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Abstract. Maritime transportation business suffers from trust issues
and burdensome paperwork. Blockchain-based smart contracts are a promis-
ing solution. Due to the nature of the blockchain, it is important to verify
smart contracts before deployment, especially for its functionality and
legality. In this paper, we propose a verification framework that auto-
matically verifies the functionality and legality requirements of maritime
transportation smart contracts. Smart contracts of an application, based
on a set of templates, are modeled in a network of timed automata;
domain-specific requirements are collected and formulated as temporal
logic formulas; real-time model checking tool UPPAAL is then used to
check whether these requirements are satisfied. We carry out experiments
on nine real-world smart contracts to show the effectiveness and feasibil-
ity of our framework. We also compare our work with existing tools to
show its effectiveness and efficiency.

Keywords: Model checking · UPPAAL · Smart contract · Solidity ·
Maritime transportation.

1 Introduction

Formal verification techniques are widely acknowledged for improving system
reliability, but are also notorious for being difficult to use. In this paper, we
propose a domain-specific verification method to ease the pain of using them.

Maritime transportation is the backbone of international trade, which ac-
counts for over 90% of the global trade volume [37]. The maritime transporta-
tion industry is facing challenges from trustless participants, and burdensome
paperwork. For example, a flower export consignment from Kenya to Nether-
lands requires more than 200 bilateral communications among 20 organizations,
and it usually costs about 10 days to deal with the paperwork [9].
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A smart contract is ‘a computerized transaction protocol that executes the
terms of a contract’, defined by Nick Szabo [38] in 1994. Smart contracts rise
with emergence of Blockchain platforms, such as Ethereum [14]. Due to the
decentralized, tamper-proof and indisputable nature of the blockchain, smart
contracts can perform reliable transactions among trustless participants, and
thus gained attention from maritime transportation. Smart contracts are in-
troduced to maritime transportation to improve the efficiency, traceability, and
transparency [3, 18,19,23,34].

Due to the tamper-proof nature of blockchain, a smart contract is hard to
modify after deployment. Therefore, verification before deployment is essential.
Symbolic execution tools [28, 32] are developed to detect specific vulnerabilities
patterns. Development frameworks also play a part in avoiding vulnerabilities.
For example, smart contracts developed from MariSmart templates [42] are free
from re-entrance and transaction order dependency attacks. However, such ap-
proaches cannot be used to check various customer requirements.

Formal methods based tools [12, 13, 24, 30] are promising to verify a variety
of properties. However, formal methods, i.e. model checking [17], usually require
the skills of writing formal models and logic formulas, which makes it challenging
to apply formal methods for engineers who lack solid mathematical background.

To ease the difficulty of using model checking techniques, we focus on the
automated verification problem of smart contracts specific to maritime trans-
portation domain. Specifically, two challenges are faced when dealing with this
problem.

The first challenge is to find the common domain-specific requirements. We
collect and extract functionality and legality requirements from maritime trans-
portation related researches [9, 19, 23, 33], reports [21, 22], and laws [1, 40]. The
functionality requirements specify the expected behaviors and results of mar-
itime transportation, especially the payment and delivery of the shipment. Be-
sides, maritime transportation usually take place across countries, and must
obey multiple international and domestic laws. It is important to ensure that
the smart contracts comply with these laws. The legality requirements are
the legal constraints from maritime transportation laws, such as the time con-
straints and duties of participants. To the best of our knowledge, we are the
first to apply verification on legality issues for maritime transportation smart
contracts.

The second challenge is to automatically generate formal models and prop-
erties. We propose MariSmart, a development and verification framework for
smart contracts that monitor and manage maritime transportation business. The
goal of the framework is shown in Figure 1. Users can customize the MariSmart
templates for a specific MariSmart application, which can then be verified with
MariSmart verification framework. The verification results can be used for revis-
ing the code. The design and use of MariSmart templates are introduced in [42].
In this paper, we introduce MariSmart verification framework, a template-based
verification technique.

Our main contributions in this paper are as follows.
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Fig. 1. The goal of the MariSmart framework. The scope of this paper is in the red
bold box.

– We collect and extract common functionality and legality requirements spe-
cific to maritime transportation domain.

– We propose an automatic verification framework that transforms the MariS-
mart application to a network of timed automata, formalizes pre-defined
requirements to timed computation tree logic formulas [5], and then verifies
them with UPPAAL [12].

– We implement the verification framework, perform case studies on nine real-
world smart contract systems, and compare our framework with existing
works. The code of the framework and case studies are available on [2].

The reminder of this paper is organized as follows. Section 2 introduces the
preliminaries. Section 3 illustrates the formal modeling method. Section 4 in-
troduces the domain-specific requirements and formulates them. Experiments
and case studies are shown in Section 5. Related work is reviewed in Section 6.
Section 7 concludes and discusses the future work.

2 Preliminaries

In this section, we introduce the smart contract language Solidity, MariSmart
templates and applications, and the back-end verification tool UPPAAL.

2.1 Solidity

Solidity is one of the most popular smart contract languages in Ethereum [14],
which can be compiled and executed on the Ethereum Virtual Machine (EVM).
A smart contract in Solidity contains declarations of State Variables, Functions,
Function Modifiers, Events, Errors, Struct Types, and Enum Types.

Functions are the execution units of the smart contract. There can be a
call chain of multiple functions in a transaction. For example in Figure 2, the
function depart in (a) calls function depart in (b), which calls another internal
function internalTransfer.
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1 contract Carrier is Stakeholder {
2 ...
3 function depart(uint _UID)

public virtual onlyOwner {
4 shipments[_UID]. depart ();
5 }
6 }

(a)

1 contract NFTCarrier is Carrier {
2 ...
3 function depart(uint _UID)

public override onlyOwner {
4 shipments[_UID]. depart ();
5 /* custom logic begins here */
6 ContainerNFT(ContainerNFT_addr

).transferFrom(
7 shipments[_UID]. getShipper ()

,
8 address(this),
9 NFTShipment(address(

shipments[_UID])).
getNFTID ()

10 );
11 }
12 }

(c)

1 contract Shipment is IShipment {
2 ...
3 modifier pre_depart () virtual

override {
4 require(msg.sender == carrier)

;
5 require(state == State.

exported);
6 _;
7 }
8 function depart () external

virtual override pre_depart
{

9 internalTransfer(consignee ,
shipper , down_payment);

10 depart_time = block.timestamp;
11 state = State.departed;
12 emit ShipmentDeparted(msg.

sender , block.timestamp);
13 }
14 }

(b)

Fig. 2. Code fragments of MariSmart application. (a) Depart function of Carrier tem-
plate; (b) corresponding function of Shipment template; (c) customized depart function
of NFTCarrier contract.

Modifiers are used to specify the pre-conditions of the functions. Note that
the whole transaction will revert if any of the require statement throws an ex-
ception.

Inheritance is important feature of Solidity. A Solidity contract can inherit
from multiple contracts with the keyword is. Users can either add new func-
tions, modifiers and variables to the contract, or override the existing ones with
keyword override. For example, contract NFTCarrier in Figure 2(c) inherits
contract Carrier in Figure 2(a), and overrides function depart.

Time is captured with an unsigned integer variable block.timestamp. Vari-
ables assigned with block.timestamp are called time-related variables. For exam-
ple, depart_time shown in Figure 2(b) is a time-related variable.

Other features required in this paper are introduced when they are men-
tioned.

2.2 MariSmart Application

An application of the maritime transportation developed with MariSmart tem-
plates [42] is called a MariSmart application. A MariSmart application usually
includes several Stakeholder contracts and one Shipment contract.
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The Stakeholder contracts implement the activities of participants of the
transportation. Six stakeholders are formulated in the templates: Shipper, Car-
rier, Consignee, Pre_Shipment_Inspector, Export_Port_Operator and
Import_Port_Operator. For example, the activity of Carrier departing the ex-
port part is implemented as function depart in Figure 2(a).

The Shipment contract indicates how the states of the shipment change.
There are 12 states: created, signed, inspected, exported, departed, lost, arrived,
imported, rearranged, received, claimed, and closed. A change occurs when its
corresponding function is called and the function’s pre-condition regulated by a
modifier is satisfied.

The MariSmart templates can be customized for specific workflow and activ-
ities. For example, the customized contract in Figure 2(c) overrides the function
depart with additional logic. Please refer to [42] for more details about MariS-
mart templates and applications.

2.3 UPPAAL

UPPAAL [12] is a real-time model checking tool. The model language of UP-
PAAL is based on the theory of timed automaton (TA). Its specification language
is a variation of timed computation tree logic (TCTL).

Definition 1 (Syntax of UPPAAL TA). A TA is a tuple (L, l0, A,C, V,E, I),
where

– L is a set of locations,
– l0 ∈ L is the initial location,
– A ⊆ Action is a set of actions. Action := {a?|a ∈ Chan} ∪ {a!|a ∈ Chan}

includes input actions (a?) and output actions (a!). Chan is a set of chan-
nels.

– C is a set of clocks,
– V is a set of bounded integer variables,
– E ⊆ L × G(C, V ) × A × U(C, V ) × L is a set of edges, where G(C, V ) is a

set of linear constraints over C and V and U(C, V ) is a set of updates over
C and V . Clocks can only be reset to zero.

– I : L → G(C, V ) is a mapping from locations to constraints.

A network of timed automata (NTA) includes a set of TA, sharing a set of
global channels, variables and clocks.

The semantics of NTA in UPPAAL is defined as a transition system over
the states of TA, where two kinds of transitions are included, namely delay
transitions and discrete transitions. In delay transitions, no edge of TA is fired
and the clocks increase; in discrete transitions the edge is fired and clocks are
frozen. Specially, edges in different TA may fire synchronously, when there is a
pair of actions c? and c! in the edges.

Compared to the theory of TA [6], additional features of NTA in UPPAAL
mainly includes the following.
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– Bounded integer variables are declared and used in guards, invariants and
assignments.

– Committed locations are introduced in UPPAAL. When a NTA is at a com-
mitted location, it cannot delay and the next transition must involve an
outgoing edge of the location.

– User functions are supported in UPPAAL with a syntax similar to C [27].

The properties involved in this work can be divided into two types, namely
liveness properties and safety properties. Let β be any propositional formula.
Liveness properties are usually in the form of A♢ β, meaning that on any exe-
cution path β will eventually be true, and β1 −→ β2, meaning that once β1 true
β2 will eventually be true. Safety properties are usually in the form of A□ β,
meaning that on any execution path β is always true.

3 Contract Modeling

In this section, we illustrate how to model a MariSmart application as a NTA. We
first define the structures to represent the MariSmart application, then illustrate
how to formally model it. Finally we discuss how to deal with the time-related
statements.

3.1 System Description

As is introduced in Section 2.2, a MariSmart application includes a Shipment
contract and several Stakeholder contracts. Before modeling them as TA, we first
abstract the Solidity function, Shipment contract, Stakeholder contracts and the
MariSmart application as tuples for further interpretation.

Let Var be a set of variables and Var t be a set of time-related variables.

Definition 2 (Solidity Function). A public function is defined as a tuple
FUNC := (Name, Para, Stmt, Stmtr, Stmtt,Var ,Var t), where Name is the
function name, Para is a set of parameters, Stmt is a set of statements, Stmtr ⊆
Stmt is a set of require statements, Stmtt ⊆ Stmt is a set of time-related state-
ments, and Var t ⊆ Var .

Take function depart in Figure 2(b) for example. Its name is depart, Var and
Stmt are taken from both depart and its modifier pre_depart, Stmtr contains
the statements in Line 4-5, Stmtt contains the statement in Line 10, and Var t =
{depart_time}.

Definition 3 (Shipment Contract). A Shipment contract is defined as a tu-
ple SHC := (State,Var ,Var t, Func), where State is a set of shipment states,
Var t ⊆ Var , and Func is a set of functions in the contract.

Definition 4 (Stakeholder Contract). A stakeholder contract is defined as a
tuple STC := (Type,Var ,Var t, Func), where Type is the type of the stakeholder,
Var t ⊆ Var , and Func is a set of functions in the contract.
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In SHC and STCs, we especially define Var t and Stmtt, because time-related
variables and statements require special modeling in UPPAAL, which is proposed
in Section 3.3. As a MariSmart application contains one Shipment contract and
several Stakeholder contracts, it can be represented by a set of SHC and STCs.

Definition 5 (MariSmart Application). A MariSmart Application with n
stakeholders is defined as a tuple MA := (SHC,STC1, STC2, ..., STCn).

3.2 Formal Modeling

We model a MariSmart application in a template-based way. That is, the be-
haviour of each element in the application, Shipment contract or Stakeholder
contract, is modeled with a TA. The overview of the NTA of a MariSmart appli-
cation is shown in Figure 3. The Shipment contract is modeled as Shipment TA,
where the states of shipment are modeled as locations, and transitions of the
states are modeled as edges. Each Stakeholder contract is modeled as a Stake-
holder TA. For example, Carrier contract is modeled as Carrier TA, where the
function depart is modeled as two edges. One from idle to depart_called models
the modifier and statements of the function. The other one from depart_called
back to idle models calling the Shipment function. It fires synchronously with
the edge of Shipment TA through channel chan_depart.

Fig. 3. Overview of NTA of a MariSmart application.

Definition 6 (Shipment TA). The behavior of Shipment contract SHC =
(State,Var ,Var t, Func) is Shipment TA TASHC := (L, l0, A,C, V,E, I), where

– L = State ∪ {start}, where start denotes the state before the shipment is
created.

– l0 = start.
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– A = {chan_n?|n = f.Name, f ∈ Func}.
– C = Var t.
– V = Var \Var t.
– for each function f ∈ Func, there is one or more edges in E, s.t. the source

is specified in f.Stmtr, the destination is specified in f.Stmt, the guard con-
dition is f.Stmtr, and the action is chan_name?, where name = f.Name.

– I is empty.

A Shipment TA is demonstrated in Figure 4, where states of the shipment are
modeled as locations and functions of Shipment contract is modeled as edges.
The source and destination of edges are extracted from the modifier and function
body. For example, function depart in Figure 2(b) is modeled as the edge from
location exported to location departed in Figure 4.

Generally speaking, there is one edge in Shipment TA for each function of
Shipment contract. However, there are exceptions. For example, function inspect
can update the shipment state from signed to inspected when the inspection is
passed, or from signed to closed alternatively. We introduce an auxiliary variable
inspect_flag to determine which edge to fire. During the transformation, we first
scan the Shipment contract to find if there are multiple assignments for the
shipment state in one function. If so, an assignment for the auxiliary variable is
inserted and transformed in UPPAAL User Function later.

Fig. 4. Overview of TASHC .

A Stakeholder contract is modeled as a Stakeholder TA, where the function
f is modeled as edges between idle and f_called. The statements in functions
are modeled as UPPAAL User Functions, which supports most statements, such
as assignment, for statement, if statement. Time-related statements need to be
modeled in a special way, which is illustrated in Section 3.3. We also introduce
an auxiliary clock waitCLK. It is reset when Stakeholder TA enter location idle,
and should not exceed a constant limit at idle. This way, Stakeholder TA cannot
permanently stay at location idle, so that the liveness properties can be verified
properly.
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Definition 7 (Stakeholder TA). The behavior of Stakeholder contract STC =
(Type,Var ,Var t, Func) is Stakeholder TA TASTC := (L, l0, A,C, V,E, I), where

– L = {n_called|n = f.Name, f ∈ Func} ∪ {idle}.
– l0 = idle.
– A = {chan_n!|n = f.Name, f ∈ Func}.
– C = {tCLK|t ∈ Var t} ∪ {waitCLK}.
– V = Var \Var t.
– for each function f ∈ Func, there are edges from idle to n_called, n =

f.name, s.t. the value of f.Para is selected, the guard is f.Stmtr, the update
resets clocks and trigger the User Function modeled from f .

– for each function f ∈ Func, and each Shipment function g called by f , there
are edges from n_called to idle, s.t. the update resets waitCLK, the action
is chan_m!, m = g.Name.

– I(idle) = {waitCLK ≤ Constant}.

Take the contract shown in Figure 5(a) for example. Consignee contract is
modeled as Consignee TA shown in Figure 5(b), where function receiveShipment
is modeled as edges in Consignee TA in Figure 5(c). In the edge from idle to
receiveShipment_called, the value of parameter received is selected (in the yellow
line), the require statement is examined in guard (in the green line) and the User
Function (see in Figure 5(c)) is triggered in update (in the blue lines). Note that
state is a reserved word in UPPAAL, so we replace it with status in Stakeholder
TA.

For each function of the Shipment contract, there is usually one corresponding
function in the Stakeholder contracts. Consignee contract shown in Figure 5(a)
has an exception, where function receiveShipment can either call functions re-
ceiveShipment or close. When the framework transforms this function to a UP-
PAAL User Function, two auxiliary variable call_close and call_receiveShipment
are introduced and assigned before the corresponding call statements. In this
way, once the marked statements in Figure 5(c) are executed, only the corre-
sponding edge in Figure 5(b) can be fired.

Definition 8 (MariSmart Application NTA). The behavior of a MariS-
mart application MA = (SHC,STC1, STC2, ..., STCn) is modeled with an NTA
NTAMA := TASHC || TASTC1

|| TASTC2
|| ... || TASTCn

with global clocks.

3.3 Dealing with Time

Modeling of time-related statements in smart contract is not as straightforward
as other statements. In Solidity, current time is captured with an unsigned integer
variable block.timestamp. We model block.timestamp and other variables assigned
with it as clocks in UPPAAL. However, clocks cannot be used in UPPAAL User
Functions. Therefore, we need to model the statements that contain time-related
variables in specific ways. Three kinds of such statements need to be modeled
specifically. They are demostrated in Table 1.
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1 contract Consignee is Stakeholder{
2 ...
3 function receiveShipment(
4 uint _UID ,
5 bool received)
6 public override onlyOwner {
7 if (received) {
8 shipments[_UID].

receiveShipment(false);
9 } else {

10 shipments[_UID].close();
11 }}
12 function sign (...) {...}
13 function withdraw (...) {...}
14 function claim (...) {...}
15 }

(a)

(b)

(c)

Fig. 5. An example of modeling Stakeholder contract as TA. (a) Consignee contract;
(b) Consignee TA, some edges are simplified for brevity; (c) User Function modeled
from receiveShipment, where the marked statements determine which edge to fire.

The first kind is assignment statements. When a variable v is assigned with
block.timestamp, the corresponding clock v_CLK is reset to zero in the edge
from location idle to location activity_called. An example is shown in the first
row of Table 1, in which the time-related variable is depart_time.

The second kind is if statements with time-related condition expressions. We
replace such conditions with a set of auxiliary Boolean variables named by
TIMED_CONDITION_#. The rest of the statements are modeled as the UP-
PAAL User Function. The value of each condition expression is arbitrary, and all
possible values are modeled as guard conditions of separate edges from location
idle to location activity_called. Take function arrive in the second row of Ta-
ble 1 for example, we split the edge from location idle to location arrive_called
into two, denoting the two possible value of TIMED_CONDITION_0 accord-
ingly. For functions that include multiple time-related condition expressions, all
combinations of their possible values are modeled similarly.

The third kind is require statements. Time-related require statements are
modeled as guards of the edge from location idle to location activity_called.
For example in the third row of Table 1, the require statements in modifier
pre_receive is modeled as the guard in TA. Notably, the clock arrive_timeCLK
is equivalent to block.timestamp-arrive_time, so we transform the third require
statement to arrive_timeCLK<=receive_valid.

4 Requirement Extraction and Formalization

In this section, we introduce how we collect and extract functionality and legality
requirements and how to formalize them. The collected requirements can be
checked with one-button verification in our framework.
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Table 1. Modeling time-related statements.

Time-Related Statements Transitions in TA

function depart () external virtual
override pre_depart{

internalTransfer(consignee , shipper ,
down_payment);

depart_time = block.timestamp;
state = State.departed;
emit ShipmentDeparted(msg.sender ,

block.timestamp);}

The block.timestamp is assigned to de-
part_time

Reset the corresponding clock named as
function_nameCLK in the Stakeholder TA
(as marked above).

function arrive () external virtual
override pre_arrive {

internalTransfer(shipper , carrier ,
transportation_fee);
arrive_time = block.timestamp;
state = State.arrived;
if (block.timestamp > arrive_date)

{
is_delayed = true;
emit ShipmentArrivedDelayed(

msg.sender , block.
timestamp);

} else emit ShipmentArrivedInTime(
msg.sender , block.timestamp);}

The block.timestamp is used in a con-
dition expression block.timestamp >
arrive_date.

// UPPAAL User Function:
void arrive (){

balances[shipper] -=
transportation_fee;

balances[carrier] +=
transportation_fee;

status = status_arrived;
if(TIMED_CONDITION_0){

is_delayed = true ;}}

Replace the expression with a Boolean
variable, and assign it with all possible
values in separate edges (as marked above).

modifier pre_receiveShipment () virtual
override {

require(msg.sender == consignee);
require(state == State.imported);
require(block.timestamp <=

arrive_time + receive_valid);
_;}

The third require statement contains
both block.timestamp and a time-related
variable arrive_time.

Note that arrive_timeCLK is equiv-
alent to block.timestamp-arrive_time.
Reshape the expression and insert it
into the guard of the edge (as marked
above).

4.1 Functionality Requirement

Functionality requirements are mainly collected from research papers [9,19,23,33]
and reports [21,22]. They are divided into three kinds.

The first kind of functionality requirements is about workflow, listed as Re-
quirement 1 to 6 in Table 2. They depict the order and dependence of transporta-
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tion activities. For example, Requirement 1 requires that Shipment contract to
be created before any other activity takes place.

Basically, properties of something always happens are modeled as safety prop-
erties such as A□ β, while properties of something will eventually happen are
modeled as liveness properties such as A♢ β or β1 −→ β2. For example, Require-
ment 6 ‘Shipment will eventually close’ are modeled as A♢ Shipment.closed,
where Shipment.closed denotes that Shipment TA is at Location closed.

For Requirements 1 to 3, we introduce a set of auxiliary Boolean variables like
already_create to trace previous activities. They are initiated as false, and are set
to be true when the corresponding activity takes place. Moreover, conjunctions
of locations are abstracted in Requirement 1 to 3 for conciseness. Please refer to
the repository in [42] for full formulas.

The second kind of functionality requirements is about the payment system.
In the MariSmart application, stakeholders first deposit Ethers (the currency
of Ethereum) into the Shipment contract and withdraw them after the order
is closed. During the transportation, the transferring between stakeholders is
implemented as editing their balances instead of calling send or transfer. We
collect the safety and correctness requirements of such balances as Requirement
7 to 10.

Formalizing these requirements is similar to the workflow requirements, ex-
cept that a new auxiliary array net is introduced to trace the net income for the
shipment contract (denoted by net[0]) and stakeholders (denoted by net[1–6]).
The values of net are set to zero at the beginning, and are updated when the
corresponding stakeholders pay or receive Ethers. With array net, we can check
whether the balances correctly record the transferring results.

The third kind of functionality requirements is about handling accidents and
compensation, including Requirement 11 to 16. Accidents include delayed arrival,
shipment loss and damage. A MariSmart application should correctly record
them and process the compensation.

We introduce clocks block_timestamp and arrive_timeCLK while formaliz-
ing the third kind of requirements. Clock block_timestamp is set to zero at the
beginning. Clock arrive_timeCLK is set to zero when the carrier arrives.

4.2 Legality Requirement

We focus on two typical issues in maritime laws, namely compensation and
rearrangement. We collect the legality requirements from Hamburg Rules [40],
which was signed in 1978 and has been adopted by 35 countries, and Maritime
Codes of PRC. [1]. They are listed as Requirement 17 to 26 in Table 2.

When accidents occur, compensation is usually claimed by the Shipper or
Consignee, and paid by the Carrier. The amount of the compensation and time
period to claim for it are specified differently in maritime laws.

Take Hamburg Rules [40] as example, we extract Requirement 17 and 19
according to Paragraph 1(a) of Article 6 in [40], which writes ‘The liability of
the carrier for loss resulting from loss of or damage to goods according to the
provisions of article 5 is limited to an amount equivalent to 835 units of account
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per package or other shipping unit or 2.5 units of account per kilogram of gross
weight of the goods lost or damaged, whichever is the higher.’ Note that the
units in this paragraph is defined as special drawing right (SDR) in Paragraph
1 of Article 26.

Similarly, we extract Requirement 18 on compensation for loss of delay, ac-
cording to Paragraph 1(b) of Article 6 in [40]. For period in which consignee
should claim for compensation, we extract Requirement 20 from Paragraph 2 of
Article 19.

When the consignee fails to receive the shipment within a specific period
after arrival, the carrier is permitted to resell or auction the shipment, which
we denote as rearrangement issues. In Maritime Code of the People’s Republic
of China [1], for example, it rephrases in Article 88, ‘If the goods under lien in
accordance with the provisions of Article 87 of this Code have not been taken
delivery of within 60 days from the next day of the ship’s arrival at the port of
discharge, the carrier may apply to the court for an order on selling the goods by
auction; where the goods are perishable or the expenses for keeping such goods
would exceed their value, the carrier may apply for an earlier sale by auction.’
We extract Requirement 26 according to it.

Since all of legality requirements should always be guaranteed, we model
them as safety properties, as is shown in Table 2.

Notably, articles in these two maritime laws share a similar structure, which
makes it convenient to extract and model them. There are only differences on
specific figures between Requirement 17 to 21 from Hamburg Rules, and Re-
quirement 22 to 26 from Maritime Codes of PRC. For example, the period for
claiming for compensation is 15 days in Requirement 20, and it comes to 7 days
in Requirement 25.

5 Experiments

To show the effectiveness and feasibility of our framework, we rewrite 9 real-
world maritime transportation smart contracts to MariSmart application and
verify them. We also compare our framework with two existing tools [30] [43].

We perform the experiments on a Linux server with 32 Cores, 2.90GHz CPU
and 384G RAM. Our tool and all studied MariSmart cases can be accessed
from [2]. We also present a Web application for our framework at [41].

5.1 Case studies on real-world smart contracts

We apply our verification framework on 9 real-world maritime transportation
smart contracts, which are denoted as Medical [3], NFT1 [19], NFT2 [18], Re-
call [35], PPE [34], ShipChain [36], eth-shipment [11], LNG [26] and IoT [23].
Original contracts range from 100 to 500 lines. After modeled as NTA, the scale
of the Shipment TA varies with the complexity of the workflow, and the edges
of Shipment TA range from 6 to 21. The detailed information is included in first
two parts of Table 3.
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Table 2. Requirements and their TCTL formulas.

No. Requirements TCTL Formulas Timed
Functionality Requirement

1 Shipment is always created before any other activi-
ties.

A□ (Any Stakeholder not at idle) imply already_create

2 Stakeholders always sign the shipment before taking
any other activities.

A□ !Shipment.closed and (Any Stakeholder not at idle
or sign_called) imply already_sign

3 Activities on departure side take place before de-
parting.

A□ (Any Stakeholder acts on departure side) imply !al-
ready_depart

4 After departure, the shipment either arrives or is
lost.

Shipment.departed −→ Shipment.lost or Ship-
ment.arrived

5 Activities on destination side take place after arriv-
ing.

A□ (Carrier.rearrange_called
or Consignee.receiveShipment_called
or ImportPortOperator.importShipment_called)
imply already_arrive

6 Shipment will eventually close. A♢ Shipment.closed
7 Stakeholders’ balances are always non-negative. A□ (sum(i:int[1,6])balances[i]) ≥ 0
8 Sum of shipment contract and stakeholders’ net pro-

ceeds is always zero.
A□ (sum(i:int[0,6])net[i]) ==0

9 Sum of stakeholders’ balances is always equal to
Ethers in shipment contract.

A□ (sum(i:int[1,6])balances[i]) == net[0]

10 After closing the shipment, balances will eventually
be withdrawn.

Shipment.closed −→ (forall(i:int[1,6])balances[i]==0)

11 Delayed arrival is recorded correctly. A□ (is_delayed imply block_timestamp > arrive_date)
and (block_timestamp > arrive_date
and arrive_timeCLK==0 imply is_delayed)

!

12 Delayed arrival leads to either claiming for compen-
sation or closing shipment after compensate period

is_delayed −→ Shipment.claimed or Shipment.closed
and arrive_timeCLK>compensation_valid

!

13 Loss of shipment is recorded correctly. A□ (is_lost imply already_reportLoss) and (al-
ready_reportLoss imply is_lost)

14 Shipment loss leads to either claiming for compen-
sation or closing shipment after compensate period

is_lost −→ Shipment.claimed or Shipment.closed and
block_timestamp>arrive_date+compensation_valid

!

15 Damage of shipment is recorded correctly. A□ already_reportDamage imply is_damaged
16 Shipment damage leads to either claiming for com-

pensation or closing shipment after compensate pe-
riod

is_damaged −→ Shipment.claimed or Shipment.closed
and arrive_timeCLK>compensation_valid

!

Legality Requirement
17 Compensation limit is always less than 835 SDR or

2.5 SDR/kg, whichever is the higher. [40]
A□ compensation_limit <835 or
compensation_limit<2.5*weight

18 Compensation actually paid for delay should be less
than 2.5 times of transportation fee. [40]

A□ is_delayed and !is_damaged and !is_lost imply
net[carrier]+balances[carrier]≥transportation_fee*(1-
2.5)

19 Compensation actually paid for loss or damage
should be less than 835 SDR or 2.5 SDR/kg,
whichever is the higher. [40]

A□ (is_damaged or is_lost) imply
(net[carrier]+balances[carrier]≥transportation_fee-835
or net[carrier]+balances[carrier] ≥transportation_fee
-weight*2.5)

20 Consignee should claim for compensation within 15
days after arrival. [40]

A□ Consignee.claim_called imply
receive_timeCLK≤15

!

21 Consignee should receive shipment within 90 days
after arrival, otherwise carrier can resell or auction
it. [40]

A□ Carrier.rearrange_called imply
arrive_timeCLK>90

!

22 Compensation limit is always less than 666.67 SDR
or 2 SDR/kg, whichever is the higher. [1]

A□ compensation_limit<666.67
or compensation_limit<2*weight

23 Compensation actually paid for delay should be less
than transportation fee. [1]

A□ is_delayed and !is_damaged and !is_lost imply
net[carrier]+balances[carrier]≥transportation_fee*(1-1)

24 Compensation actually paid for loss or damage
should be less than 666.67 SDR or 2 SDR/kg,
whichever is the higher. [1]

A□ (is_damaged or is_lost) imply
(net[carrier]+balances[carrier]≥transportation_fee-
666.67 or net[carrier]+balances[carrier]≥
transportation_fee-weight*2)

25 Consignee should claim for compensation within 7
days after arrival. [1]

A□ Consignee.claim_called imply receive_timeCLK≤7 !

26 Consignee should receive shipment within 60 days
after arrival, otherwise carrier can resell or auction
it. [1]

A□ Carrier.rearrange_called imply
arrive_timeCLK>60

!

∗ SDR denotes Special Drawing Right.
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Table 3. Experimental results.

Case Medical NFT1 NFT2 Recall PPE ShipChain eth-shipment LNG IoT
Code Lines of Original Smart Contract

# 210 521 325 252 125 130 193 111 229
Edges in Shipment TA

# 13 13 11 9 6 7 9 21 18
Verification Result

Requirement result time result time result time result time result time result time result time result time result time
1 % 1 ! 8470 ! 9 ! 255 ! 600 % 1 ! 28 ! 542 ! 779
2 % 0 % 1 ! 8 % 1 % 4 % 0 ! 28 ! 546 ! 776
3 ! 528 ! 9243 ! 7 ! 256 ! 675 % 1 ! 28 ! 586 ! 769
4 % 2 % 8 % 3 - - - - % 0 ! 45 ! 590 ! 871
5 ! 470 % 0 % 3 - - - - ! 0 ! 29 ! 554 ! 774
6 % 1 % 1 ! 2 % 5 % 3 ! 1 ! 48 ! 13 % 203
7 ! 656 ! 7465 ! 8 ! 208 ! 542 ! 0 ! 29 ! 514 ! 785
8 ! 578 ! 7724 ! 9 ! 218 ! 628 ! 0 ! 29 ! 527 ! 787
9 ! 628 ! 6790 ! 7 ! 184 ! 532 ! 0 ! 29 ! 576 ! 782
10 % 1 % 2 ! 23 % 6 % 29 % 1 % 2 ! 2079 ! 1266
11 % 1 ! 9083 ! 8 ! 234 ! 642 % 1 ! 29 ! 580 ! 776
12 - - - - - - - - - - - - - - ! 623 ! 878
13 - - ! 7727 ! 8 ! 202 ! 594 ! 1 ! 30 ! 732 ! 798
14 - - - - - - - - - - - - - - ! 564 ! 878
15 - - ! 7803 ! 8 ! 222 ! 544 ! 1 ! 28 ! 530 ! 798
16 - - - - - - - - - - - - - - ! 639 ! 904
17 - - - - - - - - - - - - - - ! 583 % 155
18 - - - - - - - - - - - - - - % 37 ! 784
19 - - - - - - - - - - - - - - % 76 ! 775
20 - - ! 8943 ! 7 ! 192 ! 604 ! 1 ! 30 ! 622 ! 780
21 - - % 0 ! 7 ! 190 ! 577 ! 0 ! 30 % 42 ! 807
22 - - - - - - - - - - - - - - ! 605 % 141
23 - - - - - - - - - - - - - - % 42 ! 819
24 - - - - - - - - - - - - - - % 73 ! 790
25 - - ! 7958 ! 8 ! 209 ! 539 ! 1 ! 27 ! 530 ! 786
26 - - % 1 ! 8 ! 208 ! 558 ! 1 ! 30 % 46 ! 784

Avg. Passed 572 8121 8 214 586 1 31 627 824
!: satisfied, %: not satisfied, -: not checked, time(ms): verification time, Avg. Passed(ms): average verification time of satisfied requirements.
∗ Execution times are measured in milliseconds (ms).

The experimental results are shown in the third part of Table 3. The sat-
isfied requirements are marked with checkmarks, unsatisfied ones are marked
with crossmarks. When the relevant activity is not included in the case, corre-
sponding requirement is not checked. For example, 7 of 9 cases do not implement
compensation, and the relevant Requirement 17-19 and 22-24 are not checked.

As for functionality, 7 of 9 cases violate at least one requirements of work-
flow. Five cases violate requirement 6, which implies that these smart contract
may be deadlocked. This violation is especially harmful since the funds may be
locked in the Shipment contract. After a closer examination, we find that this
requirement is violated when there are unexpected entrances to the activities,
and strengthening the pre-conditions of these activities may help with this issue.

As for legality requirements, Case IoT violates Requirement 17 and 22, be-
cause it does not specify the limit of compensation. Due to the nature of liquefied
natural gas, Case LNG specifically assigns the limit of compensation and the
time period for reselling. Although it violates 6 relevant legality requirements,
its additional terms are protected by the laws, and should be deemed as legal.
As for the rest of the cases, compensation and reselling are not implemented,
thus relevant requirements are not checked.
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Since the unsatisfied requirements take much shorter time than the satisfied
ones, we evaluate the efficiency of our framework through the average time for
satisfied requirements. The verification time is mainly influenced by the range
and number of parameters. Number of edges in Shipment TA and code lines
of the original contract may influence the verification time. For example, Case
NFT1 [19] and Case NFT2 [18] are implemented by the same team, and share a
similar workflow. However, the pre-condition of activity rearrange of Case NFT1
is too weak, so that the Shipment TA contains more edges and the verification
time is about 100 times than Case NFT2.

The complexity of the requirements may also influence the verification time,
as Requirement 10 takes longer time than others. It is influenced by the com-
plexity of the TCTL formulas, and the optimization in UPPAAL.

5.2 Comparison with VeriSolid and mvSC

We compare our framework against two verification tools, VeriSolid [30] and
mvSC [43], since they both deal with time and can verify customized proper-
ties. VeriSolid transforms model-based Solidity contracts as transition systems,
and verifies them in nuXmv [15]. VeriSolid applies abstraction to time variables,
where time-guarded transitions are specially modeled. mvSC models smart con-
tracts as NTA and verifies them in UPPAAL. Both works consider time in mod-
eling, and are similar to our approach.

Both tools verify a single contract only, so we simplify the Case Medical and
verify the Property 1-11 with them. The result is shown in Table 4. It can be
observed that our framework can deal with a wider range of properties than
VeriSolid, and runs significantly faster than mvSC.

Table 4. Comparison with VeriSolid [30] and mvSC [43]

Tool MariSmart VeriSolid mvSC
Requirement result time(s) result time(s) result time(s)

1 % 0.001 % <10 ! 1503.558
2 % 0.000 % <10 % 0.001
3 ! 0.528 ! <10 ! 1611.017
4 % 0.002 % <10 % 0.001
5 ! 0.47 ! <10 ! 1429.493
6 % 0.001 % <10 % 0.001
7 ! 0.656 - - ! 1585.734
8 ! 0.578 - - ! 1520.306
9 ! 0.628 - - ! 1605.873
10 % 0.001 - - % 0.000
11 % 0.001 - - % 0.001

VeriSolid can only verify Property 1-6, since it only takes calling a function
or statement as propositional formula, while specifying the value of variables is
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not supported. As for verification time, VeriSolid does not record verification
time originally. Since it is built as a Web application, it is unfair to calculate
the entire runtime including waiting for pages to respond. Basically speaking,
all verification can be finished within 10 seconds.

The tool mvSC models smart contracts as NTAs, where functions are modeled
as TAs and statements are modeled as edges. Compared to our framework, the
NTA generated by mvSC contains more transitions, so that the verification time
significantly increases. As for verification results, only the result of Property 1 is
different to the other two. This is because mvSC only supports single contract,
and requires to call the constructor prior to any other functions. Due to the
limitations of mvSC, the counterexample in the other two tools are excluded,
such that the Stakeholder contracts trigger before the shipment creation.

6 Related Work

Formal methods used in smart contract verification [39] mainly include model
checking based techniques [13] [8] [30] [4] [43] and theorem proving based tech-
niques [24] [7].

Hirai [24] formalized the EVM semantics in theorem prover Isabelle/HOL
and manually proved safety properties. Da et al. [25] proposed a tool that au-
tomatically translates Michelson contract [20] to WhyML, and verifies them in
Why3. As in [7], Amani et al. extended an existing EVM formalisation in Is-
abelle/HOL. Approaches based on theorem proving usually take EVM bytecode
or other low level code as input. Most of them are performed manually, which
requires users to be experts of theorem proving. By contrast, our framework
automatically models the smart contracts so that users are free from writing
formal properties.

Bai et al. [8] verified template-based smart contracts with the model checker
SPIN [31]. Compared to our work, the template designed in [8] is highly ab-
stract and only defines basic interactions between two contract parties. Users
of [8] have to pay more effort to develop specific smart contracts for their busi-
ness. As for verification, [8] only discusses an approach to verify smart contract
with SPIN, and performs a case study manually. No automated framework is in-
volved. Alqahtani et al. [4] modeled smart contracts as a finite state machine and
checked the requirements in NuSMV [16]. [4] mainly proves the feasibility of the
approach yet with little automation. FsolidM [29] is a framework for designing
Ethereum smart contracts. The same team further proposed VeriSolid [30] based
on FSolidM. This tool first generates augmented transition system, then trans-
forms it into BIP [10] transition system, and finally verifies it with nuXmv [15].
Zhao et al. [43] proposed an approach to verify smart contracts with UPPAAL,
especially the contracts with time constraints. Comparing to our work, [43] mod-
els each statement as one edge, which results in a larger amount of locations and
transitions, and also a longer time for verification. Most of the works require users
to write formal properties manually, while our framework can verify important
domain-specific requirements automatically.
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7 Conclusion

In this paper, we have proposed an automatic verification framework for template-
based smart contracts and requirements specific to maritime transportation do-
main. The collected requirements can be checked with one-button verification in
our framework. The effectiveness and the feasibility of our verification framework
are shown by the experimental results on nine real-world smart contracts. Com-
pared to existing works, our approach can verify a wider range of domain-specific
requirements within a reasonable time.

Due to the limitation of UPPAAL, the syntax of input smart contracts is
limited. For example, the random generator function keccak is not supported by
the framework. In the future, we will expand the range of which the framework
can process, and extend the framework to a broader domain.
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