property.

Then we increase k to 2, and once again we need to consid-
er the 16 k-paths starting from the initial states and to prove
on each k-path there is at least one state that ϕ ∨ φ is satis-
fiable. For every such 2-paths, the last state is the leaf of the
trees and ϕ∨φ is satisfied on all these leaves. This is because

the property is satisfied on all states on all the k-CK-paths s-
tarting from the leaves (cf. the equivalence relation of c1 pre-
sented above). Those leaves marked with odd have ¬paynsa
satisfied and those that marked with even have paynsa satis-
fied. Therefore this property holds.

(b) ψ2 = AG¬Kc1(pay2)

Proof. We have to prove that AGKc1(¬pay2) is true. This
can be done with k = 3. For the first, all the k-paths starting
from the initial states with k = 3 are rs-path. Then we con-
sider all the states on those k-paths, and then the k-CK-paths
starting from these states and try to find one state on the CK-
paths with ¬pay2 satisfied. Since every equivalence set (cf.
the equivalence relation of c1 presented above) has at least
one state satisfying ¬pay2, the property AGKc1(¬pay2) is
true.

(c) ψ3 = AG¬Kc1(paynsa)

Proof. This property is false. For this, we have
to prove that EFKc1(paynsa) holds on some initial s-
tate. This can be verified with k = 2. The
k-path s4s41s41even is a sufficient one for witnessing
EFKc1(paynsa), since s41even |= Kc1(paynsa), which
is explained as follows. The k-CK-paths starting from
s41even are s41evens41evens41even, s41evens41evens42even,
s41evens42evens42even and s41evens42evens41even. Since
s41even |= paynsa and s42even |= paynsa, we have the prop-
erty. Therefore the property ψ3 does not hold.

(d) ψ4 = AG¬C{c1,c2,c3}(paynsa)

Proof. This property is false. For this, we have to
prove that EFC{c1,c2,c3}(paynsa) holds on some initial s-
tate. This can be verified with k = 4. The k-path
s4s41s41evens41evens41even would be a sufficient one for
witnessing EFC(paynsa), if we had that C(paynsa) hold-
s on s41even. To prove s41even |= C(paynsa), We need
to consider all CK-paths (where Γ = {c1, c2, c3}) start-
ing from s41even. For the agent c1, {s41even, s42even} and
{s43even, s44even} are the two relevant equivalence sets, and
for the other two agents, the relevant equivalence sets are
{s41even, s43even}, {s42even, s44even}, {s41even, s44even}
and {s42even, s43even}. All these relations form the edges
of the CK-paths. There are no edges going out from the
set {s41even, s42even, s43even, s44even}. Since k = 4, al-
l the k-CK-paths starting from s41even are rs-path, and since
we have s41even |= paynsa, s42even |= paynsa, s43even |=
paynsa and s44even |= paynsa, all the states on such CK-
paths satisfy paynsa. Therefore the property ψ4 does not
hold.

5.3 Experimental Comparison
The procedure has been implemented based on the model
checking tool VERDS [Zhang, 2013; Zhang, 2014], and the
implementation is denoted qMAS1.

The input language of qMAS is kind of a high level de-
scription which is consistent with interpreted systems. It in-
cludes components such as agents, environment, initial states,

1http://lcs.ios.ac.cn/∼zwh/qmas/

properties to verify, et cetera. Both agents and environment
have components like local variables, actions, and protocol-
s. qMAS computes reachable states and constructs a Kripke
structure from the input language to prepare for the verifica-
tion procedure. Then the model and the CTLK properties
are encoded into QBF-formulas. Following the algorithm,
qMAS uses a QBF solver to determine the validity of the
QBF-formulas, thus report an answer for whether the prop-
erties are satisfied on the model.

The purpose of this subsection is to show the complemen-
tary nature of such an approach and BDD based symbolic
model checking based on experimental analysis of test cases.
We provide experimental data for comparison of qMAS with
McMAS2on a set of test cases.

Complementary nature means that the two approaches have
advantages over each other on different sets of test cases. S-
ince we know that McMAS performs well on many problem
instances and qMAS may perform well when the transition
relation of the systems is sufficiently complicated and the ver-
ification procedure terminates (and returns an answer) when
k is relatively small, we only provide evidence on the exis-
tence of problem instances that can be handled by qMAS in
a more efficient way.

Models We use the transition relations in the train con-
troller system [Hoek and Wooldridge, 2002; Kacprzak et al.,
2004a], and that in the dining cryptographers [Raimondi and
Lomuscio, 2007; Chaum, 1988] as the basic transition re-
lations, and in order to increase the complexity, we modify
the transition relations and add a set of n Boolean variables
(n = 400, 500 are used for obtaining the following experi-
mental data) initialized to false and assign a random value
in each step of the transitions. These two types of models are
referred to as type (1, n) model (based on train controller)
and type (2, n) model (based on dining cryptographers), re-
spectively.

Property Specifications For models of type (1, n), we
check the following properties.

ϕ1 = AG(Kt1(t2tunnel))
ϕ2 = AG(Kt1(t1tunnel ∧Kt2(¬t1tunnel)))
ϕ3 = AF (Kt1(t1tunnel))
ϕ4 = AF (Kt1(t2tunnel))

For models of type (2, n), we check the following proper-
ties.

ψ1 = AGEX(C{c1,c2}(paynsa))
ψ2 = AGEX(Kc1(¬paynsa))
ψ3 = AFEX(C{c1,c2}(paynsa))
ψ4 = AFEX(Kc1(¬paynsa) ∨Kc1(paynsa))

Experimental Data Since we use random assignments of
values to a set of Boolean variables, for each type of the
m odels, we use 20 instances (with different values for the
Boolean variables) of each type and calculate an average
of the verification times. The average times (in seconds)
for respectively McMAS and qMAS are presented as fol-
lows. The experimental data are obtained by running the t-

2https://vas.doc.ic.ac.uk/software/mcmas/

https://vas.doc.ic.ac.uk/software/mcmas/

wo tools on a 64bit Linux platform on an Intel Xeon CPU
E7450@2.40GHz.

Type Prop. T/F McMAS qMAS

(1,400) ϕ1 false 46.4 27.8
(1,400) ϕ2 false 46.7 18.7
(1,400) ϕ3 false 47.5 21.3
(1,400) ϕ4 true 47.1 14.3
(1,500) ϕ1 false 66.1 49.1
(1,500) ϕ2 false 65.1 31.6
(1,500) ϕ3 false 65.8 37.3
(1,500) ϕ4 true 66.0 25.5
(2,400) ψ1 false 135.9 88.0
(2,400) ψ2 false 133.1 87.9
(2,400) ψ3 true 138.4 59.1
(2,400) ψ4 true 138.5 95.3
(2,500) ψ1 false 247.2 146.6
(2,500) ψ2 false 248.5 138.2
(2,500) ψ3 true 228.1 92.5
(2,500) ψ4 true 248.2 147.7

Clearly, the experimental data show that qMAS has advan-
tage over McMAS on the test cases, and the package con-
taining the tool qMAS and the two sets of test cases are avail-
able3.

Notice that the data presented in this table do not provide
a comprehensive comparison of McMAS and qMAS, rather,
they show the existence of problem instances that can be han-
dled by qMAS (with the bounded semantics approach) in a
more efficient way.

6 Concluding Remarks
This work has provided a definition of the bounded se-
mantics of CTLK. This semantics can be viewed as an ex-
tension of that of ECTLK [Penczek and Lomuscio, 2003].
The existential fragment handles the epistemic operators
Kiϕ,EΓϕ,DΓϕ,CΓϕ which are the dual operators of the
commonly-used operators Kiϕ,EΓϕ,DΓϕ,CΓϕ, and an im-
portant part of CTLK was left out (e.g., the properties con-
sidered in the test cases cannot be handled by the bound-
ed semantics of ECTLK). It is therefore of interest to have
a bounded semantics that handle these commonly-used op-
erators with the possibility for the alternation of these and
the dual operators (in NNF formulas) as well. The use of
knowledge-paths (viewing the Kripke structure as two types
of graphs) has simplified the semantics of the operators (al-
though the two definitions of the semantics are equivalent)
and had made it more manageable for the definition and rea-
soning of the bounded semantics, thus we have bounded se-
mantics for the full CTLK. Following from this definition of
the bounded semantics, we have provided an approach for
checking multi-agent systems against CTLK properties such
that the correctness and termination are guaranteed, and an
automated verification approach is presented. The approach
has been implemented and we have experimental data show-
ing the existence of verification problems that can be verified
by this new approach more efficiently than BDD based sym-
bolic model checking.

3http://lcs.ios.ac.cn/∼zwh/software/qmas1.0.tar.gz

References
[Belardinelli et al., 2018] Francesco Belardinelli, A-

lessio Lomuscio, Aniello Murano, and Sasha Rubin.
Alternating-time temporal logic on finite traces. In
Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden., pages 77–83, 2018.

[Biere et al., 1999] Armin Biere, Alessandro Cimatti, Ed-
mund M. Clarke, and Yunshan Zhu. Symbolic model
checking without bdds. In International Conference on
TOOLS and Algorithms for Construction and Analysis of
Systems, pages 193–207, 1999.

[Chaum, 1988] David Chaum. The dining cryptographers
problem: Unconditional sender and recipient untraceabili-
ty. Journal of Cryptology, 1(1):65–75, 1988.

[Clarke and Emerson, 1981] Edmund M. Clarke and
E. Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In
The Workshop on Logic of Programs, pages 52–71, 1981.

[Clarke et al., 1999] Edmund M. Clarke, Orna Grumberg,
and Doron A. Peled. Model checking. MIT Press,, 1999.

[Cohen et al., 2009] Mika Cohen, Mads Dam, Alessio Lo-
muscio, and Hongyang Qu. A symmetry reduction tech-
nique for model checking temporal-epistemic logic. In
International Jont Conference on Artifical Intelligence,
pages 721–726, 2009.

[Dam et al., 2009] Mads Dam, Alessio Lomuscio, and
Francesco Russo. Abstraction in model checking multi-
agent systems. In International Conference on Au-
tonomous Agents and Multiagent Systems, pages 945–952,
2009.

[Emerson and Clarke, 1982] E. Allen Emerson and Ed-
mund M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Com-
puter Programming, 2(3):241–266, 1982.

[Fagin et al., 2004] Ronald Fagin, Joseph Y. Halpern, Yoram
Moses, and Moshe Y. Vardi. Reasoning About Knowledge.
MIT Press,, 2004.

[Gammie and Meyden, 2004] Peter Gammie and Ron
Van Der Meyden. Mck: Model checking the logic of
knowledge. In Computer Aided Verification, International
Conference, CAV 2004, Boston, Ma, USA, July 13-17,
2004, Proceedings, pages 479–483, 2004.

[Hoek and Wooldridge, 2002] Wiebe Van Der Hoek and
Michael Wooldridge. Tractable multiagent planning for
epistemic goals. In International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 1167–
1174, 2002.

[Kacprzak et al., 2004a] M Kacprzak, A. Lomuscio, and
W. Penczek. Bounded versus unbounded model checking
for interpreted systems. Fundamenta Informaticae, 2004.

[Kacprzak et al., 2004b] Magdalena Kacprzak, Alessio Lo-
muscio, and Wojciech Penczek. From bounded to un-
bounded model checking for temporal epistemic logic.
Fundamenta Informaticae, 63(2):221–240, 2004.

[Kong and Lomuscio, 2017a] Jeremy Kong and Alessio Lo-
muscio. Model checking multi-agent systems against
LDLK specifications. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017,
pages 1138–1144, 2017.

[Kong and Lomuscio, 2017b] Jeremy Kong and Alessio Lo-
muscio. Symbolic model checking multi-agent systems
against ctl*k specifications. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017,
pages 114–122, 2017.

[Kong and Lomuscio, 2018] Jeremy Kong and Alessio Lo-
muscio. Model checking multi-agent systems against
LDLK specifications on finite traces. In Proceedings of
the 17th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS 2018, Stockholm, Swe-
den, July 10-15, 2018, pages 166–174, 2018.

[Kwiatkowska et al., 2010] Marta Kwiatkowska, Alessio
Lomuscio, and Hongyang Qu. Parallel model checking for
temporal epistemic logic. In Conference on ECAI 2010:
European Conference on Artificial Intelligence, 2010.

[Lomuscio and Michaliszyn, 2016] Alessio Lomuscio and
Jakub Michaliszyn. Verification of multi-agent systems
via predicate abstraction against ATLK specifications. In
Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems, Singapore, May
9-13, 2016, pages 662–670, 2016.

[Lomuscio and Raimondi, 2006] Alessio Lomuscio and
Franco Raimondi. The complexity of model checking
concurrent programs against ctlk specifications. In
International Workshop on Declarative Agent Languages
and Technologies, pages 548–550, 2006.

[Lomuscio and Ryan, 1997] Alessio Lomuscio and Mark
Ryan. On the relation between interpreted systems and
kripke models. In Australian Workshop on Distributed Ar-
tificial Intelligence, pages 46–59, 1997.

[Meski et al., 2014] Artur Meski, Wojciech Penczek, Ma-
ciej Szreter, Bozena Wozna-Szczesniak, and Andrze-
j Zbrzezny. Bdd-versus sat-based bounded model check-
ing for the existential fragment of linear temporal logic
with knowledge: algorithms and their performance. Au-
tonomous Agents and Multi-Agent Systems, 28(4):558–
604, 2014.

[Meyden and Su, 2004] Ron Van Der Meyden and Kaile Su.
Symbolic model checking the knowledge of the dining
cryptographers. In Computer Security Foundations Work-
shop, 2004. Proceedings. IEEE, pages 280–291, 2004.

[Penczek and Lomuscio, 2003] Wojciech Penczek and A-
lessio Lomuscio. Verifying epistemic properties of multi-
agent systems via bounded model checking. In The Second
International Joint Conference on Autonomous Agents &
Multiagent Systems, AAMAS 2003, July 14-18, 2003, Mel-
bourne, Victoria, Australia, Proceedings, pages 209–216,
2003.

[Penczek et al., 2012] Wojciech Penczek, Bozena Wozna-
Szczesniak, and Andrzej Zbrzezny. Towards sat-based
BMC for LTLK over interleaved interpreted systems. Fun-
dam. Inform., 119(3-4):373–392, 2012.

[Raimondi and Lomuscio, 2007] Franco Raimondi and A-
lessio Lomuscio. Automatic verification of multi-agent
systems by model checking via ordered binary decision
diagrams. Journal of Applied Logic, 5(2):235–251, 2007.

[Shoham and Leyton-Brown, 2008] Yoav Shoham and
Kevin Leyton-Brown. Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge
University Press, 2008.

[Wooldridge, 2009] Michael J Wooldridge. An introduc-
tion to multi-agent systems. Wiley & Sons, 4(2):125–128,
2009.

[Zhang, 2013] Wenhui Zhang. Verds: Verifica-
tion of hierarchical discrete systems by symbol-
ic techniques. Manuscript, available at webpage
http://lcs.ios.ac.cn/∼zwh/verds/, 2013.

[Zhang, 2014] Wenhui Zhang. Qbf encoding of temporal
properties and qbf-based verification. In IJCAR 2014 (L-
NAI 8562), pages 224–239, 2014.

[Zhang, 2015] Wenhui Zhang. Bounded semantics. Theoret-
ical Computer Sci., 564:1–29, 2015.

	Introduction
	Preliminaries
	Kripke Structures
	The Temporal-Epistemic Logic CTLK

	Bounded Semantics
	Checking Temporal-Epistemic Properties
	Examples and Experimental Comparison
	An Example with the Train Controller System
	The Dining Cryptographers
	Experimental Comparison

	Concluding Remarks

