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Abstract—Streaming applications are an important class of
applications in real-time embedded systems, which usually run
under restricted resource constraints and with real-time require-
ment. They are often modeled with Synchronous data flow graphs
(SDFGs) or Cyclo-Static data flow graphs (CSDFGs) at the
design stage. A proper analysis of the models gives a predictable
design for a system. In this paper, we focus on the throughput
analysis of (C)SDFGs, taking into account memory constraints.
Memory related analysis needs to choose a memory abstraction
that decides when the space of consumed data is released
and when the required space is claimed. Different memory
abstractions may lead to different achievable throughputs. The
existing techniques, however, consider only a certain abstraction.
If a model is implemented according to other abstractions, the
analysis result may not truly evaluate the performance of the
system. In this paper, we present a novel unified framework
for throughput analysis of memory constrained (C)SDFGs for
different abstractions, aiming to provide evaluations matching up
to the corresponding implementations. Our methods are exact.
Experiments are carried out on several models of real streaming
applications and hundreds of synthetic graphs to evaluate the
effects and performance of our methods.

Keywords—data flow graphs; iteration period; memory abstrac-
tions; self-timed execution; time stamp

I. INTRODUCTION

An important class of applications in embedded systems
are streaming applications, such as multimedia and digital
signal processing applications. These applications usually run
under limited resources and are required to achieve a high
throughput.

Synchronous data flow graphs (SDFGs) [1] and Cyclo-
Static data flow graphs (CSDFGs) [2] are widely used to model
streaming applications. Each node (also called actor) in an
SDFG represents a computation and each edge models a FIFO
channel which carries streams of data. A token is an atomic
data object. A sample rate is the number of tokens produced
or consumed by per execution of an actor. The sample rates
of actors in an SDFG may differ. Execution of all the actors
of an SDFG for the required number of times is referred to
as an iteration, which may include more than one execution,
also called a firing, of an actor. Different actors of an SDFG
may fire a different number of firings in an iteration. The
number of firings is decided by the repetition vector of the
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(a) The SDFG G1. The sample rates are omitted when they are 1; the
computation time of each actor is attached inside the node; black dots
represents initial tokens on the channels. An iteration of G1 includes one
firing of actor A, two firings of B and four of C.

	� 	� 	� 	� 	� 	��� ��
��

0    1    2    3    4    5    6    7    8    9   10  11  12      time

(0,0) (0,2) (2,0)
(2,1)

(2,2) (4,0)
(4,1)

(4,2) (0,2)
(0,1)

buffer
space 

Periodic Phase (one iteration)
(b) Schedule sch1 of G1 with IP = 1

thr.
= 10. The indices of each actor

indicate the order of firings of the actor.

��
�� ��

��

�� �� ��
0                1                2                3                4        time

(0,0)
(0,2)

(0,1) (2,0) (2,1)

(2,2)
(4,0)
(0,0)

buffer
space 

end C--

end C-- end B-- end C--

end C--
end B--

end A--

Periodic Phase (one iteration)

(c) Schedule sch2 of G1 with IP = 1
thr.

= 4.

Fig. 1. SDFG G1 and its schedules under buffer bound (4, 2) corresponding
to edges 〈A,B〉 and 〈B,C〉.

SDFG, which we will explain later. An example SDFG G1

is shown in Fig. 1(a). An iteration of G1 includes one firing
of actor A, two firings of B and four of C. The SDFG is
a concurrent mode of computation. In an SDFG, there can
be simultaneous firings of an actor. This property is called
auto-concurrency. If auto-concurrency is not allowed for an
actor, a self-loop with one initial token can be added. In
G1, for example, auto-concurrency is not allowed. Practical
streaming applications modeled with SDFGs include an MP3
playbacker [3], a satellite receiver [4], etc.

In an SDFG, the numbers of tokens produced or consumed
by different firings of an actor are the same. That is, an actor of
an SDFG has fixed sample rates. CSDFGs generalize SDFGs
by allowing cyclicly changed sample rates and execution times
of an actor. An example CSDFG G2 is shown in Fig. 2. A
channel equalizer is modeled with CSDFG in [5]. A detailed
introduction to CSDFGs is in Section III.
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Fig. 2. The CSDFG G2 [6]. An iteration of G2 includes six firings of actor
A, four firings of B and two of C.

Streaming applications are usually repetitive. Static sched-
ules are typically used to reduce runtime overhead. A static
schedule arranges the computations of an algorithm to be ex-
ecuted repeatedly. The average computation time per iteration
is called the iteration period (IP). The IP is the reciprocal of
the throughput. A smaller IP implies a higher throughput. We
will use throughput and IP alternatively in the remained of the
paper. When unlimited resources are available, the minimal
IP that a (C)SDFG can achieve is decided by its structure and
execution times of actors. A graph with recursion (or feedback)
have an inherent lower bound on the IP, while the IP of a chain-
structured graph can go to infinitesimal, even zero. When any
resource is limited, the IP of a (C)SDFG is also restricted by
the resource constraints.

In this paper, we are concerned with throughput analysis
(also called IP analysis) of SDFGs and CSDFGs, taking into
account memory constraints. We try to find the maximal
achievable throughputs (i.e. minimal achievable IP) of static
schedules of (C)SDFGs. The memories required to implement
a (C)SDFG include code and data memory. We focus on the
latter. The data flow between actors via channels. Only channel
memory is considered in the analysis, meaning that any local
buffers needed by the memory abstractions are assumed to be
unconstrained. The storage used by channels may be shared
or separate. We assume a separate memory.

In the semantics of (C)SDFGs, an actor consumes tokens
from its input edges at the start of its firing and produces
tokens on its output edges at the end of its firing. When
memory constraints are concerned, an analysis needs to choose
an abstraction about when to release the buffer space of the
consumed tokens and when to claim the buffer space for
the produced tokens. Many studies conducted to investigate
storage aspects for (C)SDFGs [6], [7], [8] consider only one
abstraction, usually the conservative abstraction. They assume
that for a firing of an actor, the buffer space needed by the
produced tokens is claimed at the start of the firing and the
buffer space of consumed tokens is released at the end of the
firing. Based on the assumption, a schedule of SDFG G1,
sch1, is shown in Fig. 1(b). It is under buffer bound (4, 2)
corresponding to edges 〈A,B〉 and 〈B,C〉, respectively. It
arranges firings of actors according to a self-timed execution
(STE, also called as soon as possible execution). An STE is a
fastest execution of a (C)SDFG and the minimal achievable
IP of its corresponding schedule is the average iteration
computation time in its periodic phase [9].

The minimal achievable IP of sch1 is 10. That means
no matter how to schedule G1 under the assumption, its
throughput does not exceed 0.1. A clock is usually used in the
operational semantic of (C)SDFGs to model the time progress
in these methods. At each time point, whether an actor is ready
to fire is only decided by the current state, including whether
there is sufficient space on its output edges.

This assumption, however, often leads to a pessimistic
evaluation of throughputs. Having a close look at sch1, we find
that, at time point 2, after the end of the second firing of actor
C, there is space for two tokens on edge 〈B,C〉, providing
sufficient space for the tokens produced by one firing of actor
B. This implies that the first firing of B ending at time point
2 will not violate the buffer bound on 〈B,C〉, if only the
second firing of C ends first. Since the tokens on the input
edges of B are sufficient for one firing at time point 0 and
its execution time is 2, we can arrange it to start one firing at
the beginning, concurrently with the first firing of C. Based on
this observation, another schedule of G1 under the same buffer
bound, sch2, is shown in Fig. 1(c). The minimal achievable IP
of sch2 is 4, much better than that of sch1. Firings in schedule
sch2 are arranged as soon as possible, also forming an STE.

Rather than the abstraction used in schedule sch1, schedule
sch2 is based on the assumption that the space required
by the produced tokens is claimed at the end of the firing.
It is obvious that the scheme used in sch2 leads a faster,
or at least not slower, schedule than the scheme of sch1.
An implementation scheduled according to the new scheme
may achieve a higher throughput than the analysis result
according to the conservative abstraction. The reason is that
different memory abstractions may lead to different achievable
throughputs of a system.

To match up to the implementation, we present a unified
framework for throughput analysis of (C)SDFGs under differ-
ent memory abstractions. Besides the above two combinations
of time abstractions of buffer space claim and release, the
framework also deals with other combinations that release the
input space at the start of a firing and to claim the output space
at the start or the end of a firing. To the best of our knowledge,
this is the first work that can provide throughput evaluations
under different memory abstractions in a unified framework.

When to analyze the IP of (C)SDFGs based on the above-
mentioned new abstraction, two problems arise. When trying
to start a firing of an actor, if currently there is no sufficient
space on its output edges, how do we know whether the space
will be available at the end of the firing? And how to order the
start and end events of firings at a same moment? Consider
the schedules of G1 under bound (4, 2) again for example.
At time point 0, there are two tokens on 〈B,C〉, leaving no
room for more tokens. However, by the observation we know
that at time point 2, there will be enough space on 〈B,C〉 for
the tokens produced by B. It is safe to start the first firing of
B at time point 0 and arrange it to end after the end of the
second firing of C at time point 2. Then, how to decide the
behavior of B at time point 0 according to the state of buffer
of 〈B,C〉 at time point 2, a future state? How do we know
that, at time point 2, the second firing of C should end before
ending the firing of B; otherwise the buffer bound on 〈B,C〉
will be violated? The answers to these questions are other two
contributions of this paper.

The remainder of this paper is organized as follows. The
related work is reviewed in the next section. The main concepts
for the proposed methods and the problems addressed are
formulated in Sections III. Our main contributions are illus-
trated in Sections IV and V for SDFGs, and then extended to
CSDFGs in Section VI. Section VII provides an experimental
evaluation. Section VIII concludes.



II. RELATED WORK

The memories required to implement a (C)SDFG include
code and data memory. Code memory minimization is studied
in [10]. Studies on the joint minimization of code and data
memory for certain classes of SDFGs are conducted in [11],
[12]. We focus on the data memory constraints in this paper.
The storage used by channels may be shared [13] or separate.
We assume a separate memory without buffer merging [14].
Below we review the most related work.

Buffer sizing techniques for minimal storage requirement
for a deadlock-free execution are proposed in [15], [16], [17],
in which no timing information is considered and therefore no
analysis of throughput is provided. We use the minimal storage
for a deadlock-free execution of graphs as memory constraints
in our experiments.

Techniques proposed in [18], [7], [19] focus on buffer
minimization for schedules of SDFGs that achieve the maximal
throughput. Govindarajan et al. [18] use the integer linear
programming (ILP) technique to solve this problem. Moreira et
al. [7] consider a special type of SDFGs, homogenous SDFGs,
in which all sample rates of actors are one. Bouakaz et al. [19]
use symbolic technique to solve this problem on a special
kind of SDFGs - acyclic SDFGs with initially empty channels.
Wiggers et al. [3] and Benazouz et al. [20] present heuristics
to find minimal buffer capacities of a CSDFG that satisfy
a given throughput constraint. The former uses a min-cost
network flow formulation and the latter uses the ILP technique.
Auto-concurrency is not allowed in the above-mentioned work.
Stuijk et al. [6] propose an exact method to determine all
Pareto points between throughput and buffer capacities for a
(C)SDFG. Auto-concurrency is allowed in (C)SDFGs in this
method, but a potential overtaking problem for CSDFGs is not
discussed. An STE analysis technique is used in both [7] and
[6]. All the above methods are based on the memory abstrac-
tion that the space for output tokens is claimed at the start of a
firing and the space for input tokens is released at the end of a
firing, i.e. the above-mentioned conservative abstraction. The
only work that considers minimizing buffer size for optimal
throughput based on a different abstraction [21] is proved not
exactly minimal [7].

None of them discuss the effect of different abstractions.
Our purpose is to provide a unified framework to analyze
throughput of a (C)SDFGs under a given memory constraint,
based on different abstractions. To the best of our knowledge,
there is no work giving such a general solution on this problem.

Our methods are exact and possible to be embedded
into other procedures like throughput-buffering trade-off ex-
ploration in [6]. We use an STE analysis technique in the
solution. Besides the above-mentioned work [6], [7], STE
analysis is also used in [9] to compute the maximal throughput
of SDFGs, used in [22] to compute the bottleneck of a
resource-aware SDFG, in which the resource platform and
resource requirement are known. In [23] and [24], it is used
to compute throughput after processor allocation for mapping
multiple applications. In [8], it is used to find schedules after
optimization.

Instead of using a clock in the operational semantics of
(C)SDFGs as traditional STE analysis used in above methods,
we tag time stamps on tokens to model the time progress. The

time stamps of tokens are also used in [25], which defines a
Max-Plus linear algebra [26] semantics of SDFGs, to represent
the state of a graph after one iteration, and used in [27] to
find Pareto optimal schedules with respect to throughput and
energy.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce the main concepts required by
the development of our methods and formulate the problems
addressed in this paper.

An SDFG is a finite directed graph G = (V,E). V is the set
of actors, modeling the computations of a system. Actor v is
weighted with its computation time t(v), a nonnegative integer.
E is the set of directed edges, modeling interconnections
between computations. The source actor and sink actor of
e are denoted by src(e) and snk(e), respectively. Edge e is
weighted with three properties, d(e), p(e) and c(e). Property
d(e) is the number of initial tokens on e, p(e) is the number
of tokens produced onto e by each firing of src(e), and c(e)
is the number of tokens consumed from e by each firing of
snk(e). These numbers are also called the delay, production
rate and consumption rate, respectively. The set of incoming
edges to actor v is denoted by InE (v), and the set of outgoing
edges from v by OutE (v). If p(e) = c(e) = 1 for each e ∈ E,
G is a homogenous SDFG (HSDFG).

A simple SDFG G1 is depicted in Fig. 1(a). Actor A needs
4 units of time to finish, B needs 2 units and C one unit. The
production rate and consumption rate of edge 〈A,B〉 are 4
and 2, respectively, and there is four initial token on 〈A,B〉.
A firing of actor A will produce 4 tokens on 〈A,B〉 and actor
B can fire only when there are at least 2 tokens on 〈A,B〉.
The actor without any incoming edge is free to fire at any time
point. The self-loop on A disallowed auto-concurrency of A.
If the self-loop is removed, A is enabled for firing at any time.

SDFG G = (V,E) is sample rate consistent [1] if and only
if there exists a positive integer vector q(V ) satisfying balance
equations, q(src(e))× p(e) = q(snk(e))× c(e) for all e ∈ E.
The smallest such q is called the repetition vector. We use q
to represent the repetition vector directly. The repetition vector
of G1 is q = [1, 2, 4], corresponding to actors A, B and C,
for example.

In an SDFG, an actor has fixed sample rates and execution
time, which usually is the worst case execution time of the
computation modeled by the actor. CSDFGs generalize SDFGs
by allowing cyclicly changed sample rates and execution times
for an actor. Rather than modeling a computation, an actor
models a sequence of computations in a CSDFG. Without lose
of generality, suppose sequences of all actors have a length of
N 1. A CSDFG G = (V,E) extends above defined SDFG with:
there are a sequence of execution times t(v)[N ] for each v ∈
V , a sequence of consumption rates c(e)[N ] and a sequence
of production rates p(e)[N ] for each edge e ∈ E. Elements
t(v)[i], c(e)[i]s for all e ∈ InE (v) and p(e)[i]s for all e ∈
OutE (v) define the jth firing of v, where i = j mod N . An
example CSDFG G2 is shown in Fig. 2. The first firing of A

1According to the original definition of CSDFGs [2], the lengths of
sequences may differ from actor to actor. In case there are unequal lengths, a
unique N can be defined as the least common multiple of those lengths; or a
vector N(V ) can be used to model the lengths of sequences of actors.



takes one unit of time to execute and produces 3 tokens on
edge 〈A,B〉; the second firing of A takes 3 units of time to
execute and produce 1 token on edge 〈A,B〉.

The sample rate consistency of a CDFG can be similarly
checked and the repetition vector be similarly computed as in
SDFGs. The details are referred to [2]. The repetition vector
of G2 is q = [6, 4, 2] corresponding to actors A, B and C, for
example.

It is always possible to convert a sample rate consistent
(C)SDFG to an equivalent HSDFG [28], [2]. A sample rate
consistent (C)SDFG is deadlock-free if there is at least one ini-
tial token on any cycle in its equivalent HSDFG. Only sample
rate consistent and deadlock-free (C)SDFGs are meaningful in
practice. Therefore we consider only such (C)SDFGs.

An iteration of a (C)SDFG is a firing sequence in which
each actor v occurs exactly q(v) times. A static schedule
arranges the actors of a (C)SDFG to be executed repeatedly.
The average computation time per iteration is called the
iteration period (IP). The iteration bound (IB) is the greatest
lower bound of the IP for a (C)SDFG with feedback edges.

The IB of an HSDFG is given by its maximum cycle
mean [28]. The IB of a (C)SDFG equals the IB of its equivalent
HSDFG. Ghamarian et al. [9] and Stuijk et al. [6] present
methods to compute the IB of a connected (C)SDFG without
converting it to an HSDFG, which we use to evaluate the
smallest achievable IPs of memory constrained (C)SDFGs in
the proposed framework.

Definition 1. A memory constraint of (C)SDFG G = (V,E) is
a vector MC (E), in which MC (e) ≥ d(e). When MC (e) > 0,
it defines the buffer bound of edge e ∈ E; otherwise, e is
unbounded.

For convenience, we assume that MC (e) > 0 for all e ∈
E, except for self-looped edges. This guarantees a strongly
connected MC (C)SDFG defined later.

In the semantics of (C)SDFGs [1], [2], an actor consumes
tokens from its input edges at the start of its firing and produces
tokens on its output edges at the end of its firing. There are no
restrictions on the time when the space of the consumed data
is released and when the required space is claimed. When the
memory constraints are taken into account in an analysis or
scheduling, however, one needs to choose an abstraction about
the restrictions.

We use two variables x ∈ {0, 1} and y ∈ {0, 1} to
model different abstractions. Variable x is used for the release
abstraction. The buffer space is released at the start of a
firing when x = 1, at the end when x = 0. Variable y is
used for the claim abstraction. The buffer space is claimed
at the start of a firing when y = 1, at the end when
y = 0. A memory abstraction is a combination of release
abstraction and claim abstraction, denoted by the value of xy.
For example, the above-mentioned conservative abstraction is
memory abstraction 01, representing that x = 0 and y = 1.

Let IPxy(G,MC ) be the minimal achievable IP of
(C)SDFG G = (V,E) under memory constraint MC (E) based
on the memory abstraction xy. The problems addressed in this
paper are: given a (C)SDFG G and a memory constraint MC ,
how to compute IPxy(G,MC ) for x ∈ {0, 1} and y ∈ {0, 1}.

IV. AN OPERATIONAL SEMANTICS OF SDFGS

In this section, we first define an operation semantics of
SDFGs without any constraints. Based on the semantics, the
self-timed execution (STE) is defined and its properties related
to the IP analysis are discussed. The behavior of memory
constrained SDFGs is defined in the following section.

Instead of using a clock in the operational semantics of
SDFGs as traditional STE analysis methods [6], [9], we use
time stamps to model the time progress in a system. Each token
tk is tagged with a time stamp to record the time when it is
produced. Tokens on edge e are expressed by a queue of their
time stamps, denoted by tsE (e). All initial tokens have a time
stamp 0, indicating that they are available at the beginning.
The size of tsE (e) is denoted by |tsE (e)|.

We define the behavior of an SDFG G in terms of a labeled
transition system, represented by LTS (G). A state of LTS (G)
is the value of tsE (E). The initial state of LTS (G) is denoted
by s0. At s0, for e ∈ E with d(e) > 0, |tsE (e)| = d(e) and
the value of each entry in tsE (e) is 0; for e without initial
tokens, tsE (e) is an empty queue.

The behavior of an SDFG consists of a sequence of firings.
We use action fire(v) to model a firing of actor v, and use
readyF (v) as predicate capturing its enabling condition.

When there are sufficient tokens on the incoming edges of
actor v, it is enabled for a firing. The guard readyF (v) tests
if there are sufficient tokens on the incoming edges of v.

readyF (v) ≡def ∀e ∈ InE (v) : |tsE (e)| ≥ c(e).

If v has no incoming edges, readyF (v) is always true .
That means v is always enabled.

When v is ready to fire, the start time of its firing, v.st,
is decided by the time stamps of the first c(e) tokens on all
incoming edges of v. We are concerned with the STE of
SDFGs, so the time is set to be as soon as possible. Since
each edge is a FIFO channel, elements in each tsE (e) are
always ordered monotonically non-decreasing. Therefore the
c(e)th element of tsE (e) is the largest time stamp of the first
c(e) tokens on e. The action that chooses the start time of the
firing of v is denoted as sF (v).

sF (v) ≡def v.st =

{
0, if InE (v) = ∅;
maxe∈InE(v) tsE (e)[c(e)], otherwise

Any time later than above defined v.st can be a legal start time
of a firing of v, merely it may lead an execution not STE. The
end time of the firing is denoted as v.et.

v.et = v.st+ t(v).

When a firing of v starts, it consumes tokens of its incoming
edges and sets the start time. This action, denoted by cT (v),
removes c(e) elements from tsE (e) of each incoming edge e
and define v.st.

cT (v) ≡def sF (v)∧(∀e ∈ InE (v) : tsE ′(e) = dQ(tsE (e), c(e))),

where tsE ′(e) refers to the value of tsE (e) in the new
state; dQ(qu, n) removes the first n elements from queue qu.
The enabling condition readyF (v) guarantees that there are
sufficient elements in tsE (e) to be removed.
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When a firing of v ends, it produces tokens to its outgoing
edges. The time stamps of those tokens are the time when
they are produced, i.e., the end time of the firing. This action,
denoted by pT (v), inserts p(e) elements, each with value v.et,
into tsE (e) of each outgoing edge e.

pT (v) ≡def ∀e ∈ OutE (v) : tsE ′(e) = eQ(tsE (e), p(e), v.et),

where eQ(qu, n, x) inserts n xs into queue qu.

Then the behavior of a firing of v is defined as the com-
bination of the token consumption and the token production.

fire(v) ≡def cT (v) ∧ pT (v).

The effect of fire(v) is illustrated in Fig. 3. At state s, there
are sufficient tokens on e1 and e2, the incoming edges of v, so
readyF (v) = true . The consumption rate of e1 is 1 and the
time stamp of the first token on e1 is ts1 = 1; the consumption
rate of e2 is 2 and the time stamp of the second token on e2
is ts2 = 2. That means that the earliest time when v can fire
is 2. By action sF (v), v.st = 2. Therefore a firing of v starts
at time point 2, executing for 2 units of time, and then ends
and produces two tokens with time stamp 4 on the outgoing
edge e3. The state is changed to s′.

Action fire is the only kind of action of LTS (G). A
transition from state to state of LTS (G) is caused by fire
constrained by its enabling condition readyF . An execution of
an SDFG G is an infinite alternating sequence of states and
transitions of LTS (G). We use actions to represent transitions
that are caused by them. By the way that the start time of a
firing is set, the execution is an STE.

For a strongly connected SDFG, the numbers of initial
tokens, the execution times and the sample rates are finite.
Therefore, although the time stamps in an STE may go
infinitely, the changes of them are finite. We define normalized
states to capture the finite changes. Let ||s|| denotes the base
time stamp of state s, defined by the time stamp of the earliest
produced token at s.

||s|| = min
ts∈s.tsE(e)∧e∈E

ts

Denote Nor(s) as normalized state of s. Let each time
stamp in s minus its base time stamp to form Nor(s).

Nor(s).tsE = s.tsE − ||s||, where

tsE − ||s|| ≡def ∀ts ∈ tsE (e), e ∈ E : ts ′ = ts − ||s||.

An STE σ ultimately goes into a repetitive pattern (called
the periodic phase) in terms of the normalized states. This

property is tested by predicate hasCycle(σ). Algorithm 1
returns the STE of a strongly connected SDFG. The periodic
phase consists of a whole number of iterations. The average
iteration computation time in the periodic phase is exactly the
IB of the SDFG [9].

Algorithm 1 STE(G)
Require: A strongly connected SDFG G
Ensure: The STE σ of G

1: lts = LTS (G)
2: s = lts.s0
3: σ ← s
4: while not hasCycle(σ) do
5: for all v ∈ G do
6: while readyF (v) do
7: fire(v)
8: σ ← σ + fire(v)
9: end while

10: end for
11: σ ← σ + s
12: end while
13: return σ

Let sb and se denote the beginning state and the end state
of the periodic phase of the STE, respectively. They could be
any pair of states with Nor(sb) = Nor(se). The time elapsing
between sb and se is the computation time of the periodic
phase. It can be computed by the base time stamps of the two
states. Suppose the periodic phase includes n iterations. The
IB of SDFG G can be computed from them. That is,

IB(G) = (||se|| − ||sb||)/n. (1)

The IB of a deadlock-free strongly connected SDFG is a
positive. The IB of an SDFG not strongly connected can be
computed by their strongly connected components. We will use
the properties of STE to analysis the IP of memory constrained
SDFGs. The IB of some memory constrained graphs, which
are originally chain-structured graph, may be zero base on
certain memory abstraction. The reason is that the semantics of
a memory constraint SDFG is defined slightly different from
the above defined semantics.

V. THROUGHPUT ANALYSIS OF MEMORY CONSTRAINED
SDFGS

A. Memory-Constrained SDFGs

The bound on buffer of an edge 〈u, v〉 of an SDFG can be
modeled by adding edge 〈v, u〉 with tokens to model available
storage space [6]. Scheduling an SDFG under memory con-
straint is equivalent to scheduling the corresponding memory-
constrained SDFG.

Definition 2. A memory-constrained SDFG (MC SDFG) of
G = (V,E) under MC (E) is an SDFG GMC = (V,E∪EMC ),
in which EMC = {〈v, u〉|〈u, v〉 ∈ E ∧MC (〈u, v〉) > 0}. For
all e′ = 〈v, u〉 ∈ EMC , there is an edge e = 〈u, v〉 ∈ E, such
that p(e′) = c(e), c(e′) = p(e) and d(e′) = MC (e)− d(e).

Edge e′ ∈ EMC is called MC edge of corresponding e ∈ E.
Denote InEMC (v) as the set of MC edges of OutE (v) and
OutEMC (v) as the set of MC edges of InE (v). An MC SDFG
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Fig. 4. MC SDFG of G1 under MC = (4, 2), corresponding to edges
〈A,B〉 and 〈B,C〉. MC edges are depicted as dotted lines.

of G1 (Fig. 1(a)) under MC = (4, 2) is shown in Fig. 4. MC
edges are depicted as dotted lines. Since there are already 4 and
2 tokens on edges 〈A,B〉 and 〈B,C〉, respectively, no tokens,
which model buffer space, available on their corresponding
MC edges. An MC SDFG is a strongly connected SDFG. Its
minimal achievable IP can be computed exactly by the periodic
phase of its STE.

B. Semantics and IP Computation of MC SDFGs

The behavior of GMC now is not only decided by the state
of edges in E as defined in Section IV, but also constrained
by the space modeled by the tokens on MC edges. The state
of its LTS is the value of vector tsE (E∪EMC ). The behavior
of GMC under memory abstraction xy is defined by enabling
condition readyFMC , which is not affected by the abstractions,
and action firexy , which may lead different states refer to
different values of xy. Below let’s see how the behavior of
an SDFG is restricted by a memory constraint under different
abstractions.

The guard readyF sp(v) tests if there are sufficient tokens
available on the MC edges of outgoing edges of actor v. If
there are no memory constraints on all the outgoing edges,
readyF sp(v) is always true .

readyF sp(v) ≡def ∀e ∈ InEMC (v) : |tsE (e)| ≥ c(e).

When there are sufficient tokens on its incoming edges and on
the MC edges of its outgoing edges, actor v is enabled for a
firing.

readyFMC (v) ≡def readyF (v) ∧ readyF sp(v)

At state s in Fig. 5, there are sufficient tokens on the in-
coming edges of actor B. That is, d(〈A,B〉) ≥ c(〈A,B〉) and
d(〈B,B〉) ≥ c(〈B,B〉), implying that readyF (B) = true;and
d(〈C,B〉) ≥ c(〈C,B〉), implying that readyF sp(B) = true .
Therefore actor B is ready for a firing.

Let cTT be the start time of a firing of actor v decided by
the tokens on the incoming edges, i.e., v.st assigned by action
sF (v) in Section IV. The start time of the firing now is also
decided by the time stamps of tokens on the MC edges of the
outgoing edges. Let cTSy(v) be the start time point decided
by the MC edges of v, under claim abstraction y. Then the
start time of v under memory constraint is the larger one of
cTT and cTSy(v). Let sT (v) be the largest time stamps of
the required tokens on MC edges. Action sF y(v) defined the
start time of firing of v.

sF y(v) ≡def v.st = max {cTT , cTSy},

where

cTSy(v) =

{
sT (v), if y = 1,

sT (v)− t(v), if y = 0,

x=1, release space at the start of a firing; x=0, release at the end; 
y=1, claim space at the start of a firing;   y=0, claim at the end.

fire11(B)--B.st=2, B.et=4

fire00(B)--B.st=0, B.et=2

fire10(B)--B.st=0, B.et=2
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Fig. 5. The effects of firexy .

and

sT (v) =

{
0, if InEMC (v) = ∅;
maxe∈InEMC (v) tsE (e)[c(e)], otherwise

A firing claims the space it requires at the time according to
the claim abstraction y. If the space is claimed at the start of
a firing, i.e. y = 1, cTSy(v) is set as sT (v). The firing of v
is not allow to start before sT (v). If the space is claimed at
the end of a firing, sT (v) can be chosen as the end time of
the firing. It is safe to let v start at sT (v) − t(v). Therefore
cTS 0(v) = sT (v)− t(v).

The action to claim required space according to claim
abstraction y is defined as cSy .

cSy(v) ≡def ∀e ∈InEMC (v) :

tsE ′(e) = dQ(tsE (e), c(e)) ∧ sF y(v)

Denote rTSx as the release time of the space of tokens
consumed by a firing of v.

rTSx(v) =

{
v.st, if x = 1;

v.et, if x = 0

The action to release space of consumed tokens according to
release abstraction x is defined as rSx.

rSx(v) ≡def ∀e ∈OutEMC (v) :

tsE ′(e) = eQ(tsE (e), p(e), rTSx(v))

The action of a firing of actor v now affects not only the
numbers of its incoming and outgoing edges, formalized by
fire(v), but also the MC edges. We formalize the firing action
based on the memory abstraction xy as action firexy .

firexy(v) ≡def fire(v) ∧ rSx(v) ∧ cSy(v).

The effects of firexy is exampled in Fig. 5. At state s, actor
B is ready for a firing. The time stamps of tokens produced on



edges of OutE (B) do not affected by the abstractions. They
are always B.et, although the values of B.et may differ with
respect to claim abstraction y. The time stamps of tokens on
OutEMC (B), however, are decided by the abstraction used.

When the release time of consumed tokens is set to the
end of the firing, i.e. x = 0, these time stamps are tagged
with B.et, e.g. states s01 and s00; otherwise, they are tagged
with B.st, e.g. states s11 and s10. Abstraction y affects the
start time of a firing. When the required space is claimed at
the start of the firing, i.e. y = 1, B.st is set to be the largest
time stamp of the required tokens for the firing, e.g. fire01
and fire11. Otherwise, the largest time stamp of the required
tokens for the firing can be seen as the end time of the firing,
i.e. B.et, then B.st = B.et− t(B), e.g. fire00 and fire10.

For different abstractions, the behavior of GMC is defined
by LTS (GMC , xy) with enabling condition readyFMC and
action firexy . Execution STExy can be obtained by a variant
of Algorithm 1, in which readyF and fire are replaced with
readyFMC and firexy , respectively. IBxy(GMC ) can be com-
puted using Eqn. (1). Then we obtain the minimal achievable
IP of SDFG G under memory constraint MC based on memory
abstraction xy by IBxy(GMC ).

Theorem 3. IPxy(G,MC ) = IBxy(GMC ).

C. Discussions on Concurrent Events

The propriety of an IP analysis is alway based on some as-
sumptions on the corresponding scheduling of graphs. Denote
v.start and v.end as the events of the start and the end of a
firing of actor v, respectively. A schedule of an SDFG is in
fact an arrangement of events on the time line. When an event
occurs can be captured by v.st and v.et in an STExy . The
difficult point is to find causal dependencies among concurrent
events. When a token produced by an event is required by a
concurrent event, a causal dependency exists between the two
events.

Since we focus on a separate memory model, only events
of firings of adjacent actors may be causally dependent on
each other. Consider an edge e = 〈u, v〉 ∈ E and its MC
edge emc (depicted in Fig. 6). Suppose that ui and uj with
i < j are two firings of u, and vk and vl with k < l are two
firings of v. Without lose of generality, assume ui.st < uj .st
and vk.st < vl.st. The causal dependencies may exist among
simultaneous events ui.end, uj .start, vk.end and vl.start.
The following discussions are set at a time point z and ui.et =
uj .st = vk.et = vl.st = z.

Denote uT as the set of tokens produced by ui.end on e
and vT as the set of tokens required by vl.start on e. When
uT ∩ vT 6= ∅, the tokens produced by ui are required by
vl. Event vl.start is causally dependent on ui.end, no matter
which memory abstraction is chosen.

Denote uS as the set of tokens claimed by uj .start or
ui.end on emc and vS as the set of tokens released by vl.start
or vk.end on emc. When uS∩vS 6= ∅, the space claimed by u
includes some of those released by v. It is caused by memory
constraints. This kind of causal dependencies is concerned with
memory abstractions.

The abstraction 01, which is used in [15], [7], [6], [8], is
the most conservative one. The semantics of MC SDFGs under

u v

emc

e

xy=01�
vk.end uj.start
ui.end vl.start

emc

e

xy=00� ui.end vl.startevk.end emc

xy=11� ui.end vl.starte uj.startemc

emc

e
causal dependency caused by edge emc

causal dependency caused by edge e

ui.st<uj.st, vk.st<vl.st
ui.et=uj.st=vk.et=vl.st

xy=10� ui.end vl.starte
emc

Fig. 6. The causal dependencies among concurrent events under abstraction
xy.

A,
[1,3]

C,
[2,3]

[3,1] B,
[2,2]

[1,1]

[4,2] [2,4] [6,6]

[1,1] [1,1] [1,1] [1,1] [1,1]

[3,1] [4,2] [2,4] [6,6]

Fig. 7. MC CSDFG of G2 under buffer bound MC = (5, 6) corresponding
to edges 〈A,B〉 and 〈B,C〉.

01 has no difference from semantics of ‘pure’ SDFGs in fact.
The dependency modeled by MC edge emc is the same as that
by e. Therefore uj .start is causally dependent on vk.end.

Contrarily, the abstraction 10 is the most extreme one. The
space on emc required by ui.end is released by vl.start. Event
ui.end is causally dependent on vl.start. Recall that a reverse
causal dependency is caused by edge e. These two events
causally dependent on each other to form a cycle. That is why
the IPs of some chain-structured graph in our experiments are
zero.

Under the abstraction 00 (11), The space on emc re-
quired by ui.end (uj .start) is released by vk.end (vl.start).
Therefore ui.end (uj .start) is causally dependent on vk.end
(vl.start).

The causal dependencies among concurrent events under
abstraction xy is depicted in Fig. 6.

VI. THROUGHPUT ANALYSIS OF MEMORY CONSTRAINED
CSDFGS

The definition of memory-constraint CSDFGs (MC CSD-
FGs) is the same as Def. 2, providing that c(e) and p(e) are
vectors rather than numbers. The MC CSDFG of G2 (Fig. 2)
under buffer bound MC = (5, 6) corresponding to edges
〈A,B〉 and 〈B,C〉 is shown in Fig. 7. Since there are no
tokens on edges 〈A,B〉 and 〈B,C〉, there are 5 and 6 tokens
on their MC edges, respectively.

CSDFGs generalize SDFGs by allowing cyclicly changed
sample rates and execution times for actors. Each actor has N
firing pattens. The jth firing of v takes t(v)[i] units of time,
consumes c(e)[i] tokens from each e ∈ InE (v) and produces
p(e)[i] tokens on each e ∈ OutE(v), where i = j mod N .
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Fig. 8. The effects of firings of MC CSDFGs.

The firing also claims and released tokens on the corresponding
MC edges.

The semantics of MC CSDFGs extends the semantics of
MC SDFGs by taking into account the firing patterns, each
of which is modeled by its index v.in ∈ [0, N − 1]. Let the
enabling condition and firing action defining the LTS of an
MC CSDFG be readyFCMC and fireCxy , respectively.

The enabling condition of a firing of actor v,
readyFCMC (v), is a variant of readyFMC (v), in which
all t(v), c(e) and p(e) are replaced with t(v)[v.in], c(e)[v.in]
and p(e)[v.in], respectively. Let action incP (v) increases
v.in by 1.

incP (v) ≡def v.in
′ = (v.in+ 1) mod N

The firing of actor v under abstraction xy is formalized as:

fireCxy(v) ≡def firexy(v)[v.in] ∧ incP (v),

where firexy(v)[v.in] is a variant of firexy(v), in which all
t(v), c(e) and p(e) are replaced with t(v)[v.in], c(e)[v.in]
and p(e)[v.in], respectively.

An example illustrating the effects of firings of MC SDFGs
is shown in Fig. 8. Abstraction 01 are used in the example.
The first firing of actor A takes 1 unit of time to finish and
produces 3 tokens on its outgoing edge 〈A,B〉 and the second
firing takes 3 units of time and produces 1 token.

Execution STExy of a CSDFG can be obtained by a variant
of Algorithm 1, in which readyF and fire are replaced with
readyFCMC and fireC xy , respectively. Then IPxy(G,MC )
for CSDFG G can be similarly computed as that of an SDFG.

The IPxy(G2,MC )s are shown in Fig. 9. The IPs are
computed under different MC s, which are storage distributions
of the Pareto points obtained by the method in [6], which is
under the abstraction 01.

In the original definition of CSDFGs [2], auto-concurrency
is not allowed. The above defined semantics for MC CSDFGs
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Fig. 9. IPxy(G2,MC )s based on abstraction xy.

is sufficient for this case. The semantics defined in [6] gen-
eralized the original definition to allow auto-concurrency. In
this case, however, the overtaking problem may arise. Take
actor A in G2 for example and change its execution times
to t(A) = [3, 1]. Actor A is enabled for two firings at the
beginning. The first firing produces 3 tokens on time point
3, and the second firing produces one token on time point 1.
The token produced by the second firing overtakes the tokens
produced by the first firing. Formally, the monotonic property
of each queue tsE (e) is violated by the overtaking problem.

To deal with the problem, we change the above defined
semantics on pT (v) and rTSx(v). In the definitions of these
two actions, v.et is replaced with max {v.et, preT}, where
preT is the largest one of time stamps of the last tokens on
all e ∈ OutE (v)∪OutEMC (v). This modification guarantees
to preserve the monotonic property of each tsE (e).

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We implemented our methods, variants of Algorithm 1, in
SDF3 [29]. The method based on abstraction xy is named
IPxy . The improvements of IPxy (xy 6= 01) compared with
IP01 are evaluated and the execution time of IPxy are shown.
The MC on each graph is the smallest buffer bound that
guarantees a deadlock-free execution of an SDFG. The buffer
bound is the storage distribution of the first Pareto point
obtained by the method in [6]. We performed experiments
on two sets of SDFGs, running on a 2.67GHz CPU with
12MB cache. The experimental results are shown in Tables I, II
and III. All execution times are measured in milliseconds (ms).

The first set of SDFGs consists of five practical DSP
applications, including a channel equalizer (CEer) [5], a max-
imum entropy spectrum analyzer (MaxES), an Mp3 playback
application (Mp3) [3], a sample rate converter (SaRate) [11]
and a satellite receiver (Satellite) [4].

The second set of tested models consists of 360 synthetic
SDFGs generated by SDF3. To evaluate the impacts of differ-
ent structures on our methods, we construct one half of them as
strongly connected graphs and another half as chain-structured
graphs.



The number of actors in an SDFG, denoted by |V |, and
the sum of the elements in the repetition vector, denoted by
nQ , have significant impact on the performance of the various
methods. We distinguish three different ranges of |V |: 10-
15, 20-25, and 50-65; and two different ranges of nQ : 1000-
1500, and 4000-6000. Then we generate SDFGs according to
different combinations of structure, |V | and nQ to form 12
groups. Each group includes 30 SDFGs. The explicit difference
in |V | and nQ among these groups is helpful for showing how
the performance of our methods changes with them.

For both sets, we consider each SDFG in two cases: with
and without auto-concurrency. To analyze an SDFG without
auto-concurrency, we add a self-loop with one initial token to
each actor of each graph.

B. Experimental Results

Table I gives the information about and results for the
practical DSP examples. There are three parts in Table I.
The first part is the information on the graphs, including the
number of actors (|V |), the number of edges (|E|), the sum
of the elements in the repetition vector (nQ), and the sum of
the elements in the memory constraint (MC ); the second part
shows the minimal achievable iteration period (IPxy) of each
graph when auto-concurrency is allowed; the third part shows
the same items for the cases without auto-concurrency. The
improvement of each case (other than abstraction 01) compared
with IP01 is also shown. The executions for the practical DSP
examples are fast, so we do not show their execution times.

TABLE I. EXPERIMENTAL RESULTS FOR PRACTICAL DSP EXAMPLES

Graph Information

name CEer MaxES Mp3 SaRate Satellite

|V | 22 13 4 6 22

|E| 42 13 4 5 26

nQ 42 1288 10601 612 4515

MC 73 1065 1980 32 1542

With Auto-concurrency (IP/imp. compare with IP01)

IP01 47128 9216 352584 1029 576

IP00 47128/0% 8192/11% 117914/67% 392/62% 336/42%

IP11 47128/0% 8192/11% 236160/33% 735/29% 336/42%

IP10 47128/0% 683.7/93% 116424/67% 0/100% 96/83%

Without Auto-concurrency (IP/imp. compare with IP01)

IP01 47128 9216 352584 1088 1320

IP00 47128/0% 8447/8% 120000/66% 960/12% 1056/20%

IP11 47128/0% 8192/11% 236160/33% 960/12% 1056/20%

IP10 47128/0% 8192/11% 120000/66% 960/12% 1056/20%

Most cases finished in several milliseconds; the largest execution time is 30ms.

In the five models, the structure of CEer are the most
complex, many data dependencies existing among its actors;
SaRate is a chain-structured graph. Each IPxy of SaRate has
a bigger improvement than that of CEer, which in fact has
no improvement. The data dependencies in Mp3 and Satellite
are also relatively simple. The results of the practical DSP
examples show that IPxys of models with simpler structures
improve their IP01s more than that of models with complex
structures. Notice that the IP10 for SaRate is zero in case with

TABLE II. THE THROUGHPUT IMPROVEMENT COMPARED WITH IP01

FOR SYNTHETIC EXAMPLES (AVG/MAX)

IP00 IP11 IP10

scsl 0.1%/2.9% 0.1%/4.9% 0.1%/4.9%

sc 11.9%/62.1% 12.3%/61.9% 22.7%/98.6%

chainsl 0.3%/9.8% 0.3%/8.2% 0.3%/9.8%

chain 47.0%/79.2% 46.8%/71.6% 91.8%/100.0%

auto-concurrency. The reason is that cyclic casual dependen-
cies exist in its STE 10 as we explained in Section V-C.

Tables II and III give the improvement and execution times
for the synthetic examples, respectively.

The throughput improvement of different abstractions other
than 01 compared with IP01 is shown in Table II. The
experimental results show that the sizes of graphs, i.e. the
values of |V | and nQ , have not obvious effects on the results,
we distinguish the results in Table II only according to different
structures. Each point includes the average and the maximal
value (AVG/MAX) of 180 cases. The improvement is small
for the case without auto-concurrency (scsl and chainsl). For
the cases that auto-concurrency is allowed, the improvement
of chain-structured graphs (chain) is much better than that of
strongly connected graphs (sc).

Table III shows execution times of IP computation using
method in [6] and that using the proposed methods. For
different abstractions, the execution times have no essential
difference, therefore we only show that of IP00. Each point
includes the average and the maximal value (AVG/MAX) of
30 cases. When the tested graphs scale up, our methods are
generally slower than the method in [6], because we need to
record time stamps of all tokens while the method in [6] need
only to record the numbers of tokens, in the STE. Nevertheless,
the proposed methods are still quite fast. The slowest execution
of all the cases takes only about 10 seconds.

VIII. CONCLUSIONS

In this paper, we have presented a unified framework for
throughput analysis of memory constrained (C)SDFGs based
on difference abstractions that decide when the space of con-
sumed data is released and when the required space is claimed.
The flexible analysis framework is helpful for implementation
according to schedules based on different abstractions.

The proposed technologies can be embedded into other pro-
cedures like throughput-buffering trade-off exploration [6], op-
timal scheduling [8], or analyzing multi-constraint SDFG [30].
They are also possible used to analysis extensions of SDFGs
like scenario-aware data flow graphs [31]. The local buffering
analysis is also important for memory analysis of a system.
It can be complementary to the proposed methods. Further
investigation will be conducted in the future.
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TABLE III. EXECUTION TIME EVALUATION FOR SYNTHETIC
EXAMPLES (AVG/MAX) (MS)

10-15 20-25 50-65
�����|V |

nQ

Strongly Connected Graphs without Auto-concurrency

[6] 11/16 31/49 209/291
1k-1.5k*

IP00 13/33 14/32 16/49

[6] 36/60 127/436 1012/1735
4k-6k

IP00 153/561 252/601 260/1354

Strongly Connected Graphs with Auto-concurrency

[6] 1/3 2/3 7/15
1k-1.5k

IP00 14/32 15/35 19/77

[6] 4/15 5/10 13/57
4k-6k

IP00 162/932 270/683 289/1423

Chain Structured Graphs without Auto-concurrency

[6] 19/145 54/795 615/3748
1k-1.5k

IP00 34/309 67/803 189/971

[6] 38/69 158/825 1842/10246
4k-6k

IP00 159/1089 320/1011 1042/4098

Chain Structured Graphs with Auto-concurrency

[6] 2/5 3/8 29/55
1k-1.5k

IP00 19/62 42/116 98/381

[6] 4/7 7/22 43/146
4k-6k

IP00 146/1049 260/1345 851/3696
* 1k=1000.
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