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Abstract—Since the inception of Bitcoin in 2008, blockchain
technology has had a significant impact on many fields. The lack
of effective communication between heterogeneous and isolated
blockchains, however, restricts the promotion and ecological
development of blockchain industry. In this context, cross-chain
technology has rapidly developed and become a new research
hotspot. Due to the decentralized nature of blockchain and
the complexity of cross-chain scenarios, cross-chain technology
faces huge security risks. In this paper, we propose formal
analysis of the IBC protocol, one of the most popular cross-chain
communication protocols, aiming to help developers design and
implement cross-chain technologies more securely. We formalize
three main components of the IBC protocol with TLA+, a
temporal logic specification language, and verify some important
requirements with model checking tool TLC. The verification
results are analyzed comprehensively. Issues found through our
formal analysis have been reported to the community, most of
which have been acknowledged. We also propose some recom-
mendations for removing potential risks.

Index Terms—Cross-chain, IBC, formal analysis, TLA+

I. INTRODUCTION

Blockchain is a decentralized distributed ledger that re-
alizes a secure and credible network through cryptography
technology [1]. Since the groundbreaking paper [2] published
by Satoshi Nakamoto on October 31, 2008, thousands of
blockchains have sprung up, sparking a new wave of informa-
tion technology. Blockchains like Bitcoin [2] and Ethereum
[3] are gaining rapid traction with the market cap reaching
over a trillion dollars [4], attracting a lot of attention from
both industry and academia. Blockchain technology not only
brings revolutionary changes to the economic field, but also
profoundly impacts politics, society, science, and other as-
pects [5]. However, most blockchains adopt different technical
frameworks and design philosophies for different purposes and
applications. For example, Ethereum supports smart contacts
and uses Proof of Stake [6] while Bitcoin is primarily designed
as a cryptocurrency base on Proof of Work [7]. There is a lack
of effective communication methods between heterogeneous
and isolated blockchains [8]. With the rapid development of
the blockchain industry, this diverse and fragmented ecosystem
introduces tremendous and growing demands for the interop-
erability of data and functionality, eventually motivating the
emergence of cross-chain technology.
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As a bridge between different independent blockchains,
cross-chain technology realizes the function of value and infor-
mation exchange. However, most cross-chain solutions mainly
focus on exchanging assets between public blockchains. For
example, Interledger [9] is a payment protocol for sending
value across different blockchains; BTC Relay enables users
to pay with Bitcoin to use Ethereum decentralized applications
[10]. These cross-chain approaches provide convenience and
atomicity guarantees for transacting fungible and non-fungible
assets in different cryptocurrencies. In order to provide users
with higher flexibility and throughput, multi-chain frameworks
have emerged, providing reusable data, network, consensus,
and incentive layers to create interoperable application-specific
blockchains [11]. Multi-chain frameworks require a more
foundational and universal method than assets exchange to
communicate between parallel blockchains. These methods are
called cross-chain communication protocols. Cosmos Network
is one of the most popular multi-chain platforms, where
separated and sovereign chains are connected with Inter-
Blockchain Communication (IBC) [12] protocol. Up to now,
the total IBC market cap is more than $7.57B among 46 IBC-
enabled chains [13].

Although cross-chain technology connects isolated
blockchains and promotes the development of the blockchain
ecosystem, it also weakens the security of the blockchain
system. Indeed, the exploit of Ronin bridge creates the
largest attack in the history of DeFi so far [4]. According to
statistics, assets worth of over a billion dollars were stolen
or locked in blockchain systems last year due to improper
design, implementation, or deployment [14]. Due to bugs in
on-chain contracts, Poly Network [15] lost about $600M, and
Wormhole [16] was stolen more than $300M. These attacks
have caused considerable losses to users and shaken their
confidence in cross-chain technology. However, cross-chain
technology is too complex for developers to comprehensively
and rigorously audit their designs and implementations
manually, especially in an untrusted and uncertain operating
environment like blockchains.

To the best of our knowledge, this paper is the first to use
formal methods to improve the security and reliability of cross-
chain communication protocols. We choose the IBC protocol
as an example to show how helpful the formal analysis can be
in such an uncertain and complex scenario. The IBC protocol
includes the core transport, authentication, ordering (TAO)
layer, and the application (APP) layers describing packet



encoding and processing semantics. At present, our work
mainly concerns the core TAO layer. The contributions of this
paper are summarized as follows.

• Formalization of protocol requirements. We extract and
formally interpret the requirements that the IBC protocol
is expected to satisfy. These formal interpretations can
provide a better understanding to developers and users of
the IBC protocol.

• Formal modeling of the protocol. We model the core
TAO layer of the IBC protocol in TLA+ [17] based
on assumptions that the involved blockchains are secure
and the light clients could correctly verify headers and
proof submitted by the relayers. We focus on the inter-
blockchain security, which is affected by on-chain mod-
ules and off-chain relayers. Our model is detailed enough
for analysis and still amenable to experiments.

• Analysis and recommendations of the protocol. Based on
our model, we analyze the current IBC protocol design
and identify some important issues, such as incomplete
handshake and trapped packets. Issues found through
our analysis have been reported to the community, and
most of them have been acknowledged. We also propose
recommendations against potential risks.

The remainder of this paper is organized as follows. Related
work is reviewed in Section II. We present the architecture and
key components of the IBC protocol in Section III. We carry
out a systematic interpretation of the security assumptions and
requirements of the IBC protocol in Section IV. In Section V,
we explain the basics of TLA+ and our modeling methods. We
present our analysis and recommendations of the IBC protocol
in Section VI. Finally, Section VII concludes.

II. RELATED WORK

A. Cross-Chain and Multi-Chain

Although there have already been some available cross-
chain solutions in the blockchain industry, cross-chain is still
a new topic in academia. Previous research mainly focuses on
organizing and analyzing available cross-chain solutions from
different perspectives. Both Cao et al. [18] and Ou et al. [8]
proposed a classification of existing cross-chain technologies
based on their mechanism. Cao et al. also proposed and tested
an atomic exchange cross-chain protocol, while Ou et al.
further analyzed existing cross-chain projects according to
the technical classification. Robinsom [10] presented cross-
chain communication protocols based on the usage scenar-
ios, including value swapping, cross-chain messaging, and
blockchain pinning. Belchior et al. [11] focused on blockchain
interoperability and discussed the requirements, challenges,
and existing attempts to achieve interoperability in different
blockchain systems. Some studies were also interested in the
design and analysis of different cross-chain atomic exchange
methods. Nehaı̈ [19] formally analyzed cross-chain swap pro-
tocols. And Pillai [20], [21] paid attention to the burn-to-claim
protocol. Herlihy [22] proposed the cross-chain deal as a new
notion for distributed exchanges. At the same time, several

researchers have also begun to pay attention to the security
issues of cross-chain technology. Lee et al. presented the first
systematization of the attacks on cross-chain bridges in recent
years [14]. Zhang et al. documented the classes of attacks in
cross-chain bridges and proposed the Xscope to detect security
bugs for defense [23].

Polkadot [24] and Cosmos [25] are the most widely adopted
multi-chain frameworks. Parachains in Polkadot communicate
through the Cross-chain Message Passing Protocol (XCMP)
[26] while parallel blockchains in Cosmos are connected
utilizing the IBC protocol. Although there are materials such
as documents and whitepapers to introduce their design and
vision, to the best of our knowledge, there is a lack of research
explicitly targeting the security and reliability of cross-chain
communication protocols in multi-chain frameworks.

B. Formal Analysis of Protocol
Formal methods are widely used in network protocol veri-

fication, ranging from high-level abstract models to concrete
implementations. Basin et al. [27] proposed a formal and com-
prehensive 5G AKA protocol analysis using Tamarin. Kobeissi
et al. [28] implemented and analyzed a variant of the popular
Signal Protocol with automated verification tools. Zhang et
al. [29] presented a security analysis of the QUIC handshake
protocol based on ProVerif. There are also studies using formal
methods to analyze other aspects of the network. Prabhu et
al. [30] combined equivalence partitioning with explicit-state
model checking to verify network configuration. TLA+ [17]
is often used to specify distributed and concurrent systems.
In network protocol verification, TLA+ based methods focus
more on functional properties rather than encryption-related
security properties [27]. Yin et al. [31] utilized TLA+ to
study the correctness of an atomic broadcast protocol that
supports additional crash recovery. Akhtar et al. [32] verified
the correctness of the Message Queue Telemetry Transport
protocol using a TLA+ based formal method.

There are a few attempts to apply formal methods to the
blockchain field. Kuaharenko et al. [33] and Braithwaite et
al. [34] are concerned with the consensus mechanism used
in the blockchain. Grundmann and Hartenstein [35] attempted
to specify functionality and security properties for a payment
channel protocol. Overall, research on the application of
formal methods to protocols in the blockchain is limited.

III. IBC PROTOCOL

In this section, we illustrate how cross-chain communication
is achieved in the IBC protocol, closely following the official
standards [36]. To better understand the protocol, we also
refer to some implementations of the IBC protocol in different
programming languages [37], [38]. We first present the general
architecture and afterwards the main components of the IBC
protocol.

A. Architecture
Fig. 1 presents the overall architecture of cross-chain com-

munication between two blockchains through the IBC proto-
col. Light clients, connections, channels, and modules are the



Fig. 1: Architecture of Cross-chain Communication via IBC Protocol

key entities of the blockchain, while relayers are off-chain
processes that can access the source and target chains.

A light client is the lightweight representation of a
blockchain. Instead of storing the entire history of all mes-
sages or executing transactions, light clients are designed
to efficiently verify the existence of a particular message
on the referred blockchain. This concept is not specific to
the IBC protocol but is proposed to fulfill the Simplified
Payment Verification (SPV) in Bitcoin [2]. In brief, the light
client records a sequence of verified block headers of the
referred blockchain. To prove that a message exists on the
blockchain, a user need to generate cryptographic proof about
the message. Then the light client can calculate the root hash
through the hash of this message and the generated proof and
then compare it with the hash value recorded in its block
headers. Cryptographic primitives guarantee that only existing
messages with a correct proof can be used to compute a
matching root hash [39]. In other words, using light clients
allows blockchains to exchange messages without a trusted
third party.

Blockchains do not directly send messages to each other.
Instead, relayers, the untrusted off-chain processes, are respon-
sible for relaying messages between blockchains by scanning
each chain, constructing appropriate datagrams, submitting
transactions, and executing them on the corresponding chain
as required. The IBC protocol abstracts data structures and
handler functions related to cross-chain communication into
two layers: connections and channels. The connection is an
abstraction consisting of two ends on two separate chains, each
associated with a light client representing the opposite chain.
Connections utilize the functionality of light clients to provide
cross-chain state verification to channels. The channel serves
as a conduit for transferring packets between modules on
different chains. Each channel is associated with a particular
connection, while a connection may have many associate
channels. In this way, different channels can share a connection
to amortize the cost of cross-chain validation.

Fig. 2: Layers of Modules

Modules are important components of blockchains in the
Cosmos ecosystem. They implement the business logic of
applications, similar to smart contracts in the Ethereum ecosys-
tem. The module encapsulates the data that needs to be
transmitted into packets and sends them to the module on
another chain through the IBC protocol. The module needs
to bind a port to create a channel to send and receive packets.
In practice, however, relayers do not send datagrams directly
to the module. A secondary routing module exists between
the IBC handler module and other modules (see Fig. 2).
Modules need to call the IBC handler individually to deal
with handshakes and packets, while the routing module is
responsible for receiving external datagrams and managing
modules. When a datagram is received, the routing module
calls the corresponding module according to the lookup table,
simplifying the work of relayers.

The IBC protocol includes a series of standards. The most
important ones are the standards for connections, channels, and
packets, which define the data structures and handler functions
related to cross-chain communication. Therefore, we further
explain these three standards. For better understanding, we
simplify the code shown in following sections.

B. Connection Standard

The standard of connections describes how to complete
the handshake and version negotiation between two con-



nection ends on two chains. The connection end is a data
structure that stores the connection state and information.
There are four datagrams involved in connection hand-
shake: ConnOpenInit, ConnOpenTry, ConnOpenAck,
and ConnOpenConfirm, each of which corresponds to a
handler function that is executed when the associated datagram
is submitted in a transaction. For connection handshake, the
processes of datagrams are simply encapsulations of handler
functions.

Fig. 3: Connection Handshake

The connection handshake consists of four steps (see Fig. 3).
In the following, we focus on the initialization and transitions
of connection ends during the handshake (for example, chain
A wants to establish a connection with chain B).

1) OpenInit. An actor (e.g. an end user) on chain A calls the
handler function handleConnOpenInit to initialize
a connection attempt on chain A, which creates an INIT
connection end with a unique identifier (e.g. conn-a).
The connection end does not know its counterparty at
this point.

2) OpenTry. When an INIT connection end is observed
on chain A, the relayer relays the connection attempt
to chain B by sending ConnOpenTry datagram along
with the proof of chain A state. If the state of chain A
is successfully verified by its client, Chain B creates a
TRYOPEN connection end with a unique identifier (e.g.
conn-b) and specify conn-a as its counterparty.

3) OpenAck. The relayer relays the acceptance of a con-
nection attempt and proof of chain state from chain B
back to chain A. In this step, connection end conn-a
updates its state to OPEN and specify conn-b as its
counterparty connection end.

4) OpenConfirm. The relayer sends the corresponding data-
gram and proof to chain B to confirm the establishment
of the connection, after which both connection ends are
in state OPEN.

Except that step OpenInit can actively initiate a connec-
tion handshake attempt, both chains can only proceed to the

next step after receiving the corresponding datagram relayed
by off-chain relayers and verifying that the counterparty chain
is in the correct state. In addition, connections once opened
cannot be closed, and identifiers cannot be reallocated.

C. Channel Standard

Similar to the connection, a channel is an abstraction of
two channel ends. And the channel is established between
ports, which are exclusively owned by modules. Therefore,
the process of channel handshake datagrams consists of the
handler module’s handler function and the corresponding
module’s callback function.

There are three types of channels:
• Unordered. For unordered channels, packets can be deliv-

ered in arbitrary order, which may differ from the order
in which they were sent.

• Ordered. For ordered channels, packets must be delivered
in the order they were sent. If a packet in the sequence
times out, the channel is closed, and all subsequent
packets are not be received.

• Ordered allow timeout. This channel is a less strict ver-
sion of the ordered channel. If a packet times out, the
channel is not closed and the remaining packets continue
to be processed in order.

Channel opening handshake is very similar to con-
nection handshake, which also defines four datagrams:
ChanOpenInit, ChanOpenTry, ChanOpenAck, and
ChanOpenConfirm and requires four steps: OpenInit,
OpenTry, OpenAck, and OpenConfirm. Therefore, we do
not elaborate on its details.

The major difference is that the channel is allowed to be
closed. And the channel cannot be reopened once closed.
Channel closing handshake involves two steps:

1) CloseInit. As long as the channel end is initialized
and not closed, the module that owns the channel can
actively send a datagram ChanCloseInit to close it.

2) CloseConfirm. When a channel end is observed to
be closed, the relayer notifies the counterparty mod-
ule to close the channel by submitting a datagram
ChanCloseConfirm.

D. Packet Standard

Packets encapsulate application data and are transmitted
through channels. The following steps explain the life cycle
for a packet sent from module 1 on blockchain A to module
2 on blockchain B.

1) Light clients and ports setup. The associated light clients
are created on both chains, and each module is bound
to a port.

2) Establishment of a connection and a channel, optimistic
sending.

a) Connection handshake from chain A to chain B is
initialized by module 1.

b) Channel opening handshake from module 1 to
module 2 is initialized associated with the connec-
tion end newly created.



c) Packet can be optimistically sent using the initial
channel end.

3) Completion of the handshake. Connection handshake
and channel opening handshake are successfully com-
pleted in order.

4) Packet reception. Module 2 receives the packet based on
the channel order type and whether it has timed out.

5) Acknowledgement and timeout. If an acknowledgment
relayed from module 2 is received, module 1 can execute
the acknowledgment process. The timeout process can
be executed if the sent packet has exceeded the specified
height or timestamp or the counterparty channel has
been closed.

Fig. 4 and Fig. 5 further demonstrate the state transitions
of chain A and chain B starting from sending packets.

State 1 is the initial state of chain A before send-
ing a packet. The variable commitments is used to
store the commitment of the sent packet, while variable
nextSequenceSend and variable nextsSequenceAck
respectively record the sequence numbers of the next sent
and acknowledged packets. Module 1 can call function
sendPacket to send a packet, which adds the correspond-
ing commitment to variable commitments and increases
variable nextSequenceSend by 1 (see State 2). For un-
ordered channels, calling function acknowledgePacket
or timeoutPacket only deletes the corresponding com-
mitment (see State 3). For the other two kinds of channels,
acknowledgePacket deletes the corresponding commit-
ment and increase variable nextsSequenceAck (see State
4), while timeoutPacket results in different states (see
State 4 and State 5). When encountering a timeout, the
ordered channel is directly closed while the other one only
skips the packet. When the packet is not receivable due to
module 2 closing the channel, module 1 can call function
timeoutOnClose to delete the corresponding commitment
and the channel state may have already been closed because
of the closing handshake.

State 7 is the initial state of chain B. Variable receipts
stores the receipts for the received packets, while variable
acks stores the acknowledgments that will be sent to chain
A for processing, and variable nextSequenceRecv records
the sequence number of the next received packet. Depending
on the channel type and timeout situation, calling function
recvPacket results in different state transitions (see State 8,
10, 11). Only after successfully receiving the packet function
writeAcknowledgement can be called to generate an
acknowledgment (see State 9, 12).

IV. SECURITY ASSUMPTIONS AND REQUIREMENTS

A. Security Assumptions

Our analysis is based on the following security assumptions
for participants and entities of the IBC protocol.

1) Assumptions on blockchains: The IBC protocol provides
a mechanism for independent blockchains to communicate
with each other, which is responsible for ensuring interchain

reliability and is indifferent to Byzantine errors within the
blockchain, such as failure of the consensus mechanism. In ad-
dition, the IBC protocol applies to heterogeneous blockchains
of different consensus mechanisms, including probabilistic-
finality consensus algorithms. Thus, we assume that the in-
volved blockchains are secure.

2) Assumptions on light clients: Similar to SPV used in
Bitcoin [10], the light client used in the IBC protocol can
combine a block header and a cryptographic proof to verify
the inclusion or non-inclusion of particular values at particular
paths in the blockchain state. Cryptographic primitives guar-
antee that incorrect values cannot be used to get a correct root
hash to match one of the block headers. In order to record
a list of correct block headers for the associated chain, the
light client needs to validate whether the target chain has
confirmed the block headers submitted by relayers. Validity
prediction reflects the behavior of the associated blockchain
and its consensus. Considering the above, we assume that the
light client can correctly verify the block header and proof
submitted by the relayer.

In our analysis of the IBC protocol, we mainly focus on
the security issues brought by off-chain relayers and on-chain
modules in handshake and packet transmission. We aim to
explore the behavior of modules and relayers as much as
possible to analyze the security risks that users may face
thoroughly.

B. Requirements

We extract and interpret the requirements that the IBC
protocol should meet from official standards.

• Connection Properties. Connection handshake indicates
mutual negotiation and preparation for subsequent chan-
nel handshake and packet delivery.

– Only the appropriate handshake actions can be ex-
ecuted in order. To complete the connection hand-
shake correctly, the handshake must strictly follow
the order of OpenInit, OpenTry, OpenAck, and
OpenConfirm. The local connection end can step
forward only if the counterparty connection end is
verified in the correct state.

– Initiated handshake negotiations will eventually be
completed. Participants bear the costs of on-chain
transactions and off-chain relays. The connection end
that has not completed the handshake will freeze in
the current state, which not only wastes occupied
resources but also interferes with the normal use
of users. Thus, each initiated connection attempt
is supposed to be established with the negotiated
version.

– The created connection ends on both chains eventu-
ally contain the consistent states. If the connection is
eventually established, both connection ends should
have matching states, such as counterparty connec-
tion identifier, counterparty client identifier, version,
etc.



Fig. 4: State Transition of Blockchain A Fig. 5: State Transition of Blockchain B

• Channel Properties. Channels have a handshake process
similar to Connections, but channels are allowed to close
while connections are not.

– Only the appropriate handshake actions can be
executed in order. Opening handshake must follow
the order of OpenInit, OpenTry, OpenAck,
and OpenConfirm. However, as long as the cur-
rent channel is not closed, either party can initiate
a closing handshake, which follows the order of
CloseInit, CloseConfirm.

– If no one initiates a closing handshake, the opening
handshake will eventually be completed. Otherwise,
the closing handshake will ultimately be completed.
If no one closes the channel, both channel ends
should end up in the OPEN state. Otherwise, they
should be ClOSED state.

– The created channel ends on both chains eventually
contain the consistent states. Both channel ends
should have a consistent state, such as counterparty
channel identifier, counterparty port identifier, ver-
sion, etc., regardless of whether they have completed
the opening or closing handshake.

• Packet Properties. Packet processing is the foundation
of the upper-layer application logic. Therefore, packet
transmission requires a correct result to ensure the proper
operation of the upper-layer application.

– Only the appropriate actions for packets can be
executed in order. Only packets that have been sent
can be received or time out. And only received
packets can be acknowledged.

– For ordered and ordered allow timeout channels,
the packet sent first will be received first. Except for
unordered channels, packets should be processed in
the order they were sent.

– A packet cannot be received or time out simulta-
neously. Only packets that have not timed out can
be received, and only unreceived packets can be

declared timeout to indicate that the packet is no
longer valid.

– For every packet sent, it either ends up being re-
ceived or eventually times out. Each packet sent
should have a definite and unique result so that it
can be processed correctly at the application layer.

V. FORMAL MODEL

In this section, we describe how to model the IBC protocol
with TLA+. The complete code has been made public [40].

A. TLA+ and TLC

TLA+ is a high-level specification language that is based
on linear temporal logic. TLA+ is usually used to model
distributed and concurrent systems. In TLA+, the system is
represented as a state machine, and the execution of the system
is equivalent to a series of states, which is called a behavior.
The transitions between states are represented by actions over
unprimed variables (old state) and primed variables (new
state). There are special actions called stutter actions, where
all variables retain the previous values. There is no formal
distinction between a state machine and a property in TLA+,
both described by temporal logic formulas. Temporal operators
mainly include two types: □ and ♢, and the former means that
a formula is true in all states, while the latter means that a
formula is true in at least one state.

The system specification is usually in the form of
Init/\□ [Next ] vars/\Fairness. The predicate Init repre-
sents all possible initial states of the system, while Next
defines a disjunction of all possible system actions. And vars
represents the tuple of all variables in the system. The formula
□ [Next ] vars indicates that either the system will execute
according to the transitions specified by Next , or the previous
state will remain unchanged. Usually, we need to constrain
Fairness to avoid the system being stuck in an infinite stutter
state or some actions never being executed.
TLA+ and its tools are usually used to eliminate design-

level errors that are difficult to detect or correct at the code



level. TLC is a common explicit-state model checker for
TLA+ that can check safety and liveness properties. In this
paper, We use the VS Code extension of TLC [41].

B. Modeling Choices

Since explicit-state model checking is very time-consuming,
we make some modeling choices to make the model detailed
enough for analysis and amenable to experiments.

1) Abstraction of blockchains and light clients: Assuming
the involved blockchains are secure, we do not delve into the
implementation details of the blockchain. The blockchain in
our model is just a host state machine that stores IBC protocol
related data structures following standards. The implementa-
tion details of light clients and proof exceed the scope of IBC
protocol standards. The role of the light clients is to ensure that
the datagram submitted by relayers cannot be forged. In the
model, we ensure that the relayer cannot forge non-existent
messages by requiring the relayer to correctly describe the
state of the counterparty chain.

2) Modeling layers of connections, channels, and packets:
As we mentioned in Section III-A, we mainly focus on connec-
tions, channels, and packets. They have independent behaviors
but are related. Connections are the most fundamental part of
the three, providing state verification assistance for channels.
Therefore, connections must be established before channels
can be established. A connection remains in the same state
once established, while a channel can be closed anytime after
its establishment. Channels are the conduit for packet trans-
mission. The result of sent packets depends on the states of
the channel. Specifically, the module can optimistically initiate
a channel opening handshake when the associated connection
end has been created while the connection handshake has not
yet been completed. However, all subsequent steps of channel
handshake require that the associated connection end state
is already OPEN. Therefore, the channel opening handshake
can only be completed after the connection handshake is
completed. Similarly, after the channel end is created, the
module can optimistically send packets. However, receiving,
acknowledging, and timing out packets all require that the
associated channel end state is OPEN. Besides, modules can
also declare packets sent timeout based on the state of the
counterparty channel end being CLOSE. In summary, we
model the IBC protocol from two perspectives: connections,
channels&packets. We mainly focus on whether the connec-
tion handshake can always be successfully completed, and
whether the packets sent can always have a definite and correct
outcome regardless of the state of the channel.

3) Encapsulation of datagrams submission and execution of
handler and callback functions: When a datagram is submitted
to the routing module in a transaction, the associated handler
function will be executed, including the corresponding mod-
ule’s callback function (if any). As mentioned, model checking
is a state traversal method that is very time-consuming. It is
too expensive and unnecessary to fully model the datagram
submission (in a message queue form), the handler function
execution, and the callback function execution. In order to

simplify modeling and evaluation, we encapsulate the three
parts into an action in TLA+, which executes the whole
corresponding handler function if the input parameters are
correct, otherwise it does not change any variables.

4) Simulation of packet timeout: Modules determine
whether the packet can be executed by comparing the current
height of the destination chain with the specified timeout
height in the packet. Due to the abstraction of the blockchain
structure, we cannot directly model the packet timeout mech-
anism through this approach. However, we aim to verify
whether the protocol can operate correctly in any scenario.
So we can use a data structure to record whether each packet
sent is determined to time out. The value of this data structure
will be specified during model initialization and includes all
possible scenarios. At the same time, in order to ensure that
all packets will eventually time out, the values of packets
in this data structure may be modified as timeout every
time the model advances. Fig. 6 shows the code of this
data structure, where [Seqs -> BOOLEAN]means a set of
functions that map from the set Seqs to BOOLEAN, and
PacketIsTimeouts is a set of structures.

PacketIsTimeouts ==
[

chainA: [Seqs -> BOOLEAN ],
chainB: [Seqs -> BOOLEAN ]

]

Init ==
/\ packetIsTimeOut \in PacketIsTimeouts

Fig. 6: Code of Variable packetIsTimeOut in TLA+

C. TLA+ model of IBC Protocol

In TLA+, systems are modeled in a modular structure.
For the IBC protocol, we mainly model it into two parts:
chain and environment. The chain represents the blockchain,
mainly including the data structures and handler functions
related to connections, channels and packets. The environment
represents an abstraction of possible behaviors of modules and
relayers.

In the part of chain, we model the IBC protocol related data
structures in a manner suitable for TLA+. For example, we use
arrays to store the connection and channel ends and use array
indexes as identifiers, rather than searching for strings and stor-
age paths in protocol standards. We convert the pseudo code in
the standard into TLA+ expressions based on semantics, and
simplify variables and statements related to the implementation
of blockchains, such as block heights, storage paths, etc. Fig.
7 shows the simplified code for the function sendPacket,
and Fig. 8 shows the corresponding TLA+ code. Since the
statements in TLA+ are not executed sequentially, we adjust
the order of the conditional statements and other statements
and define the required temporary variables in advance through
the LET expression to enable the handler function in TLA+

to execute all corresponding operations when the condition is
met. At the same time, we add a condition seq <= MaxSeq
to limit the verification scale and use an auxiliary variable
packetLog to facilitate property description in TLA+ code.



The environment needs to provide proof of the state of
the counterparty chain when calling handler functions. In
the modeling of connections, proof includes the state of the
counterparty connection end. In the modeling of channels
and packets, the proof contains the state of the counterparty
channel end and data structures related to packet sending,
receiving, and acknowledgment.

Our modeling simplifies the data structure and handler
functions while preserving the semantics and behavior of the
protocol, which is easier to verify by model checking tools.

function sendPacket(
sourcePort,
sourceChannelr,
timeoutHeight,
data):{
channel = getChannel(sourcePort, sourceChannel)
require(channel != null)
require(channel.state != CLOSED)

connection = getConnection(channel.connection)
require(connection != null)

require(timeoutHeight != 0)
client = getClient(connection.clientIdentifier)
latestClientHeight = client.latestClientHeight()
require(latestClientHeight < timeoutHeight)

sequence = getNextSequenceSend(sourcePort,
sourceChannel)↪→

setNextSequenceSend(sourcePort, sourceChannel,
sequence+1)↪→

setPacketCommitment(sourcePort, sourceChannel, sequence,
hash(hash(data), timeoutHeight))↪→

}

Fig. 7: Code of Function sendPacket

HandleSendPacket(sourcePort, sourceChannel) ==
LET

channel == getChannelEnd(sourcePort, sourceChannel)
connection == getConnection(channel.connectionID)
seq == getNextSeqSend(sourcePort, sourceChannel)
log == LogEntry(sourcePort, sourceChannel, seq,

"send")↪→
commit == Commit(sourcePort, sourceChannel, seq)

IN
/\ seq <= MaxSeq
/\ channel /= nullChannelEnd
/\ channel.state /= "CLOSED"
/\ connection /= nullConnectionEnd
/\ chainStore' = [chainStore EXCEPT

!.nextSequenceSend =
[chainStore.nextSequenceSend

EXCEPT ![sourceChannel] =
seq+1],↪→

!.commitments =
[chainStore.commitments

EXCEPT ![sourceChannel] = @
\union {commit}]]↪→

/\ packetLog' = Append(packetLog, log)

Fig. 8: Code of Function sendPacket in TLA+

D. Formalizing Requirements in TLA+

In TLA+, the properties are described by temporal logic
formulas. There is a special temporal property called action
property, which is the constraint on system actions. Action
properties are usually expressed in the form of □[P (x′, x)] x,
which means that either the value of variable x remains
unchanged or P (x′, x) is true, where P (x′, x) describes the
relationship between the new and old values of variable x.

We use TLA+ to formalize the requirements listed in
Section IV-B. A requirement may be expressed in multiple
formulas. For example, the requirement Only the appropriate
handshake actions can be executed in order involves multiple
constraints, such as the state cannot be rolled back, and the
OPEN state can only be transited from INIT and TRYOPEN.
Formula 1 and Formula 2 are two of its formulas.

SafaConnInit ==

∀ chainID ∈ ChainIDs, clientID ∈ ClientIDs,

connectionID ∈ ConnectionIDs :

LET connectionEnd ==

queryConnection(chainID, clientID, connectionID) IN

□ (connectionEnd ̸= nullConnectionEnd

∧ connectionEnd.state = INIT

→ ¬ (♢ (connectionEnd.state = UNINIT)))
(1)

SafeConnOpen ==

□ [ ∀ chainID ∈ ChainIDs, clientID ∈ ClientIDs,

connectionID ∈ ConnectionIDs :

LET connectionEnd ==

queryConnection(chainID, clientID, connectionID) IN

∨ connectionEnd
′
.state = connectionEnd.state

∨ connectionEnd
′
.state = OPEN

→ (connectionEnd.state = INIT

∨ connectionEnd.state = TRYOPEN)] vars
(2)

Formula 1 is a regular temporal property composed of
two operators, which means that the connection end can-
not return to an uninitialized state from the INIT state.
chainID, clientID, and connectionID represent the
identities of the connection end, light client, and chain. LET
operation is similar to redefinition in programming languages
and queryConnection is an auxiliary function to access
variables. Formula 2 is an action property that indicates if
the current connection state is OPEN and is different from the
previous state, the previous state can be inferred as INIT or
TRYOPEN. For the complete formulas of the requirements, the
reader may refer to our code [40].

VI. EVALUATION AND ANALYSIS

A. Results

TABLE I: Verification Results of Requirements

No Category Requirement Result

1 Connection Only the appropriate handshake actions can be executed in
order.

✓

2 Connection Initiated handshake negotiations will eventually be completed. ×
3 Connection The created connection ends on both chains eventually contain

the consistent states.
✓

4 Channel Only the appropriate handshake actions can be executed in
order.

✓

5 Channel If no one initiates a closing handshake, the opening handshake
will eventually be completed. Otherwise, the closing handshake
will ultimately be completed.

×

6 Channel The created channel ends on both chains eventually contain the
consistent states.

✓

7 Packet Only the appropriate actions for packets can be executed in
order.

✓

8 Packet For ordered and ordered allow timeout channels, the packet
sent first will be received first.

✓

9 Packet A packet cannot be received or time out simultaneously. ✓
10 Packet For every packet sent, it either ends up being received or

eventually times out.
×



We use the model checking tool TLC to verify our models
and requirements. TLC will stop the state search when a
counterexample is discovered. In this case, we can explore
more violations of the requirements by modifying the expres-
sion formula of the violated requirement and trying to fix
the cause of the problem. Up to now, we only check for the
communication between two chains, which has well expressed
the properties that the IBC protocol should meet and can also
easily be extended to more chains. The numbers of connection
ends, channel ends, and packets on each chain are configurable
parameters in our model.

We depict the verification results of requirements in Table I.
The symbol × denotes that this requirement is violated and the
model checking tool gives a counterexample, while the symbol
✓ means that the correctness of the property is proved by the
model checker. As shown, the initialized connection and chan-
nel opening handshake may not be completed successfully. In
some cases, the sent packet may be neither acknowledged nor
time out.

B. Discussions and Recommendations

In this subsection, we explain the reasons and provide
detailed fix recommendations for violated requirements.

1) Incomplete handshakes: The initialized connection
handshake and channel opening handshake are supposed to
be completed. However, the violations of Requirements 2 and
5 indicate that the handshakes may not be completed due to
the lack of assignable identifiers or mismatched ends.

Taking the connection as an example, the creation of a
connection end requires the allocation of a unique identity,
whether in the OpenInit or OpenTry step. It is easy to
imagine that we can only create a limited number of connec-
tion ends because identity numbers are limited. Thus, only a
limited number of connection handshakes can be successfully
completed. However, the situation worsens because connection
ends need to be created in both OpenInit and OpenTry
steps. If the identities are already used up in the OpenInit
step, the chain cannot perform OpenTry, and no connection
handshake can be completed. For example, there are chains
A and B, each of which can allocate two identities. If chains
A and B both perform OpenInit twice, there are now two
connection ends in the INIT state on each chain. However,
at this point neither chain can perform OpenTry to create a
TRYOPEN state connection end pairing with the other chain.
All connection endpoints will be frozen in the INIT state
forever, and no one can take a step forward.

The above issue is because the creation of the connection
end is always assigned a new identifier, and the number of
assignable identifiers is limited. However, there may be enough
identities to avoid situations where identities are exhausted,
and the handshake cannot be completed. Therefore, we need
to have the model detection tool explores more states to find
more harmful counterexamples.

Since creating a connection end in the OpenInit and
OpenTry steps is necessary to complete the handshake, we
have refined Requirement 2 to verify whether the handshake

can be completed if the TRYOPEN connection end has been
established. However, the answer is no. The OpenTry step
only verifies that the counterparty end is indeed in the INIT
state and does not check whether a TRYOPEN state end has
been created and paired with it. Thus, repeating the OpenTry
step (due to concurrent competition or repeated delivery by
relayers) creates multiple ends in the TRYOPEN state, but
only one of them will match the INIT counterparty end in
the OpenAck step to complete the handshake. The remaining
ends will freeze in the TRYOPEN state and no subsequent
operations can be performed.

To determine the sufficient conditions for the completion
of the connection handshake, we further refine Requirement 2
and successfully verify that if the TRYOPEN state connection
end has been created and paired with an INIT state connection
end, the connection handshake can be completed.

Recommendations. If both chains initiate a connection hand-
shake and create a connection end in the INIT state, one of
the chains should execute the OpenAck phase to complete the
handshake, avoiding creating two new connection ends in the
TRYOPEN state to complete the two connection handshakes.
The problem of repeatedly creating TRYOPEN state connec-
tions can be solved by introducing a closure mechanism or
labeling these problematic ends to alert users.

We have reported these two issues to the developers and
provided repair suggestions [42]. We found that the second
issue has already occurred in the actual use of the IBC
protocol: only one of the two TRYOPEN state channel ends
has paired with the INIT state channel end to complete the
handshake. A user used the channel end that failed to complete
the handshake to send a packet, resulting in the transaction
being unable to complete or falling back [43]. In the end, the
user withdrew the transaction through other means, while the
developer only reminded the user but did not take measures
to solve the problem completely.

2) Incorrect design of special channels: The
ordered_allow_timeout channel is a less strict
ordered channel that provides users with a more flexible
transmission mechanism. However, developers do not design
such channels correctly, which may trap packets and prevent
them from being received or declared timeout.

Firstly, the existing description of timeout conditions for
such channels is incorrect. When receiving packets, regardless
of whether they time out, the value of nextSequenceRecv
will increase by 1. Therefore, the correct timeout condition
should be as shown in Fig. 9. But the current condition used
in function timeoutPacket and timeoutOnClose is as
shown in Fig. 10, preventing packets from correctly timing
out.

Secondly, developers overlook function timeoutPacket
also needs to be operated on in order. For ordered channels,
the reception (function recvPacket) and acknowledgment
(function acknowledgePacket) of packets are required
to be ordered, which is guaranteed through the variables
nextSequenceRecv and nextSequenceAck. However,
the developer did not consider that the timeoutPacket



function modifies the variable nextSequenceAck for
ordered_allow_timeout channels, meaning it also
needs to be ordered. The following steps show a situation
that causes a packet to be neither acknowledged nor declared
timeout:

1) Module A sent two packets with sequence numbers 1
and 2, and the current value of nextSequenceAck is
1.

2) Module B received the first packet successfully.
3) The second packet timed out, and module A called

function timeoutPacket for it, which caused the
value of nextSequenceAck equals 2.

Now Module A cannot acknowledge the first packet because
function acknowledgePacket requires packet sequence
equals nextSequenceAck.

(nextSequenceRecv <= packet.sequence ) ||
(verifyPacketReceipt(packet.sequence, TIMEOUT_RECEIPT)

== True)

Fig. 9: Correct Timeout Condition

(nextSequenceRecv == packet.sequence ) &&
(verifyPacketReceipt(packet.sequence, TIMEOUT_RECEIPT)

== True)

Fig. 10: Wrong Timeout Condition

Recommendations. The solution is that for ordered chan-
nels, packets should be received, acknowledged, and declared
timeout in the order they are sent.

We have reported these two issues to the developers, the
former has been confirmed [44], and the latter has not yet re-
sponded [45]. We have also proposed the correct modifications
and are waiting for more inspections.

3) Inappropriate handling of abnormal channel states:
The standards allow users to optimistically send packets on
initialized channels and expect the channel to open eventually.
However, the channel may not open or even abnormally close
due to the issues mentioned earlier or incorrect call to function
chanCloseInit, resulting in packets being trapped.

Suppose a module successively calls function
chanOpenInit, sendPacket, and chanCloseInit.
In that case, there will be an in-flight packet and a closed
channel. The module cannot call timeoutOnClose since
there is no counterparty assigned to this channel end yet.

Another scenario where abnormal channel close leads to
errors is as follows:

1) The channel ends were open in both chains.
2) Module A sent a packet to Module B.
3) Module B received the packet successfully.
4) Module B closed its channel end.
Now Module A has two datagrams on the way and two func-

tions acknowledgePacket and chanCloseConfirm to
call. If chanCloseConfirm is called first due to the con-
currency between relayers or incorrect behavior of the relayer
(the relayer is not trusted), acknowledgePacket cannot
be called because the channel is closed.

The above issues are due to the developer not fully consid-
ering the possible situations during the packet transmission.
For example, due to the existence of optimistic sending,
the channel end may be in the following states after the
packet is sent: created without counterparty, handshaking, and
completed. The developer overlooked the first scenario in
packet processing.

Recommendations. To address the first issue, the func-
tion timeoutOnClose can be modified to allow declare
packets timeout due to the closure of either the self or
counterparty channel ends. Another issue can be solved by
checking whether there are any packets that have not been
acknowledged before or during the execution of the functions
chanCloseInit and chanCloseConfirm.

We also reported both issues to the developers. For the
former question, the developer agrees that this problem exists
at the protocol design level, while for the latter, there is no
reply yet [45].

4) Others: In addition to serious issues violating the re-
quirements, we also discovered some other issues in the
standards, and all the issues had been confirmed by the
developers [46]–[48]. Our findings include inconsistencies
between documents [46], [47] and code redundancy [48]. We
also verified these issues through model checking.

Recommendations. Formal analysis can help developers
examine documentation and codes more rigorously and com-
pletely.

VII. CONCLUSION

We have formally analyzed one of the most popular cross-
chain communication protocols, the IBC protocol, which sup-
ports a prosperous multi-chain ecosystem. Our work includes
a detailed analysis of the standards to identify critical re-
quirements, a formal modeling of the protocol with security
assumptions, the evaluation using model checking, and a
detailed discussion and recommendations of our findings.

While analyzing the standards, we discovered some critical
issues that may cause loss to users, especially regarding packet
acknowledgement and timeout. Our analysis based on TLA+

also demonstrates the effectiveness of formal methods for
complex scenarios such as cross-chain protocols. In addition,
our assumptions and choices in the analysis and modeling
process can also provide some reference for future research.

In future work, we will extend our research to the applica-
tion level of the IBC protocol and promote the development
of the Cosmos community. We will also study other cross-
chain protocols and use our work as a basis for improving
cross-chain protocol design.
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