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Efficient Retiming of Multi-rate DSP Algorithms
Xue-Yang Zhu, Twan Basten, Marc Geilen, and Sander Stuijk

Abstract—Multi-rate digital signal processing (DSP) algo-
rithms are often modeled with synchronous dataflow graphs
(SDFGs). A lower iteration period implies a faster execution
of a DSP algorithm. Retiming is a simple but efficient graph
transformation technique for performance optimization, which
can decrease the iteration period without affecting functionality.
In this paper, we deal with two problems: feasible retiming —
retiming an SDFG to meet a given iteration period constraint;
and optimal retiming — retiming an SDFG to achieve the
smallest iteration period. We present a novel algorithm for
feasible retiming and based on that one, a new algorithm for
optimal retiming, and prove their correctness. Both methods
work directly on SDFGs, without explicitly converting them to
their equivalent homogeneous SDFGs (HSDFGs). Experimental
results show that our methods give a significant improvement
compared to the earlier methods.

Index Terms—retiming, multi-rate digital signal processing,
synchronous dataflow graphs, iteration period, optimization

I. Introduction and related work

Data-driven execution and real-time requirements are two
important features of digital signal processing (DSP) systems.
Dataflow models of computation are widely used to represent
DSP applications. Each node (also called actor) in such a
model represents a computation or function and each edge
models a FIFO channel. One of the most useful dataflow mod-
els for designing multi-rate DSP algorithms aresynchronous
dataflow graphs(SDFGs) [1], also calledmulti-rate dataflow
graphs. The sample rates of actors of an SDFG may differ.
The graphSSAin Fig. 1(a), for example, is an SDFG model
of a simplified spectrum analyzer [2], [3].

DSP algorithms are often repetitive. Execution of all the
computations for the required number of times is referred toas
an iteration. A DSP algorithm repeats iterations periodically.
An iteration of SSA in Fig. 1(a), for example, includes 16
executions, often calledfirings in dataflow, of actorA, 4
firings of E and 1 firing of all other actors. Actor firings
synchronize throughdelaysor tokens, shown with annotated
bars in Fig. 1(a). ActorB, for example, needs 16 tokens from
edge〈A, B〉 and 1 from〈F, B〉 to fire, and produces 16 tokens
on 〈B,C〉. The iteration periodof an SDFG is the least time
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Fig. 1. (a) The SDFG modelSSAof a simplified spectrum analyzer, where
the sample rates are omitted when they are 1; (b) the periodicschedule of
SSA; (c) the schedule with prologue.

required for executing one iteration of a DSP algorithm [4].
The iteration period ofSSA, for example, is 5 as shown by the
periodic schedule of Fig. 1(b). The data dependencies among
actorsF, B andC imply that the iteration period ofSSAcannot
be lower than 5 no matter which periodic schedule is used.
That is because the iteration period of a dataflow graph is
limited by its topology, the computation time of its actors,
and the delay distribution. Thedelay distributionindicates the
numbers of initial tokens on edges of the SDFG. To decrease
the iteration period and speed up a DSP algorithm, we need
therefore to change any of these three factors.

Restructuring an SDFG or rewriting functions of actors to
adjust the computation time involves redesign of the whole
model, which may need much effort, e.g. to verify the cor-
rectness of each actor and the functional correctness of the
restructured model. If the new model still has a high iteration
period, designers have to repeat the procedure again. An
optimization method that preserves the functionality of the
original SDFG is a preferred choice. Redistributing delaysof
an SDFG provides an opportunity to do so.

Consider the SDFGSSAin Fig. 1(a) again. A schedule of
SSAwith prologue, shown in Fig. 1(c), consists of some initial
actor firings followed by iterations whose execution time is
shorter than the iteration period ofSSA. Executing the prologue
of SSA, that is, firing actorA 16 times, and firingD, F and
B once, respectively, leads to the graph in Fig. 2(a), whose
delays are redistributed and whose iteration period is reduced
to 3, as its periodic schedule, Fig. 2(b), shows.

Fig. 2(a) is in fact a graph obtained byretiming SSAin
Fig. 1(a), and it is called a retimed graph ofSSA. Retiming is
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Fig. 2. (a) A retimed equivalent graph ofSSA; (b) the periodic schedule of
the retimedSSA.

a graph transformation technique that only changes the delay
distribution of a graph, while it has no effect on its function-
ality [5]. A retiming functionspecifies the firings required to
redistribute the delays. Retiming is originally applied in[5]
to reduce the iteration period ofhomogeneous synchronous
dataflow graphs(HSDFGs), which is a special type of SDFGs.
Retiming can also be used to optimize algorithms according
to other criteria, such as minimizing the memory usage [2],
extending the vectorization capabilities [6], and decreasing
power consumption [7]. A great deal of research has been done
on retiming in the context of HSDFGs [5], [8], [9], [10], [11].

Different from an HSDFG, however, an iteration of an
SDFG may execute actors more than once and a different
number of times. This invalidates many results derived for
HSDFGs and complicates the analysis of retiming properties
of SDFGs. Nevertheless, some efforts have been made. Some
important properties of retiming on SDFGs, such as functional
equivalence and reachability, were proven in [12] and [2].

When retiming is used to reduce the iteration period of an
SDFG, we can distinguish two problems: the first one is a
decision problem, checking whether afeasible retimingof the
SDFG exists so that the retimed graph has an iteration period
of at most a given value; the second one is an optimization
problem, finding anoptimal retimingof the SDFG so that the
retimed graph has an iteration period as small as possible.

The traditional way to solve these problems is to first
convert the SDFG to its equivalent HSDFG and then to
use the available methods for HSDFGs [13]. Theoretically,
this is always possible. However, converting an SDFG to an
HSDFG may increase the problem size tremendously and it is
very time-consuming when SDFGs scale up. The size of the
HSDFG can be exponentially larger than the original SDFG
in extreme cases [12].

We focus in this paper on methods that directly work on
SDFGs without converting them to HSDFGs. Issues that need
to be considered for a correct and efficient feasible/optimal
retiming method include:

1) Whether the iteration period is computed directly on
SDFGs.

2) Whether the retiming function is computed directly on
SDFGs.

3) Whether a feasible retiming method is sufficient and
necessary. That is, when an algorithm returns a retiming,
whether it is a feasible retiming for the input, and if

there exist feasible retimings for the input, whether it is
guaranteed to find one.

4) Whether the termination condition of the method is
sharp. Sharpness of the termination condition means
that the algorithm terminates once a conclusion can be
drawn, so that no redundant work is performed.

O’Neil et al. [3] propose a feasible retiming method that
computes the retiming function directly on SDFGs, but the
computation for the iteration period is still on HSDFGs. Thus,
the method still needs to convert an SDFG to an HSDFG.
The method is sufficient but not necessary. Our experimental
results show that the method fails in some cases. The method
in [14] for feasible retiming computes both the iteration period
and retiming function on SDFGs and it is sufficient. But the
paper says nothing about necessity. Liveris et al. [15] present
an optimal retiming method that computes both the iteration
period and retiming function on SDFGs but it does not deal
with the feasible retiming problem, although of course it can
be adapted straightforwardly. They use a complex termination
condition and prove that it is sufficient for an optimal retiming
to be found, but no evidence is given that it is sharp.

In this paper, we deal with both the feasible retiming and
optimal retiming problems directly on SDFGs and address all
above-mentioned issues. Our contributions are as follows.

1) We present a new method to compute the iteration period
of an SDFG.

2) We present a feasible retiming algorithm and prove that
it is a sufficient and necessary solution and with a sharp
termination condition.

3) We present an optimal retiming algorithm based on the
feasible retiming algorithm, with a sharp termination
condition.

For evaluating the efficiency of our new algorithms and
other related methods, we implemented them in the open
source tool SDF3 [16]. The methods for feasible retim-
ing in our comparison include the traditional method [13],
‘byHSDF’, O’Neil’s algorithm [3], ‘O’Neil01’, the method
in [14], ‘Zhu10’, and our new method, ‘sdfFEAS’. The meth-
ods for optimal retiming include Liveris’s algorithm [15] ,
‘Liveris07’, and our new method, ‘sdfOPT’. The experimental
results, based on hundreds of synthetic SDFGs and several
realistic SDFG models, show that our new methods lead to a
significant improvement compared to earlier methods.

The remainder is organized as follows. We first describe
the main relevant concepts in Section II. The basic ideas of
our new methods are introduced in Section III and the details
are illustrated in Sections IV to VI. Section VII provides an
experimental evaluation. Finally, Section VIII concludes.

II. Preliminaries

In this section, we introduce the main concepts and nota-
tions used in the paper, mainly including synchronous dataflow
graphs (the model we use), iteration period (the goal we try
to optimize), and retiming (the technique we use).

A. Synchronous Dataflow Graphs

Definition 1. A synchronous dataflow graph(SDFG) is a finite
directed multigraphG = 〈V,E, t, d, prd, cns〉, in which
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• V is the set of actors, modeling the functional elements
of the system. Each actorv ∈ V is weighted with its
computation timet(v), a nonnegative integer;

• E is the set of directed edges, modeling interconnections
between functional elements. Each edgee ∈ E is weighted
with three properties:d(e), the number of initial tokens
associated withe; prd(e), a positive integer that represents
the number of tokens produced ontoe by each execution
of the source actor ofe; cns(e), a positive integer that
represents the number of tokens consumed frome by each
execution of the sink actor ofe. These numbers are also
called thedelay, production rateand consumption rate,
respectively. The source actor and sink actor ofe ∈ E are
denoted assrc(e) andsnk(e), respectively.

We represent the edgee with source actoru and sink actor
v mostly bye = 〈u, v〉, and bye = 〈u, v, k〉, wherek numbers
the edges connectingu to v, only when distinguishing different
edges between two actors is necessary. The set of incoming
edges tov ∈ V is denoted byInE(v), and the set of outgoing
edges fromv ∈ V by OutE(v). We usev ∈ G to represent that
v is an actor ofG ande ∈ G to represent thate is an edge of
G. Note that for technical reasons explained later, we allow
d(e) to be negative. Ifprd(e) = cns(e) = 1 for eache ∈ E,
then we say thatG is a homogeneous synchronous dataflow
graph (HSDFG), also called asingle-rate dataflow graph. We
represent an HSDFG asGh = 〈V,E, t, d〉.

A delay distribution of an SDFG is a vector contain-
ing delays on all edges of the SDFGG, denoted asd(G).
For example, the delay distribution ofSSA in Fig. 1(a)
is d(SSA) = [0, 0, 1, 0, 16, 1, 0] corresponding to the edges
〈A, B〉, 〈B,C〉, 〈C,D〉, 〈D,E〉, 〈E,A〉, 〈D, F〉 and 〈F,A〉.

Applications for signal processing are usually nonterminat-
ing. Memory used must be bounded no matter how many times
they are executed. In order that an SDFGG has a well-defined
meaning, according to [1], we place restrictions on it:

VS1. d(e) ≥ 0 for eache ∈ G.
VS2. G is bounded.Boundednessmeans that, if infinite execu-

tion sequences exist, then there are some for which the
number of tokens on every edge is always finite.

VS3. G is live. Livenessmeans that there is no execution
sequence leading to a deadlock.

An SDFG that satisfies conditions VS1, VS2, and VS3 is a
valid SDFG.

An SDFG G is sample-rate consistentif there exists a
positive integer vectorq(V) such that for each edgee ∈ G,

q(src(e)) × prd(e) = q(snk(e)) × cns(e), (1)

where (1) is called abalance equation. The smallestq is called
the repetition vector[1]. We useq to represent the repetition
vector directly. Oneiteration of an SDFGG is an execution
sequence in which each actorv in G occurs exactlyq(v) times.

Take the SDFGSSAin Fig. 1(a) for example. For each edge
e, its prd(e), cns(e) that are not equal to 1 and itsd(e) are
labeled one. The computation time vectort = [1, 1, 2, 1, 1, 2].
A balance equation can be constructed for each edge. By
solving these balance equations, we getSSA’s repetition vector
q = [16, 1, 1, 1, 4, 1].

An SDFG is sample-rate inconsistent if there is no nonzero
solution for its balance equations. Any execution of an incon-
sistent SDFG will result in deadlock or unbounded memory.

Property 2. [1] A live SDFG is boundedif and only if it is
sample-rate consistent.

Property 2 gives a necessary and sufficient condition for
boundedness. We consider a necessary and sufficient condition
for liveness in the next subsection.

B. Equivalent HSDFG

A sample-rate consistent SDFG can always be converted to
an equivalent HSDFG, which captures the data dependencies
among firings of actors in the original SDFG in an iteration.

In an iteration of an SDFGG, each actorv fires q(v) times.
We can map theith firing of v to an actor (v, i) in its equivalent
HSDFG. Each edgee= 〈u, v〉 in G hasq(v)cns(e) instances in
this HSDFG. For each actor (u, i) in the equivalent HSDFG,
the (v, j)s to which it is connected are determined by the
production and consumption rates and delays one. If there
are delays one, they are always consumed by initial firings of
v. For example, there is one delay on the edge〈A, B〉 of G1 in
Fig. 3(a). According to the consumption rate of〈A, B〉, the first
firing of B will consume this initial token and 2 other tokens
produced by the first firing ofA. These data dependencies map
to its equivalent HSDFG in Fig. 3(b) as two zero-delay edges
connecting (A, 1) and (B, 1) and one edge connecting (A, 3)
and (B, 1) with one delay.

Algorithms for transforming an SDFG to its equivalent
HSDFG appear in the literature [17], [18]. For developing our
ideas, we now formalize the transformation as a map.

Definition 3. [17] Let G = 〈V,E, t, d, prd, cns〉 be a sample-
rate consistent SDFG andq its repetition vector.H mapsG to
its equivalent HSDFGH(G) = 〈V′,E′, t′, d′〉 as follows:

3-1. For eachv ∈ V and i ∈ [1, q(v)], there is an actor
(v, i) ∈ V′ with t′(v, i) = t(v);

3-2. For eache = 〈u, v〉 ∈ E, i ∈ [1, q(u)], k ∈ [1, prd(e)],
and

j =

⌊

((i − 1)prd(e) + (k− 1)+ d(e)) modcns(e)q(v)
cns(e)

⌋

+ 1,

there is an edgee′ = 〈(u, i), (v, j), k〉 ∈ E′ with

d′(e′) =

⌊

(i − 1)prd(e) + (k− 1)+ d(e)
cns(e)q(v)

⌋

.

For (v, i) ∈ H(G), we call it theith copy or theith firing of
v ∈ G; we call i the label of (v, i). As described later, only
the edges with zero delays in an HSDFG are of interest in
our methods. According to Definition 3-2,d′ is nondecreasing
with k. Therefore, for an equivalent HSDFG of a valid SDFG,
if there exist edges between the actors (u, i) and (v, j) with
zero delays, then the edge〈(u, i), (v, j), k0〉, where k0 is the
lowest value among the edges between (u, i) and (v, j), has
zero delays. For conciseness, we use〈(u, i), (v, j)〉 to represent
〈(u, i), (v, j), k0〉 in the following description.

A path in a graph is a sequence of actors and edges,
containing no actor twice except, possibly, the first and last
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Fig. 3. (a) The SDFGG1; (b) its equivalent HSDFGH(G1) andT.

actors. A path istrivial if it includes only a single actor without
edges. Acycle is a nontrivial path that begins and ends at the
same actor. We extend the delay functiond of an HSDFG from
single edges to arbitrary nontrivial paths. For any path

p : v0
e1
−→ v1

e2
−→ ...

en
−→ vn

in the HSDFG, itspath delayis the sum of the delays of the
edges in the path:

d(p) =
n
∑

i=1

d(ei).

If d(p) = 0, then we sayp is a zero-delay path, e.g., the
path in Fig. 3(b):

P1 : (A, 1)→ (B, 1)→ (C, 2)→ (A, 3)→ (B, 2).

Similarly, we define thepath computation timeof p as the
sum of the computation times of the actors in the pathp:

t(p) =
n
∑

i=0

t(vi).

To check if a sample-rate consistent SDFG is live, two
methods exist. One is to construct a single-processor schedule
for one iteration of the SDFG; if such a schedule exists, then
the SDFG is live [1]. Another way is to check if a zero-delay
cycle in its equivalent HSDFG exists; if not, then it is live [19].

Property 4. [19] A sample-rate consistent SDFGG is live if
and only if there is no zero-delay cycle inH(G).

By inserting precedence constraints with a finite number of
delays between the source and sink actors of an SDFG, or by
dividing the SDFG into strongly connected components, any
SDFG can be converted to a strongly connected graph [5], [2].
We therefore only consider strongly connected graphs when
developing our ideas. Our methods can also be applied for
weakly connected graphs as we show in Section VII.

C. Iteration Period

One iteration of an HSDFG is an execution in which each
actor occurs exactlyonce. The iteration period of an HSDFG
essentially corresponds to the clock period of a circuit [5].

A maximal zero-delay pathto an actorv of an HSDFG is a
zero-delay path whose first actor has no zero-delay incoming
edges and whose last actor isv. We usemaxZDPto(v) to
represent the set of maximal zero-delay paths to an actorv.
The earliest completion timeof eachv ∈ Gh is the earliest

possible finish time ofv, denoted by the entryT(v) of vectorT,
determined by the maximal computation time of all maximal
zero-delay paths tov:

T(v) = max
p∈maxZDPto(v)

t(p).

For example, there are two maximal zero-delay paths to (B, 2)
in Fig. 3(b),P1 already given before, and

P2 : (C, 1)→ (A, 2)→ (B, 2).
ThenT(B, 2) = max{t(P1), t(P2)} = t(P1) = 7.

The iteration period (IP) of Gh, IP(Gh), is the maximum
earliest completion time of all actors [20]:

IP(Gh) = max
v∈Gh

T(v).

For Fig. 3(b), for example, the maximal earliest completion
time is T(B, 2)= 7, which givesIP(H(G1)) = 7.

An SDFG allows each actor to be executed more than once
per iteration, and two actors are not required to execute the
same number of times in an iteration. Therefore, its iteration
period cannot be defined as straightforwardly as that of an
HSDFG. However, since an SDFGG and H(G) express the
identical behavior, we can use the definition for the HSDFG.
For an actor (v, i) in H(G), T(v, i) is the earliest completion
time of the ith firing of v in G, then the maximum ofT(v, i)s
is the IP ofG:

IP(G) = IP(H(G)) = max
v∈G,i∈[1,q(v)]

T(v, i).

For example, according to this definition, the iteration period
of G1 in Fig. 3(a) is also 7. For conciseness, we useT(v, i)
rather thanT((v, i)) as the entry ofT.

Intuitively, for an actorv in an SDFGG, T(v, i) is the
completion time of theith firing of v in a self-timed execu-
tion [21] [22] of one iteration ofG. It is easy to see that a later
firing of v cannot start before an earlier firing, and therefore
cannot complete before it. That is,

T(v, i) ≤ T(v, j) for i < j. (2)

D. Retiming

Retiming is a graph transformation that redistributes the
graph’s delays while its functionality remains unchanged.
Retiming can be defined either in a forward fashion, by which
retiming an actor once means firing this actor once [2] [3],
or in a backward fashion, by which retiming an actor once
means reversed firing this actor once [5] [15] [14]. The two
approaches to retiming are equivalent, in the sense that any
retimed graph can be obtained through both a forward retiming
and a backward retiming. We try to shorten zero-delay paths
by retiming with a backward strategy, like [5], so the latter
definition is used in this paper.

Given an SDFGG = 〈V,E, t, d, prd, cns〉, a retiming of G
is a functionr : V → Z, specifying a transformationr of G
into a new SDFGr(G) = 〈V,E, t, dr , prd, cns〉, where the delay-
functiondr is defined for each edgeu

e
−→ v by the equation:

dr(e) = d(e) + cns(e)r(v) − prd(e)r(u). (3)
A retiming r of a valid SDFGG is legal if the retimed graph

r(G) is a valid SDFG. It is sufficient to check ifr(G) satisfies
VS1 to ensure that a retiming is legal [14].

Given a valid SDFGG and a desired iteration period — a
nonnegative integerdip, a retimingr of G is afeasible retiming
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if r(G) is valid andIP(r(G)) ≤ dip. We say thatdip is afeasible
IP of G or dip is feasible forG if a feasible retiming exists
for G with dip. Fig. 2(a), for example, is the retimed graph of
Fig. 1(a) obtained by the feasible retimingR2 = [0, 0, 4, 0, 1, 0],
or equivalentlyR3 = [−16,−1, 0,−1, 0,−1], with dip = 3. The
first retiming,R2, corresponds to the reversed firings of theC
andE actor, whereasR3 captures the ‘forward’ prologue given
in Fig. 1(c), leading to negative entries to the function.

An optimal retiming rof G is a feasible retiming to make
IP(r(G)) as small as possible. We call such anIP(r(G)) the
optimal iteration period(optIP) of G.

III. Basic Idea of Our Methods

The underlying idea of our study is to make use of the inter-
relation between an SDFG and its equivalent HSDFG. Liveris
et al. [15] were the first to explore the relation between an
SDFG and its equivalent HSDFG to achieve high efficiency in
retiming SDFGs. We further elaborate on this inter-relation.
Our methods attempt to find certain walks through the SDFG
that do not contain sufficient delays to allow the required
actor firings for one iteration. Awalk is a sequence of
actors and edges. In contrast to paths, there may be repeated
actors or edges in a walk. In the SDFG, these walks may
or may not have delays, but in the equivalent HSDFG, these
walks correspond to paths without delays. We refer to these
walks through the SDFG ascritical walks. Such critical walks
ultimately determine the IP.

We find the zero-delay paths in the equivalent HSDFG that
are longer than the desired IP by going through critical walks
in the SDFG. If we manage to insert a proper number of
delays to shorten these critical walks, and therefore shorten
those corresponding zero-delay paths, without introducing
new, longer ones, we will have reduced the IP. This basic
procedure is repeated until a feasible retiming has been found
or no improvements are possible anymore. Unlike any earlier
work, we do not use backtracking to get retiming functions to
determine the change of delays in the procedure; instead we
compute retiming functions according to part of the computa-
tion times of critical walks and their subwalks.

The solution for finding an optimal retiming is a repetitive
procedure that checks whether a potentially optimal IP is a
feasible IP. Following [15], potentially optimal IPs are checked
decreasingly until we find one that is not feasible.

IV. Computing the Iteration Period

According to our definitions in Section II.C, the IP of an
SDFGG is derived from the earliest completion time vectorT.
The T is derived from the maximal zero-delay paths to actors
in H(G). That is, for each (v, i) in H(G), T(v, i) is determined
by the setmaxZDPto(v, i).

One way to compute the IP is to convertG to H(G) and then
use Algorithm CP from [5], which is an algorithm computing
the completeT and the IP for HSDFGs. This is exactly the
method that is used by byHSDF and O’Neil01. This method
is time and space consuming due to the conversion procedure
from an SDFG to an HSDFG. Another way is to compute
the IP directly on the SDFGG without converting it toH(G).

Fig. 4. Example to show properties of critical walks, wheret(A) = 5, t(B) = 1
and t(C) = 1; edges with delays in HSDFGs are omited.

Because of the equivalence ofG and H(G), IP(G) can be
computed with only a part ofT. Liveris07 and Zhu10 use this
method. Taking into account the relationship betweenG and
H(G), only a part ofT that includes the maximum among the
T(v, i)s for eachv in G is computed to get the IP.

We show in this section that, without converting toH(G), by
searching certain walks in the SDFGG, we can getT(v, i)s of
some actors inH(G). We can get the IP and other information
of T that we use in the next section, from thoseT(v, i)s.

A. Critical Walks

A zero-delay path inH(G) always corresponds to a walk in
G. For example, in Fig. 4, the path

P11 : (B, 1)→ (C, 1)→ (B, 4)→ (C, 4)
corresponds to walkW1.

A walk in G may map to more than one zero-delay path in
H(G). For example, the walkW2, shown in Fig. 4, corresponds
to zero-delay paths

P21 :(A, 1)→ (B, 3)→ (C, 3), and

P22 :(A, 1)→ (B, 4)→ (C, 4), and

P23 :(A, 1)→ (B, 5)→ (C, 5), and

P24 :(A, 2)→ (B, 5)→ (C, 5).
Similar to paths, we define thewalk computation timeof w,

t(w), as the sum of the computation times of the actors inw.
It is easy to see that a walk has the same computation time

as all its corresponding paths. Then the computation time ofa
walk may cover a set of paths. For example,t(P2i) = t(W2) for
i = 1, 2, 3, 4, in Fig. 4. On the other hand, a walk may be found
by only searching according to one of these corresponding
zero-delay paths, as we show below.

Definition 5. Let G be a valid SDFG and the actorsu, v ∈ G.
If there exists a zero-delay pathp ∈ H(G):

p : (u, i) = (v0, l0)→ (v1, l1)→ · · · → (vn, ln) = (v, j)
for somei ∈ [1, q(u)] and j ∈ [1, q(v)], then

u = v0→ v1→ · · · → vn = v
is called azero-delay reachable(ZR) walk andv is zero-delay
reachablefrom u.
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In p in Definition 5, if vi = v j with i , j, then l i , l j , be-
cause there is no zero-delay cycle inH(G). This is guaranteed
by Property 4.

For example, in Fig. 4,W1 is a ZR walk because there is
a zero-delay pathP11 in its equivalent HSDFG. And also all
the subwalks ofW1 are ZR walks. This example also indicates
that, unlike for a zero-delay path in an HSDFG, even if there
are delays on the edges of a walk, it still may be a ZR walk.

A ZR walk w of G corresponds to a set of zero-delay
paths ofH(G), denoted asZDPof(w). Then for each pathp in
ZDPof(w), t(p) = t(w).

For an edgee= 〈u, v〉 in an SDFGG, if l i−1−1 firings of u
have produced sufficient tokens forl i − 1 firings of v but not
sufficient for thelthi firing of v, then thelthi firing of v is the first
firing that directly depends on thelthi−1 firing of u. Therefore
there is a zero-delay edge between (u, l i−1) and (v, l i) in H(G).
Whenl i−1−1 firings ofu produce tokens more than the need of
q(v) firings of v, that means only some firings ofv in the next
iteration directly depends on thelthi−1 firing of u. So then there
is no zero-delay edge from (u, l i−1) to any (v, j). According to
Definition 3-2 and always choosingk = 1, we get (4) below
to model the relation betweenl i−1 and l i ; l i is the least label
of (v, j)s that have zero-delay edges from (u, l i−1).

Theorem 6. [14] Let G be a valid SDFG, andu, v ∈ G.
Thenv is zero-delay reachable fromu if and only if there is
a path

p : (v0, l0)→ (v1, l1)→ · · · → (vn, ln)

in H(G), wherev0 = u, vn = v, such that for eachi ∈ [1, n]:

l i =
⌊

(l i−1−1)prd(ei )+d(ei )
cns(ei )

⌋

+ 1 (4)

and l i ≤ q(vi), whereei = 〈vi−1, vi〉 ∈ G.

This theorem indicates that for eachv0 ∈ G, we can find a
ZR walk according to the above-definedp, which is a zero-
delay path inH(G). Since the SDFG is valid and finite, there
is no zero-delay cycle in its equivalent HSDFG. Therefore the
value of l i is guaranteed to exceed its correspondingq(snk(e))
in a finite number of steps.

By Theorem 6, we can find a ZR walkw within a subset of
ZDPof(w). For example, see Fig. 4, if we search from actor
A and l0 = 1 to its next actorB and getl1 = 3 < q(B) by (4),
going on fromB andl1 = 3 to C and getl2 = 3 < q(C) by (4),
we get ZR walkW2. Searching fromA with l0 = 2 leads
to path P24, which also belongs toZDPof(W2). Fortunately,
the redundancy in the search can be avoided. Only searching
from l0 = 1 guarantees to find all ZR walks, as shown by the
following corollary.

Corollary 7. Let G be a valid SDFG. Walk

w : v0
e1
−→ v1

e2
−→ · · ·

en
−→ vn

is a ZR walk inG if and only if there exists a path

p : (v0, l0)→ (v1, l1)→ · · · → (vn, ln)

in H(G), such that in particularl0 = 1 and l i is defined as
in (4) andl i ≤ q(vi) for eachi ∈ [1, n].

Proof: According to Theorem 6, the sufficiency is obvi-
ous. So we have to prove only the necessity. Supposew is a

ZR walk. Then there exists a zero-delay pathp of H(G) as
described in Theorem 6. We construct a path:

(v0, l
′
0)→ (v1, l

′
1)→ · · · → (vn, l

′
n)

in H(G) with l′0 = 1 and for eachi ∈ [1, n], l′i is computed
by (4). According to (4),l i is nondecreasing withl i−1. Since
l′0 ≤ l0, l′i ≤ l i for eachi ∈ [1, n]. And by l i ≤ q(vi), we get
l′i ≤ q(vi).

By Corollary 7, we can find a ZR walkw according to one
path ofZDPof(w). The proof of Corollary 7 also implies that
labelsl i of abovep are the lowest values among labels of all
paths inZDPof(w). That is, for another pathp′ in ZDPof(w)
with labelsl′i , we havel i ≤ l′i .

Further, we only need those ZR walks corresponding to the
maximalzero-delay paths ofH(G). Those walks can be found
by searching only from some of the actors (v, 1). If we can
find actors inG that are enabled in the initial state of the
graph, grouped in a setV0, we can begin our search only from
these actors. Actors that are not enabled need another actorto
fire first, from which there is therefore a zero-delay edge and
thus a longer zero-delay path. And by tracing back, we can
eventually find a maximal zero-delay path corresponding to a
ZR walk beginning with an actor inV0.

Theorem 8. [14] Let G = 〈V,E, t, d, prd, cns〉 be a valid
SDFG, andV0 = {v ∈ V : ∀e ∈ InE(v), d(e) ≥ cns(e))}. Then
we have
8-1. V0 , ∅; and
8-2. for eachv ∈ V, there exists au ∈ V0, such thatv is

zero-delay reachable fromu.

Theorem 8 further reduces the ZR walks we need to find.
Combining Corollary 7 with Theorem 8, we can conclude that
for any pathp ∈ maxZDPto(v, i) for any (v, i) ∈ H(G), we
can find a ZR walkw by searching from some (v0, 1) with
v0 ∈ V0 according to (4) such thatp ∈ ZDPof(w), and therefore
t(w) = t(p). If we find all such walks, which are defined later
ascritical walks, we get the IP.

Definition 9. Let G be a valid SDFG and pathp ∈ H(G),
with

p : (v0, l0)→ (v1, l1)→ · · · → (vn, ln).
Pathp is acritical path if it satisfies the following conditions:
• v0 ∈ V0, as defined above;
• l0 = 1 and for eachi ∈ [1, n], l i is defined as in (4), i.e.,l i

is the first firing ofvi that depends on firingl i−1 of vi−1;
and

• for eache ∈ OutE(vn), there is anln+1 > q(snk(e)), where
ln+1 is also defined as in (4), i.e., there are no firings of
actors connected tovn that depend on firingln of vn in
the same iteration.

Corollary 7 and Theorem 8 guarantee that a critical path
of H(G) can be found onG without an explicit conversion
to H(G). From now on, the labell i will be used uniquely for
critical paths.

Definition 10. A ZR walk that has a corresponding path that
is a critical path is acritical walk.

We call (v, i) anelementof a walkw if v ∈ w. It is in fact an
actor in a path of the corresponding HSDFG. If (v, i) is an actor
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in a critical pathp of the HSDFG, corresponding to a walkw,
we call (v, i) a critical elementin p, or in w. Elements that are
not actors in any critical paths arenoncritical elements. An
element may belong to two critical walks and may be critical
in one but not critical in another. For example, walksW1 and
W2 are critical walks of Fig. 4. Actor (B, 4) is an element of
both walks. (B, 4) is critical in W1 but is not critical inW2.

B. Computation Times of Critical Walks

We use a vectorcriT , with the same size asT, to contain
the computation times of critical walks and their subwalks.
Let criW(v, l i) represent the set of the critical walks ofG that
include (v, l i) as a critical element. We denote a prefix subwalk
of a walkw to vi asw|vi or w|(vi ,l i) : v0→ v1→ · · · → vi , where
(vi , l i) is critical in w. ThencriT is defined as follows.

criT(v, i) =















−1, (v, i) is noncritical

maxw∈criW(v,i) t(w|(v,i)), (v, i) is critical.

By Theorem 8-2, for any pathp ∈ maxZDPto(v, i), we can
find a critical walkw that goes throughv such that (v, l j) is a
critical element ofw and p ∈ ZDPof(w|(v,l j)). So we have:

IP(G) = max
v∈G,i∈[1,q(v)]

criT(v, i).

Algorithm 1 sdfIP(G)
Input: A valid SDFGG = 〈V,E, t, d, prd, cns〉
Output: criT and IP

1: V0 = {v ∈ V : ∀e ∈ InE(v), d(e) ≥ cns(e))}
2: ∀v ∈ G, i ∈ [1, q(v)], let criT(v, i) = −1
3: for all v ∈ V0 do
4: criT(v, 1) = t(v)
5: getNextT(v, 1)
6: end for
7: IP = maxv∈V,i∈[1,q(v)] criT(v, i)
8: return IP andcriT

getNextT(u, l)

9: for all e ∈ OutE(u) do
10: l′ = ⌊ (l−1)prd(e)+d(e)

cns(e) ⌋ + 1 // Equation (4)
11: uNext= snk(e)
12: if l′ ≤ q(uNext) then
13: if criT(uNext, l′) < criT(u, l) + t(uNext) then
14: criT(uNext, l′) = criT(u, l) + t(uNext)
15: getNextT(uNext, l′)
16: end if
17: end if
18: end for

Algorithm 1 computescriT and the IP. It is a variation of a
depth-first search(DFS) algorithm. It can also be implemented
by a breadth-first search strategy. After initializingV0 andcriT,
Algorithm 1 begins its search from each (v, 1) with v ∈ V0,
using the recursive proceduregetNextT as a subroutine to
explore critical walks and to compute thecriT. In getNextT,
line 10 is according to (4); lines 12- 17 show a DFS strategy
for each critical walk; lines 13-14 guarantee that if some
element (uNext, l′) belongs to more than one critical walk,
criT(uNext, l′) holds the largest computation time.

C. Relationship between criT and T

When we calculate the retiming function in the next section,
we need to count the numbers of (v, i)s with T(v, i) > dip for
eachv, denoted asnTdip(v). For example, in Fig. 4, letdip = 5;
then there are three copies ofB, (B, 3), (B, 4) and (B, 5), with
T(B, i) > 5. SonT5(B) = 3. We show below that we can get
nTdip(v) directly fromcriT , althoughcriT includes only a part
of T.

By the definitions ofcriT and T, for each (v, i), we have
criT(v, i) ≤ T(v, i). It is easy to see that ifcriT(v, i) > dip, then
T(v, i) > dip.

Let lCriT dip(v) ∈ [1, q(v) + 1] be the lowest labeli that has
criT(v, i) > dip; if there is no (v, i) with criT(v, i) > dip then
lCriT dip(v) = q(v) + 1. For example, in Fig. 4, letdip = 5; 3
is the lowest label withcriT(B, i) > 5 andlCriT 5(B) = 3.

For each (v, j) with j < lCriT dip(v), criT(v, j) ≤ dip. The
longest maximal zero-delay pathp to (v, j), which leads to
t(p) = T(v, j), corresponds to a subwalkw|(v,l′) of a critical
walk w that includes (v, l′) with l′ ≤ j. Sincel′ < lCriT dip(v),
t(w|(v,l′)) = criT(v, l′) ≤ dip. ThereforeT(v, j) ≤ dip. Then
lCriT dip(v) is exactly the lowest labeli that hasT(v, i) > dip.
Then nTdip(v) can be calculated vialCriT dip(v) according to
the following equation.

nTdip(v) = q(v) − lCriT dip(v) + 1. (5)

V. Feasible Retiming

This section presents our method for feasible retiming.
Firstly, we show that our method, sdfFEAS, mimics the
steps of the FEAS algorithm in [5], which is proven to be
sufficient and necessary for feasible retiming of HSDFGs. An
important observation is that FEAS is not directly applicable to
SDFGs. It can only be applied after converting an SDFG to its
equivalent HSDFG. Our approach works directly on SDFGs. It
mimics the steps of FEAS but does not explicitly construct the
HSDFG. Instead, it implicitly explores the relevant (critical)
paths in the underlying HSDFG. Mimicking the steps of FEAS
forms the basis of our correctness argument. Avoiding the
explicit construction of the HSDFG is crucial for the efficiency
of our approach. Secondly, in the final subsection of this
section we provide a sharp termination condition. This further
improves the efficiency of our approach.

A. FEAS Algorithm

FEAS, with a little adjustment, is shown in Algorithm 2 in
terms of the notations defined in this paper. ProcedureCP [5]
is used to compute theT and IP for an HSDFG. The order
of the lines invokingCP and checking whetherIP(Gr) ≤ dip
in Algorithm 2 is different from the order in FEAS in [5].
This doesn’t affect the correctness of Algorithm 2 but speeds
it up when a feasible retiming exists. Algorithm 2 works by
relaxation. After initializing the retiming vector as the zero
vector and an auxiliary variableGr asGh, it computes theT
and IP of the original graph. IfIP(Gh) ≤ dip already holds,
then no further retiming is needed. Otherwise, at each iteration
of the outer loop (lines 7-18), it increases each entryr(v) of
the retiming vector by 1 whenT(v) is larger thandip (the
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Algorithm 2 FEAS(Gh, dip) [5]
Input: A valid HSDFG Gh = 〈V,E, t, d〉 and a nonnegative

integerdip
Output: A retiming r of Gh such thatr(Gh) is a valid SDFG

with IP(r(Gh)) ≤ dip, if such a retiming exists
1: ∀v ∈ V, let r(v) = 0
2: Gr = Gh

3: get T and IP of Gr from CP(Gr )
4: if IP ≤ dip then
5: return r
6: end if
7: for i = 1 to |V| − 1 do
8: for all v ∈ V do
9: if (T(v) > dip) then

10: r(v) = r(v) + 1
11: end if
12: end for
13: Gr = r(Gr );
14: get T and IP of Gr from CP(Gr )
15: if IP ≤ dip then
16: return r
17: end if
18: end for
19: return false

inner loop), trying to shorten those zero-delay paths, to form
a retiming step; then it transforms the current HSDFG to a new
graph according to this retiming step (line 13) and compute the
T andIP for the new graph to check whether its IP is not larger
thandip; if not, then the accumulation of the previous retiming
steps forms a feasible retiming, otherwise, the algorithm goes
on to the next iteration until the bound of the outer loop (|V|−1,
where|V| denotes the number of actors inV) is reached; if at
that moment aGr with IP(Gr ) ≤ dip yet has not been found
then it concludes thatdip is not feasible forGh.

The largest cycle in a graph includes at most|V| edges and
each retiming step increases entryr(v) at most 1, so the worst
case is that|V|−1 retiming steps cause delays to travel through
the largest cycle and yet no feasible retiming is found. Any
more retiming steps may only lead to a delay distribution that
has already been tested. This bound (line 7) guarantees that
all the delay distributions that may lead to different IPs are
tested. We show later that this fixed bound in fact gives some
redundant iterations except for the worst case.

B. sdfFEAS Algorithm

Converting an SDFG to its equivalent HSDFG first and then
using Algorithm 2 can get a correct output when retiming
an SDFG. This is the traditional method, which is called
byHSDF. However, to the best of our knowledge, there are
no proved sufficient and necessary algorithms in the literature
that do not need to convert SDFGs to HSDFGs for finding a
feasible retiming of an SDFG. Our feasible retiming algorithm,
sdfFEAS, shown in Algorithm 3, is a sufficient and necessary
solution working directly on SDFGs.

The structure ofsdfFEASis similar to that ofFEAS. Only
the inner loop (lines 8-12) ofsdfFEAS, in which the retiming

Algorithm 3 sdfFEAS(G, dip)
Input: A valid SDFGG = 〈V,E, t, d, prd, cns〉 and a nonneg-

ative integerdip
Output: A retiming r of G such thatr(G) is a valid SDFG

with IP(r(G)) ≤ dip, if such a retiming exists
1: ∀v ∈ V, let r(v) = 0
2: Gr = G
3: get criT and IP of Gr from sdfIP(Gr)
4: if IP ≤ dip then
5: return r
6: end if
7: for i = 1 to

∑

v∈V q(v) − 1 do
8: for all v ∈ V do
9: get lCriT dip(v) from criT

10: nTdip(v) = q(v) − lCriT dip(v) + 1 // Equation (5)
11: r(v) = r(v) + nTdip(v)
12: end for
13: Gr = r(G)
14: get criT and IP of Gr from sdfIP(Gr)
15: if IP ≤ dip then
16: return r
17: end if
18: end for
19: return false

step is computed, differs. The retiming step may be assigned
a positive integer larger than 1, whereas inFEASthe retiming
step is always 1. If we consider these two algorithms on
the same graph, say,sdfFEAS(G, dip) and FEAS(H(G), dip),
however, since one actor inG may have more than one copy
in H(G), the retiming steps in these two algorithms may be in
fact equal. As we show below,sdfFEAS(G, dip) does give the
same retiming asFEAS(H(G), dip).

C. Equivalence of FEAS and sdfFEAS

It is obvious that the initial operations, lines 1-6, of Algo-
rithm 2 are equivalent to those of Algorithm 3, lines 1-6; the
bound of the outer loop in line 7 of Algorithm 2 is the same
as the one in line 7 of Algorithm 3. It remains to be shown
that iterations of the outer loop of these two algorithms are
equivalent.

We formally decomposeFEAS(H(G), dip) into two se-
quences of retimings and a sequence of HSDFGs. After theith

iteration (i > 0) of the outer loop, the retiming step is△r ′i and
the retiming obtained isr ′i =

∑i
j=1△r ′j ; the HSDFG sequence

generated during the entire procedure is:h0, h1, ..., hN, where
h0 = H(G), andhi+1 = △r ′i+1(hi) for 0 ≤ i < N.

Before the first iteration, all entries of the retiming vector
are initialized to zero, sor ′0 = ~0. According to the proof of
Algorithm FEAS in [5], each△r ′i is legal and hence eachr ′i
is legal and eachhi is valid; if there are feasible retimings,
then IP(hN) ≤ dip and IP(hi) > dip for all 0 ≤ i < N; if
not, IP(hi) > dip for all 0 ≤ i ≤ N and N = |V(Gh)| − 1.
Fig. 5(a), for example, gives the sequences△r ′i , r ′i andhi for
FEAS(H(G1), 4). At each iteration, the retiming step△r ′i is
determined by theT in Fig. 5(b).
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Fig. 5. Edges with delays in HSDFGs are omited. (a) The procedure of
FEAS(H(G1), 4); (b) T changes withFEAS(H(G1), 4); (c) criT changes with
sdfFEAS(G1, 4); (d) H(r(G1)) changes withsdfFEAS(G1, 4); (e) the procedure
of sdfFEAS(G1,4).

The retiming step for each iteration ofFEAS sometimes
seems unlikely to be legal. For example, inh0 of Fig. 5(a),
△r ′1(A, 3) = 1 seems to lead to an illegal retiming because there
are no delays on the outgoing edge of (A, 3). This situation,
however, implies the existence of a longer zero-delay path
including the actor next to (A, 3), (B, 2), leading to△r ′1(B, 2)=
1. And (B, 2) has sufficient delays on its outgoing edge for
one reversed firing. After (B, 2) is retimed once, (A, 3) gets
enough delays for one reversed firing. Therefore, legality of
△r ′1 is guaranteed.

We also decompose the procedure ofsdfFEAS(G, dip): after
the ith iteration of the outer loop, the retiming step is△r i and
the retiming obtained isr i =

∑i
j=1△r j ; the SDFG sequence

generated during the procedure is:g0, g1, ..., gM, whereg0 = G,
andgi+1 = △r i+1(gi) for 0 ≤ i < M.

Before the first iteration, all entries of the retiming vector are
initialized to zero, sor0 = ~0. Fig. 5(e), for example, gives the
sequences△r i , r i andgi for sdfFEAS(G1, 4). At each iteration,
the retiming step△r i is determined by thecriT in Fig. 5(c).

In the next part, we show that each△r i is legal and hencer i

is legal; that eachH(gi) is isomorphic tohi and henceIP(gi) =
IP(hi); and thatM = N. Then we can conclude that the output
of sdfFEAS(G, dip) is exactly the output ofFEAS(H(G), dip),

Fig. 6. The proof framework of the equivalence ofFEAS(H(G), dip) and
sdfFEAS(G, dip)

i.e., sdfFEAS(G, dip) andFEAS(H(G), dip) are equivalent.
We need to prove that each△r i has the same effect ongi−1

as △r ′i on hi−1. Since△r i and △r ′i are defined on different
graph structures, we cannot compare them directly. However,
for each legalr of G there always is a correspondingrh

of H(G), because the data dependencies ofG can always
be represented byH(G); r changes them by redistributing
delays ofG. Therefore, when we say a retimingr ′ on H(G)
is equivalent to a retimingr on G, denoted asr ′ ≡ r, this
means thatr ′ = rh under some isomorphism we define later.
For equivalentr and r ′, if r ′ is legal thenr is legal, because
they change the delay distribution identically.

First, let’s see howrh is defined. A retiming step△r(v) is
in fact the result of the last copies ofv in H(G) that have
T(v, i) > dip, according tosdfFEAS(G, dip). For example, in
Fig. 5(e),△r1(A) = 1 and△r1(B) = 1 for g0. This is caused by
criT(A, 3) > 4 andcriT(B, 2) > 4 (Fig. 5(c)). So the paths in
H(g0) (Fig. 5(d)) that need to be shortened are those that reach
(A, 3) and (B, 2). So the effect of △r1(A) = 1 and△r1(B) = 1
on G is exactly the effect of△r1h(A, 3) = 1 and△r1h(B, 2) = 1
on H(G). We generalize the above discussion in Definition 11.

Definition 11. Given a valid SDFGG and its legal retimingr.
r ’s corresponding retiming onH(G), rh, is defined as follows:
for each (v, i) ∈ H(G),

rh(v, i) =















0, i ≤ q(v) − r(v)

1, i > q(v) − r(v).

Before the first iteration,h0 = H(g0) = H(G), and r0h = ~0;
thereforer0 is legal. We show below that after each iteration
i, △r ′i ≡ △r i holds andhi is isomorphic toH(gi), denoted by
hi � H(gi). We illustrate the reasoning with the example in
Fig. 5 and the proof framework outlined in Fig. 6.

At the first iteration,sdfFEASworks on g0 to generate
the first retiming step△r1, corresponding to△r1h of H(g0).
According to lines 8-12 of Algorithm 3,△r1(v) = nTdip(v),
making△r1h(v, i) = 1 for i > q(v) − nTdip(v) and△r1h(v, i) = 0
for other i according to Definition 11.
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FEASworks onh0 (= H(g0)) to generate the first retiming
step△r ′1. According to (2) and lines 8-12 of Algorithm 2, we
have△r ′1(v, i) = 1 for i > q(v) − nTdip(v) and△r ′1(v, i) = 0 for
other i.

So we have△r1h = △r ′1 and hence△r ′1 ≡ △r1. Carrying out
the retiming transformation△r1 on g0 and△r ′1 on h0, we get
g1 andh1, respectively. That is,g1 = △r1(g0) andh1 = △r ′1(h0).

We need to show thath1 � H(g1). Because of△r1h = △r ′1,
we know △r1h(H(g0)) = △r ′1(h0) = h1. If △r1h(H(g0)) =
H(△r1(g0)) then h1 = H(g1). But this is not the case. For
example, in Fig. 5, (A, 2) in △r1h(H(g0)) (= h1) has an
incoming edge with zero delays while (A, 2) in H(△r1(g0))
(= H(g1)) has not; and a similar situation occurs for (A, 3).

However, examining△r1h(H(g0)) and △H(r1(g0)) closely,
we find that the numbers of delays changed on edges between
each actor pair ((u, i), (v, j)) are the same because△r ′1 ≡ △r1;
disregarding labels of actor names, the graphs have the same
structure. For example, rewriting (A, 1) to (A, 2), (A, 2) to
(A, 3), (A, 3) to (A, 1), (B, 2) to (B, 1) and (B, 1) to (B, 2)
of h1 (= △r1h(H(g0))) in Fig. 5(a), we get graphH(g1)
(= H(△r1(g0))) in Fig. 5(d).

Because a retimingr on G always increases the number of
delays on the incoming edges of some later (v, i)s in H(G), and
because the mappingH always arranges actors with zero-delay
incoming edges to the later (v, i)s, we can generalize the above-
mentioned rewriting as a functionΦr : rh(H(G)) → H(r(G)),
mapping each (v, i) to (v, j) in terms of

j =















i + r(v), i ≤ q(v) − r(v)

i + r(v) − q(v), i > q(v) − r(v).
Φr is an isomorphism and doesn’t change the IP because it
only rewrites the names, in fact the labels, of actors of an
HSDFG.

Lemma 12. Given a valid SDFGG and its legal retimingr.
rh(H(G)) � H(r(G)) underΦr .

Since Φ△r1(△r1h(H(g0))) = H(△r1(g0)) = H(g1) and
△r1h(H(g0)) = h1, we haveh1 � H(g1) underΦ△r1.

At the second iteration, considersdfFEASworking on g1

to get△r2 and FEASworking on H(g1) (not h1) to get△r ′′2 ;
repeating the previous discussion, we have△r ′′2 = △r2h. In
Fig. 5, for example,△r ′′2 (A, 3) = △r2h(A, 3) = 1. Sinceh1 �

H(g1) underΦ△r1, using the inverse mapping ofΦ△r1, Φ
−1
△r1

,
on △r ′′2 , we get exactly the retiming step△r ′2 computed by
FEASon h1. Using an inverse rewriting of the one we used
for h1 in Fig. 5(a),△r2h is transformed to△r ′2, for example.
An inverse of an isomorphism is also an isomorphism, so we
have△r2 ≡ △r ′2 underΦ−1

△r1
. Therefore the effect of△r ′2 on h1

is the same as the effect of△r2 on g1 underΦ−1
△r1

. That is,
h2 = Φ

−1
△r1

(△r2h(H(g1))).
As explained at the first iteration, according to Lemma 12,
there is

Φ△r2(△r2h(H(g1))) = H(△r2(g1)) = H(g2).
Then, we haveh2 � H(g2) underΦ△r2 ◦ Φ△r1, which is the
composition of two isomorphisms and therefore is also an
isomorphism.

The discussion repeats tillsdfFEASandFEASreach anith

iteration such thatIP(gi) = IP(hi) ≤ dip, if there are feasible

retimings for G with dip; alternatively they pass through
∑

v∈V q(v) − 1 iterations and find no feasible retiming. In both
cases, the numbers of iterations are the same, that is,M = N.

In summary, see Fig. 6, by means of one auxiliary sequence
of retimings of H(gi), △r ih, and one auxiliary HSDFG se-
quence,mi = △r ih(H(gi−1)), which is isomorphic to bothH(gi)
andhi , we prove thatH(gi) � hi .

According to the above discussion, we have the following
theorem.

Theorem 13. Given a valid SDFG G with dip,
sdfFEAS(G, dip) is equivalent toFEAS(H(G), dip).

We may conclude thatsdfFEASis a sufficient and necessary
algorithm for the feasible retiming problem on SDFGs as
FEASis for HSDFGs.

D. sdfFEAS with Sharp Termination Condition

Whendip is a feasible IP ofG, sdfFEAS(G, dip) terminates
at once when it finds a feasible retiming. As observed in [8],
the IPs of the intermediate graphs generated during the pro-
cedure, thegi (hi) introduced above, converge rapidly. For
example,sdfFEAS(G1, 4), shown in 5(e), terminates after only
2 iterations of the main loop.

When dip is not feasible forG, however,sdfFEAS(G, dip)
has to do

∑

v∈G q(v) − 1 iterations to determine that there
are no feasible retimings for thisdip. For example, because
3 is not a feasible IP ofG1, sdfFEAS(G1, 3) will terminate
after 7 iterations and report false. Examining the procedure of
sdfFEAS(G1, 3), shown in Fig. 7, we find that after 5 iterations
it reaches a graph that has been checked before. That is, the
6th and 7th iterations in fact repeat some previous iterations,
the 3th and 4th iterations in this example.

Since a retiming only changes the delay distribution,d(G),
of a graph G, we can conclude thatgi = g j because
d(gi) = d(g j). Based on the above observation, we can improve
sdfFEASas follows.

1) Store eachd(gi) into a list DDs;
2) WhenIP(gi) > dip, check whether there is repetition in

DDs, that is, there is aj < i such thatd(g j) = d(gi);
3) If finding repetition inDDs, or when reaching the bound

of the outer loop of Algorithm 3, terminate and report
false; otherwise, continue as Algorithm 3 shows.

It is clear that this improved procedure is correct. The
new termination condition finds repetition inDDs to stop the
procedure as soon as possible. The new termination condition
is sufficient to guarantee the procedure to stop before any
redundant work is done, as we show below. That is, we do
not need check the bound

∑

v∈V q(v) − 1. The algorithm can
simply be run until a delay distribution re-occurs.

Recall that we have proven thatsdfFEAS is necessary
(and sufficient) by showing its equivalence toFEAS. That
means, when it reports that adip is not feasible forG, all
the possibilities have been exhausted, as we explain at the
end of Section V.A. Then the graphs generated during the
procedure,gi , i = 0, ...,M with M =

∑

v∈G(q(v)) − 1, cover
all the possibilities to be checked. This leads to two possible
situations: there existi and j with i < j ≤ M such thatg j = gi
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Fig. 7. Edges with delays in HSDFGs are omited. (a) The procedure of sdfFEAS(G1, 3); (b) H(gi ) changes withsdfFEAS(G1, 3); (c) criT changes with
sdfFEAS(G1, 3).

and thereforeg j+x = gi+x for x ≤ M − j; otherwise, there must
be somegi = gM+1 with i < M andgM+1 = △rM+1(gM), because
if not, gM+1 is a graph that hasn’t been checked bysdfFEAS,
and there may be anIP(gM+1) ≤ dip. This would mean that
sdfFEASis not necessary and cause a contradiction.

For the former situation,x redundant iterations are removed
by the improved procedure; for the latter situation, the number
of the iterations of the improved procedure is the same as
that of sdfFEAS. Therefore the new termination condition,
checking only the re-occurrence of the delay distribution after
retiming, makes sure that only the necessary iterations are
performed, improving the bottleneck of the feasible retiming
problem [8]. It is in fact a sharp condition.

From now on,sdfFEASrepresents the improved procedure.
For example, theDDs of sdfFEAS(G1, 3) is as follows:

〈A, B〉

〈B,C〉

〈C,A〉





























1

3

1





























7→





























2

4

0





























7→





























6

0

0





























7→





























0

0

3





























7→





























0

6

0





























7→





























6

0

0





























When the second (6, 0, 0) is reached, there is repetition in the
list DDs, andsdfFEAS(G1, 3) terminates.

VI. Optimal Retiming

According to the definition of optimal retiming, when we
say thatr is an optimal retiming ofG andoptIP is the optimal
iteration period ofG, this means thatr is a feasible retiming for
G with dip = optIP , and that there is no feasible retiming forG
with dip = optIP−1. The typical procedure of optimal retiming
is to find some potentialoptIPs asdip and test whether they
are feasible until we find a smallest one.

We denote the IP of the original SDFGG as initial IP
(initIP) and the maximal execution time of actors ofG as
maxt. It is obvious that no matter what retiming is used,G
will not be transformed to a new graph with IP lower than
its maxt. Therefore the range of potentialoptIPs for G is the
integer interval [maxt, initIP].

Recall from the previous section that dealing with an input
for which there is no feasible retiming is usually a bottleneck
to the solution for the feasible retiming problem. Although

our method provides a sharp bound for this situation, the
number of iterations when no feasible retiming exists seems
to be more than the number of iterations when one exists; see
Fig. 5 and Fig. 7 for example. Although a binary search has
a lower theoretical complexity than a linear search, a binary
search method for optimal retiming tends to test more than
one potentialoptIP that is not feasible, while a linear search
method, searching potentialoptIPs decreasingly, only tests
one potentialoptIP that is not feasible. So, in line with the
approach in [15], we use a linear search to find the optimal
retiming, calledsdfOPT, shown in Algorithm 4.

Algorithm 4 sdfOPT(G)
Input: A valid SDFGG = 〈V,E, t, d, prd, cns〉
Output: A retiming r of G such thatIP(r(G)) is as small as

possible
1: ∀v ∈ V, let r(v) = 0;
2: Gr = G;
3: get IP of Gr from sdfIP(Gr );
4: optIP= IP
5: while optIP> maxv∈V t(v) do
6: run Algorithm sdfFEAS(Gr , optIP − 1) to determine

whether a feasible retiming exists
7: if a feasible retimingr ′ existsthen
8: Gr = r ′(Gr );
9: r+ = r ′;

10: get IP of Gr from sdfIP(Gr );
11: optIP= IP
12: else
13: return r
14: end if
15: end while
16: return r

Since initIP is a feasible IP,sdfOPT begins with dip =
initIP−1, usingsdfFEASto check whether a feasible retiming
exists forG with this dip. If so, it stores this retiming and
computes the new IP of the retimed graph. Then it decreases
this IP by 1 and callssdfFEASon the retimed graph with the
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new dip. If no feasible retiming exists then the previous one
is an optimal retiming and the previous IP is theoptIP; if a
feasible retiming is found, then the procedure repeats until no
feasible retiming is found for somedip.

The termination condition ofsdfOPT is sharp because of
the fact that the termination condition ofsdfFEASis sharp.

VII. Experimental evaluation

We implemented our methods and related methods in
SDF3 [16]. For feasible retiming, the methods implemented in-
clude the traditional method—byHSDF, Algorithm 3 in [3]—
O’Neil01, the algorithm in [14]—Zhu10, and our new
method—sdfFEAS. For optimal retiming, the methods include
Algorithm SDF Retiming Improved in [15] — Liveris07,
and our new method —sdfOPT (both a depth-first variant
and a breadth-first variant — sdfOPT-BFS).

To evaluate the efficiency of the various algorithms, we
performed experiments on two sets of SDFGs, running on a
2.4GHz CPU with 12MB cache. The experimental results of
these two sets are shown in Tables I and II, respectively.

TABLE I
Execution time of practical DSPexamples

Graph information

name Samplerate Satellite MaxES CEer

|V| 7 23 14 23

|E| 7 29 15 44

|V′ | 613 4,516 1,289 43

|E′ | 1,328 9,456 2,342 99

Initial and optimal iteration period

InitIP 21 11 11,528 53,652

OptIP 6 2 8,192 47,128

Feasible retiming for dip=optIP

Execution time (ms)

sdfFEAS 0.0 0.2 0.1 0.3

Zhu10 4.6 56.9 9.7 30.0

O’Neil01 661.0 N N 2.9

byHSDF 212.2 11,875.1 665.7 2.0

Memory used (MB)

sdfFEAS 0.23 0.72 0.38 0.84

Zhu10 0.23 0.70 0.38 0.84

O’Neil01 2.49 N N 0.92

byHSDF 1.58 10.71 2.94 0.94

Optimal retiming

Execution time (ms) / Retiming steps

sdfOPT 0.1 / 8 1.3 / 28 0.2 / 12 4.8 / 44

Liveris07 4.1 / 762 51.3/ 2175 9.5/ 1035 1.5/ 44

sdfOPT-BFS 0.4 / 8 1.8 / 28 0.3 / 12 3.7 / 44

Memory used (MB)

sdfOPT 0.23 0.72 0.38 0.85

Liveris07 0.23 0.71 0.38 0.84

sdfOPT-BFS 0.23 0.74 0.38 0.85

Both tables have four parts. The first part gives the number
of actors and edges in an SDFG (|V| and |E|) and the number
of actors and edges in its equivalent HSDFG (|V′| and |E′|);

the second part lists the initial iteration period and optimal
iteration period of each graph; the third part shows execution
times of different feasible retiming methods, and for the
practical DSP examples in Table I also memory usage; the
fourth part shows the results for different optimal retiming
methods. Execution times are measured in milliseconds (ms);
memory usage is measured in Megabytes (MB).

The first set of SDFGs consists of four practical DSP appli-
cations, including a sample rate converter (Samplerate) [23], a
satellite receiver (Satellite) [24], a maximum entropy spectrum
analyzer (MaxES) [25], and a channel equalizer (CEer); the
latter is converted from the cyclo-static dataflow model [26]
in [27]. Adopting the method in [2], by introducing to each
model a dummy actor with computation time zero and edges
with proper rates and delays to connect the dummy actor to
the actors that have no incoming edges or no outgoing edges,
we convert these models to strongly connected graphs. The
information in the first part of Table I takes into account the
dummy actor and its incoming and outgoing edges.

TABLE II
Execution time of synthetic examples

Graph information

|V| 19 46 95

|E| 21 52 108

|V′ | 1,983 4,983 9,962

|E′ | 4,055 10,126 19,920

Initial and optimal iteration period

InitIP 69 122 193

OptIP 55 77 118

Execution time (ms)

Feasible retiming for dip=optIP

sdfFEAS 0.2 0.6 1.7

Zhu10 16.0 76.0 278.3

O’Neil01 1.3E+03 2.1E+04 8.6E+04

byHSDF 1.4E+03 9.5E+03 5.2E+04

Execution time (ms)

Optimal retiming

sdfOPT 0.6 3.3 11.9

Liveris07 8.6 42.7 158.8

sdfOPT-BFS 0.9 4.7 17.0

The second set consists of 150 synthetic strongly connected
SDFGs generated by SDF3, mimicking real DSP applications
and scaling up the models. The number of actors in an SDFG
and the sum of the elements in the repetition vector, i.e.|V′|,
have significant impact on the performance of the various
methods, so we generated these examples according to three
combinations of these two parameters— (20,2000), (50,5000)
and (100,10000), respectively. The generated graphs, 50 in
each group, deviate a little from these values. The explicit
difference in size among the three groups shows how the
performance of each method changes with the size of the
graph. The information in the first part of Table II gives
averages for each group.

We evaluate the feasible retiming methods on each graph
with dip equal to its optimal iteration period. Except for
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O’Neil01, all other algorithms find feasible retimings for
all examples. Our method sdfFEAS completes in no more
than 2ms for all examples, dramatically more efficient than
O’Neil01 and byHSDF and about 100 times or more faster
than Zhu10, especially for those SDFGs whose equivalent
HSDFGs have a large size, e.g. Satellite in Table I. To our
surprise, when the graphs scale up, the traditional method,
byHSDF, may have better performance than O’Neil01, as the
second and third columns of Table II show. The reason may
be that O’Neil01 needs to convert an SDFG to an HSDFG
many times while byHSDF only needs to do this once.

Our optimal retiming method reduces execution time com-
pared to Liveris07 on all examples except for CEer in Table I.
For further analysis, Table I, under ‘Execution time/Retiming
steps’, gives besides the execution time the total number of
retiming steps in the complete optimization procedure. Except
for CEer, all examples show a much smaller number of
retiming steps for sdfOPT than for Liveris07.

Generally, the speed of a (feasible/optimal) retiming al-
gorithm is affected by three aspects: (a) the procedure for
computing the IP; (b) the procedure for computing retiming
steps; and (c) the termination condition, which determinesthe
number of retiming steps. (a) and (b) both execute once at
each retiming step. In most cases, the better runtime of sdfOPT
over Liveris07 mainly comes from (b) and, particularly, (c).
Our procedure for computing the IP is sometimes slower than
that of Liveris07. In most cases, this slowdown is relieved by
(b) and (c). When the advantage of (b) and (c) of our method
is not large enough to relieve the slowdown by (a), sdfOPT
is slower than Liveris07. This happens on the example CEer.
In this case, sdfOPT performs 44 iterations (c) with a total
execution time of 4.2ms for computing the IP (a) and 0.6ms for
computing retiming steps (b); for Liveris07, these numbersare
44, 0.9ms, and 0.6ms, respectively. Although our IP procedure
itself is slower, the equation derived from its output, Equation
(5), is crucial for the speedup of (b) and (c).

Since our methods work directly on SDFGs and do not
explicitly construct their equivalent HSDFGs, one may expect
a lower memory usage when compared to traditional methods
that convert to an HSDFG. We measured the memory used
by the different methods on the DSP examples by the tool
Valgrind (http://valgrind.org/) . Our feasible retiming methods
(sdfFEAS and our earlier work Zhu10) use much less memory
than O’Neil and byHSDF. The memory used by all optimal
retiming algorithms is almost the same (because all methods
work directly on SDFGs). The results are shown in Table I.

Although we assumed strongly connected graphs, our meth-
ods can also be used on SDFGs that are not strongly con-
nected, only by enlarging the setV0 to contain those actors that
have no incoming edges and using the combined termination
condition mentioned in Section V.D. We remove the dummy
actors of the DSP examples so that they are no longer strongly
connected and run different methods on them. It turns out
that our method is still much faster, as shown in Table III.
The execution times of Liveris07 are not shown in this table,
because it is only applicable on strongly connected graphs.

All the feasible retiming algorithms mentioned in this paper
are of exponential worst case complexity. For O’Neil01 and

TABLE III
Execution time of practical DSPexamples (not strongly connected)

Execution time (ms)

name Samplerate Satellite MaxES CEer

sdfFEAS 0.2 0.4 0.3 0.2

Zhu10 3.5 109.3 8.6 29.7

O’Neil01 371.8 94,102.5 N 3.1

byHSDF 156.5 11,186.7 495.1 2.0

sdfOPT 0.1 1.1 0.6 4.6

byHSDF, worst cases are caused by the procedure that converts
an SDFG to its HSDFG, affected heavily by the size and
sample rates of the graphs. For sdfFEAS, worst cases are
caused by the procedure sdfIP, which may visit an actor
an exponential number of times when there are complex
nested cycles in the equivalent HSDFG, due to the depth-first
search (DFS) strategy. For the same reason, sdfOPT is also
of exponential worst case complexity. That is the reason why
sdfOPT performs poorly on the example CEer.

Procedure sdfIP can be modified to a breadth-first search
(BFS) with O(|V′|) complexity to give sdfFEAS anO(|V′||E′|)
complexity and sdfOPT anO(K|V′||E′|) complexity, where
K = initIP −maxtand |V′| and |E′| are the numbers of actors
and edges of the equivalent HSDFG, respectively. However,
the average execution time of the BFS method is worse than
the method we present in this paper, as shown in Tables I and
II. In most cases, a DFS only needs to visit part of the actors
of V′; sometimes it even only needs to traverse the actors of
V, as the examples in previous sections show, while a BFS
needs some overhead before computingcriT . Another variant
may be to compute the IP by the procedure used by Liveris07
in [15], whose worst case complexity isO(|E′|). Whether its
output can be used in sdfFEAS needs further investigation, and
it may output incorrect results on SDFGs that are not strongly
connected.

A similar situation occurs for the procedure sdfOPT. The
execution times using a binary search strategy are for almost
all considered graphs larger than when using a linear search
strategy, as we use in Algorithm 4.

VIII. Conclusion

In this paper, we have presented new methods for finding a
feasible retiming to optimize an SDFG to meet an iteration
period constraint and for finding an optimal retiming so
that an SDFG achieves its smallest iteration period. Both
methods work directly on the SDFG without converting it to
its equivalent HSDFG.

Our feasible retiming method, sdfFEAS, mimics the steps of
Algorithm FEAS [5]. It is a sufficient and necessary solution
for the feasible retiming problem. We provide a sharp ter-
mination condition to eliminate redundant work. Our optimal
retiming method, sdfOPT, using sdfFEAS as a subroutine, also
has a sharp termination condition. Experimental results show
that our feasible method is four orders of magnitude faster
than the method of [3] and two orders of magnitude faster
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than the method of [14]; our optimal method is more than ten
times faster than the method of [15].
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