
A Smart Contract Development Framework for Maritime Transportation Systems

Xufeng Zhao1,2, Qiuyang Wei1,3, Xue-Yang Zhu1,2 and Wenhui Zhang1
1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

2University of the Chinese Academy of Sciences, Beijing, China
3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China

{zhaoxf, weiqy, zxy, zwh}@ios.ac.cn

Abstract—A smart contract is a computerized protocol running
on the blockchain, which provides a reliable environment
for transactions among trustless participants. The business of
maritime transportation is usually with multifarious partic-
ipants and burdensome paperwork. Blockchain-based smart
contract systems are promising to improve the efficiency and
transparency of the transactions. However, due to the gap
between domain experts and programmers, and the diversity
of maritime business scenarios, it is challenging to efficiently
develop reliable smart contracts for this domain. In this paper,
we propose MariSmart, a novel development framework for
maritime transportation smart contracts, which consists of a
business logic model and a set of Solidity templates. The
templates are designed based on the business logic model
extracted from the domain knowledge. We carry out case
studies on three real-world maritime transportation systems
to show the feasibility and effectiveness of the framework.

Keywords–Smart Contract; Maritime Transportation; Supply
Chain; Blockchain.

1. INTRODUCTION

A smart contract was defined as ‘a computerized transaction
protocol that executes the terms of a contract’ by Nick
Szabo [1] in 1994. The concept of smart contract has gained
much attention since the emergence of blockchain technology.
Blockchain platforms, such as Ethereum [2], provide a re-
liable environment for smart contract execution. Due to the
decentralized, tamper-proof, and indisputable nature of the
blockchain, smart contracts can perform reliable transactions
among trustless participants. Blockchain and smart contract
technologies have gained interest from various fields, such as
finance [3][4], healthcare [5][6][7], supply chain [8][9] and
transportation [10][11][12].
Businesses of the maritime transportation are usually interna-
tional. There are multiple stakeholders participating in trans-
actions, who do not necessarily trust each other. Also, there is
much time-consuming paperwork in this domain. For example,
a flower export consignment from Kenya to the Netherlands
contains more than 200 bilateral communications among 20
organizations, and it usually takes about 10 days to finish
the paperwork [13]. It’s well acknowledged that blockchain-
based smart contract systems can improve the efficiency and
transparency of transportation, build trust among stakeholders
and expand cooperation [13] [14] [15].

To efficiently develop blockchain-based smart contract systems
for maritime transportation, the first challenge is how to
increase code reusage. Due to the lack of consensus between
domain experts and programmers, developing smart contracts
from scratch is rather demanding and inefficient. For example,
maritime transportation smart contracts proposed in [11] [12]
[16] are for a similar goal, yet their implementations vary from
each other, and therefore can merely be reused. We address
this challenge by proposing a set of smart contract templates
for the maritime transportation domain, which can be inherited
by particular smart contracts so that developers only have to
implement incremental functionality.
Another challenge that rises with template-based development
is that the framework has to be compatible with different
business scenarios. Since the stakeholders, workflow of mar-
itime transportation vary in different scenarios, and there is
a lack of a universal business model in the maritime sector,
it’s challenging to design extendable templates for multiple
possible uses. We address this challenge by proposing a
business logic model to guide the design of templates.
In this paper, we propose MariSmart, a development frame-
work for smart contracts that monitor and manage maritime
transportation business. The framework is shown in Figure
1. Users can customize the MariSmart templates to generate
specific MariSmart contracts. In future work, the customized
MariSmart contracts will be verified with requirements ex-
tracted from domain knowledge. The source codes are publicly
available for academic purposes at [17].
Our main contributions are summarized as follows:

• We extract the business logic model of maritime transporta-
tion from its domain knowledge.

• Based on the business logic model, we design the extendable
MariSmart templates for accelerating the development of
maritime transportation smart contracts.

• We carry out case studies on three real-world maritime
transportation systems to show the feasibility and effective-
ness of the MariSmart framework.

To our knowledge, we are the first to propose smart contracts
from real-world trading agreements, which proves the feasi-
bility of our framework for practical application.
The remainder of this paper is organized as follows. Section 2
introduces Ethereum and maritime transportation. We present
the main work of our method in Sections 3 and 4. Section 5
presents case studies. Related work is reviewed in Section 7.
Section 8 concludes and discusses future work.



Figure 1. Overview of the MariSmart framework, the dash lined part will be proposed in future work

2. PRELIMINARIES

2.1. Smart Contracts

Ethereum [2] is a blockchain, where the data and states are
agreed upon by all participants. The states of the blockchain
can be updated by transactions, which are initiated by
Externally-Owned Accounts (EOA). For complex interactions
between EOA, Ethereum introduces smart contracts, which
are codes that execute automatically under specific conditions.
Both EOA and contract accounts can receive, hold, and send
Ethers, and interact with deployed smart contracts.
Solidity is one of the most popular smart contract languages
in Ethereum, which can be compiled and executed on the
Ethereum Virtual Machine (EVM). In a sol source file, a smart
contract definition contains declarations of State Variables,
Functions, Function Modifiers, Events, Errors, Struct Types,
and Enum Types. Especially, contracts can inherit from other
contracts with the keyword is.
Take the smart contract in Figure 2 as an example, State
Variables like quantity are permanently stored in contract
storage, and their types and visibilities are defined in the dec-
larations. In this case, the visibility is set to private by default.
Functions like exportShipment are the execution units of the
smart contract, and the conditions for calling it are restricted
by Function Modifiers like pre exportShipment, which usually
contains require statements and add restrictions for calling
the function. Events like ShipmentExported are defined for
logging.
In Solidity, Function Modifiers are convenient for assigning the
preconditions of the function. In a transaction where function
exportShipment is called, the conditions in the modifier are
checked first. The function can be executed only if the require
statements are satisfied, otherwise, the whole transaction will
be rolled back. As the function in a transaction may call other
internal or external functions and form a call chain, all of the
modifiers should be satisfied so that the transaction will take
effect.
Inheritance is another important feature of Solidity. A smart
contract can inherit from multiple contracts with keyword is,

1 contract Shipment is IShipment{
2 uint quantity;
3 uint weight;
4 uint volume;
5 uint price;
6 uint down_payment;
7 /* ... */
8 modifier pre_exportShipment() virtual override

{
9 require(msg.sender == export_port_operator);

10 require(state == State.inspected);
11 _;
12 }
13
14 function exportShipment() external virtual

override pre_exportShipment {
15 state = State.exported;
16 emit ShipmentExported(msg.sender, block.

timestamp);
17 }
18 /* ... */
19 }

Figure 2. An example for Ethereum smart contracts.

where new functions, modifiers, and variables can be added
(like the variable quantity), existing ones can be overridden
(like the modifier pre exportShipment), and the rest are in-
herited. In this way, codes can be reused conveniently, which
reduces the coding work and improves the extensibility of the
contracts.
The other keywords and features of Solidity will be explained
when they are mentioned in the rest of the paper.

2.2. Maritime Transportation

Due to the low-cost and efficient features, maritime transporta-
tion plays a major role in the global supply chains, under-
taking approximately 90% of the global trade [18]. Maritime
transportation has suffered from burdensome paperwork. For
example, a flower export consignment from Kenya to the
Netherlands contains more than 200 bilateral communications
among 20 organizations, and it usually takes about 10 days to
finish the paperwork [13]. As is found in [19], a shipment can



generate a pile of paper 25 cm high, and the cost of handling
it can be higher than the cost of moving the containers. Smart
contracts are thus a possible solution for paperless, transparent,
and efficient transportation.
However, there is a lack of universal models for maritime
transportation, which hinders the development of maritime
smart contracts. Since there are multiple modes of maritime
transportation, researchers usually focus on different aspects
that vary from each other. For example, in the report [20]
and [21] maritime transportation is modeled differently in the
composition of participants and the workflow.

(a)

(b)
Figure 3. The business model of maritime transportation
abstracted by [20] in (a), and by [21] in (b).

The diversity of the models result in inconsistency within the
smart contracts for maritime transportation, which makes it
hard to reuse the codes or extend the smart contracts. The
stakeholders and main functions of [11] [12] [16] are listed in
Table 1, although the main bodies of their business logic are
similar, they ended up with different implementations of the
stakeholders and workflows.

3. BUSINESS LOGIC MODEL

As we discussed in Section 2.2, it’s necessary to provide a
universal business logic model, before designing extendable
templates. In this section, the business logic model of maritime
transportation is modeled as a set of UML diagrams, depicting
the stakeholders, activities, states of the shipment, and their
relationships.

Table 1. Stakeholders and main functions of related work
Case Stakeholders Main Functions
[11] container, sender owner,

receiver
CreatePackage, PerformmedSelfCheck,
DepositMoneyforShipment, StartShippment,
ShipmentArrived, ProvidePassphrase,
UnlockShippment, GetShipmentMoney

[12] agent, shipper, receiver,
transporter

requestShipment, approveShipmentRequest,
createNFT, issueBoL, claimCargo, cargo-
ClaimDocumentsApproval, shipmentDeliv-
ered, burnContainerNFT

[16] exporter, importer, freight-
frw, agent, truck (trans-
porter), sea (transporter)

requestShipment, documentsVerification,
customsClearance, createUnimodalShip-
ment, issueBoL, approveCarrierRequest,
containerHandoff, documentsVerification,
customsClearance, shipmentArrivedDestina-
tionSignal

3.1. Stakeholders and Use Cases

Towards a general collection of stakeholders compatible with
different models, we combine the stakeholders from [11] [12]
[16] [20] [21] [22] [23] [24]. Some of them are replaced by
the smart contract system, and the rest are abstracted into the
following six types.
Shipper refers to the entity who owns the cargo, and is
usually the seller. In real-world maritime transportation, a
freight forwarder or forwarding agent is usually appointed by
the owner, to arrange the carriage of goods on behalf of a
shipper [22]. Since the freight forwarder interacts with other
stakeholders in the same way as the shipper, we abstract the
cargo owner, the freight forwarder as the shipper. The activities
of the shipper include the following.
• Activity create shipment refers to the shipper filling out the

information of shipment and creating the shipment.
• Activity cancel shipment refers to the shipper canceling the

shipment before the carrier departs, who usually has to pay
for half of the transportation fee.

• Activity claim for compensation refers to shipper claims for
compensation if the shipment is damaged or lost.

Carrier refers to the entity that performs the transportation.
In practice, the cargo may be transported in the form of
multimodal transportation [25], where the transportation is
segmented for several actual carriers. Besides, as implemented
in [11], the smart container equipped with IoT sensors may
also update the state of shipment as the carrier. To adapt to
different scenarios, we abstract the contracting carrier, the
actual carrier, and the smart container as the carrier. The
activities of the carrier include the following.
• Activity depart refers to the carrier departing from the

export port.
• Activity report loss refers to the carrier reporting the loss

of shipment during transportation.
• Activity arrive refers to the carrier arriving at the import

port.
• Activity rearrange shipment refers to the carrier resells or

auctions the shipment if the consignee fails to receive the
shipment within the agreed period.

• Activity pay for compensation refers to the carrier paying
for the compensation if the shipment is damaged, delayed,
or lost and compensation is claimed.



Figure 4. Use Case Diagram of maritime transportation systems

Consignee refers to the entity that receives the cargo and
is usually the buyer. The activities of the consignee include
activity receive and activity claim for compensation.
Pre-Shipment Inspector refers to the entity that inspects the
shipment at embarkation ports or on the shipper’s premises.
The concept of activity pre-shipment inspect was first intro-
duced by Zaire in 1963, and adopted by over fifty countries
worldwide [23]. The pre-shipment inspector is usually inde-
pendent from other participants and therefore included in our
model. The pre-shipment inspector is mainly responsible for
inspecting the shipment, where the status of the shipment will
be checked.
Export/Import Port Operator refers to the entity that pro-
vides services at the export/import port. With the development
of the port management theory, the services that a port can pro-
vide have been extended from simply loading and unloading to
a wide range, including customs clearance, warehousing, etc.
[24] Since a port is evolving to an aggregation of these entities,
we abstract the customs, the customs agent, the warehouse
owner, and the terminal operator as the export/import port op-
erator, whose activity mainly includes activity export/import.
Other stakeholders such as the insurance companies, the banks,
the document carriers, etc. are excluded from the model, since
they do not directly participate the transportation, or can be
replaced by smart contracts and blockchain systems.
The six stakeholders and their activities are abstracted and
modeled as a Use Case Diagram. In Figure 4, each actor in
the Use Case Diagram refers to a stakeholder, and each Use
Case linked with an actor denotes its activity. All stakeholders
inherit common Use Cases such as sign the shipment. The
workflow of those Use Cases is modeled in the next section.

3.2. Workflow

Maritime transportation activities usually take place sequen-
tially. However, the sequences and the conditions of the
activities vary in different cases. Some activities are modeled
specially so that it’s compatible with different scenarios.

• Payment for Goods. In real-world maritime transportation,
the time when the consignee pays the payment varies from
before shipment, before release (like D/P and D/A), and
after release (like O/A), etc. Therefore, we refactor the
payment for goods in a down-payment way, where the
consignee pays the down payment after the carrier departs,
and pays the rest after receiving the shipment. Thus different
modes of payment can be implemented by configuring the
amount of the down payment and the rest.

• Compensation. As in by most of the domestic and interna-
tional maritime law, the consignee and the shipper have the
right to claim compensation when the shipment is delayed,
damaged, or lost, yet only if he/she formally notices the
carrier within a certain period after the date of arrival,
and the compensation amount is limited. Considering the
claimer and the amount of compensation varies in different
situations, the compensation is modeled as the claimer first
claim for compensation with an amount, then the carrier
confirm and pay for it.

The workflow is modeled in an Activity Diagram, and addi-
tionally a State Machine Diagram. This is because the state
of the shipment is implemented in most of the maritime smart
contracts, yet some of which are error-prone. For instance, the
function of reselling the shipment can be called under most
circumstances in [12], which results in unexpected behaviors.
Activity Diagram contains activity nodes, control nodes,
swimlanes, and edges, where the activity nodes basically
come from the Use Case Diagram with amendments to cope
with different scenarios, control nodes denote the start, end,
and condition branches, swimlanes denote the stakeholders
related to the activities, and edges denote the sequences of
the activities, probably with guard conditions in the form
’[guard]’. The Activity Diagram is shown in Figure 5.
State Machine Diagram consists of nodes and edges, where
the nodes denote the states of the shipment, and the edges
denote the transitions between the nodes, with the activities



Figure 5. Activity Diagram of the workflow

as triggers and guard conditions in the form ’[guard]’. The
State Machine Diagram is shown in Figure 6.

Figure 6. State Machine Diagram of the workflow

4. MARISMART TEMPLATES AND CONTRACTS

MariSmart Templates are a set of Solidity smart contracts,
which can be extended into specific smart contracts for
maritime transportation. Based on the business logic model
proposed in Section 3, we propose the design of the MariSmart
Templates, and how to customize them to MariSmart contracts.

4.1. Designing MariSmart Templates

The MariSmart templates consist of shipment templates and
stakeholder templates, where the shipment templates maintain
the state of shipment, and the stakeholder templates implement
the activities of stakeholders.
The shipment templates consist of an interface IShipment and
a contract Shipment. The elements of the shipment templates
are defined in IShipment and implemented in Shipment, which
contains variables, modifiers, and functions. The variables are
used to maintain the state of the shipment and record the in-
formation of the shipment, including addresses, balances, and
sign records of stakeholders, the parameters of the shipment,
and the flags of the shipment like is lost, is delayed etc. The
functions of the shipment template are used to update the state
of the shipment and implement the necessary functionality,
including transferring, emitting events, etc. The modifiers
constrain the caller and the pre-condition of the functions with
require statements.
The stakeholder templates are six contracts for specific stake-
holders inherited from the contract Stakeholder. Each stake-
holder template consists of a mapping from UID to shipments
contract, and functions that implement the activities.
The following example explains the relationship between
the MariSmart templates and the business logic model. The
activity cancel shipment modeled in Figure 5 is implemented
as the function cancel in Figure 7. The transition from exported
to closed in Figure 6 is implemented in the function cancel-
Shipment in Figure 7. When the shipper calls the function



cancel, cancelShipment will be called and update the state of
the shipment.

Figure 7. Relationships between MariSmart Templates

The important features of the MariSmart templates are imple-
mented as follows.
Shipment Management. Each stakeholder template repre-
sents an entity or a firm and may be involved in multiple
shipments at the same time. Therefore, the stakeholder tem-
plate maintains a mapping from the shipment ID UID to the
address of the corresponding shipment template. As for the
shipper, this mapping is updated when the shipper creates the
shipment. For other stakeholders, the address of a shipment
template is recorded by the function sign. Once the shipment
is created or signed, the stakeholder can assign the shipment
ID as a parameter in further function calls.
Escrow balances. The payment between stakeholders is im-
plemented by editing the mapping balances in the shipment
template. The related variables and function are shown in Fig-
ure 8. When a stakeholder signs a shipment, a certain amount
of Ethers required by escrow thresholds are deposited to the
shipment, and recorded in balances. When a payment occurs,
instead of transferring directly, the function internalTransfer is
called and balances are edited. When the shipment is closed,
the balances can be withdrawn by the stakeholders.
Time issue. In Solidity, the keyword block.timestamp can
be used to fetch the current timestamp of the transaction.
Therefore, several time-related variables are defined in the
shipment template, including depart date, arrive date, re-
ceive valid etc., for comparing with block.timestamp, and
create time, arrive time etc., for recording the timestamp at
the corresponding event.

4.2. Customizing MariSmart Contracts

The MariSmart templates have a default configuration, which
implements the basic function for maritime transportation. For
specific business scenarios, the MariSmart templates can be
customized according to the differences between the scenario
and the business logic model.
According to the degree of customization, we divide smart
contract development into three levels, namely customizing
parameters, activities, and processes, which are proposed as

1 contract Shipment is IShipment{
2 mapping(address => uint) balances;
3 mapping(address => uint) escrow_thresholds;
4 /* ... */
5 function sign() external payable virtual

override pre_sign {
6 signatures[msg.sender] = true;
7 balances[msg.sender] += msg.value;
8 emit StakeholderSign(msg.sender, block.

timestamp);
9 if (

10 signatures[shipper] == true &&
11 signatures[carrier] == true &&
12 signatures[consignee] == true &&
13 signatures[pre_shipment_inspector] ==

true &&
14 signatures[export_port_operator] == true

&&
15 signatures[import_port_operator] == true
16 ) {
17 state = State.signed;
18 emit ShipmentSigned(msg.sender, block.

timestamp);
19 }
20 }
21 /* ... */
22 function internalTransfer(
23 address _from,
24 address _to,
25 uint _amount
26 ) internal {
27 require(balances[_from] >= _amount);
28 require(_amount >= 0);
29 balances[_from] -= _amount;
30 balances[_to] += _amount;
31 emit StakeholderTransfer(_from, _to, _amount,

block.timestamp);
32 }
33 }

Figure 8. Components of the shipment template related with
escrow balances.

the following. The customization is mainly performed by over-
riding the functions and modifiers. In Solidity, the keyword
is can be used to inherit smart contracts, and the keyword
override is used for overriding.
Customizing parameters is the most basic way to customize
MariSmart contracts, which adds and assigns parameters. For
instance, the amount of down payment can be configured by
setting the value of down payment of the shipment template.
Besides, the parameters of the stakeholder templates can also
be configured.
Customizing activities is a more advanced way to customize
MariSmart contracts and is used when the scenario requires a
different implementation of an activity. Such customization is
performed by the keyword override. For example in Figure 9,
the function of depart of the carrier template can be rewritten
to update the ownership of the cargo additionally.
Customizing workflow is used when the scenario requires
a different workflow, such as different transitions of the
shipment state, different composition of stakeholders, etc. It
is performed by overriding the modifiers of the shipment
template. Note that this type of customization may result in



1 contract Carrier is Stakeholder {
2 /* codes above */
3 function depart(uint _UID) public virtual

onlyOwner {
4 shipments[_UID].depart();
5 }
6 /* codes below */
7 }

(a)
1 contract NFTCarrier is Carrier {
2 /* codes above */
3 function depart(uint _UID) public override

onlyOwner {
4 shipments[_UID].depart();
5 /* custom logic here */
6 ContainerNFT(ContainerNFT_addr).transferFrom(
7 shipments[_UID].getShipper(),
8 address(this),
9 NFTShipment(address(shipments[_UID])).

getNFTID()
10 );
11 }
12 /* codes below */
13 }

(b)
Figure 9. Customizing the depart activity (b) by overriding
the templates (a)

unexpected behavior, and should be carefully considered.
Theoretically, the MariSmart templates can be customized
arbitrarily. However, for the security and stability of the MariS-
mart contracts, the following recommendations are proposed.
• It’s strongly recommended to avoid transferring Ethers di-

rectly. Use externalTransfer instead, which edits the escrow
balances. (please refer to Section 6.1 for detail)

• When the workflow is customized, it’s recommended to
make sure that the sequences of function calls cannot
be reversed, otherwise, the MariSmart contracts may be
transactions order dependant. (please refer to Section 6.1
for detail)

5. CASE STUDIES

In this section, we carry out case studies on three real-world
systems, using the MariSmart framework to rewrite the former
two and code the third one. We first analyze the difference
between the particular case and the business logic model
proposed in Section 3, then customize the MariSmart contracts
using the method in Section 4.2.

5.1. An IoT-based Smart Contract for Tracing and Monitoring
Cargo Containers

Hasan et al. [11] proposed a Solidity smart contract to
monitor shipment conditions through IoT sensors. A shipper,
consignee, and container are included in the smart contract. As
is discussed in Section 3, a container can be abstracted as a
carrier. Thus the stakeholders are consistent with the business
logic model.
Compared with the business logic model, three features can
be extracted from the scenario.

• When the consignee pays for the goods, a hash code is
generated to authorize the consignee to access the container.

• If exceptions occur during transportation, the corresponding
event will be triggered by the container, the shipment will
be canceled and all payments will be refunded.

• When the consignee receives the shipment, the container has
to provide the correct hash code within 48 hours. Otherwise,
the shipment will be canceled and half of the payment will
be refunded.

The first feature can be implemented by adding a new attribute
passcode hashes to the consignee contract, and overriding its
sign function so that the consignee updates the hash code while
signing the shipment. The second feature can be implemented
by overriding the function reportLoss of the carrier contract,
and adding corresponding events and data type to it. The
third feature can be implemented by overriding the function
receiveShipment of the consignee contract.

5.2. A NFT Based Smart Contract for Tracing and Auctioning
Shipping Cargo

Elmay et al. [12] proposed a smart contract to trace the
ownership change and auction the cargo. Four stakeholders are
involved in the proposed smart contract, namely a shipper, a
ship line agent, a transporter, and a consignee. As is discussed
in Section 3, the ship line agent and the actual carrier can be
abstracted as the carrier in the business logic model.
Compared with the business logic model, differences can be
extracted from the scenario.
• A NFT is minted by the NFT contract when the shipment is

created, and the ownership of the NFT is transferred as the
ownership of the shipment. When the consignee receives the
shipment, or the shipment is auctioned, the NFT is burned.

• If the consignee does not receive the shipment after its
arrival, the shipment will be auctioned through an auction
contract.

The first feature can be implemented by importing the NFT
contract, and adding relevant statements to the contracts of
shipper, carrier, and consignee, including create, cancel, de-
part, arrive, rearrange, close, receiveShipment. As for the
auctions, the auction contract implemented in the proposed
smart contract is imported and the function rearrange and
close of the carrier contract are added with relevant statements
to start and close the auction.
Notably, in the original implementation [12], the function
auctionCargo can be called at any time except when the
consignee claims for the shipment or the agent approves
the claim, which may result in unexpected behaviors. By
refactoring as MariSmart contracts, the state of the shipment
is maintained correctly in the customized smart contracts.

5.3. A LNG Sales Agreement

The master ex-ship LNG sales agreement [26] was signed
by Cheniere Marketing, Inc. and Gaz de France International
Trading S.A.S. in 2007, and made public by the U.S. Securities
and Exchange Commission (SEC). The agreement contains the
basic information about the shipment, the payment, the risk



and liability, the claims and disputes, etc. Due to the nature
of LNG transportation, the quality of LNG is examined at
the import port, specifically when unloading from the vessel.
Therefore, the pre-shipment inspection is not included in this
scenario.
The process of transportation in the agreement varies from the
default implementation as follows.
• According to Letter 7, the shipper has the right to cancel

the shipment before the carrier leaves the export port, but
has to pay a cancellation fee to the consignee.

• According to Letter 7.1.1, the carrier has to notify the
consignee at a specific time before arrival

• According to Letter 4.3, the carrier has the right to leave
the port if the consignee fails to receive the shipment within
48 hours after arrival. In this case, the shipper is permitted
to claim compensation from the consignee. However, if the
shipper gains profit from the resale, the shipper has to return
the profit to the consignee, no more than the value of goods.

Accordingly, the smart contract generated from the templates
is customized as follows.
• Due to the absence of the pre-shipment inspector, the state

transitions vary from the State Machine Diagram. Thus
the relevant modifiers of the shipment contract, namely
pre inspect and pre exportShipment are overrided.

• The function cancel of the shipper contract is overridden to
implement the cancellation fee.

• The function arrive of the carrier contract is overridden to
implement the notification of arrival. Besides, the function
notify is added to the carrier contract to emit the correspond-
ing event.

• The function rearrange of the carrier contract is overridden
to implement the resale as required.

6. DISCUSSION

6.1. Security Analysis

Re-entrancy is a typical smart contract vulnerability. When
Ethers are transferred by the function send or transfer, a
malicious receiver can alter its fallback function and gain
more Ethers than they ought to be. There are two techniques
applied in MariSmart contracts to avoid re-entrancy. Firstly,
due to the escrow system, stakeholders do not actually send
or transfer Ethers to each other, and the escrow balances in
the shipment contract are edited instead. No fallback functions
are possibly called and therefore most of the functions in
MariSmart contracts are free from re-entrancy. Secondly, there
is only one function in the shipment contract that contains a
transfer statement, namely withdraw in Figure 10. The with-
draw function first sets the balances to zero, then calls function
transfer. The fallback function cannot trigger withdraw again,
since the modifier is not satisfied anymore.
Transaction Order Dependancy is another common vulnera-
bility. When the results of two transactions depend on the order
of the transactions, a malicious miner can control the result
by assigning the order. As for MariSmart contracts, there is
either only one function that can be possibly called, or multiple

1 modifier pre_withdraw() virtual override {
2 require(state == State.closed);
3 require(balances[msg.sender] > 0);
4 _;
5 }
6 function withdraw() external virtual override

pre_withdraw {
7 uint amount = balances[msg.sender];
8 balances[msg.sender] = 0;
9 payable(msg.sender).transfer(amount);

10 emit StakeholderWithdraw(msg.sender, amount,
block.timestamp);

11 }

Figure 10. The only one function of the shipment contract
that transfers Ethers

functions are possible, but they cannot take place sequentially.
Therefore, the sequences of transactions cannot be reversed
and the MariSmart contracts are free from transaction order
dependency.
Accessability is an important issue in maritime transportation
since multiple stakeholders are involved and each of them is
entitled to different variables and functions. The accessibility
in MariSmart contracts is designed from two aspects. Firstly,
the variables of the shipment contract are set to be private, and
the stakeholders access the shipment variables through getter
functions. This way, the variables are free from being edited by
external addresses, and the accessibility can be conveniently
assigned by the modifiers of the getter functions. Secondly,
the accessibility of the functions is maintained by modifiers.

6.2. Comparision with Other Work

Functions and Features supported by MariSmart and related
work are compared in Table 2, where MariSmart stands for
the default configuration of the MariSmart contracts. The
implementation of these features is discussed in Section 3
and 4. Notably, the compensation is partly implemented in
[11] because compensation for canceling shipment is included
in the contract, yet compensation for losing or destroying
shipment is not implemented. Similarly, the smart contracts of
[16] are partly extendable because there are alternative carriers,
namely sea carriers, inland carriers, and air carriers, but other
stakeholders and activities are fixed.
Efficiency improvement is evaluated by reduction and reuse
of the codes. In Table 3, Source stands for the lines of the
original implementation, Customization stands for the lines
that developers have to code to customize MariSmart con-
tracts, Total stands for the total lines of MariSmart contracts,
including the templates and interfaces.
Although we rewrite the [12] and [11] with more stakeholders
and activities, the necessary codes are reduced by 49.63%
and 43.62% compared with their original versions. Since the
backbone of the MariSmart contracts are implemented in the
MariSmart templates, these reused codes account for from
75.90% to 89.06% of the total lines.



Table 2. Supported features of related work

Case payment cancellation logging compensation rearrangement extendable
[12] % % ! % ! %

[16] % % ! % % partly
[11] ! ! ! partly % %

MariSmart ! ! ! ! ! !

Table 3. Codes statistic
Case Source(lines) Customization(lines) Reduced(%) Total(lines) Reused(%)
NFT 544 274 49.63% 1137 75.90%
IoT 188 106 43.62% 969 89.06%

LNG / 116 / 979 88.15%

7. RELATED WORK

Our work is mainly related to two kinds of work, namely
smart contract application in maritime transportation and de-
velopment through domain-specific language.
Smart contract applications are partly discussed in Section
5, where the smart contracts from [11] and [12] are rewritten
as MariSmart contracts. In the following work of Elmay et
al. [16], the business model is expanded and compatible with
single-mode and multi-mode transportation. In Section 5, we
argue that the MariSmart templates can be extended to such
scenarios, and from Section 6, we argue that the customized
MariSmart contracts are more functional than the original
implementation.
Domain-specific languages are proposed to develop smart
contracts understandably and efficiently. Skotnica et al. [27]
proposed DasContract. The following work [28] [29] sim-
plified the model and implemented an automatic translation.
Hamdaqa et al. [30] proposed iContractML, and the 2.0
version [31] added support for DAML. Wöhrer et al. [32]
proposed CML based on Xtext [33]. It is worth noting that
[32] and [30] only generate the skeleton of smart contracts, and
users still need to implement the activities. As for DasContract,
the code can be automatically generated, yet developers still
have to implement the business logic in the intermediate
language. From this aspect, the domain-specific languages and
the Marismart framework improve efficiency in different ways,
and are not contradictory. MariSmart framework could intro-
duce intermediate languages and code generation techniques
in future work.

8. CONCLUSION

In this paper, we have proposed a development framework,
MariSmart, to develop maritime transportation smart contracts.
The MariSmart framework is flexible for different maritime
transportation scenarios and can be extended for more complex
business modes. Three case studies have been carried out to
show the feasibility and effectiveness of our work.
For future work, as we mentioned in Section 1, a verification
framework will be proposed to improve the reliability of
MariSmart contracts. The framework will model the MariS-
mart contracts and the requirements extracted from domain

knowledge, and automatically finish the verification. In MariS-
mart contracts, several features can bring convenience for
future verification. Firstly, there are variables like depart time
and arrive time, which record the time when the correspond-
ing activities take place so that the important events can be
traced and modeled easily. Secondly, all activities are imple-
mented as functions of the same name in a similar structure,
which makes it easy to establish a mapping between the
smart contract components and the activities. Lastly, since the
MariSmart contracts are developed by inheriting the templates,
only the incremental part is to be dealt with, which reduces
the difficulty of verification.

REFERENCES

[1] N. Szabo, “Smart contracts.[online],” http:
//www.fon.hum.uva.nl/rob/Courses/InformationInSp
eech/CDROM/Literature/LOTwinterschool2006/szabo.
best.vwh.net/smart.contracts.html, 1994.

[2] V. Buterin et al., “A next-generation smart contract and
decentralized application platform,” white paper, vol. 3,
no. 37, pp. 2–1, 2014.

[3] F. Schär, “Decentralized finance: On blockchain-and
smart contract-based financial markets,” FRB of St. Louis
Review, 2021.

[4] H. Subramanian, “Security tokens: architecture, smart
contract applications and illustrations using safe,” Man-
agerial Finance, vol. 46, no. 6, pp. 735–748, 2020.

[5] A. Khatoon, “A blockchain-based smart contract system
for healthcare management,” Electronics, vol. 9, no. 1,
p. 94, 2020.

[6] A. Saini, Q. Zhu, N. Singh, Y. Xiang, L. Gao, and
Y. Zhang, “A smart-contract-based access control frame-
work for cloud smart healthcare system,” IEEE Internet
of Things Journal, vol. 8, no. 7, pp. 5914–5925, 2020.

[7] K. N. Griggs, O. Ossipova, C. P. Kohlios, A. N. Bac-
carini, E. A. Howson, and T. Hayajneh, “Healthcare
blockchain system using smart contracts for secure au-
tomated remote patient monitoring,” Journal of medical
systems, vol. 42, pp. 1–7, 2018.

[8] S. Wang, D. Li, Y. Zhang, and J. Chen, “Smart contract-
based product traceability system in the supply chain



scenario,” IEEE Access, vol. 7, pp. 115 122–115 133,
2019.

[9] L. Wang, L. Xu, Z. Zheng, S. Liu, X. Li, L. Cao,
J. Li, and C. Sun, “Smart contract-based agricultural food
supply chain traceability,” IEEE Access, vol. 9, pp. 9296–
9307, 2021.

[10] V. Astarita, V. P. Giofrè, G. Mirabelli, and V. Solina, “A
review of blockchain-based systems in transportation,”
Information, vol. 11, no. 1, p. 21, 2019.

[11] H. Hasan, E. AlHadhrami, A. AlDhaheri, K. Salah,
and R. Jayaraman, “Smart contract-based approach for
efficient shipment management,” Computers & industrial
engineering, vol. 136, pp. 149–159, 2019.

[12] F. K. Elmay, K. Salah, R. Jayaraman, and I. A. Omar,
“Using nfts and blockchain for traceability and auc-
tioning of shipping containers and cargo in maritime
industry,” IEEE Access, vol. 10, pp. 124 507–124 522,
2022.

[13] G. Balci and E. Surucu-Balci, “Blockchain adoption
in the maritime supply chain: Examining barriers and
salient stakeholders in containerized international trade,”
Transportation Research Part E: Logistics and Trans-
portation Review, vol. 156, p. 102539, 2021.

[14] P. Dutta, T.-M. Choi, S. Somani, and R. Butala,
“Blockchain technology in supply chain operations: Ap-
plications, challenges and research opportunities,” Trans-
portation research part e: Logistics and transportation
review, vol. 142, p. 102067, 2020.

[15] S. Nguyen, P. S.-L. Chen, and Y. Du, “Risk assessment
of maritime container shipping blockchain-integrated
systems: An analysis of multi-event scenarios,” Trans-
portation Research Part E: Logistics and Transportation
Review, vol. 163, p. 102764, 2022.

[16] F. K. Elmay, K. Salah, I. Yaqoob, R. Jayaraman, A. Bat-
tah, and Y. Maleh, “Blockchain-based traceability for
shipping containers in unimodal and multimodal logis-
tics,” IEEE Access, vol. 10, pp. 133 539–133 556, 2022.

[17] “Marismart framework. [online],” https://github.com/M
ariSmartSourceCode/MariSmart, 2023.

[18] D. Song, “A literature review, container shipping supply
chain: Planning problems and research opportunities,”
Logistics, vol. 5, no. 2, p. 41, 2021.

[19] I. Allison, “Shipping giant maersk tests blockchain-
powered bill of lading,” International Business Times,
vol. 14, 2016.

[20] E. Ganne, “Can blockchain revolutionize international
trade?[online],” https://www.wto.org/english/res e/boo
ksp e/blockchainrev18 e.pdf, 2018.

[21] B. C. Group, “Digital innovation in trade finance:
Have we reached a tipping point?[online],”
https://www.swift.com/news-events/news/digital-inn
ovation-trade-finance-have-we-reached-tipping-point,
2017.

[22] K.-C. Shang and C.-S. Lu, “Customer relationship man-
agement and firm performance: an empirical study of

freight forwarder services,” Journal of Marine Science
and Technology, vol. 20, no. 1, p. 8, 2012.

[23] J. Anson, O. Cadot, and M. Olarreaga, “Tariff evasion
and customs corruption: does pre-shipment inspection
help?” The BE Journal of Economic Analysis & Policy,
vol. 5, no. 1, p. 0000101515153806451600, 2006.

[24] D. Olivier and B. Slack, “Rethinking the port,” Environ-
ment and Planning A, vol. 38, no. 8, pp. 1409–1427,
2006.

[25] M. SteadieSeifi, N. P. Dellaert, W. Nuijten,
T. Van Woensel, and R. Raoufi, “Multimodal freight
transportation planning: A literature review,” European
journal of operational research, vol. 233, no. 1, pp.
1–15, 2014.

[26] M. Keith and S. Edward, “Master ex-ship lng
sales agreement between cheniere marketing, inc.
and gaz de france international trading s.a.s.”
https://www.sec.gov/Archives/edgar/data/3570/
000119312507106384/dex102.html, 2007.

[27] M. Skotnica and R. Pergl, “Das contract-a visual domain
specific language for modeling blockchain smart con-
tracts,” in Enterprise Engineering Working Conference.
Springer, 2019, pp. 149–166.

[28] B. Hornáčková, M. Skotnica, and R. Pergl, “Exploring
a role of blockchain smart contracts in enterprise en-
gineering,” in Advances in Enterprise Engineering XII:
8th Enterprise Engineering Working Conference, EEWC
2018, Luxembourg, Luxembourg, May 28–June 1, 2018,
Proceedings 8. Springer, 2019, pp. 113–127.

[29] M. Skotnica, J. Klicpera, and R. Pergl, “Towards model-
driven smart contract systems–code generation and im-
proving expressivity of smart contract modeling,” Proc.
EEWC, vol. 20, 2020.

[30] M. Hamdaqa, L. A. P. Metz, and I. Qasse, “Icontractml:
A domain-specific language for modeling and deploying
smart contracts onto multiple blockchain platforms,” in
Proceedings of the 12th System Analysis and Modelling
Conference, 2020, pp. 34–43.

[31] M. Hamdaqa, L. A. P. Met, and I. Qasse, “icontractml
2.0: A domain-specific language for modeling and de-
ploying smart contracts onto multiple blockchain plat-
forms,” Information and Software Technology, vol. 144,
p. 106762, 2022.

[32] M. Wöhrer and U. Zdun, “Domain specific language for
smart contract development,” in 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC).
IEEE, 2020, pp. 1–9.

[33] M. Eysholdt and H. Behrens, “Xtext: implement your
language faster than the quick and dirty way,” in Pro-
ceedings of the ACM international conference companion
on Object oriented programming systems languages and
applications companion, 2010, pp. 307–309.


