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Abstract—Multi-rate digital signal processing (DSP) algo-
rithms are often modeled with synchronous dataflow graphs
(SDFGs). A lower iteration period implies a faster executia
of a DSP algorithm. Retiming is a simple but dficient graph
transformation technique for performance optimization, which
can decrease the iteration period without #fecting functionality.
In this paper, we deal with two problems: feasible retiming —
retiming an SDFG to meet a given iteration period constraint
and optimal retiming — retiming an SDFG to achieve the
smallest iteration period. We present a novel algorithm for
feasible retiming and based on that one, a new algorithm for
optimal retiming, and prove their correctness. Both method
work directly on SDFGs, without explicitly converting them to
their equivalent homogeneous SDFGs (HSDFGs). Experimerita
results show that our methods give a significant improvement
compared to the earlier methods.

Index Terms—retiming, multi-rate digital signal processing,
synchronous dataflow graphs, iteration period, optimizaton
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Fig. 1. (a) The SDFG modeSAof a simplified spectrum analyzer, where

the sample rates are omitted when they are 1; (b) the periggfiedule of

Data-driven execution and real-time requirements are twg* (¢) the schedule with prologue.

important features of digital signal processing (DSP) eayrst

Dataflow models of computation are widely used to represe
DSP applications. Each node (also called actor) in such
model represents a computation or function and each ed

models a FIFO channel. One of the most useful dataflow m
els for designing multi-rate DSP algorithms agnchronous
dataflow graphgSDFGSs) [1], also callednulti-rate dataflow
graphs The sample rates of actors of an SDFG mafjedi

The graphSSAin Fig. 1(a), for example, is an SDFG mode

of a simplified spectrum analyzer [2], [3].

DSP algorithms are often repetitive. Execution of all th

computations for the required number of times is referreakto

an iteration. A DSP algorithm repeats iterations periodically.
An iteration of SSAin Fig. 1(a), for example, includes 16

executions, often calledirings in dataflow, of actorA, 4

firings of E and 1 firing of all other actors. Actor firings

synchronize througldelaysor tokens shown with annotated
bars in Fig. 1(a). ActoB, for example, needs 16 tokens fro
edge(A, B) and 1 from(F, B) to fire, and produces 16 token
on (B, C). Theiteration periodof an SDFG is the least time
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rT;period, designers have to repeat the procedure again. An

rrétquired for executing one iteration of a DSP algorithm [4].

THe iteration period 0§SA for example, is 5 as shown by the
ffiodic schedule of Fig. 1(b). The data dependencies among
actorsF, B andC imply that the iteration period d8SAcannot

be lower than 5 no matter which periodic schedule is used.
That is because the iteration period of a dataflow graph is
'imited by its topology, the computation time of its actors,
and the delay distribution. Thaelay distributionindicates the
numbers of initial tokens on edges of the SDFG. To decrease
fhe iteration period and speed up a DSP algorithm, we need
therefore to change any of these three factors.

Restructuring an SDFG or rewriting functions of actors to
adjust the computation time involves redesign of the whole
model, which may need mucHftert, e.g. to verify the cor-
rectness of each actor and the functional correctness of the
restructured model. If the new model still has a high itemati

optimization method that preserves the functionality of th
original SDFG is a preferred choice. Redistributing delaf/s
an SDFG provides an opportunity to do so.

Consider the SDFG&SAIn Fig. 1(a) again. A schedule of
SSAwith prologue, shown in Fig. 1(c), consists of some initial
actor firings followed by iterations whose execution time is
shorter than the iteration period 86A Executing the prologue
of SSA that is, firing actorA 16 times, and firingD, F and
B once, respectively, leads to the graph in Fig. 2(a), whose
delays are redistributed and whose iteration period isaedu
to 3, as its periodic schedule, Fig. 2(b), shows.

Fig. 2(a) is in fact a graph obtained bgtiming SSAIn
Fig. 1(a), and it is called a retimed graph®8BA Retiming is



. A there exist feasible retimings for the input, whether it is
: guaranteed to find one.

4) Whether the termination condition of the method is
sharp. Sharpness of the termination condition means
that the algorithm terminates once a conclusion can be
drawn, so that no redundant work is performed.

Time O'Neil et al. [3] propose a feasible retiming method that
computes the retiming function directly on SDFGs, but the
(a) () computation for the iteration period is still on HSDFGs. $hu
the method still needs to convert an SDFG to an HSDFG.
Fig. 2. (a) A retimed equivalent graph 8SA (b) the periodic schedule of The method is sficient but not necessary. Our experimental
the retimedSSA I
results show that the method fails in some cases. The method
in [14] for feasible retiming computes both the iteratiomipe

a graph transformation technique that only changes thqdef’a{'d retiming furr:_ctionbon SDFGs _and .it is_fﬁuienlt. But the
distribution of a graph, while it has ndfect on its function- paper says nothing about necessity. Liveris et al. [15]qres

ality [5]. A retiming functionspecifies the firings required to@n _o%timaclj reti.mi.ng rf‘nethpd that comput(ta)s b_Otg the iter?jtior;
redistribute the delays. Retiming is originally applied[5] period and retiming function on SDFGs but it does not dea

to reduce the iteration period dfomogeneous sync:hronou%’ith the feasible_ retiming prablem, although of course .in ca
dataflow graphgHSDFGSs), which is a special type of SDFGs. € ac_:lz_;tpted stralghtforwa_ro_lly. They use a com_plex ter_rm_natl
Retiming can also be used to optimize algorithms accordiff ndition and prove th"?‘t Itis ﬁf}n|ent for an qpfumal retiming
to other criteria, such as minimizing the memory usage [Z]; be fc_)und, but no ewdenpe is given that 't. IS sha_rp._
extending the vectorization capabilities [6], and dedreps "_1 this paper, we deal Wlt.h both the feasible retiming and
power consumption [7]. A great deal of research has been d élmal re“m'“g pFOb'emS directly on S.DFGS and address all
on retiming in the context of HSDFGs [5], [8], [9], [10], [11] above-mentioned issues. Our contributions are as f(.)IIows..
Different from an HSDFG. however, an iteration of an 1) We present a new method to compute the iteration period

SDFG may execute actors more than once and fiéerdnt of an SDFG. : - .

number of times. This invalidates many results derived for 2) _W_e presen_t a feasible retiming aIgo_nthm and_prove that

HSDFGs and complicates the analysis of retiming properties Itis a s@ment ar.u_j necessary solution and with a sharp

of SDFGs. Nevertheless, somfats have been made. Some termination condltlc_)n. - .

important properties of retiming on SDFGs, such as funetion 3) We present_ an optlmallretlmlng algorithm baseq on the

equivalence and reachability, were proven in [12] and [2]. fea3|_b!e retiming algorithm, with a sharp termination
When retiming is used to reduce the iteration period of an cond|t|or?. . :

SDFG, we can distinguish two problems: the first one is aFOr evaluating the f‘ﬁmency of our new algont_hms and

decision problem, checking whethefemsible retimingf the other related methods, we implemented them N the open

SDFG exists so that the retimed graph has an iteration perﬁ)%ur.ce tool SDF3. [16].' The methods_ for feasible retim-

of at most a given value; the second one is an optimizati in our comparison include the traditional method [13],

o : L HSDF’, O'Neil's algorithm [3], ‘O’Neil01’, the method
problem, finding aroptimal retimingof the SDFG so that the . y . X ) )
retimed graph has an iteration period as small as possible.In [14], "Zhu10', and our new method, 'SdfFEAS'. The meth-

o . . qds for optimal retiming include Liveris's algorithm [15] ,
The traditional way to solve these problems is to firs iveris07’, and our new method, ‘sdfOPT’. The experimdnta
convert the SDFG to its equivalent HSDFG and then tg ' ' ' P

use the available methods for HSDFGs [13]. TheoreticallreSUItS’ based on hundreds of synthetic SDFGs and several

L . . Yealistic SDFG models, show that our new methods lead to a
this is always possible. However, converting an SDFG to an__... . :
! . .Significant improvement compared to earlier methods.
HSDFG may increase the problem size tremendously and it : . . : .
he remainder is organized as follows. We first describe

very time-consuming when SDFGs scale up. The size of the

HSDFG can be exponentially larger than the original SDF € main relevant con_cepts N Se_c'uon l!' The basic ideas _Of
. our new methods are introduced in Section Il and the details
in extreme cases [12].

are illustrated in Sections IV to VI. Section VIl provides an

We focus in this paper on methods that directly work op : - ; -
) . erimental evaluation. Finally, Section VIII concludes
SDFGs without converting them to HSDFGs. Issues that nee>c(ip 4

to be considered for a correct anfligent feasiblgoptimal Il. PRELIMINARIES
retiming method include:

Actor firings

In this section, we introduce the main concepts and nota-
1) Whether the iteration period is computed directly otions used in the paper, mainly including synchronous datafl

SDFGs. graphs (the model we use), iteration period (the goal we try
2) Whether the retiming function is computed directly oo optimize), and retiming (the technique we use).
SDFGs.

3) Whether a feasible retiming method isffstient and A- Synchronous Dataflow Graphs
necessary. That is, when an algorithm returns a retimingefinition 1. A synchronous dataflow gragl§DFG) is a finite
whether it is a feasible retiming for the input, and ifdirected multigraplG = (V, E, t,d, prd, cns, in which



« V is the set of actors, modeling the functional elements An SDFG is sample-rate inconsistent if there is no nonzero
of the system. Each actor € V is weighted with its solution for its balance equations. Any execution of an imco
computation time(v), a nonnegative integer; sistent SDFG will result in deadlock or unbounded memory.

. Eis the set of_d|rected edges, modeling mtercqnnecuop,sr,operty 2. [1] A live SDFG is boundedf and only if it is
between functional elements. Each edgeE is weighted sample-rate consistent
with three propertiesd(e), the number of initial tokens '
associated witle; prd(e), a positive integer that represents Property 2 gives a necessary andfisient condition for
the number of tokens produced orgdy each execution boundedness. We consider a necessary afficdismt condition
of the source actor o& cnge), a positive integer that for liveness in the next subsection.
represents the number of tokens consumed fedayeach
execution of the sink actor & These numbers are alsog Equivalent HSDFG

called thedelay, production rateand consumption rate i
respectively. The source actor and sink actoe afE are A sample-rate consistent SDFG can always be converted to

denoted asrc(e) andsnKe), respectively. an equiya_lent HSDFG, vyhich captures the dqta depend_encies
among firings of actors in the original SDFG in an iteration.
We represent the edgewith source actou and sink actor  In an iteration of an SDF®, each actow fires g(v) times.
v mostly bye = (u,v), and bye = (u, v, k), wherek numbers We can map thé" firing of v to an actor, i) in its equivalent
the edges connectingto v, only when distinguishing dierent HSDFG. Each edge = (u, v) in G hasg(v)cnge) instances in
edges between two actors is necessary. The set of incoming HSDFG. For each actor() in the equivalent HSDFG,
edges tov € V is denoted byinE(v), and the set of outgoing the {, j)s to which it is connected are determined by the
edges fromv € V by OutE(v). We usev € G to represent that production and consumption rates and delayseoif there
vis an actor ofG ande € G to represent that is an edge of are delays o, they are always consumed by initial firings of
G. Note that for technical reasons explained later, we allow For example, there is one delay on the ed§eB) of G; in
d(e) to be negative. Ilfprd(e) = cnge) = 1 for eache € E, Fig. 3(a). According to the consumption rate(af B), the first
then we say thaG is a homogeneous synchronous dataflowiring of B will consume this initial token and 2 other tokens
graph(HSDFG), also called aingle-rate dataflow grapfWe produced by the first firing oA. These data dependencies map
represent an HSDFG 43, = (V,E, t,d). to its equivalent HSDFG in Fig. 3(b) as two zero-delay edges
A delay distribution of an SDFG is a vector contain-connecting A, 1) and @,1) and one edge connecting, @)
ing delays on all edges of the SDFG, denoted agi(G). and @,1) with one delay.
For example, the delay distribution d8SAin Fig. 1(a) Algorithms for transforming an SDFG to its equivalent
is d(SSA = [0,0,1,0,16,1,0] corresponding to the edgesHSDFG appear in the literature [17], [18]. For developing ou
(A, B), (B, C),(C,D),(D, E), (E, A),(D, F) and (F, A). ideas, we now formalize the transformation as a map.

Applications for signal processing are usually nonterrmin - B
ing. Memory used must be bounded no matter how many tirr?%efm't'on 3. [17] Let G = (V.E,1.d, prd,cn$ be a sample-

they are executed. In order that an SDE®as a well-defined raﬁe consistent SDFG argits repetition vectorH mapsG to

meaning, according to [1], we place restrictions on it: its equivalent HSDFGH(G) = (V', B, U, d') as follows:

3-1. For eachv € V andi € [1,q(V)], there is an actor
VS1. d(e) > O for eachee G. (v,i) € V’ with t'(v, i) = t(v);

VS2. G is boundedBoundednesmeans that, if infinite execu- 3.5 For eache = (u,v) € E, i € [1,q(u)], k € [1, prd(e)],
tion sequences exist, then there are some for which thgy
number of tokens on every edge is always finite. :

VS3. G is live. Livenessmeans that there is no execution j= {((' — Lprd(e) + (k- 1) + d(€)) mod cns(e)q(v)J +1,
sequence leading to a deadlock. cnge)

An SDFG that satisfies conditions VS1, VS2, and VS3 isthere is an edge’ = {(u,i), (v, j),k) € E” with

valid SDFG , (i — Dprd(e) + (k— 1) + d(e)
An SDFG G is sample-rate consistenf there exists a d'(e) = cnge)q(v) :
positive integer vectoq(V) such that for each edgee G, wi) ©) it theit heith 1 .
For (v,i) € H(G), we call it thei™ copy or thei"" firing o
(sro(e)) x prd(€) = q(snke) x cnge). (1) ot J

v € G; we calli the label of (v,i). As described later, only

where (1) is called &alance equationThe smallestis called the edges with zero delays in an HSDFG are of interest in

the repetition vector{1]. We useq to represent the repetition our methods. According to Definition 3-&, is nondecreasing

vector directly. Oneteration of an SDFGG is an execution with k. Therefore, for an equivalent HSDFG of a valid SDFG,

sequence in which each actoin G occurs exactly(v) times. if there exist edges between the actouwsi) and ¢, j) with
Take the SDFGSSAIn Fig. 1(a) for example. For each edgezero delays, then the eddéu, i), (v, j), ko), wherekg is the

e, its prd(e), cnge) that are not equal to 1 and ite) are lowest value among the edges betweean)(and §, j), has

labeled one. The computation time vectdr=[1,1,2,1,1,2]. zero delays. For conciseness, we (&ei), (v, j)) to represent

A balance equation can be constructed for each edge. &y,i), (v, j). ko) in the following description.

solving these balance equations, we §8ts repetition vector A path in a graph is a sequence of actors and edges,

g=1[16,1,1,1,4,1]. containing no actor twice except, possibly, the first and las



I f Acior] .1 9 possible finish time of, denoted by the entry/(v) of vectorT,
(B——®)——(©) 5 [1]2 determined by the maximal computation time of all maximal
N et c [1]3 zero-delay paths te:

T(V) - pemgyzallj)l(?tcﬁv) t( p).

@ | 3=
3
w

Tl1]z2]z For example, there are two maximal zero-delay path8t@)
Al2|3 |6 in Fig. 3(b), P, already given before, and

B 3 7

c|l1]a]s P2:(C.1)— (A 2)— (B 2)

- ThenT (B, 2) = maxXt(P1), t(P2)} = t(P1) = 7.

Bdge with one delay The iteration period (IP) of Gy, IP(Gp), is the maximum

earliest completion time of all actors [20]:
IP(Gp) = maxT(v).
veGy

For Fig. 3(b), for example, the maximal earliest completion
time is T(B, 2) = 7, which givesIP(H(Gy)) = 7.

actors. A path isrivial if it includes only a single actor without An SDFG allows each actor to be executed more than once
edges. Acycleis a nontrivial path that begins and ends at th@er iteration, and two actors are not required to execute the
same actor. We extend the delay functibof an HSDFG from Same number of times in an iteration. Therefore, its iterati

single edges to arbitrary nontrivial paths. For any path period cannot be defined as straightforwardly as that of an
HSDFG. However, since an SDFG and H(G) express the
_ ) _ identical behavior, we can use the definition for the HSDFG.
in the HSDFG, itspath delayis the sum of the delays of thegq, gn actor ;i) in H(G), T(v,i) is the earliest completion

edges in the path: . time of theit firing of v in G, then the maximum oT (v, i)s
d(p) = Zd(e.). is the IP ofG:
=

- IP(G) =IP(H(G))= max T(Vi).
If d(p) = 0, then we sayp is a zero-delay pathe.g., the : VeGelLa)] ; -
AW T ’ For example, according to this definition, the iterationiqer
path in Fig. 3(b): of G; in Fig. 3(a) is also 7. For conciseness, we 04g, i)
P1:(A1)—(B,1)—>(C.2)— (A3)— (B2). rather thanT ((v,i)) as the entry off.
Similarly, we define thepath computation timef p as the  Intuitively, for an actorv in an SDFGG, T(v,i) is the
sum of the computation times of the actors in the path completion time of tha™ firing of v in a self-timed execu-
n tion [21] [22] of one iteration of. It is easy to see that a later
t(p) = Zt("i)' firing of v cannot start before an earlier firing, and therefore

i=0 ) .
To check if a sample-rate consistent SDFG is live, qwpannot complete before it. That is,

methods exist. One is to construct a single-processor sthed 1 (-1) < T(v, J) fori <. )

for one iteration of the SDFG,; if such a schedule exists, then

the SDFG is live [1]. Another way is to check if a zero-delaf?. Retiming

cycle in its equivalent HSDFG exists; if not, then it is liE9]. Retiming is a graph transformation that redistributes the

graph’s delays while its functionality remains unchanged.

Retiming can be defined either in a forward fashion, by which

retiming an actor once means firing this actor once [2] [3],
By inserting precedence constraints with a finite number ef in a backward fashion, by which retiming an actor once

delays between the source and sink actors of an SDFG, orfigans reversed firing this actor once [5] [15] [14]. The two

dividing the SDFG into strongly connected components, a@yproaches to retiming are equivalent, in the sense that any

SDFG can be converted to a strongly connected graph [5], [Z&timed graph can be obtained through both a forward retjmin

We therefore only consider strongly connected graphs whand a backward retiming. We try to shorten zero-delay paths

developing our ideas. Our methods can also be applied f§f retiming with a backward strategy, like [5], so the latter

(h)

Fig. 3. (a) The SDFGS5y; (b) its equivalent HSDFGH(G1) and T.

e e en
P:Vvo—Vi— ... >V

Property 4. [19] A sample-rate consistent SDFGis live if
and only if there is no zero-delay cycle id(G).

weakly connected graphs as we show in Section VII. definition is used in this paper.
Given an SDFGG = (V, E,t,d, prd, cn9, a retiming of G
C. lteration Period is a functionr : V — Z, specifying a transformation of G

One iteration of an HSDFG is an execution in which eadﬂto anew SDFG(G) = (V,E,t,d;, prd, cns, where the delay-

. . . e .
actor occurs exactlpnce The iteration period of an HSDFG functiond; is defined for each edge— v by the equation:
essentially corresponds to the clock period of a circuit [5] dr(e) = d(e) + cnge)r(v) — prd(e)r(u). 3)

A maximal zero-delay patto an actowv of an HSDFG isa A retimingr of a valid SDFGG is legalif the retimed graph
zero-delay path whose first actor has no zero-delay incomin@) is a valid SDFG. It is sfiicient to check ifr (G) satisfies
edges and whose last actor ¥s We usemaxZDPtdv) to VS1to ensure that a retiming is legal [14].
represent the set of maximal zero-delay paths to an actor Given a valid SDFGG and a desired iteration period — a
The earliest completion timef eachv € G, is the earliest nonnegative integetip, a retimingr of G is afeasible retiming



if r(G) is valid andIP(r(G)) < dip. We say thatip is afeasible

IP of G or dip is feasible forG if a feasible retiming exists
for G with dip. Fig. 2(a), for example, is the retimed graph of
Fig. 1(a) obtained by the feasible retimiRg = [0, 0, 4,0, 1, 0],

or equivalentlyR; = [-16,-1,0, -1, 0, —1], with dip= 3. The
first retiming, Ry, corresponds to the reversed firings of the
andE actor, whereaR; captures the ‘forward’ prologue given

W: B—=C—B—C
W) 12— 34

W A—B—C
H(Wali): 5— 6— 7

/\ — Critical elements in W,
|:| — Critical elements in W,

in Fig. 1(c), leading to negative entries to the function. e L ) e e
An optimal retiming rof G is a feasible retiming to make Als|a
IP(r(G)) as small as possible. We call such E{(r(G)) the E : }. | o j | 1
optimal iteration period(optIP) of G. - '
T 1 2 3 4 <]
A = 5
I1l. Basic IpEa oF Our METHODS B|l1|1]6)|6]68
@ 2zl 2777

The underlying idea of our study is to make use of the inter-
relation between an SDFG and its equivalent HSDFG. Liver,ng. 4. Example to show properties of critical walks, whigh = 5. t(B) = 1
et al. [15] were the first to explore the relation between amdt(C) = 1; edges with delays in HSDFGs are omited.
SDFG and its equivalent HSDFG to achieve higiicgency in
retiming SDFGs. We further elaborate on this inter-retatio )
Our methods attempt to find certain walks through the SDFggcause of the equivalence & and H(G), IP(G) can be
that do not contain dficient delays to allow the requiredcomputed with only a part of. Liveris07 and Zhu10 use this
actor firings for one iteration. Awalk is a sequence of method. Taking into account the relationship betw&and
actors and edges. In contrast to paths, there may be repe&téd). only a part ofT that includes the maximum among the
actors or edges in a walk. In the SDFG, these walks mayV.i)s for eachvin G is computed to get the IP.
or may not have delays, but in the equivalent HSDFG, theseVVe show in this section that, without convertingH¢G), by
walks correspond to paths without delays. We refer to the@arching certain walks in the SDR& we can geff (v.i)s of

walks through the SDFG asitical walks Such critical walks SOMe actors ifH(G). We can get the IP and other information
ultimately determine the IP. of T that we use in the next section, from thobg, i)s.

We find the zero-delay paths in the equivalent HSDFG that
are longer than the desired IP by going through critical wallA. Critical Walks
in the SDFG. If we manage to insert a proper number of A zero-delay path irH(G) always corresponds to a walk in
delays to shorten these critical walks, and therefore shoriG, For example, in Fig. 4, the path
those corresponding zer_o-delay paths, without intr_occhin Pi1: (B, 1) — (C,1) — (B,4) — (C,4)
new, longer ones, we will have reduced the IP. This basé%rresponds to walkVy.

procedure is repeated until a feasible retiming has beemdfou A walk in G may map to more than one zero-delay path in

or no improvements are possible anymore. Unlike any earliﬁr(G)_ For example, the wall,, shown in Fig. 4, corresponds

work, we do not use backtracking to get retiming functions to zero-delay pathé ' '

determine the change of delays in the procedure; instead we ]

compute retiming functions according to part of the computa P21:(A.1)— (B.3) — (C.3). and

tion times of critical walks and their subwalks. P22 (A1) — (B,4) - (C.4), and
The solution for finding an optimal retiming is a repetitive  P,3:(A, 1) — (B,5) — (C,5), and

procedure that checks whether a potentially optimal IP is a Pos (A, 2) = (B,5) = (C,5).

feasible IP. Following [15], potentially optimal IPs areettked

. . . d . Similar to paths, we define thealk computation timef w,
decreasingly until we find one that is not feasible.

t(w), as the sum of the computation times of the actore.in

It is easy to see that a walk has the same computation time

IV.- ComMPUTING THE ITERATION PERIOD as all its corresponding paths. Then the computation tine of

According to our definitions in Section 1I.C, the IP of arwalk may cover a set of paths. For examp{€,) = t(W-) for
SDFGG is derived from the earliest completion time vector i = 1,2,3,4,in Fig. 4. On the other hand, a walk may be found
TheT is derived from the maximal zero-delay paths to actoky only searching according to one of these corresponding
in H(G). That is, for each\(i) in H(G), T(v,i) is determined zero-delay paths, as we show below.
by the setmaxZDPtdv, i). - :

One way to compute the IP is to convérto H(G) and then :??rf:mtmn 5 Let G be a valid SDFG an.d the actoasv € G.

; - . . ere exists a zero-delay pafhe H(G):

use Algorithm CP from [5], which is an algorithm computing o _
the completeT and the IP for HSDFGs. This is exactly the P+ (U1 = (Vo.lo) = (va.12) = = (vn, In) = (v. )
method that is used by byHSDF and O’'Neil01. This methd@" Somei € [1,q(u)] and j € [1,q(v)], then
is time and space consuming due to the conversion procedure U=Vo—oVi— -2 Vg=V
from an SDFG to an HSDFG. Another way is to computis called azero-delay reachabl&ZR) walk andv is zero-delay
the IP directly on the SDF& without converting it toH(G). reachablefrom wu.



In p in Definition 5, if v = v; with i # j, thenl; # 1;, be- ZR walk. Then there exists a zero-delay pagttof H(G) as
cause there is no zero-delay cycleHi{G). This is guaranteed described in Theorem 6. We construct a path:
by Property 4. (Vo,15) = (va,17) = -+ = (Vn,I7)

For example, in Fig. 4\, is a ZR walk because there isin H(G) with 7 = 1 and for each e [1,n], I/ is computed

a zero-delay patlfPy; in its equivalent HSDFG. And also all py (4). According to (4)J; is nondecreasing with_;. Since
the subwalks oW, are ZR walks. This example also indicate% < lo, I/ < I; for eachi € [1,n]. And by |; < g(v), we get

that, unlike for a zero-delay path in an HSDFG, even if theqfes a(v). m
are delays on the edges of a walk, it still may be a ZR walk. By Corollary 7, we can find a ZR walw according to one

A ZR walk w of G corresponds to a set of zero-delayath of ZDPof(w). The proof of Corollary 7 also implies that
paths ofH(G), denoted aZDPof(w). Then for each patp in  |abelsl; of abovep are the lowest values among labels of all
ZDPof(w), t(p) = t(w). paths inZDPof(w). That is, for another pathy’ in ZDPof(w)

For an edgee = (u,Vv) in an SDFGG, if lj_; — 1 firings ofu  with labelsl!, we havel; <.
have produced sticient tokens for; — 1 firings of v but not  Further, we only need those ZR walks corresponding to the
sufficient for thel!" firing of v, then the!" firing of vis the first maximalzero-delay paths dfl (G). Those walks can be found
firing that directly depends on th&, firing of u. Therefore by searching only from some of the actossX). If we can
there is a zero-delay edge betweenli(1) and §,1;) in H(G). find actors inG that are enabled in the initial state of the
Whenl;_; -1 firings ofu produce tokens more than the need ajraph, grouped in a s&f, we can begin our search only from
q(v) firings of v, that means only some firings ofin the next these actors. Actors that are not enabled need anothertactor
iteration directly depends on th#, firing of u. So then there fire first, from which there is therefore a zero-delay edge and
is no zero-delay edge fromu,(i_1) to any ¢, j). According to thus a longer zero-delay path. And by tracing back, we can
Definition 3-2 and always choosirig= 1, we get (4) below eventually find a maximal zero-delay path corresponding to a
to model the relation betwedn; andl;; |; is the least label ZR walk beginning with an actor iiG.

f (v, J)s that h -del d fromI(_y). :

of (v, J)s that have zero-delay edges fromi(-,) Theorem 8. [14] Let G = (V,E,t,d,prd,cns be a valid
Theorem 6. [14] Let G be a valid SDFG, andi,v € G. SDFG, andVy = {v € V : Ye € InE(v),d(e) > cnge))}. Then
Thenv is zero-delay reachable fromif and only if there is we have

a path 8-1. Vo # 0; and
P (Vo,lo) = (vi,11) = -+~ = (v, In) 8-2. for eachv € V, there exists a1 € Vo, such thatv is
in H(G), wherevy = u, v, = v, such that for eache [1, n]: zero-delay reachable fromn
I, = {%WJ +1 (4) Theorem 8 further reduces the ZR walks we need to find.
Combining Corollary 7 with Theorem 8, we can conclude that
andl; < q(vi), wheree = (vi_1, Vi) € G. for any pathp € maxZDPtdv,i) for any (,i) € H(G), we

This theorem indicates that for eaghe G, we can find a ¢an find @ ZR walkw by searching from somevq, 1) with
ZR walk according to the above-defingg which is a zero- Vo € Vo according to (4) such thate ZDPof(w), and therefore

delay path inH(G). Since the SDFG is valid and finite, therdW) = I(p). If we find all such walks, which are defined later

is no zero-delay cycle in its equivalent HSDFG. Therefore tif2S critical walks we get the IP.

value ofl; is guaranteed to exceed its correspondj(gnke)) Definition 9. Let G be a valid SDFG and patp € H(G),

in a finite number of steps. with

By Theorem 6, we can find a ZR waik within a subset of P: (Vo lo) = (va, 1) = - = (Vn, In).

ZDPof(w). For example, see Fig. 4, if we search from actdrathp is acritical pathif it satisfies the following conditions:

A andlp = 1 to its next actoB and getl; = 3 < q(B) by (4), - Vo € Vo, as defined above;

going on fromB andl; = 3 to C and get, = 3 < q(C) by (4), « lp =1 and for each € [1,n], |; is defined as in (4), i.el,

we get ZR walkW,. Searching fromA with o = 2 leads is the first firing ofv; that depends on firing_; of vi_y;

to path Po4, which also belongs t@DPof(W,). Fortunately, and

the redundancy in the search can be avoided. Only searching for eache € OutKv,), there is arl,.1 > q(snKe)), where

from lp = 1 guarantees to find all ZR walks, as shown by the |1 is also defined as in (4), i.e., there are no firings of

following corollary. actors connected ta, that depend on firind, of v, in

Corollary 7. Let G be a valid SDFG. Walk the same iteration.
Wove v Sy Corollary 7 and Theorem 8 guarantee that a critical path

ST n of H(G) can be found orG without an explicit conversion

is a ZR walk inG if and only if there exists a path to H(G). From now on, the labd| will be used uniquely for
p:(Vo,lo) = (Vi,11) = -+ = (Vn, 1) critical paths.
in H(G), such that in particulafp = 1 andl; is defined as Definition 10. A ZR walk that has a corresponding path that
in (4) andl; < g(v) for eachi € [1,n]. is a critical path is aritical walk.
Proof: According to Theorem 6, the fiiciency is obvi- We call {,i) anelemenibof a walkw if ve w. Itis in fact an

ous. So we have to prove only the necessity. Supmosea actor in a path of the corresponding HSDFG Mfif is an actor



in acritical pathp of the HSDFG, corresponding to a walk C. Relationship between criT and T

we call {,i) acritical elementin p, orinw. Elements thatare  \yhen we calculate the retiming function in the next section,
not actors in any critical paths arencritical elements. An \ya need to count the numbers of is with T(v,i) > dip for
element may belong to two critical walks and may be critic@achv, denoted asTyp(v). For example, in Fig. 4, latip = 5;

in one buF .not critical in apother. For example, walls and  then there are three copies Bf (B, 3), (B,4) and B, 5), with

W, are critical wa_lks c_)f F|g_. 4. Actor_E{, 4)is an eIe_ment of T(B,i) > 5. SonTs(B) = 3. We show below that we can get

both walks. B,4) is critical inWy butis not critical inWz. . (v) directly fromcriT, althougheriT includes only a part
of T.

B. Computation Times of Critical Walks By the definitions ofcriT and T, for each ¥,i), we have

We use a vectocriT, with the same size aB, to contain criT(v,i) < T(v.i). Itis easy to see that @riT (v, i) > dip, then

the computation times of critical walks and their subwalkg(v’i) > Qip. ,
Let criw(v, |;) represent the set of the critical walks ®fthat ~ -©t ',C”TdiP(_V), € [1.q(v) + 1] be the lowest labeil that has
include @, 1) as a critical element. We denote a prefix subwaf®@i1 (v+1) > dip; if there is no ¢,i) with criT(v,i) > dip then
of a walkw 10V asWly, OF Wi, 1 Vo = V1 — - - — Vi, where !Crleip(v) =q(v) + 1._ Fo_r example, in F|g._4, ledip = 5; 3
(vi, 1;) is critical inw. ThencriT is defined as follows. is the lowest I‘F?‘bel,w'tm'T(B’,') >5 and.ICrlT.g,(B) = 3.
. . For each ¥, j) with j < ICriT gip(V), criT(v, j) < dip. The
-1 (v, i) is noncritical ; " ; ;
criT(v,i) = ’ ’ longest maximal zero-delay pafnto (v, j), which leads to
MaXvecriw(vi) W), (Vi) is critical t(p) = T(V, j), corresponds to a subwalkiy, of a critical
By Theorem 8-2, for any patp € maxZDPtdv, i), we can Walk w that includes \,I") with I” < j. Sincel” <ICriT gip(v),
find a critical walkw that goes through such that ¢, 1;) is a t(Wlwr)) = criT(v,I") < dip. ThereforeT(v, j) < dip. Then

critical element ofw and p € ZDPof(wl,)). So we have: ICriT gip(v) is exactly the lowest labélthat hasT (v, i) > dip.
IP(G) = max criT(v,i). Then aniP(V) can b_e calculated VitCriT gip(v) according to
veGiielL.av] the following equation.
NTaip(V) = q(V) — ICriT gip(V) + 1. (5)

Algorithm 1 sdflP@G)
Input: A valid SDFGG = (V,E, t,d, prd,cng V. FEASIBLE RETIMING
Output: criT andIP

1: Vo ={ve V:VeelnE(v),d(e) > cnge))}

2: YveG,ie[lqV)l, letcriT(v,i)=-1

3: for all veVy do

4:  crit(v,1)=t(v)

5. getNextTyv,1)
6: end for
7
8

This section presents our method for feasible retiming.
Firstly, we show that our method, sdfFEAS, mimics the
steps of the FEAS algorithm in [5], which is proven to be
suficient and necessary for feasible retiming of HSDFGs. An
important observation is that FEAS is not directly appliegb
SDFGs. It can only be applied after converting an SDFG to its
equivalent HSDFG. Our approach works directly on SDFGs. It
mimics the steps of FEAS but does not explicitly construet th
HSDFG. Instead, it implicitly explores the relevant (aréti)
paths in the underlying HSDFG. Mimicking the steps of FEAS

1P = maxevjefiquwy CriT (V. i)
: return IP andcriT
getNextT(, )

o: for all e OutHu) do forms the basis of our correctness argument. Avoiding the
0: I'= L%WJ +1// Equation (4) explicit construction of the HSDFG is crucial for théfieiency

11:  uNext= snke) of our approach. Secondly, in the final subsection of this
12: if I” < q(uNex) then section we provide a sharp termination condition. Thistert

13: if criT(uNextl’) < criT(u,1) + t(uNex) then improves the fiiciency of our approach.

14: criT(uNext!’) = criT(u, 1) + t(uNex)

15: getNext{uNext!’) .

16: end if A. FEAS Algorithm

17:  end if FEAS, with a little adjustment, is shown in Algorithm 2 in
18: end for terms of the notations defined in this paper. Proce@R¢5]

is used to compute th& and IP for an HSDFG. The order
Algorithm 1 computesriT and the IP. It is a variation of a of the lines invokingCP and checking whethdP(G,) < dip
depth-first searciDFS) algorithm. It can also be implementedn Algorithm 2 is diferent from the order in FEAS in [5].
by a breadth-first search strategy. After initializMgandcriT, This doesn’t &ect the correctness of Algorithm 2 but speeds
Algorithm 1 begins its search from each 1) with v € Vy, it up when a feasible retiming exists. Algorithm 2 works by
using the recursive procedugetNextT as a subroutine to relaxation. After initializing the retiming vector as thern
explore critical walks and to compute tloeT. In getNextT vector and an auxiliary variablg, asGy, it computes ther
line 10 is according to (4); lines 12- 17 show a DFS strategnd IP of the original graph. IfiP(Gy) < dip already holds,
for each critical walk; lines 13-14 guarantee that if som#en no further retiming is needed. Otherwise, at eachtitera
element gNextl’) belongs to more than one critical walk,of the outer loop (lines 7-18), it increases each enfxy of
criT(uNext!l’) holds the largest computation time. the retiming vector by 1 whef (v) is larger thandip (the



Algorithm 2 FEAS@Gy, dip) [5] Algorithm 3 sdfFEASG, dip)
Input: A valid HSDFG G, = (V,E,t,d) and a nonnegative Input: A valid SDFGG = (V, E, t,d, prd,cng and a nonneg-

integerdip ative integerdip
Output: A retimingr of Gy, such thatr(Gy) is a valid SDFG Output: A retiming r of G such thatr(G) is a valid SDFG
with IP(r(Gp)) < dip, if such a retiming exists with IP(r(G)) < dip, if such a retiming exists
1 VYveV, letr(v)=0 1 VYveV, letr(v)=0
2: Gy = Gy 2: G =G
3: getT andIP of G; from CP(G;) 3. getcriT andIP of G; from sdfIP(G,)
4: if IP < dip then 4: if IP < dip then
5. return r 5. return r
6: end if 6: end if
7: fori=1to|V|-1do 7: fori=11to Y,vq(v)—1do
g8 forall veV do g8 forall veV do
9: if (T(v) > dip) then 9 getICriT gip(v) from criT
10: r(v)=r(v) +1 10: NTaip(V) = q(v) — ICriT gip(Vv) + 1 // Equation (5)
11: end if 11: r(v) = r(v) + nTaip(V)
12:  end for 12:  end for
13: Gy =r(Gy); 13: G =r(G)
14: getT andIP of G; from CP(G,) 14: getcriT andIP of G, from sdflIR(G,)
15:  if IP < dip then 15:  if IP < dip then
16: return r 16: return r
17:  end if 17:  end if
18: end for 18: end for
19: return false 19: return false

inner loop), trying to shorten those zero-delay paths, tenfo step is computed, fiers. The retiming step may be assigned
aretiming stepthen it transforms the current HSDFG to a newy positive integer larger than 1, whereassBASthe retiming
graph according to this retiming step (line 13) and comphge tstep is always 1. If we consider these two algorithms on
T andIP for the new graph to check whether its IP is not largghe same graph, sagdfFEASG, dip) and FEASH(G), dip),
thandip; if not, then the accumulation of the previous retiming,\vever, since one actor @ may have more than one copy
steps forms a feasible retiming, otherwise, the algoritluesg ;, H(G), the retiming steps in these two algorithms may be in

on to the next iteration until the bound of the outer lopf<{1, gt equal. As we show belowdfFEASG, dip) does give the
where|V| denotes the number of actorsW) is reached; if at g5me retiming a§EASH(G), dip).

that moment &, with IP(G;) < dip yet has not been found
then it concludes thadip is not feasible foiGy,.

The largest cycle in a graph includes at mp4tedges and C. Equivalence of FEAS and sdfFEAS
each retiming step increases ent(y) at most 1, so the worst |t js obvious that the initial operations, lines 1-6, of Algo
case is thalvV| -1 retiming steps cause delays to travel througlthm 2 are equivalent to those of Algorithm 3, lines 1-6; the
the largest cycle and yet no feasible retiming is found. Aryound of the outer loop in line 7 of Algorithm 2 is the same
more retiming steps may only lead to a delay distributiont thgs the one in line 7 of Algorithm 3. It remains to be shown
has already been tested. This bound (line 7) guarantees that iterations of the outer loop of these two algorithms are
all the delay distributions that may lead tofidrent IPs are equivalent.

tested. We show later that this fixed bound in fact gives somewe formally decompose=EASH(G), dip) into two se-

redundant iterations except for the worst case. quences of retimings and a sequence of HSDFGs. Afteifthe
. iteration § > 0) of the outer loop, the retiming step 4] and
B. sdfFEAS Algorithm the retiming obtained is; = ¥'\_, ar}; the HSDFG sequence

Converting an SDFG to its equivalent HSDFG first and thegenerated during the entire procedurehg:h, ..., hy, where
using Algorithm 2 can get a correct output when retimingo = H(G), andhi,1 = ar{ ,(hj) for 0<i < N.
an SDFG. This is the traditional method, which is called Before the first iteration, all entries of the retiming vecto
byHSDF. However, to the best of our knowledge, there agge initialized to zero, so| = 0. According to the proof of
no proved sfficient and necessary algorithms in the literaturalgorithm FEAS in [5], eachar is legal and hence eaat
that do not need to convert SDFGs to HSDFGs for findingia legal and eacHn; is valid; if there are feasible retimings,
feasible retiming of an SDFG. Our feasible retiming aldorit then IP(hy) < dip and IP(h;)) > dip for all 0 < i < N; if
sdfFEAS shown in Algorithm 3, is a diicient and necessarynot, IP(h) > dip for all 0 < i < N andN = |[V(Gp)| - 1.
solution working directly on SDFGs. Fig. 5(a), for example, gives the sequenee§ r{ andh; for

The structure oBdfFEASIs similar to that ofFEAS Only FEASH(G3),4). At each iteration, the retiming stefr] is
the inner loop (lines 8-12) §dfFEAS in which the retiming determined by th& in Fig. 5(b).
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Fig. 6. The proof framework of the equivalence FEASH(G), dip) and

@ SAfFEASG, dip)

ey A3 =1 Lo G i.e., sdfFEA$G, dip) and FEASH(G), dip) are equivalent.
Ary(B,2) =1 Ary(A3) =1 We need to prove that eaalr; has the samefiect ong;_;
@ @ as ar{ on hi_;. Since ar; and ar{ are defined on dierent
0714 s A(A) =1 2 graph structures, we cannot compare them directly. However
=98 e |l ) rz=|1 for each legalr of G there always is a corresponding
OIC = g == 3 ! Ef H(G), beca(ljss t?e) datahdependinciesézot:ag alvl\;ays
- TN . e i - e represented byH(G); r changes them by redistributing
@  OrEr( GO OO0 delays ofG. Therefore, when we say a retimimg on H(G)
&r & & is equivalent to a retiming on G, denoted as’ = r, this

fo s Ed i delavs in HSDEG o - of means that’ = r, under some isomorphism we define later.
FIEO,'AsH(Gl),%t‘;;S(\t/)v)IT Cﬁa%seénwiﬂFE Ang?éele';;' E(’C)' C(r";‘% Ch:ng'fgvith For equivalent andr’, if r’ is legal therr is legal, because
SAfFEASGL, 4); (d) H(r (G1)) changes witrsdfFEA$G1, 4); (e) the procedure they change the delay distribution identically.
of sdfFEA$G1, 4). First, let's see howy, is defined. A retiming stear(v) is
in fact the result of the last copies ofin H(G) that have
T(v,i) > dip, according tosdfFEA%G, dip). For example, in
The retiming step for each iteration fEAS sometimes Fig. 5(e),ary(A) = 1 andary(B) = 1 for go. This is caused by
seems unlikely to be legal. For example,fig of Fig. 5(a), criT (A, 3) > 4 andcriT(B,2) > 4 (Fig. 5(c)). So the paths in
ari(A 3) = 1 seems to lead to an illegal retiming because thefg ) (Fig. 5(d)) that need to be shortened are those that reach
are no delays on the outgoing edge 8{8). This situation, (A 3) and @,2). So the &ect of ars(A) = 1 andari(B) = 1
however, implies the existence of a longer zero-delay padp G is exactly the fect of ari(A, 3) = 1 andarin(B,2) = 1

including the actor next toA, 3), (B, 2), leading toarj(B,2) = on H(G). We generalize the above discussion in Definition 11.
1. And (B,2) has sfficient delays on its outgoing edge for

enough delays for one reversed firing. Therefore, legality bS corresponding retiming ohl(G), ry, is defined as follows:

Arj is guaranteed. for each ¢,i) € H(G),
We also decompose the proceduressdfFEASG, dip): after ) 0, i<qgv)—r(v)
theit" iteration of the outer loop, the retiming steps; and (v, i) = 1, i>q)-r().

the retiming obtained is; = ZijzlAr,-; the SDFG sequence

generated during the procedureds; g, ..., gu, Wherego = G, Before the first iterationhy = H(go) = H(G), andrg, = G;

andgi;1 = ari;1(gi) for0<i < M. thereforery is legal. We show below that after each iteration
Before the first iteration, all entries of the retiming veaice i, ar{ = ar; holds andh; is isomorphic toH(g;), denoted by

initialized to zero, sag = 0. Fig. 5(e), for example, gives theh;, = H(g;). We illustrate the reasoning with the example in

sequencesr;, ri andg; for sAfFEA$G;, 4). At each iteration, Fig. 5 and the proof framework outlined in Fig. 6.

the retiming stepr; is determined by theriT in Fig. 5(c). At the first iteration,sdfFEASworks on gy to generate
In the next part, we show that eagh; is legal and hencg the first retiming stepar;, corresponding toariy of H(go).

is legal; that eacli (g;) is isomorphic toh; and hencéP(g)) = According to lines 8-12 of Algorithm 3ari(v) = nTgip(V),

IP(h;); and thatM = N. Then we can conclude that the outpumaking Arin(v,i) = 1 for i > q(v) — NTgip(v) and Arqn(v,i) =0

of sdfFEA%$G, dip) is exactly the output oFEASH(G), dip), for otheri according to Definition 11.
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FEASworks onhg (= H(gp)) to generate the first retiming retimings for G with dip; alternatively they pass through
stepar;. According to (2) and lines 8-12 of Algorithm 2, we}' ., q(v) — 1 iterations and find no feasible retiming. In both
havearj(v,i) = 1 fori > q(v) — nTaip(v) and arj(v,i) = 0 for cases, the numbers of iterations are the same, thit is,N.
otheri. In summary, see Fig. 6, by means of one auxiliary sequence

So we havearyn = ar] and hencear] = Ar;. Carrying out of retimings of H(g), Arih, and one auxiliary HSDFG se-
the retiming transformationr; on go and Ar] on ho, we get quencem = Ari,(H(gi-1)), which is isomorphic to boti(g;)
g1 andhy, respectively. That isgy = Ari(go) andhy = ari(ho). andh;, we prove thatH(gi) = h;.

We need to show thadt; = H(g:). Because ofary, = Arj, According to the above discussion, we have the following
we know Arip(H(go)) = arj(ho) = hy. If Arip(H(go)) = theorem.

H(ar1(go)) then hy = H(g;). But this is not the case. For_l_heorem 13. Given a valid SDFG G with dip

example, in Fig. 5, £ 2) in arin(H(go)) (= hi) has an o . . '

incoming edge with zero delays whilé,2) in H(ar1(go)) SAfFEASG. dip) is equivalent toFEASH(G). dip).

(= H(g1)) has not; and a similar situation occurs fa, 8). We may conclude thadfFEASSs a suficient and necessary
However, examiningarin(H(go)) and AH(r1(go)) closely, algorithm for the feasible retiming problem on SDFGs as

we find that the numbers of delays changed on edges betwe€ASis for HSDFGs.

each actor pair (i), (v, j)) are the same because; = Ary;

disregarding labels of actor names, the graphs have the SAME4fFEAS with Shar - o

. p Termination Condition

structure. For example, rewritingA(1) to (A 2), (A 2) to o ) ) )

(A.3), A3) to (A 1)? B,2) to (g?":(L))and(B, :3) t(o (é’ 2) Whendip is a feasible IP o5, sdfFEASG, dip) terminates

of hy (= arm(H(go) in Fig. 5(a), we get graphH(g:) at once when it finds a feasible retiming. As observed in [8],

(= H(ar1(go))) in Fig. 5(d). the IPs of the intermediate graphs generated during the pro-

Because a retiming on G always increases the number of€dure, thegi (h) introduced above, converge rapidly. For
delays on the incoming edges of some latei)é in H(G), and example sdfFEA%G;, 4), shown in 5(e), terminates after only

because the mappirg always arranges actors with zero-delag iterations of the main loop. _
incoming edges to the latev,)s, we can generalize the above- Whendip is not feasible forG, however,sdfFEAG, dip)

mentioned rewriting as a functiod; : r(H(G)) — H(r(G)), has to do},zq(v) — 1 iterations to determine that there
mapping each\(i) to (v, j) in terms of are no feasible retimings for thidip. For example, because

i+ () i< qv) - r(v) 3 is not a feasible IP of5;, sAfFEA$G;, 3) will terminate
j = ’ - after 7 iterations and report false. Examining the procediir
P+r(M)—q(v), i>q(v)-r(v). sdfFEA$G3, 3), shown in Fig. 7, we find that after 5 iterations
@, is an isomorphism and doesn't change the IP becauseétiteaches a graph that has been checked before. That is, the
only rewrites the names, in fact the labels, of actors of @& and 7" iterations in fact repeat some previous iterations,
HSDFG. the 3" and 4" iterations in this example.
Lemma 12. Given a valid SDFGG and its legal retiming. Since a retiming only changes the delay distributio(t),
rn(H(G)) = H(r(G)) underd,. of a graph G, we can conclude that) =9 becz_;\use
d(gi) = d(g;). Based on the above observation, we can improve

Since @4, (arin(H(9))) = H(aru(g)) = H(g) and sdfFEASas follows.
arin(H(go)) = hy, we haveh, = H(gy) underdy,. 1) Store eachi(g;) into a list DDs;

At the second iteration, considedfFEASworking on g 2) WhenlP(g;) > dip, check whether there is repetition in
to get_Arz and FEA.Swork!ng on.H(gl) (not hy) to getary; DDs, that is, there is g < i such that(g;) = d(gy);
repeating the previous discussion, we hawg = Ara. In 3) If finding repetition inDDs, or when reaching the bound
Fig. 5, for examplear; (A, 3) = arxn(A,3) = 1. Sincehy = of the outer loop of Algorithm 3, terminate and report

H(g) under®,,, using the inverse mapping @b, @7, false; otherwise, continue as Algorithm 3 shows.

on ary, we get exactly the retiming stepr;, computed by It is clear that this improved procedure is correct. The

FEASqn h.l' Using an Inverse rewriting of ,the one we use(rjwew termination condition finds repetition PDs to stop the
for hy in Fig. 5(a), aran is transformed toar), for example.

. g L . ) Vb)rocedure as soon as possible. The new termination conditio
An inverse of an isomorphism is also an isomorphism, so we

havear, = Ar, underd);rll. Therefore the fect of At on hy IS suficient to ggarantee the procedure to stop bgfore any
. 1 . redundant work is done, as we show below. That is, we do
is the same as thefect of ar; on g; underd®;;,. That is,

not need check the bound,., q(v) — 1. The algorithm can

e
. hy = _<I>M1.(Ar2h.(H(gl))). . simply be run until a delay distribution re-occurs.

As explained at the first iteration, according to Lemma 12, Recall that we have proven thadfFEASis necessary

there is (and stficient) by showing its equivalence BEAS That
@ur,(aran(H(91))) = H(ar2(91)) = H(g). means, when it reports thatdip is not feasible forG, all

Then, we haven, = H(gy) under®,,, o ®,;,, which is the the possibilities have been exhausted, as we explain at the
composition of two isomorphisms and therefore is also @&nd of Section V.A. Then the graphs generated during the
isomorphism. proceduregi, i = 0,...,M with M = 3,s(q(v)) — 1, cover
The discussion repeats t8dfFEASand FEASreach an™  all the possibilities to be checked. This leads to two pdesib
iteration such thatP(g;) = IP(hy) < dip, if there are feasible situations: there existand j with i < j < M such thaig; = g;
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Fig. 7. Edges with delays in HSDFGs are omited. (a) The praeedf sdfFEA$G;, 3); (b) H(g) changes withsdfFEA$G1, 3); (c) criT changes with
sdfFEA$G3, 3).

2
3
3

and thereforgj,x = gi+x for x < M — j; otherwise, there must our method provides a sharp bound for this situation, the
be somay; = gu,1 Withi < M andgu+1 = Arm+1(gm), because number of iterations when no feasible retiming exists seems
if not, gm.+1 iS @ graph that hasn’t been checkeddslfFEAS to be more than the number of iterations when one exists; see
and there may be alP(gu.1) < dip. This would mean that Fig. 5 and Fig. 7 for example. Although a binary search has
sdfFEASIs not necessary and cause a contradiction. a lower theoretical complexity than a linear search, a lyinar
For the former situationy redundant iterations are removedearch method for optimal retiming tends to test more than
by the improved procedure; for the latter situation, the heam one potentiabptlIP that is not feasible, while a linear search
of the iterations of the improved procedure is the same amthod, searching potentialptlPs decreasingly, only tests
that of sdfFEAS Therefore the new termination conditionpne potentialoptlP that is not feasible. So, in line with the
checking only the re-occurrence of the delay distributitiara approach in [15], we use a linear search to find the optimal
retiming, makes sure that only the necessary iterations aetiming, calledsdfOPT, shown in Algorithm 4.
performed, improving the bottleneck of the feasible retigni

problem [8]. It is in fact a sharp condition. Algorithm 4 sdfOPT@G)
From now on,sdfFEASrepresents the improved procedurdnput: A valid SDFGG = (V, E, t,d, prd, cng
For example, théDs of sdfFEA$G1, 3) is as follows: Output: A retiming r of G such thatlP(r(G)) is as small as
(AB)y (1 2 6 0 0 6 possible
BC |3 || 4|~ 0|0 |=]6]|—=]0 ; évf\é.letr(v):o'
. r — )
CA (1 0 0 3 0 0 3: getIP of G, from sdflR(G,);
When the second (6, 0) is reached, there is repetition in the 4: optIP = IP
list DDs, andsdfFEA$G3, 3) terminates. 5: while optIP > max.y t(v) do
6: run Algorithm sdfFEASG;, optlP — 1) to determine
VI. OprivaL ReTMING whether a feasible retiming exists
According to the definition of optimal retiming, when we 7:  if a feasible retiming” existsthen
say thatr is an optimal retiming oG andoptIPis the optimal  8: Gr =r'(Gr);
iteration period of5, this means thatis a feasible retiming for 9 r+=r

G with dip = optIP, and that there is no feasible retiming ®&r 10 getIP of G, from sdflR(G;);
with dip = optIP-1. The typical procedure of optimal retiming 11: optlIP=IP
is to find some potentiabptlPs asdip and test whether they 12:  else
are feasible until we find a smallest one. 13 return r
We denote the IP of the original SDFG as initial IP 14 end if
(initlP) and the maximal execution time of actors Gfas 15: end while
maxt It is obvious that no matter what retiming is uséal, 16: return r
will not be transformed to a new graph with IP lower than
its maxt Therefore the range of potentiaptlPs for G is the Since initlP is a feasible IPsdfOPT begins withdip =
integer interval fnaxt initIP]. initlP — 1, usingsdfFEASto check whether a feasible retiming
Recall from the previous section that dealing with an inp@xists forG with this dip. If so, it stores this retiming and
for which there is no feasible retiming is usually a bottielne computes the new IP of the retimed graph. Then it decreases
to the solution for the feasible retiming problem. Althoughhis IP by 1 and callsdfFEASon the retimed graph with the
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new dip. If no feasible retiming exists then the previous onthe second part lists the initial iteration period and opiim
is an optimal retiming and the previous IP is tbptIP; if a iteration period of each graph; the third part shows exeauti
feasible retiming is found, then the procedure repeatd nati times of diferent feasible retiming methods, and for the
feasible retiming is found for somaip. practical DSP examples in Table | also memory usage; the
The termination condition o6dfOPT is sharp because of fourth part shows the results forfirent optimal retiming
the fact that the termination condition sfifFEASis sharp. = methods. Execution times are measured in milliseconds; (ms)
memory usage is measured in Megabytes (MB).
The first set of SDFGs consists of four practical DSP appli-
cations, including a sample rate converter (Sampleraj) {2
We implemented our methods and related methods d@tellite receiver (Satellite) [24], a maximum entropyctpem
SDF3 [16] For feasible I’etiming, the methods Implemel’llEd iana'yzer (MaxES) [25], and a channel equa"zer (CEer)’ the
clude the traditional methodbyHSDF, Algorithm 3 in [3]— |atter is converted from the cyclo-static dataflow model][26
O’Neil0l1, the algorithm in [14]—-2hulQ and our new jn [27]. Adopting the method in [2], by introducing to each
method—sdfFEASFor optimal retiming, the methods includemodel a dummy actor with computation time zero and edges
Algorithm SDF_Retiming_Improved in [15] — LiverisO7  with proper rates and delays to connect the dummy actor to
and our new method —sdfOPT (both a depth-first variant the actors that have no incoming edges or no outgoing edges,
and a breadth-first variant — sdfOPT-BFS). we convert these models to strongly connected graphs. The
To evaluate the fiiciency of the various algorithms, weinformation in the first part of Table | takes into account the

performed experiments on two sets of SDFGs, running ongammy actor and its incoming and outgoing edges.
2.4GHz CPU with 12MB cache. The experimental results of

these two sets are shown in Tables | and I, respectively. TABLE Il
EXECUTION TIME OF SYNTHETIC EXAMPLES

VII. E XPERIMENTAL EVALUATION

TABLE |
EXECUTION TIME OF PRACTICAL DSPEXAMPLES

Graph information

\Y] 19 46 95
Graph information |E| 21 52 108
name [ Samplerate Satellite MaxES CEer V]| 1,983 4,983 9,962
\Y] 7 23 14 23 1= 4,055 10,126 19,920
|E| 7 29 15 44 Initial and optimal iteration period
4! 613 4,516 1,289 43 InitIP 69 122 193
IE| 1,328 9,456 2,342 99 OptlP 55 77 118
Initial and optimal iteration period Execution time (ms)
InitIP 21 11 11,528 53,652 Feasible retiming for dip=optIP
OptlP 6 2 8,192 47,128 SAfFEAS 0.2 0.6 1.7
Feasible retiming for dip=optIP Zhulo 16.0 76.0 278.3
Execution time (ms) O’'Neil01 | 1.3E+03 2.1E+04 8.6E+04
SdfFEAS 0.0 0.2 0.1 0.3 byHSDF | 1.4E+03 9.5B-03 5.2E-04
Zhul0 4.6 56.9 9.7 30.0 Execution time (ms)
O’Neil01 661.0 N N 2.9 Optimal retiming
byHSDF 212.2 11,875.1 665.7 2.0 sdfoOPT 0.6 3.3 11.9
Memory used (MB) Liveris07 8.6 42.7 158.8
SdfFEAS 0.23 0.72 0.38 0.84 sdfOPT-BFS 0.9 47 17.0
Zhul0 0.23 0.70 0.38 0.84
O’Neil01 2.49 N N 0.92 i i
byHSDF 158 10.71 294 0.94 The second set consists of 150_sy_nthet|c strongly co_nnected
Optimal retiming SDFGs generated by SDF3, mimicking real DSP eppllcatlons
Execution time (ms)/ Retiming steps and scaling up the models. The number o_f_actors in an SDFG
<dfoPT 01/8 13/ 28 02/12 48 44 and the sum of the elements in the repetition vector,lVé,_
Liveris07 | 4.1/762 51.3/2175 9.5 1035 1.5/ 44 have significant impact on the performance of the various
SdfOPT-BES 04/8 1.8/ 28 03/12 3.7/ 44 methods, so we generated these examples according to three
Memory used (MB) combinations of these two parameters— (20,2000), (50,5000
<dioPT 023 072 0.38 0.85 and (100,10000), respectively. The generated graphs, 50 in
Liveris07 023 0.71 0.38 0.84 each group, deviate a little from these values. The explicit
sdfOPT-BES 0.23 0.74 0.38 0.85 difference in size among the three groups shows how the

performance of each method changes with the size of the

graph. The information in the first part of Table Il gives
Both tables have four parts. The first part gives the numbaverages for each group.

of actors and edges in an SDF{¥|(and|E|) and the number We evaluate the feasible retiming methods on each graph

of actors and edges in its equivalent HSDR®’|(and |[E’|); with dip equal to its optimal iteration period. Except for
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TABLE Il

O’Neil01, all other algorithms find feasible retimings for ExecuTioN TIME OF PRACTICAL DSPEXAMPLES (NOT STRONGLY CONNECTED)

all examples. Our method sdfFEAS completes in no more
than 2ms for all examples, dramatically mor&iaent than —
O’Neil01 and byHSDF and about 100 times or more faster Execution time (ms)

than Zhul0, especially for those SDFGs whose equivalent name | Samplerate  Satelite MaxES CEer
HSDFGs have a large size, e.g. Satellite in Table I. To our SAFEAS 0.2 0.4 03 02
surprise, when the graphs scale up, the traditional method, Zhu10 35 109.3 8.6 297
byHSDF, may have better performance than O’Neil01, as the O'Neil01 8718 94,1025 N3l
second and third columns of Table Il show. The reason may byHSDF 1565 11,186.7 4951 20
be that O’'Neil01 needs to convert an SDFG to an HSDFG SdfOPT 0.1 1.1 06 46

many times while byHSDF only needs to do this once.

Our optimal retiming method reduces execution time com-
pared to LiverisO7 on all examples except for CEer in Table hyHSDF, worst cases are caused by the procedure that cenvert
For further analysis, Table I, under ‘Execution tifiRetiming an SDFG to its HSDFG, feected heavily by the size and
steps’, gives besides the execution time the total numbergfmple rates of the graphs. For sdfFEAS, worst cases are
retiming steps in the complete optimization procedure.gpkc caused by the procedure sdflP, which may visit an actor
for CEer, all examples show a much smaller number @h exponential number of times when there are complex
retiming steps for sdfOPT than for Liveris07. nested cycles in the equivalent HSDFG, due to the depth-first

Generally, the speed of a (feasimiptimal) retiming al- search (DFS) strategy. For the same reason, sdfOPT is also
gorithm is dfected by three aspects: (a) the procedure fef exponential worst case complexity. That is the reason why
computing the IP; (b) the procedure for computing retimingdfOPT performs poorly on the example CEer.
steps; and (c) the termination condition, which determthes  Procedure sdflP can be modified to a breadth-first search
number of retiming steps. (a) and (b) both execute once @&FS) with O(|V’|) complexity to give sdfFEAS ad(|V'||E’|)
each retiming step. In most cases, the better runtime ofB8fOcomplexity and sdfOPT a©(K|V’||E’|) complexity, where
over LiverisO7 mainly comes from (b) and, particularly,.(C)K = initIP — maxtand|V’| and|E’| are the numbers of actors
Our procedure for computing the IP is sometimes slower thaRd edges of the equivalent HSDFG, respectively. However,
that of LiverisO7. In most cases, this slowdown is relievgd kthe average execution time of the BFS method is worse than
(b) and (c). When the advantage of (b) and (c) of our meth@ide method we present in this paper, as shown in Tables | and
is not large enough to relieve the slowdown by (a), sdfORT. In most cases, a DFS only needs to visit part of the actors
is slower than LiverisO7. This happens on the example CEgF.Vv’; sometimes it even only needs to traverse the actors of
In this case, sdfOPT performs 44 iterations (c) with a totgl, as the examples in previous sections show, while a BFS
execution time of 4.2ms for computing the IP (a) and 0.6ms faeeds some overhead before computinig. Another variant
computing retiming steps (b); for Liveris07, these numl@ges may be to compute the IP by the procedure used by Liveris07
44, 0.9ms, and 0.6ms, respectively. Although our IP proredun [15], whose worst case complexity B(/E’|). Whether its
itself is slower, the equation derived from its output, Bipra output can be used in sdfFEAS needs further investigatimh, a
(5), is crucial for the speedup of (b) and (c). it may output incorrect results on SDFGs that are not stgong|

Since our methods work directly on SDFGs and do n@bnnected.
explicitly construct their equivalent HSDFGs, one may @tpe A similar situation occurs for the procedure sdfOPT. The
a lower memory usage when compared to traditional methaglgecution times using a binary search strategy are for almos

that convert to an HSDFG. We measured the memory usgdl considered graphs larger than when using a linear search
by the diferent methods on the DSP examples by the togfrategy, as we use in Algorithm 4.

Valgrind (http;/valgrind.org) . Our feasible retiming methods
(sdfFEAS and our earlier work Zhul10) use much less memory
than O’Neil and byHSDF. The memory used by all optimal
retiming algorithms is almost the same (because all methodsn this paper, we have presented new methods for finding a
work directly on SDFGs). The results are shown in Table |feasible retiming to optimize an SDFG to meet an iteration
Although we assumed strongly connected graphs, our megieriod constraint and for finding an optimal retiming so
ods can also be used on SDFGs that are not strongly ctimat an SDFG achieves its smallest iteration period. Both
nected, only by enlarging the S¢4 to contain those actors thatmethods work directly on the SDFG without converting it to
have no incoming edges and using the combined terminatité equivalent HSDFG.
condition mentioned in Section V.D. We remove the dummy Our feasible retiming method, sdfFEAS, mimics the steps of
actors of the DSP examples so that they are no longer stronglgorithm FEAS [5]. It is a sificient and necessary solution
connected and run filerent methods on them. It turns oufor the feasible retiming problem. We provide a sharp ter-
that our method is still much faster, as shown in Table IImination condition to eliminate redundant work. Our optima
The execution times of Liveris07 are not shown in this tableetiming method, sdfOPT, using sdfFEAS as a subroutine, als
because it is only applicable on strongly connected graphshas a sharp termination condition. Experimental resultsvsh
All the feasible retiming algorithms mentioned in this papehat our feasible method is four orders of magnitude faster
are of exponential worst case complexity. For O'Neil01 anithan the method of [3] and two orders of magnitude faster

VIII. ConcLusioN
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than the method of [14]; our optimal method is more than tges] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstrd@yclo-static
times faster than the method of [15].
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