
ISCAS-SKLCS-14-12                        August, 2014 
 
 

中国科学院软件研究所  
计算机科学国家重点实验室  

技术报告  
 
 
 
 

Static Optimal Scheduling and Mapping 
of Synchronous Dataflow Graphs on a 

Heterogeneous Multiprocessor Platform 
with Model Checking 

 
 
 

by 
 

 Xue-Yang Zhu, Rongjie Yan, Yu-Lei Gu  
Guangquan Zhang 

 
 
 

State key Laboratory of Computer Science 
Institute of Software 

Chinese Academy of Sciences 
Beijing 100190. China 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright2014, State key Laboratory of Computer Science, Institute of Software. 

             All rights reserved. Reproduction of all or part of this work is 

             permitted for educational or research use on condition that this 

             copyright notice is included in any copy. 



Static Optimal Scheduling and Mapping of
Synchronous Dataflow Graphs on a Heterogeneous

Multiprocessor Platform with Model Checking

Xue-Yang Zhu and Rongjie Yan
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

{zxy,yrj,zj}@ios.ac.cn

Yu-Lei Gu and Guangquan Zhang
School of Computer Science and Technology

Soochow University
Suzhou, China

{guyl@ios.ac.cn,gqzhang@suda.edu.cn}

Abstract—Synchronous dataflow graphs (SDFGs) are widely
used to model digital signal processing (DSP) and streaming
media applications. Such applications are usually operated on
embedded systems, which require high performance and low
energy consumption. In this paper, we present exact methods
for static optimal scheduling and mapping of SDFGs on a
heterogenous multiprocessor platform. The optimization criteria
we consider are throughput and energy consumption. By defining
a (priced) timed automata (TA) semantics of system models, which
includes an SDFG and a multiprocessor platform, we transform
a system model to a (priced) TA network for real-time model
checking tool UPPAAL (CORA); meanwhile, the optimization
goals are formalized as logical formulas of the tools. Thanks
to the exhaustive exploration nature of model checking and the
facility of the tools, we can get throughput-optimal schedules
that have a best energy consumption, and energy consumption-
optimal schedules that have a best throughput. Although for
model checking, state explosion is inevitable when the models
scale up, our experiments, carried out on an MPEG-4 decoder
algorithm and a computation example with various parameters,
show that our methods can deal with relatively large scale models
within reasonable execution times. Our method can also reveal
impacts of different parameters on optimization goals.

I. Introduction

Synchronous dataflow graphs (SDFGs) [1] are widely used
to represent DSP and streaming media applications, which are
usually operated under real-time and resource constraints. Each
node (also called actor) in an SDFG represents a computation
and each edge models a FIFO channel; the sample rates
of actors may differ. An example SDFG, G1, is shown in
Fig. 1(a). There are many practical applications modeled with
SDFGs, such as a spectrum analyzer [2], a satellite receiver [3]
and an MPEG-4 decoder[4]. In this paper, we are concerned
with constructing efficient static (compile-time) schedules of
SDFGs on a heterogeneous multiprocessor platform.

A static schedule arranges the actors of an SDFG to be
executed repeatedly, also called a periodic schedule. Execution
of all the actors for the required number of times is referred
to as an iteration. An iteration of an SDFG may include more
than one execution, also called firing, of an actor. Different
actors may fires a different number. Actor B in G1, for example,
fires twice in an iteration, while A fires once. The average
computation time per iteration is called iteration period (IP).
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Fig. 1. The system model M1 and its schedules. (a) The SDFG G1; (b)
the execution platform P1 and the execution times of actors G1 on different
processors; (c) an ASAP periodic schedule of G1 with IP=8; (d) a periodic
schedule of G1 with IP=6; (e) an unfolding schedule of G1 with IP= 11

2 . The
sample rates in the SDFG are omitted when they are 1; black dots represent
initial tokens on the edges.

The IP is the reciprocal of the throughput. We use IP and
throughput alternatively in the remainder of the paper.

Static schedules of SDFGs can be non-overlapped or over-
lapped. If the scheduled computations in any two consecutive
iterations do not overlap, it is a non-overlapped schedule;
otherwise, it is an overlapped schedule. The timing models can
be integral or fractional. In an integral model the scheduled
computation can only start at integral number while in a
fractional model it can start at any rational number. We focus
on non-overlapped scheduling for the integral timing model in
this paper.

For homogeneous multiprocessor scheduling of SDFGs, an
as soon as possible (ASAP) execution can be used to find the
schedules with minimal IP (throughput-optimal). An ASAP
method on SDFGs is similar to the critical path methods
on its equivalent Homogenous synchronous dataflow graphs
(HSDFGs), a special type of SDFGs, of which all sample rates
of actors are one.

For heterogeneous multiprocessor scheduling, however, an



ASAP schedule is not necessarily throughput-optimal. The
ASAP schedule shown in Fig. 1(c), for example, arranges
executions of actors of G1 on a platform including two
heterogeneous processors as shown in Fig. 1(b). It has an IP
larger than the IP of another schedule shown in Fig. 1(d),
which is not ASAP. The latter is actually throughput-optimal
when we consider one iteration as a cycle. It can be further
optimized by unfolding scheduling.

Scheduling f iterations as one cycle may lead to more
options for parallel execution if f > 1 and therefore may
reduce the IP and the energy consumption of a schedule.
This is unfolding scheduling and f is called unfolding factor.
Unfolding is an important optimization technique for data flow
models. It has been widely studied [5], [6]. See Fig. 1(e)
for example. The IP of a periodic schedule of G1 with
unfolding factor 2 is 11

2 , smaller than that of the schedule
shown in Fig. 1(d). The improvement of energy consumption
per iteration (IEC) is similar.

In this paper, we present a method to schedule and map
the firings of actors of an SDFG on a heterogeneous multi-
processor platform for a given unfolding factor. The schedules
are either throughput-optimal with a best energy consumption
or energy consumption-optimal with a best throughput.

By defining a timed automata (TA) [7] semantics of SD-
FGs, we transform an SDFG to a TA network for real-time
model checking tool UPPAAL [8]. Formalizing the ending
of an unfolding periodic schedule as a temporal logical for-
mula, we obtain a throughput-optimal schedule by the tool.
The energy consumption is then computed according to the
schedule. Adding energy consumption as a constraint, we can
find a fastest schedule under the constraint. By restricting the
constraint we get a throughput-optimal schedule with a best
energy consumption.

Similarly, by defining a priced timed automata (PTA) [9]
semantics of SDFGs, we transform an SDFG to a PTA network
of tool UPPAAL CORA. An energy consumption-optimal
schedule is found by the tool. However, the throughput of
the schedule may be not the best under the optimal energy
consumption. Using UPPAAL on the SDFG again with the
optimal energy consumption as a constraint, we get an energy
consumption-optimal schedule with a best throughput.

Other kinds of constraints, e.g. auto-concurrency con-
straints and buffer size constraints, are also considered and
integrated into our method framework. To the best of our
knowledge, this is the first exact method to schedule SDFGs on
heterogenous multiprocessor platforms according to optimiza-
tion criteria combining throughput and energy consumption,
and meanwhile the scheduling takes into account the combi-
nation of various constraints.

To evaluate our method, we have implemented it in the tool
iDFOS and carried out experiments on an MPEG-4 decoder
algorithm and a computation example with various parameters.
We show the outputs of our method and the execution time
and memory used of the procedure for throughput-optimal
schedules. Although for model checking, state explosion is
inevitable when the models scale up, our experimental results
show that our methods can deal with relatively large scale
models within reasonable execution times.

The remainder of this paper is organized as follows. The
input models and the problems addressed are formulated in
Section II. Our main contributions are illustrated in Sec-
tions III, IV and V. Section VI provides an experimental
evaluation. Related work is introduced in Section VII. Section
VIII concludes.

II. Model Description and Problem Fomulation

An execution platform P is a set of heterogeneous proces-
sors. A computation will require different amounts of running
time if it is executed on different processors. The energy
consumption per unit time for each processor p is defined by
uEC(p), indicating the energy consumption when p is used for
some tasks, and iEC(p), indicating the energy consumption per
unit time when p is idle.

A synchronous dataflow graph (SDFG) is a finite directed
graph G = 〈V, E〉. V is the set of actors, modeling the functional
elements of the system; E is the set of directed edges, modeling
interconnections between functional elements. Each edge e
is weighted with three properties, d(e), prd(e) and cns(e).
Property d(e) is the number of initial tokens on e, prd(e) is the
number of tokens produced onto e by each firing of the source
of e, and cns(e) is the number of tokens consumed from e by
each firing of the sink actor of e. These numbers are also called
the delay, production rate and consumption rate, respectively.

The source actor and sink actor of e are denoted by src(e)
and snk(e), respectively. The set of incoming edges to actor
α is denoted by InE(α), and the set of outgoing edges from
α by OutE(α). If prd(e) = cns(e) = 1 for each e ∈ E, G is a
homogeneous SDFG (HSDFG).

An actor may require different amounts of execution time
if running on different processors. If execution platform P is
considered, each actor α is weighted with computation times
t(α, p), for all p ∈ P. Normally, t(α, p) is a nonnegative integer.
For technical reason, we allow t(α, p) to be 0 or −1. The former
is used to model the execution time of some dummy actors;
the latter is used when α is not allowed to run on p.

An SDFG G is sample rate consistent [1] if and only if
there exists a positive integer vector q(V) satisfying balance
equations, q(src(e))× prd(e) = q(snk(e))× cns(e) for all e ∈ E.
The smallest q is called the repetition vector. We use q to
represent the repetition vector directly. For example, a balance
equation can be constructed for each edge of G1 in Fig. 1 (a).
By solving these equations, we have G1’s repetition vector q =
[1, 2, 2]. Only sample rate consistent and deadlock-free SDFGs
are meaningful in practice. We consider only such SDFGs,
which can be verified efficiently [1].

An iteration is a firing sequence in which each actor α
occurs exactly q(α) times. A consistent SDFG can always be
translated to an equivalent HSDFG [10]. Each actor α in the
SDFG has q(α) copies in its equivalent HSDFG. The HSDFG
of G1 is shown in Fig. 2.

Definition 1 (System model). A system model includes an
SDFG G and its execution platform P, denoted byM = (G, P).

A static schedule arranges computations of an algorithm
to be executed repeatedly. An unfolding schedule of system
modelM = (G, P) is a static schedule arranging f consecutive
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Fig. 2. The equivalent HSDFG of G1.

iterations of G running on P. The number f is called unfolding
factor and the f iterations form a cycle. An unfolding schedule
with unfolding factor f is an f -schedule.

Definition 2 ( f -schedule). An f -schedule of system model
M = (G, P) is a function S : V × N→ N × P, where N is the
set of non-negative integers, defining the time arrangement and
the processor allocation of firings of actors in G. Schedule S
with a cycle period (CP) T is defined as follows. For the ith
firing of actor α, denoted by (α, i), i ∈ [1,∞):

1) S (α, i).st is the start time of (α, i), when there are
sufficient tokens on each e ∈ InE(α) for a firing of
α;

2) S (α, i).pa is the processor assigned to (α, i), which is
available at the moment S (α, i).st;

3) S (α, i + f · q(α)).st = S (α, i).st + T ;
4) S (α, i + f · q(α)).pa = S (α, i).pa

Such a schedule can be represented by the first f iterations
and period T . It is the part of the schedule defined by S (α, i)
with 1 ≤ i ≤ f ·q(α) for all α. From now on, we only consider
the finite part of f -schedules.

The iteration period (IP) of S is the average computation
time of an iteration, that is, IP = CP

f = T
f .

The energy consumption of f -schedule S can be computed
as follows. For conciseness, we omit parameters S and f when
it is clear in context. Denote the set of all firings assigned on
processor p by AonP(p).

AonP(p) ≡de f {(α, i)|S (α, i).pa = p ∧ i ∈ [1, f · q(α)] ∧ α ∈ V}.

The total time p occupied in S is

occT(p) =
∑

(α,i)∈AonP(p)

t((α, i), p), (1)

where t((α, i), p) = t(α, p).

Then the energy consumption of S is

EC =
∑
p∈P

occT(p) · uEC(p) + [CP(S ) − occT(p)] · iEC(p). (2)

The iteration energy consumption (IEC) of S is the average
energy consumption of an iteration, that is, IEC = EC

f .

Given system model M = (G, P) and unfolding factor f ,
suppose the set of all f -schedules ofM is S, the problems we
address are:

1) how to find a f -schedule S optP such that

IP(S optP) = min {IP(S )|S ∈ S}, and
IEC(S optP) = min {IEC(S )|S ∈ S ∧ IP(S ) = IP(S optIP)}

running

Inv:    x ≤ t(α,p)

idle

g:    readyS(α)
up:  sFiring(α), x:=0

g:   x==t(α,p)
up:  eFiring(α)

ir

ri

Fig. 3. The timed automaton tap.

2) how to find a f -schedule S optE such that

IEC(S optE) = min {IEC(S )|S ∈ S}, and
IP(S optE) = min {IP(S )|S ∈ S ∧ IEC(S ) = IEC(S optE)}

III. A Timed Automata Semantics of SystemModels

A. Introduction to Timed Automata

In this section we recap the concepts of syntax and se-
mantics of timed automata (TA) [7] and its extension with
cost [9]. Let X be a set of clocks, V be a set of bounded
integer variables. An integer expression over V is of the form
v, k, ε1+ε2 or ε1−ε2, where v ∈ V, k is an integer constant, and
ε1 and ε2 are integer expressions. We use C(X,V) to denote the
set of constraints in the form of φ ::= x ∼ k |ε1 ∼ ε2 |φ1 ∧ φ2,
where x ∈ X, and ∼∈ {<,≤,=,≥, >}. Let U(X,V) be the set of
updates in the form of η ::= x := 0 |v := ε |η1; η2 |fun, where
x ∈ X, v ∈ V, ε is an integer expression, η1 and η2 are updates,
and fun is a function with a set of updates.

A timed automaton is a tuple (L, X,V,E, Inv, l0), where L
is a set of locations, E ⊆ L × C(X,V) × U(X,V) × L is a set
of edges, Inv : L → C(X,V) assigns invariants to locations,
and l0 is the initial location. A network of n timed automata
(NTA) is a tuple of timed automata A1|| · · · ||An over X, V.

A clock valuation γ for a set X is a mapping from X to R+,
where R+ is the set of non-negative real numbers. A variable
valuation u is a function from V to Z, where Z is the set of
integers. A pair of valuation (γ, u) satisfies a constraint φ over
X and V, denoted by (γ, u) |= φ, if and only if φ evaluates
to true with the values γ and u. Let γ0(x) = 0 for all x ∈ X.
For δ ∈ R+, γ + δ denotes the clock valuation that maps every
clock x to the value γ(x)+δ. For an update η(Y,V′) over a pair
of valuation (γ, u), where Y ⊆ X and V′ ⊆ V, (γ, u)[η(Y,V)]
denotes the clock valuation that maps all clocks in Y to zero
and agrees with γ for all clocks in X \ Y , and the variable
valuation that maps all integer variables in V \V′ agree with
u.

For example, Fig. 3 shows a time automaton for processor
p. There are two locations to mark idle or running status.
When the guard readyS(α) is satisfied, the transition from
location idle to running is enabled. Once the transition is
triggered, updates on clock x := 0 and other integer variables
in sFiring(α) are executed. The invariant x ≤ t(α, p) of location
running restricts the allowed maximal delay.

The semantics of timed automata is defined as follows.

Definition 3 (Semantics of timed automata). The semantics of
a timed automaton A = (L, X,V,E, Inv, l0) is a timed transition
system T = 〈S, s0,→〉 where S ⊆ L × R+ × Z is the set of



states, s0 = (l0, γ0, u0) is the initial state and→ is the transition
relation such that

• delay transition. (l, γ, u)
δ
−→ (l, γ+δ, u) if ∀δ′ : 0 ≤ δ′ ≤

δ⇒ (γ + δ′, u) |= Inv(l) where δ ∈ R+, and

• discrete transition. (l, γ, u) → (l′, γ′, u′) if there exists
e = (l, g, η(Y,V′), l′) ∈ E such that (γ, u) |= g, (γ′, u′) =
(γ, u)[η(Y,V′)], and (γ′, u′) |= Inv(l′).

The trace of a timed automaton is a finite or infinite
sequence (l0, γ0, u0) → (l1, γ1, u1) → . . ., where → is either a
delay transition or a discrete transition. For a network of timed
automata, the discrete transitions are executed interleavingly.

Priced timed automata [9] is an extension of timed
automata to allow the accumulation of costs during be-
haviour. The extension from timed automata is Ac =
(L, X,V,E, Inv, l0,P), where P : L∪E → N assigns cost rates
and costs to locations and edges, respectively. The semantics of
priced timed automata is similar to the version without price,
except that the cost in a delay transition is in direct proportion
to the time elapsed, and the cost in a discrete transition is the
cost of the edge.

For a network of timed automata, we use vectors of
locations and the cost rate of a vector of locations is the sum
of cost rates in the locations of the vector. For a finite trace of
a priced timed automaton, the cost is the sum of the cost for
all discrete and delay transitions.

B. A TA Semantics of System Models

Before introducing the TA semantics of system models,
we first formalize the behavior of SDFGs and introduce some
notations to simplify the later illustrations.

The behavior of an SDFG consists of a sequence of firings.
We use updates sFiring(α) and eFiring(α) to encode the start
and the end of a firing of α, and use readyS(α) to describe the
enabling condition of sFiring(α). Additionally, we introduce
sets of variables tn(E) and numF(V), to record the current
number of tokens on edges in E and the firing times of actors
in V , respectively. Testing and updating the value of numF(V)
are not really a part of the behavior of SDFGs, which are used
to facilitate the construction of a f -schedule.

The guard readyS(α) tests if there are sufficient tokens on
the incoming edges of actor α to enable a firing. If the firing
number of α reaches f · q(α), no new firing of α is allowed.

readyS(α) ≡de f ∀e ∈ InE(α) : tn(e) ≥ cns(e)
∧numF(α) < f · q(α).

When a firing of α starts, it reduces the number of tokens
of its incoming edges according to the consumption rates.

sFiring(α) ≡de f ∀e ∈ InE(α) : tn′(e) = tn(e) − cns(e)
∧numF′(α) = numF(α) + 1,

where tn′(e) refers to the value of tn(e) in the new state, and
the same for numF′(α). For conciseness, we omit the elements
of states if their values remain unchanged.

α
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3
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α

2

3

1
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1

sFiring(α) eFiring(α)
���

Fig. 4. The effect of sFiring and eFiring.

If a firing of α runs on processor p, it will finish after
t(α, p) units of time. And update eFiring(α) increases tokens
of α ’s outgoing edges according to the production rates.

eFiring(α) ≡de f ∀e ∈ OutE(α) : tn′(e) = tn(e) + prd(e)

The effects of sFiring and eFiring are demonstrated in Fig. 4.

For a given system modelM = (G, P), a processor is either
idle or running and an actor is enabled or not. When an actor
is enabled, it may start a firing. While it is firing, it is firing
on some processor p and p enters a running state.

Then the behavior of α running on p can be modeled in
a timed automaton tap(α); and the behavior of processor p
can be modeled by tap(α) with non-deterministically selecting
actor α from V .

Definition 4 (TA of the behavior of processors). A TA of the
behavior of processor p is tap = ∃α ∈ V : tap(α), and tap(α) =
(L, X,V,E, Inv, l0), where L = {idle, running}, X = {x},
V = {tn(E), numF(V)}, l0 = idle, Inv = {running : x ≤ t(a, p)},
and E = {ir, ri}, where ir = (idle, readyS , sFiring(α); x :=
0, running), and ri = (running, x == t(α, p), eFiring(α), idle).

The locations of tap indicate the status of processor p. That
is, tap.idle means p is idle and therefore is available for a firing
of actors to run, and tap.running means p is occupied by some
firing. The graphical representation of tap is shown in Fig. 3.

Actors of SDFG G can fire in parallel only if they are ready
and there are available processors. The behavior of processors
also implicates the behavior of the SDFG.

Subsequently, the behavior of system model M can be
described in a network of timed automata ntaM, which has
|P| concurrent processes and a global clock, where |P| is the
number of processors in P. The global clock is used to measure
the whole execution time of the system.

Definition 5 (NTA of the behavior of system models). The be-
havior of system model M = (G, P) is a NTA ntaM = ||p∈Ptap
with a global clock glbClk.

The above-mentioned semantics are the standard timed
automata description, which can be translated into the input
of UPPAAL straightforwardly. Quantification ∃α ∈ V can be
implemented by the ‘Selections’ feature of UPPAAL.

Above defined tap and ntaM implicatively include f as a
parameter. We omit it in the notations for conciseness.



IV. Static Optimal Scheduling andMapping

A. Traces and Schedules

A f -schedule of M can be found by a trace of ntaM.

Guard numF(α) < f · q(α) in readyS(α) forces ntaM
being deadlocked after the firings of f -iterations of G are
finished. Therefore a trace of ntaM is infinite with finite
discrete transitions, i.e., p.s f (α) and p.e f (α), where p.s f (α)
is the transition caused by update sFiring(α) of edge ir of tap,
and p.e f (α) is caused by eFiring(α) of edge ri. Hence we
consider only the finite part of a trace that includes all finite
discrete transitions. Denote the set of transitions of trace σ as
Eσ and the state caused by p.s f (α) as sp−α.

Theorem 6. In a trace σ of ntaM, for each actor α:

1) @sp−α such that sp−α.numF(α) > f · q(α);
2) ∀i ∈ [1, f · q(α)], there is a unique sp−α such that

sp−α.numF(α) = i;
3) when p.s f (α) occurs, there are sufficient tokens on

each e ∈ InE(α) for one firing of α and processor p
is available.

Proof: 1) is guaranteed by readyS(α); 2) is guaranteed
by sFiring(α); according to the definition of tap, only when
tap.idle and readyS(α) are satisfied, p may select α to fire and
therefore 3) is guaranteed.

Algorithm 1 presents the procedure of finding a f -schedule
from a trace. Its correctness is ensured by Theorem 6.

Algorithm 1 Sch(M,σ)
Require: A trace σ of ntaM
Ensure: An f -schedule of M, S

1: for all e ∈ Eσ do
2: if ∃α ∈ V : e == p.s f (α) then
3: S (α, sp−α.numF(α)).st = sp−α.glbClk
4: S (α, sp−α.numF(α)).pa = p
5: end if
6: end for
7: return S

See system model M1 shown in Fig. 1 for example. The
schedule in Fig. 1(c) is a 1-schedule. It can be found in a trace
of ntaM1 , part of which is shown in Fig. 5.

B. Throughput-Optimal Solution

We denote the f -schedule derived by trace σ as S σ. The
cycle period of S σ is the time when the last firing terminates,
that is:

CP(S σ) = max {sp−α.glbClk + t(α, p)|sp−α ∈ Sσ}.

Suppose the set of traces of ntaM is Σ, the optimal IP of f -
schedules of M is

optIP(M) = min
{CP(S σ)

f

∣∣∣∣σ ∈ Σ
}

A throughput-optimal f -schedule is a schedule with its IP
equal to optIP.

For a given modelM and an unfolding factor f , ntaM will
be deadlocked after the firings of f -iterations of G terminate.

i r || i r
s0:  glbClk=0     a     

  tn=[0,0,2,3] a  
numF=[0,0,0]

tap1 tap2

p1.sf(A)

i r i r||
δ=1

p1.ef(A)

i r || i r
p1.sf(B)

i r i r||
p2.sf(B)

i r i r||
p1.ef(C)

i r || i r

||

s1:  glbClk=0     a     
  tn=[0,0,1,2] a  
numF=[1,0,0]

s2:  glbClk=1     a     
  tn=[2,0,1,2] a  
numF=[1,0,0]

s3:  glbClk=1     a     
  tn=[1,0,1,1] a  
numF=[1,1,0]

s4:  glbClk=1     a     
  tn=[0,0,1,0] a  
numF=[1,2,0]

s10:  glbClk=8     a     
  tn=[0,0,3,2] a  
numF=[1,2,2]

Discrete transitionDelay transitioni r p.l=idle  p.l=runningLegend:

Fig. 5. A part of a trace of system model M1 shown in Fig. 1, where cycles
in blue show the current location.

This property can be formalized by a CTL (Computation Tree
Logic) formula EF deadlock. CTL formula EFφ is true when
φ is eventually true at some states of some traces of ntaM,
denoted by ntaM |= EFφ.

In the following discussion, we always apply UPPAAL to
return a fastest trace, implemented by function trace(ntaM, φ),
where M is the given model and φ is the property.

From the trace returned by trace(ntaM,EF deadlock), we
obtain a throughput-optimal f -schedule of M, denoted by
S optIP, i.e.,

S optIP = Sch(M, trace(ntaM,EF deadlock)).

The energy consumption of the schedule, EC(S optIP), can be
computed according to Eqn. (2).

To find an f -schedule with optIP and a best energy con-
sumption, we need to add a constraint on energy consumption.
Therefore, we add an update occT(p) = occT(p) + t(α, p)
to edge ri in tap, and the subsequent model is ntaM′ . Then
according to Eqn. (2), the property that the energy consumption
at time glbClk is no more than a given ec is defined as

con(ec) ≡de f glbClk ≤
ec −

∑
p∈P occT(p) · [uEC(p) − iEC(p)]∑

p∈P iEC(p)

With con(ec) as the additional constraint, we decrease ec
gradually to check whether we can reach a smaller energy con-
sumption with optIP. The details on computing an f -schedule
with optIP and a best energy consumption are explained in
Algorithm 2.



Algorithm 2 optPSch(M)
Require: M
Ensure: An f -schedule S optP of M

1: S optIP = Sch(M, trace(ntaM,EF deadlock))
2: ec = EC(S optIP)
3: S optP = S optIP
4: repeat
5: φ = EF deadlock ∧ con(ec − 1)
6: S IP = S ch(M, trace(ntaM′ , φ))
7: if IP == optIP then
8: ec = EC(S IP)
9: S optP = S IP

10: end if
11: until IP > optIP
12: return S optP

C. Energy-Optimal Solution

Decreasing ec in Algorithm 2 until φ is not satisfied, we
can obtain an f -schedule with an optimal energy consumption
and a best throughput. We can answer our second problem
formulated in Section II by this way. The experiments we
performed reveal that this method is inefficient, however. A
more efficient way is to integrate the use of priced timed
automata.

By adding cost iEC(p) and uEC(p) to locations idle and
running of tap, respectively, we obtain a priced timed au-
tomaton ptap for processor p. Consequently, we use nptaM =
||p∈P ptap with a global clock glbClk to describe system model
M. With this formalization, by applying UPPAAL CORA
to check nptaM |= EF deadlock, we can obtain an energy
consumption-optimal f -schedule ofM with optEC, denoted by
S optEC. Taking con(optEC) as the additional constraint, we can
apply UPPAAL to check ntaM |= EF deadlock ∧ con(optEC),
and obtain an f -schedule S optE with an optimal energy con-
sumption and a best throughput.

V. Dealing withMore Constraints

In this section, we discuss the integration of various kinds
of constraints into our solutions. We first introduce the general
framework of our method, then discuss the details of the
two kinds of constraints, auto-concurrency constraints and
buffer size constraints. Other kinds of constraints that may be
integrated are also discussed.

The effects of constraints on the behavior of an SDFG are
summarized in Table I. The first column lists the corresponding
names of readyS, sFiring and eFiring for constraint con. The
second column includes guard and updates we defined before.
The 3-5 columns give the extra guard and updates for different
constraints, auto-concurrency (ac), buffer size (bs) and both of
them, respectively. Combining any of them with the second
column forms the corresponding readyScon, sFiringcon and
eFiringcon. For example, the enable condition of starting firing
for an auto-concurrency constraint is represented as:

readySac ≡de f readyS ∧ hasF.

Replacing readyS, sFiring and eFiring in tap and ptap
defined in Section III with readyScon, sFiringcon and eFiringcon,

TABLE I. Constrained Behavior of actor α

Constrained NO Constraints (con)

Behavior of α Con. auto-conc. (ac) buffer size (bs) both

readyScon readyS hasF sufB hasF ∧ sufB

sFiringcon sFiring addF claB addF ∧ claB

eFiringcon eFiring delF relB delF ∧ relB

respectively, we get NTA and NPTA of a system model with
constraint con. The ways to find f -schedules S optP and S optE
are the same as the system without these constraints.

A. Auto-concurrency constraints

Suppose the number of auto-concurrent actors is limited to
conN, which is equivalent to add a self-loop edge with conN
initial tokens to each actor. We use a set conC(V) to control
the number of concurrent firings of each actor α ∈ V . The
extra condition for readyS, updates for sFiring and eFiring are
formulated as hasF(α), addF(α) and
delF(α), respectively.

hasF(α) ≡de f conC(α) ≤ conN
addF(α) ≡de f conC′(α) = conC(α) + 1
delF(α) ≡de f conC′(α) = conC(α) − 1

Non auto-concurrency is a special case, which can be
specified by conN = 1. Our method can also be used in a
generalized case in which there is a constraint for each actor.
For the generalized case, a set conN(V) is used and above
conN are replace by conN(α).

B. Buffer size constraints

In practice, the storage space of a system must be bounded.
The storage used by edges may be shared or separate. Here,
we consider a separate buffer for each edge.

In line with [11], we choose a relatively conservative
storage abstraction to leave more room for implementation.
That is, when an actor starts firing, it claims the space of the
tokens it will produce, and it releases the space of the tokens
it consumes only when the firing ends. A set tnb(E) is added
to capture the buffer space used by each e ∈ E.

Suppose a schedule is constrained by a set B(E), which
limits the buffer usage of each edge, an enabled firing can not
start when there is no sufficient space on its outgoing edges.
The extra condition for readyS is formulated as sufB(α). When
an actor starts a firing, it claims the required space on its
outgoing edges. The update is formulated as claB(α). Only
when a firing ends, it releases the space of its incoming edges.
The update is formulated as relB(α).

sufB(α) ≡de f ∀e ∈ OutE(α) : prd(e) ≤ B(e) − tnb(e)
claB(α) ≡de f ∀e ∈ OutE(α) : tnb′(e) = tnb(e) + prd(e)
relB(α) ≡de f ∀e ∈ InE(α) : tnb′(e) = tnb(e) − cns(e)

A separate storage with other abstract is even easier to be
integrated. For example, suppose an actor releases the space
of its incoming edges when it starts a firing and claims and



occupies the space of its outgoing edges only when it ends a
firing, we do not need the extra set tnb(E) and updates claB
and relB. In sufB(α), tnb(e) is simply replaced by tn(e).

A shared memory usage can be easily integrated in the
framework by modifying sufB(α) as

∀e ∈ OutE(α) : prd(e) ≤ sM −
∑
e∈E

tnb(e),

where sM is the bound of the shared memory. As our method
explores exhaustively the state space, the optimal solutions are
guaranteed.

C. Constraints on processors

Adding extra condition t(α, p) ≥ 0 to readyS(α), we can
model the situation that some actors are not allowed to be
allocated on some processors. The constraint that actor α is not
allowed to run on processor p can be represented by t(α, p) =
−1.

The constraint that a processor has a higher priority than
another can be modeled by the ‘Priorities’ feature of UPPAAL.

VI. Experimental Evaluation

We have implemented the translation from a system model
to the input models of UPPAAL and UPPAAL CORA with
different constraints, and the procedure to extract f -schedules
from the returned traces. The experiments were performed on
SDFGs of two practical dataflow applications with various
parameters, running on a 2.90GHz CPU with 24M Cache
and 384GB RAM. The applications include an MPEG-4 de-
coder [4] and a computation example [12]. The goal of the
first case study is to evaluate the results and performance of
our method under different parameters, including the sum of
the repetition vector of an SDFG, the unfolding factor, the
number of processors, and the buffer size constraints. The
unfolding factor considered in the first case is relatively small.
The second case study is mainly used to measure the impact
of the unfolding factor.

A. MPEG-4 Decoder

The MPEG-4 decoder supports various kinds of frames. It
is modeled as an Scenario-aware dataflow (SADF) model in
[4]. Each scenario in an SADF model is actually an SDFG.
We consider three scenarios, P30, P70 and P99.

The system models of the MPEG-4 decoder are shown in
Fig. 6. The parameterized SDFG is shown in Fig. 6 (a), the
value of x corresponding to Px. The repetition vector of each
Px and the sums of the vectors (sumRV) are shown in Fig. 6
(b). Note that sumRVx is also the number of actors of the
equivalent HSDFG of Px, and it is an important factor affecting
the performance of almost all algorithms on SDFGs. The buffer
size constraints are also a significant impact factor. We con-
sider three cases: a model with a low buffer size bound, a high
bound and no bound. The low bound is computed according to
the method described in [13] to guarantee deadlock-free of an
SDFG. The high bound is a minimal buffer size requirement to
guarantee throughput-optimal of an SDFG when it is scheduled
in an infinite number of homogeneous processors [11]. The
sum of buffer size bounds of all edges of Px are shown in

FD

IDCTVLD

x

RCMC

x

x x

(a)

frame x
Repetition Vector

sumRV
Buffer Bound

FD VLD IDCT MC RC Low High

P30 30 1 30 30 1 1 63 128 149

P70 70 1 70 70 1 1 143 288 309

P99 99 1 99 99 1 1 201 404 425

(b)

proType
Energy (W) Time (ps)

uCE iCE FD VLD IDCT MC RC

PT1 90 10 0 1 1 9 15

PT2 30 20 0 3 2 18 25

(c)

Fig. 6. System models of the MPEG-4 decoder. (a) Its SDFG; (b) the
repetition vector of each Px, the sums of the vectors, and the considered
bound of buffer size (c) the types of processor in the execution platform and
the execution times of actors on different processors.

the last two columns of Fig. 6 (b). The information of its
execution platform is shown in Fig. 6 (c). There are two types
of processors, PT1 and PT2.

We show the experimental results for the MPEG-4 decoder
in Table II, in which the parameters are shown in the first two
rows and the first two columns. The others are the results. Px
considered here are non auto-concurrent. The first column is
the unfolding factor f . We consider 1-schedule and 2-schedule
of the model. The second column is the number of processors
#P. We consider 2 processors, including one PT1 processor
and one PT2 processor, and 4 processors, including two PT1
processors and two PT2 processors. The other 9 columns are
the results for SDFG Px under a low buffer size bound, a
high buffer size bound and no bound, respectively. The results
include six parts. The first part is the optimal iteration period of
Px, optIP; and the second part is the best energy consumption
under optIP. The third part is the optimal energy consumption
per iteration of Px, optIEC; and the fourth part is the best IP
under optIEC. The fifth and sixth parts show the execution
times and memory consumptions of the procedure finding
optIP of Px. If not marked specially, the unit of execution
time is in second (s) and the unit of memory is in megabyte
(MB).

When a low buffer size bound is used, the increasing
of unfolding factor and number of processors have no im-
provement on the four values we have evaluated. Therefore,
small unfolding factor and fewer processors are good enough



TABLE II. Experimental results forMPEG-4 Decoder

f #P

info Low Bound High Bound No Bound

P30 P70 P99 P30 P70 P99 P30 P70 P99

Optimal Iteration Period(optIP)

1
2 83 163 221 82 162 220 63 117 158

4 83 163 221 54 94 123 54 94 123

2
2 83 163 221 74 154 212 58 112 152.5

4 83 163 221 48 88 117 43.5 82 111

Best Energy Consumption per Iteration under optIP

1
2 9.2 18.0 24.3 7.4 13.8 18.4 7.2 13.9 18.8

4 11.6 N N N N N N N N

2
2 9.2 18.0 24.3 7.0 13.4 18.0 6.9 N N *

4 N N N N N N N N N

Optimal Energy Consumption per Iteration (optIEC)

1
2 7.4 15.0 20.5 6.6 13.0 17.6 6.6 13.0 17.6

4 11.3 22.5 30.6 9.5 18.3 24.7 8.3 16.1 21.7

2
2 7.4 15.0 20.5 6.5 12.9 17.6 6.5 12.9 17.6

4 11.3 22.5 30.6 8.6 17.4 23.8 N N N

Best Iteration Period under optIEC

1
2 131 251 338 102 182 240 74 148 206

4 93 N N 64 N N N N N

2
2 131 251 338 89.5 169.5 227.5 63.5 N N

4 N N N N N N N N N

Execution Time of Optimal IP (s)

1
2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 1.2

4 0.1 0.1 0.2 0.2 0.5 0.6 2.1 12.6 21.3

2
2 0.0 0.0 0.1 0.1 0.1 0.2 2.2 14.7 22.6

4 0.3 0.8 0.9 2.8 3.9 4.3 4m 29m 50m

Memory Consumed of Optimal IP (MB)

1
2 4.7 4.8 4.9 4.8 5.0 5.2 7.9 13.3 21.9

4 5.6 6.8 7.7 7.1 10.6 13.7 29.4 134.5 261.3

2
2 4.9 5.2 5.5 5.6 6.3 7.0 35.8 187.7 391.1

4 11.9 18.8 26.8 34.3 54.0 70.8 1.5GB 9GB 19GB
* N: not finished after 3 hours or running out of memory.

for an optimal schedule of Px. Using a high bound provides
more room for the improvement of iteration period and energy
consumption, however, at the same time the performance of
our method becomes worse. When without buffer size bound,
the iteration period and energy consumption may be improved
the most, but the performance becomes the worst.

An implicated impact factor of this example is the number
of the possible concurrent firings of the SDFG itself, i.e., x.

B. Computation Example

The system model of the computation example is shown
in Fig. 7. It is described in a task graph in [12]. Actor
ctrl connecting with original source and sink actors is added
to limit the total latency. We have computed the results of
unfolding factor from 1 to 10, and taken into account different
combinations of values of three parameters : without buffer
size bound and with a buffer bound; with and without auto-
concurrency; 2 processors and 4 processors.

The experimental results are illustrated in Fig. 8. Some
lines stop at the point that unfolding factor reaches 4 or 5, be-

+ +

+

×

×

×
ctrl

α1

α2

α3

α4

α5 α6

proType
Energy (W) Time (ps)

uCE iCE + × ctrl

PT1 90 10 2 3 0

PT2 30 20 5 7 0

Fig. 7. System model of the computation example.
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No bound,  2 Processors
No bound,  4 Processors

Non auto-con.,  2 Processors
Non auto-con.,  4 Processors

Bound,  2 Processors
Bound,  4 Processors

Legend:

Fig. 8. The experimental results of the computation example. (a) the optimal
throughput and the best energy consumption under the optimal throughput;
(b) the optimal energy consumption and the best throughput under the optimal
energy consumption.

cause the corresponding procedures for larger unfolding factors
run out of memory. The throughput and energy consumption
of schedules are improved by increasing unfolding factor; the
degree of improvement decreasing accordingly. The buffer size
bound and auto-concurrency constraints have larger impact on
the cases with 4 processors than that with 2 processors.

In the two case studies , we present the unfinished points
of the results to show the boundaries of the performance of
our methods.



VII. RelatedWork

Scheduling and mapping problem is generally NP-
hard [14]. Researchers working on this problem usually target
the solutions for particular application domain and specific
optimization goals. And there are more heuristic methods than
exact ones.

Scheduling SDFGs according to different optimization
goals have been studied extensively [1], [15], [16], [17], [18],
on both single processor platforms and mutilprocessor plat-
forms. Many have been done on HSDFGs, while much less
on the general SDFGs.

Theoretically, it is always possible to convert an SDFG to
its equivalent HSDFG [10] and then use the available methods
for HSDFGs. However, converting an SDFG to an HSDFG is
very time-consuming when SDFGs scale up. The size of the
HSDFG can be exponentially larger than the original SDFG
in extreme cases [19].

Below we introduce the related work on static (compile-
time) scheduling and mapping of SDFGs targeting on the
throughput analysis and optimization.

The throughput (or IP) analysis of SDFGs on a single
processor is trivial and there is no room for improvement.
For a homogeneous multiprocessor platform, the number of
processors can be infinite or finite.

The complexity of scheduling HSDFGs on an infinite
number of processors is polynomial. The IP of HSDFGs can
be computed with a critical path method [20]. It can be further
improved by retiming [20] or unfolding [5]. Methods for anal-
ysis and improvement of the IP of SDFGs without converting
them to the equivalent HSDFG are presented in [21], [22], [23].
There are many works on scheduling HSDFGs under IP
constraints or optimal IP, such as [17], [5]. Methods directly
work on SDFGs are presented in [24], [6], [25].

When a finite number of processors is considered, the prob-
lem becomes NP-complete. Heuristic methods of scheduling
and mapping a weighted directed acyclic graph (DAG), or a
task graph, for minimizing the completion time of the program
are comprehensively compared in [26], [27]. By removing
edges with initial tokens of a HSDFG, we can obtain the
corresponding DAG. Then the methods for DAG are feasible
for an equivalent HSDFG of an SDFG. A heuristic method
can schedule SDFGs to achieve an optimal IP under the
constraint on the number of processors [6], in which the
mapping of SDFGs can be added straightforwardly without
being converted into HSDFGs.

With the maturing of tools based on formal methods, an
exhaustive search on the state space of the problem with
reasonable scale becomes possible. A SAT-based mapping and
scheduling of HSDFGs for throughput optimization is pre-
sented in [28], which can handle at most 30 actors and 8 pro-
cessors. The work in [29] schedules HSDFGs under throughput
constraints based on Constraint Programming, which is capable
of dealing with at most 25 actors and 8 processors.

Scheduling and mapping SDFGs on heterogeneous multi-
processor platforms are even more intractable. We have only
found a few works considering particular architectures. For
example, the works in [30] and [31] apply heuristic methods

on a multicore architecture where a core has a limited size of
scratchpad memory (SPM).

We consider in this paper exact solutions for the gen-
eral SDFGs and the general multiprocessor platforms. The
mentioned constraints on buffer size or auto-concurrency are
optional.

Our work presented in this paper is inspired by the previous
work using model checking techniques on SDFGs, although
the problems addressed are different.

Using model checking to schedule SDFGs according to
a particular optimization goal was first presented by Geilen
et al. [32], which targets at buffer minimization problem on
a single processor with model checker SPIN [33]. There are
also similar works, such as [34] and [35], using NuSMV [36]
and SPIN, respectively, to solve the same problem.

The work in [37] presents a method which models a system
described by a task graph binding to a heterogeneous multi-
core platform in timed automata, and verifies the real-time
schedulability of the system by UPPAAL [8]. A task graph
can be transformed from an HSDFG as we have explained
before.

The closest work to our methods is [38], which uses UP-
PAAL to analyze whether a timing constraint may be satisfied
by a system represented as a SDFG binding to a heterogeneous
multi-core platform. The main differences between the method
in [38] and our method can be summarized as the following:

1) the problems addressed are different. [38] analyzes
whether a feasible schedule exists for a given timing
constraint, while our method gives optimal sched-
ules combining the optimization goals with optimal
throughput and energy consumption;

2) the input models are different. In [38], actors of an
SDFG are binding to some core and edges to memo-
ries, while in our method, no binding is considered.
On the contrary, the mapping between actors and
processors according to the optimization goals is the
result of our method;

3) the transformation method is different. [38] trans-
forms each actor to a TA and each processor to a
NTA. In our method, we combine the behavior of
actors on processors. Consequently, there is one TA
for each processor and the model for actors does not
exist. The transformed NTA of our method has fewer
concurrent processes.

Our energy consumption-optimal method is inspired
by [12], in which a computation task modeled in priced timed
automata is adopted for optimal energy consumption analysis.
We also use this example to demonstrate our method with more
parameters.

VIII. Conclusion

In this paper, we have presented two exact methods: finding
static schedules with an optimal throughput and a best energy
consumption, and finding static schedules with an optimal
energy consumption and a best throughput for SDFGs on
heterogenous multiprocessor platforms. Our methods can deal



with various parameters including unfolding factors, auto-
concurrency constraints, buffer size constraints and other con-
straints on processors.

We use a model checking-based technique, which guar-
antees exact results of our methods. We transform a system
model, which includes an SDFG and a multiprocessor plat-
form, to a (priced) TA network of UPPAAL (CORA) and
formalize the optimization goals as CTL formulas. The optimal
schedules can then be computed from the traces returned by
UPPAAL (CORA). Our experimental results show that our
methods can deal with relatively large scale models within
reasonable execution times, and that how different parameters
impact on the results of different optimization goals.
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