
Work-in-Progress: Equivalence of Transformations
of Synchronous Data Flow Graphs

Xue-Yang Zhu
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

zxy@ios.ac.cn

Abstract—Synchronous data flow graphs (SDFGs) are widely
used to model digital signal processing (DSP) algorithms and
streaming applications. Any valid SDFG can be converted to an
equivalent homogenous SDFG (HSDFG). Retiming and unfolding
are important graph transformation techniques for performance
optimization of SDFGs. In this paper, we review the relation-
ship among the three transformation techniques and reveal the
equivalence of the combinations of them. The equivalence makes
it possible to analyze and optimize SDFGs directly, without
carrying out the explicit conversion procedures which are usually
time and space-consuming.

I. INTRODUCTION

The synchronous dataflow graphs (SDFGs) [1] are widely
used to represent DSP algorithms and streaming applications,
of which performance is usually important. Each node (also
called actor) in an SDFG represents a computation and each
edge models a FIFO channel. The sample rates of actors of an
SDFG may differ. Homogenous synchronous dataflow graphs
(HSDFGs) are a special type of SDFGs. All sample rates of
actors of an HSDFG are one.

Algorithms modeled with SDFGs are usually nonterminat-
ing and repetitive. Execution of all the computations of an
SDFG for the required number of times is referred to as an
iteration. An iteration of an SDFG may include more than
one execution, or firing, of an actor, because of its multi-rate
nature. An HSDFG includes exactly one firing of an actor in an
iteration. How fast an SDFG could be scheduled is limited by
its iteration period (IP) – the minimal achievable computation
time per iteration of the SDFG.

Retiming [2] and unfolding [3] are important graph trans-
formation techniques for performance optimization of data
flow graphs. Both of them are originally applied to reduce
the IP of HSDFGs. Retiming reduces the IP of a graph
by redistributing its initial tokens. Unfolding optimizes a
graph by scheduling several iterations of the graph. Retiming
explores intra-iteration parallelism, while unfolding explores
inter-iteration parallelism. Combining these two techniques
may further optimize an HSDFG. It seems that first unfolding
then retiming an HSDFG may obtain a finer results than
procedure on the reverse order. Chao et. al [4] show that,
contrary to intuition, the order of retiming and unfolding is
immaterial for the IP. The result makes it possible to retime
an unfolded HSDFG, which needs several times of space of

This work was supported in part by the National Natural Science Founda-
tion of China (Nos. 61572478, 61472406 and 61472474).

the original HSDFG, without explicitly unfolding the HSDFG.
A valid SDFG can always be converted to an equivalent
HSDFG [5] and hence its performance can be analyzed or
optimized with existing techniques for HSDFGs. However,
the conversion procedures are time and space-consuming. Zhu
et.al [6] prove the equivalence of retiming on SDFGs and
on their equivalent HSDFGs. The result makes it possible
to retime an SDFG without explicitly converting it to its
equivalent HSDFGs.

In this paper, we review the relationship among the three
transformations and reveal the equivalence of the combinations
of them. The result makes it possible to retime and unfold an
SDFG without explicitly converting it to its equivalent HSDFG
and without explicitly unfolding the HSDFG.

II. PRELIMINARIES

An SDFG is a finite directed graph G = (V,E). V is the set
of actors, modeling the computations of a system. Actor v is
weighted with its computation time t(v), a nonnegative integer.
E is the set of directed edges, modeling interconnections
between computations. The source actor and sink actor of e are
denoted by src(e) and snk(e), respectively. Edge e is weighted
with three properties, d(e), p(e) and c(e). The delay d(e) is the
number of initial tokens on e, the production rate p(e) is the
number of tokens produced onto e by each firing of src(e), and
the consumption rate c(e) is the number of tokens consumed
from e by each firing of snk(e). The set of incoming edges to
actor v is denoted by InE (v), and the set of outgoing edges
from v by OutE (v). If p(e) = c(e) = 1 for each e ∈ E, G is
a homogenous SDFG (HSDFG).

SDFG G = (V,E) is sample rate consistent [1] if and only
if there exists a positive integer vector q(V ) satisfying balance
equations, q(src(e))× p(e) = q(snk(e))× c(e) for all e ∈ E.
The smallest such q is called the repetition vector. We use q to
represent the repetition vector directly. The repetition vector
of G1 (Fig. 1 (a)) is q = [2, 2, 1], corresponding to actors A,
B and C, for example. An iteration of an SDFG is a firing
sequence in which each actor v occurs exactly q(v) times. The
average computation time per iteration is called the iteration
period (IP).

It is always possible to convert a sample rate consistent
SDFG to an equivalent HSDFG [5], which captures the
dependencies among firings in an iteration of the SDFG. An
equivalent HSDFG of G1, H(G1), is shown in Fig. 1 (b). We
denote the transformation by H-transformation.



A,2 C,2B,1
2

2

A1
C1

B1

A2 B2

G1:

H(G1):

(a)

(b)

A,2 C,2B,1
2

2

Rr(G1):

f=2
r(A)=1, r(B)=2
r'(A1)=r'(B1)=r'(B2)=1
r"(A1

1)=r"(B1
1)=r"(B2

1)=1

(c)

A1
1

C1
2

B1
1

A2
1 B2

1

A1
2

C1
1

B1
2

A2
2 B2

2

UfHRr(G1):

A1
1

C1
1

B1
1

A2
1

B2
1

A1
2

C1
2

B1
2

A2
2

B2
2 A1

1
C1

2

B1
1A2

1

B2
1

A1
2

C1
1

B1
2A2

2

B2
2

Rr''UfH(G1): UfRr'H(G1):

A1
1

C1
1

B1
1

A2
1 B2

1

A1
2

C1
2

B1
2

A2
2 B2

2

UfH(G1):

A1
C1

B1

A2 B2

HRr(G1):
A1

C1
B1

A2 B2

Rr'H(G1):

(d) (e) (f)

(g) (h) (i)

ip

ipip

Production rate

Consumption 
rate

Initial tokens

Computation time

Fig. 1. (a) The SDFG G1; (b)The equivalent HSDFG of G1; (c) A retimed
SDFG of G1; (d) An unfloded graph of HSDFG H(G1); (e) A Rr′H-
transformation of G1; (f) A HRr-transformation of G1; (g) A Rr′′UfH-
transformation of G1; (h) A UfRr′H-transformation of G1; (i) A UfHRr-
transformation of G1. The production/consumption rates are omitted when
they are 1.

Retiming is a graph transformation that redistributes the
graph’s delays while remains the functionality of the new
graph unchanged. Retiming an actor once means firing the
actor once. The firing moves tokens on the incoming edges of
the actor to its outgoing edges. A retimed SDFG of G1 with
retiming function r = [1, 2, 0], which means retiming A once
and retiming B twice, is shown in Fig. 1 (c). We denote the
transformation with retiming function r by Rr-transformation.

A graph unfolded with an unfolding factor f describes f
consecutive iterations of its original graph. Unfolding may
reduce the IP of a graph at the cost of increasing the problem
space by the unfolding factor. The HSDFG H(G1) unfolded
with unfolding factor f = 2 is shown in Fig. 1 (d), in which
nodes like A2

1 denotes the 1st firing of actor A in the 2nd

iteration of SDFG G1. The unfolding of an SDFG is defined
by the unfolding of its equivalent HSDFG. We denote the
transformation with unfolding factor f by Uf -transformation.

The combinations of the transformations are also trans-
formations. For simplicity, we use UfHRr(G) to express
the combinations of the transformations Uf (H(Rr(G))) , for
example.
III. THE EQUIVALENCE OF TRANSFORMATIONS OF SDFGS

All the three transformations of SDFGs preserve their
functionalities [5], [2], [3]. We consider the iteration period
equivalence, denoted by ≡ip , in this paper.
Definition 1. (IP equivalence) Let T1 and T2 be two trans-
formations. If for any SDFG G, the IP of T1(G) equals the
IP of T2(G), then T1 ≡ip T2.

Chao et. al [4] show that the order of retiming and unfolding
is immaterial for the IP of an HSDFG. We restate the result
as the following lemma.
Lemma 1. [4] On HSDFGs, UfRr′ ≡ip Rr′′Uf , where

r′′(vj) =

{
1 + b r

′(v)
f c, if j ≤ r′(v)%f ;

b r
′(v)
f c, otherwise.

Zhu et.al [6] prove the equivalence of retiming on SDFGs
and on their equivalent HSDFGs. We restate the result as the
following lemma.
Lemma 2. [6] Given SDFG G, HRr(G) and Rr′H(G) are
equivalent under isomorphism, where

r′(vi) =

{
1 + b r(v)q(v)c, if i ≤ r(v)%q(v);
b r(v)q(v)c, otherwise.

For example, Rr′H(G1) in Fig. 1 (e) is equivalent to
HRr(G1) in Fig. 1 (f) under the isomorphic function φ :
Rr′H(G1) → HRr(G1) which is defined by φ(A1) = A2,
φ(A2) = A1 and φ(v) = v for other actor v. The conclusion
that HRr ≡ip Rr′H on SDFGs can be drawn directly by
Lemma 2.
Theorem 1. On SDFGs, Rr′′UfH ≡ip UfRr′H ≡ip UfHRr

with r′ and r′′ defined as that in above lemmas.

Proof. (outline) For any SDFG G, H(G) is an HSDFG.
By Lemma 1, for any legal retiming r′ and unfolding fac-
tor f on H(G), the IP of UfRr′(H(G)) equals the IP
of Rr′′Uf (H(G)). Therefore, we have that Rr′′UfH ≡ip

UfRr′H .
For any legal retiming r on G, by Lemma 2, HRr(G)

and Rr′H(G) are equivalent. Suppose the isomorphic function
φ : Rr′H(G)→ HRr(G) is defined by φ(u) = v for each u ∈
Rr′H(G). UfHRr(G) and UfRr′H(G) are equivalent under
the isomorphic function φ′ : UfRr′H(G) → UfHRr(G)
defined by φ′(uj) = vj for each uj ∈ UfRr′H(G) and 1 ≤
j ≤ f . Therefore, we have that UfRr′H ≡ip UfHRr.

Examples of the three combinations of transformations,
Rr′′UfH(G1), UfRr′H(G1) and UfHRr(G1), are shown in
Fig. 1 (g), (h) and (i), respectively.

Let’s see an application of the equivalence. Consider the
problem: given an SDFG and a retiming r and an unfolding
factor f on it, if the SDFG can be retimed and unfolded
to achieve a given IP? Instead of retiming on the unfolded
HSDFG like Fig. 1 (g), according to the equivalence, we
can retiming G directly, with the extension of the IP com-
putation method in [6], which computes the IP of an SDFG
directly without converting it to its HSDFG. The extended
method computes the IP of the unfolded graph directly on
the SDFG with neither explicit H-transformation nor explicit
Uf -transformation. The details are omitted here for the space
limitation.

REFERENCES

[1] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing,” IEEE Trans. on Comput, vol. 36,
no. 1, pp. 24–35, 1987.

[2] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algorithmica,
vol. 6, no. 1, pp. 5–35, 1991.

[3] K. Parhi and D. Messerschmitt, “Static rate-optimal scheduling of iterative
data-flow programs via optimum unfolding,” IEEE Trans. Comput on
Computers, vol. 40, no. 2, pp. 178–195, 1991.

[4] L. Chao and E. Sha, “Scheduling Data-Flow Graphs via Retiming and
Unfolding,” IEEE Transactions on Parallel and Distributed Systems,
vol. 8, no. 12, pp. 1259–1267, 1997.

[5] S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors: scheduling
and synchronization. CRC Press, 2009.

[6] X.-Y. Zhu, T. Basten, M. Geilen, and S. Stuijk, “Efficient retiming of
multirate DSP algorithms,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 6, pp. 831–844, 2012.


