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Abstract. Symbolic computation is involved in many areas of math-
ematics, as well as in analysis of physical systems in science and en-
gineering. Computer algebra systems present an easy-to-use interface
for performing these calculations, but do not provide strong guarantees
of correctness. In contrast, interactive theorem proving provides much
stronger guarantees of correctness, but requires more time and exper-
tise. In this paper, we propose a general framework for combining these
two methods, and demonstrate it using computation of definite integrals.
It allows the user to carry out step-by-step computations in a familiar
user interface, while also verifying the computation by translating it to
proofs in higher-order logic. The system consists of an intermediate lan-
guage for recording computations, proof automation for simplification
and inequality checking, and heuristic integration methods. A prototype
is implemented in Python based on HolPy, and tested on a large collec-
tion of examples at the undergraduate level.
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1 Introduction

Symbolic computation is an important tool in mathematics, science, and engi-
neering. It forms a key part of many mathematical proofs. On the engineering
side, justifications for the design of signal processing and control systems con-
tain extensive symbolic computations [6,33], involving derivatives and integrals,
Laplace and Fourier transforms, and various special functions.

Typically, these computations can be performed using computer algebra sys-
tems such as Mathematica, Maple, and Maxima. Given the complexity of the
task, it is not surprising that even the best of these systems are liable to errors.

One famous example is
∫ 1

−1

√
x2 dx, which an early version of Maple evaluates to

zero [23] (the error has been fixed in the more recent versions). Bugs in Math-
ematica have also been observed by mathematicians [15], including evaluation
of determinants of matrices with large integer entries, and several evaluations
of integrals (also fixed in the most recent version). While some errors are sim-
ply implementation mistakes, more systematic errors in symbolic computation
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may arise due to neglect of checking side conditions, involving concepts such
as well-definedness of expressions, singularities, convergence, and so on. While
individual bugs can be reported and fixed, completely eliminating the possibility
of error would require a more systematic approach.

Formalization of mathematics in interactive theorem provers promises to
eventually achieve this goal. There is already a lot of work on formalization
of analysis and linear algebra in interactive theorem provers, as well as veri-
fied computations based on the formalized theories. They provide much stronger
guarantees of correctness, and also allow users to specify more detailed step-
s, enabling computations that are too difficult to be found automatically by
computer algebra systems. However, a major disadvantage (for now) is that in-
teractive theorem proving requires a great deal of time and expertise on the part
of the user, making it difficult to apply on a much larger scale.

It is therefore natural to try to combine the advantages of computer algebra
systems with theorem proving. There have already been many works in this
direction. A common approach, proposed by Harrison and Théry [20,23], is to
invoke a computer algebra system for computations that are difficult to perform,
but whose results can be verified more easily. This greatly extends the capability
of proof assistants for tasks such as factorization [23], linear arithmetic [28],
etc. However, to use such a system, the user still needs expertise in the use of
proof assistants, and the range of applicability is limited by the simple proof
automation that is available for checking results.

In this paper, we propose a more general framework for verified symbol-
ic computation in theorem provers, and demonstrate it using computation of
definite integrals. The resulting system allows users to perform calculations of
definite integrals step-by-step, in a user interface similar to that of a computer
algebra system, but with the computations verified by automatic translation to
proofs in higher-order logic. We choose definite integration for demonstration
purposes, due to the great variety of techniques that can be used, but we intend
the idea to be applicable to other kinds of symbolic computations.

The framework consists of several components. At the top, a graphical user
interface displays the current computation and allows user actions. The user
interface produces computations in a standard format. Next, proof automation is
used to reconstruct from the computation a proof in higher-order logic. Finally,
the proof depends on theorems in mathematics, e.g. (in the case of definite
integration) those concerning continuity, derivatives, and integrals.

We implement a prototype based on HolPy, a new interactive theorem prover
written in Python [49]. The SymPy package for symbolic computation in Python
is used at various places for untrusted computations. The user interface is written
in JavaScript as a web application, using Python as backend for convenient
invocation of HolPy and SymPy libraries. The underlying theorems in analysis
are mostly translated to HolPy from HOL Light (with some modifications). Their
proofs have not been fully formalized in HolPy, hence the statements of these
theorems still need to be trusted.
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We now give an outline for the rest of this paper. Section 2 presents the
overall framework. Section 3 describes the intermediate format for recording
computations of definite integrals. In Section 4 and 5, we describe respectively
the user interface and the proof reconstruction process. In Section 6 we present
an evaluation of the system, along with some interesting examples. Finally, we
conclude in Section 7 with discussion of possible future work.

Related work. There is a huge body of work on formal verification of continuous
and hybrid systems, based on reachability checking [4], computation of invari-
ants [36,41], deductive methods [34,35,47], and so on. In particular, KeYmaera
X [18] provides a user interface for verifying hybrid systems using differential dy-
namic logic, with automatic generation of proofs checkable in Isabelle [9]. Most
of this work focuses on automatic verification and/or logical formalisms. Our
work can be seen as complementary, focusing on verifying symbolic reasoning
about mathematical concepts such as special functions and integration, which
can also form a part of the justification of control systems.

Harrison and Théry proposed the “skeptical” approach for combining theo-
rem provers with computer algebra systems [20,23]. Some common applications
include factorization of polynomials, which is further applied to verify antideriva-
tives involving sine and cosine [23]. More recently, this technique is used by
Chyzak et al. to formalize the proof of irrationality of ζ(3) [14], and by Harrison
to verify proofs of hypergeometric sums found using the WZ method [22]. Similar
approaches are implemented in Isabelle [8], PVS [3] and Lean [28]. Compared to
this work, we present more complex proof automation for reconstructing proofs,
as well as a user interface for allowing users to perform multi-step computations
in a more familiar setting. Other user interfaces for proof assistants with support
for displaying mathematical computations include Theorema [11] and jsCoq [5].

The theory of integration has been formalized in every major proof assis-
tant [12,24,31,40,43]. Recently, more advanced concepts that are important in
science and engineering have been formalized, including the work by Hasan et
al. on Fourier and Laplace transforms [37,38,46], and Immler et al. on ordinary
differential equations [25,26]. Work has also been done on formalizing advanced
concepts in linear algebra [29], with applications in analyzing mechanical sys-
tems [13,44]. Of course, formalized symbolic computation can be applied in many
other domains. For example, Selsam et al. [42] verified in Lean the correctness
of stochastic backpropagation, an important algorithm in deep learning.

Slagle initiated the study of automatic integration with a heuristic method
[45]. Later research focused more on methods that are complete for certain types
of integrands, such as Risch’s algorithm [19]. More recently, Rubi (rule-based in-
tegration) has been demonstrated to be a powerful technique [39]. However, none
of these work focuses on formal verification. A verified computation of asymp-
totics for real-valued functions is implemented by Eberl [16]. Verified numerical
computation of definite integrals is implemented by Mahboubi et al. [30].

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China under Grant Nos. 62002351, 62032024, and the
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Chinese Academy of Sciences Pioneer 100 Talents Program under Grant No.
Y9RC585036.

2 Overall Architecture

In this section, we describe the overall architecture of the system, leaving descrip-
tions of its components to the following sections. We focus on definite integrals
of continuous functions in one variable over closed intervals. In particular, we
consider expressions given by the following syntax:

e := v | c | e1 op e2 | f(e) | Deriv(e, v) | Integral(e, v, a, b)

Here v is a variable; c is a constant (either a rational number or π); op is an
arithmetic operation (+,−,×,÷ and exponentiation); f is a special function
(such as logarithms, exponentials, or trigonometric functions); Deriv(e, v) de-
notes the derivative of e with respect to variable v; Integral(e, v, a, b) denotes the
definite integral of e with respect to variable v over the interval [a, b]. In the rest
of this paper, we will use both concrete syntax and LATEX form of expressions.
We use locations to point to particular subexpressions. A location is given by
a sequence of natural numbers (written in the form n1.n2 . . . nk, with each ni
starting from zero), specifying the path to a subtree in the abstract syntax tree
of an expression. For example, in the expression

1 + Integral(1 + sin3(x), x, 0, 1)

the location of sin3(x) is given by 1.0.1.
A computation is represented as a list of steps, with each step specifying a

rewriting of the current expression. Each step should provide sufficient informa-
tion so that both checking its correctness and proof generation can be performed
relatively easily. A computation begins with the integral to be evaluated, and
ends with an expression in simplified closed form. Each step contains the name
of the rule used, the location in the expression at which it is applied, and the
expected result of applying the step. A step may contain additional parameters
and certificates needed for verification. Rules of integration include substitution,
integration by parts, use of a trigonometric identity, and so on (described in
detail in Section 3). For example, integration by parts takes as parameters two
expressions u and v, such that f · dx = u · dv where f is the integrand of the
integral at the given location.

A graphical user interface allows the user to specify a computation in ways
similar to using a computer algebra system. The user interface displays the
computation in LATEX or in text form. At each step, the user selects part of the
current expression to focus on, then selects an action from the menu. Depending
on the selected action, the user may need to enter some of the parameters, while
the other parameters are automatically inferred by the system. After checking
validity of inputs, the user interface computes the result of the action. A package
for symbolic computation may be invoked at this step.
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There are many side conditions that need to hold in order for a computation
step to be correct, some of which may not be caught at the user interface. Trans-
lation of the computation to proofs in higher-order logic greatly increases our
confidence in the computation and can point out potential errors. In this work,
we translate the computation to higher-order logic proofs in HolPy. One main d-
ifficulty is implementing sufficiently powerful proof automation for simplification
of expressions, inequality checking, and other side conditions. We demonstrate
that the API for proof automation in HolPy is sufficiently powerful for this pur-
pose. However, note the representation of a computation is independent from any
particular proof assistant, so additional proof translation may be implemented
for other proof assistants.

Finally, various algorithms for integration (such as Slagle’s method [45]) may
be implemented to perform several steps of computation at once. We implement-
ed Slagle’s method and have it as one of the options at the user interface.

The overall framework is shown in the following diagram.

User interface

Computation

Slagle’s method

Proof automation

Analysis library

Other algorithms

Isabelle Coq · · ·

HolPy

Here solid boxes and arrows indicate parts that are implemented for this paper.
The analysis library is only partially formalized. Dotted arrows indicate possible
future extensions.

This layered design can be viewed as a separation of concerns. At the top, the
user only need to think about how to evaluate an integral in general mathemati-
cal terms. The implementation of integration algorithms only involves computer
algebra. Proof automation involves algorithms for constructing proofs in the un-
derlying logic. Finally, building a library in analysis involves working with a
proof assistant. All these are put together to enable verification of potentially
difficult symbolic integration by producing proofs in higher-order logic or oth-
er logical formalisms. In the following three sections, we describe the top three
layers of the system in more detail.

3 Integration Rules

Rules of integration define the language for recording computations. Each rule
may take additional parameters (as described below), as well as a location pa-
rameter specifying the subexpression the rule is applied on.
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3.1 Simplification

The rule Simplification rewrites an expression to an equivalent simpler form.
The details of simplification depends on the implementation. Here we only spec-
ify in broad terms what is and is not simplified. These choices are made mainly
considering the ease of performing simplifications, and having a clearly defined
“simplified form”. We do expand products of polynomials and combine terms
(e.g. from (x+ 1)(x− 1) to x2 − 1). We do not reduce quotients of polynomials
(e.g. from (x3 + 1)/(x2 + 1) to x − (x − 1)/(x2 + 1), and from 2/(x2 − 1) to
1/(x− 1)− 1/(x+ 1)). We do not automatically expand powers (e.g. (x+ 1)5).
We do simplify values of trigonometric functions (e.g. from sin(π4 ) to

√
2/2, and

from sin(π2 − x) to cosx), but do not use other trigonometric identities. We do
evaluate derivatives and apply a fixed list of basic integrals, including linearity,
powers, sine, cosine, exponential, and derivatives of trigonometric functions.

One complication is that certain rewrite rules contain side conditions. For
example, it is only possible to simplify

√
xy to

√
x · √y when both x and y are

nonnegative. Likewise (x2)
1
2 can be simplified to x2·

1
2 = x only if x is nonnega-

tive (otherwise the mistake mentioned in the introduction would result). When
simplifying an integrand of an integral in x, we assume that x is within the open
domain of integration, and perform simplification only if it is allowed by this
assumption.

3.2 Trigonometric Identities

Application of trigonometric identities can be very tricky. It is often necessary
to use trigonometric identities to rewrite an expression to a more complex form,
in order to prepare for a substitution or integration by parts.

We use the classification of trigonometric identities by Fu et al. [17], which
is implemented in SymPy (sympy.simplify.fu). In this scheme, trigonometric i-
dentities are classified into several groups with names of the form TRi. Some
commonly used groups are shown below (rewriting from left to right):

– TR5: sin2 x = 1− cos2 x.
– TR6: cos2 x = 1− sin2 x.
– TR7: cos2 x = 1

2 (1 + cos 2x).

– TR9: sinx+ sin y = 2 sin
(
x+y
2

)
cos
(
x−y
2

)
, etc.

– TR11: sin 2x = 2 sinx cosx, cos 2x = cos2 x− sin2 x, etc.

The Rewrite trigonometric rule rewrites using one group of trigonometric
identities, followed by simplification. It takes a parameter rule which specifies
the name of the rule used. For example, applying with rule = TR5 on 2−2 sin2 x
yields 2 cos2 x.

3.3 Substitution

Substitution makes use of the following theorem known from first-year calculus:∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du.
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There are two possible directions for applying the theorem, corresponding to two
rules Substitution I and Substitution II.

Forward substitution. The rule Substitution I assumes the integral is in
the form f(g(x))g′(x). Typically in informal writing, only g(x) is provided, and
f(x) is found by a sometimes magical process. To see the possible complexity
involved, consider the integral ∫ 1

3
4

1√
1− x− 1

dx

The required substitution is u =
√

1− x. The usual explanation continues as
follows. Compute du = − 1

2 (1 − x)−1/2 dx = − 1
2u
−1 dx. So dx = −2u · du. The

values of u at the boundary points are 1
2 and 0. So the integral can be rewritten

as
∫ 0

1/2
−2u/(u− 1) du =

∫ 1/2

0
2u/(u− 1) du.

Heurstic methods are needed for finding a suitable function f . Hence, we
require the Substitution I rule to specify both f and g as parameters. The
rule checks that f(g(x))g′(x) and the original integrand become the same after
simplification. We also restrict g to be monotonic (equivalently g′(x) ≥ 0 or
g′(x) ≤ 0 in the open interval (a, b))1. For example, the previous substitution is
given by f(u) = 2u/(u− 1) and g(x) =

√
1− x.

Backward substitution. The rule Substitution II applies substitution in
the other direction. In informal writing, it is usually expressed as substituting
x by some expression g(t). Then f is the original integrand, but the values of a
and b need to be found by the reader. Our rule requires specifying a and b so
that g(a) and g(b) equals the original limits of integration, and g is monotonic
in the range (a, b). For example, the step∫ 1

0

√
1− x2 dx =

∫ π
2

0

√
1− sin2 t cos t dt

is represented as g = sin(t), a = 0 and b = π/2.

3.4 Integration by Parts

The Integration by parts rule applies the theorem∫ b

a

u(x)v′(x) dx = u(x)v(x)|ba −
∫ b

a

u′(x)v(x) dx

Typically in informal writing, both u and v are provided. These are recorded
as parameters of the rule. The rule checks that f · dx = u · dv, where f is the
original integrand. For example, the step∫ 2

−1

xex dx = xex|2−1 −
∫ 2

−1

ex dx

is represented as u = x and v = ex.

1 It is possible to relax this assumption, but the process for reconstructing the proof
would be more involved.
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3.5 Rewriting

The Rewrite rule provides more flexibility for rewriting than simplification.
It allows rewriting an expression to any equivalent form as the preparation for
applying other rules. The rule takes a parameter rhs specifying the intended
right side of the rewrite, and another expression denom, defaulting to 1. The
rule checks that denom is nonzero in the domain of integration, and the original
expression and rhs have the same simplification after multiplying by denom.

The presence of denom means polynomial division and partial fraction de-
composition can be specified. For example, when integrating x3/(x2 + 1), the
first step is to divide the numerator by the denominator, yielding x−x/(x2 +1).
Simplification as we have implemented is not strongly enough to show their
equivalence. However, after multiplying both sides by denom = x2 + 1, the ex-
pressions x3 and x(x2 + 1)− x become the same after simplification.

3.6 Splitting an Integral

Sometimes it is necessary to split the domain of integration into two or more
parts. This is needed to deal with absolute values, and non-monotonic functions g
in a substitution. The rule Split region takes a parameter c satisfying a ≤ c ≤ b,
and split the integral

∫ b
a
f(x) dx into

∫ c
a
f(x) dx+

∫ b
c
f(x) dx. For example, when

integrating
∫ 1

−1

√
x2 dx (the example from the introduction), the first step is

to split with c = 0, resulting in
∫ 0

−1

√
x2 dx +

∫ 1

0

√
x2 dx, which can then be

simplified to
∫ 0

−1−x dx+
∫ 1

0
x dx.

3.7 Solving Equations

One particularly interesting technique for integration involves solving for the
value of the integral in an equation2. If an integral I can be written in the form
X − cI, where X is any expression (containing no or simpler integrals), and c is
a constant not equal to −1, then we can solve the equation I = X− cI to obtain
I = X/(c+1). Common uses of this technique include integrating expressions of
the form eax sin bx and eax cos bx (apply integration by parts twice, then solve
equation). The rule Solve equation is applied only to the whole expression,
and takes two parameters: the index id of a previous step and a coefficient
coeff. Let I be the integral before step id. The rule adds coeff · I to the current
expression, then divide by coeff + 1 and simplify. For example, in the evaluation

of
∫ π/2
0

e2x cosx dx, after some steps we get −2 + eπ − 4
∫ π/2
0

e2x cosx dx. Then,

applying Solve equation with id = 1 and coeff = 4 yields the answer 1
5 (−2+eπ).

4 User Interface

Above the level of representation of a computation, the graphical user interface
helps the user to specify a computation in several ways. Compared to editing a
computation directly, the user interface provides the following conveniences:

2 This is valid as long as the integral exists. In our setting this holds as long as the
integrand is continuous.
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– Display of all expressions in LATEX format.
– Selection of actions and subexpressions to perform the action on.
– Automatically generate some parameters of steps.
– Access to automatic integration algorithms such as Slagle’s method.

In the remainder of this section, we describe the last two functionalities in
more detail. A screenshot of the user interface is shown in Figure 1.

Fig. 1. Screenshot of the user interface, showing the computation of Example 2 in
Section 6.

4.1 Substitution

As discussed in Section 3.3, the Substitution I rule requires both f and g as
parameters, while typically only g is specified in informal arguments. Finding the
function f can be a nontrivial process. We try two heuristic methods for finding
f . First, if the substitution u = g(x) can be solved for x, yielding a function
h such that x = h(u), then f can be found by dividing the integrand by g′(x),
then substituting h(u) for x and simplify. Both solving and simplification can
be done without checking well-definedness of intermediate expressions, since in
the end one only need f(g(x))g′(x) to equal the integrand. For the implementa-
tion, we use SymPy’s solve function to attempt to find h. The second heuristic
simply replaces all expressions equal to g(x) by u, then hope that all remaining
occurrences of x is in a single g′(x) in the numerator. Note that the user can
always first rewrite the expression into a form where the second heuristic can be
applied.

4.2 Rational Functions

Polynomial division or partial fraction decomposition is a common first step
for integrating rational functions. From the user interface, the user can in-
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voke these actions. Then SymPy’s apart method is used to obtain the result-

s, For example, starting from the integral
∫ 1/2

1/3
x

1−x4 dx, the user may choose

partial fraction decomposition from the menu, which turns the integral into∫ 1/2

1/3
x

2(x2+1) −
1

4(x+1) −
1

4(x−1) dx. The Rewrite rule with appropriate denom

parameter is generated from this step.

4.3 Trigonometric Identities

For the application of trigonometric identities, the user does not need to remem-
ber names of any rules in Fu’s method. Instead, the user selects a subexpression
to rewrite. Then, each of Fu’s rules are applied in turn using SymPy. In case the
application of any rule modifies the expression, the new expression is displayed,
and the user can select from the displayed options. The selected action is then
recorded with the corresponding name.

4.4 Slagle’s Method

We implement a heuristic integration method due to Slagle [45]. There are two
main reasons why we choose Slagle’s method. First, it is simple but effective for
college-level problems. Second, it can output human-readable reasoning steps.
This method maintains a search tree consisting of AND-nodes and OR-nodes.
Each node contains an integral, with the root containing the original integral. An
AND-node specifies that the integral at the node would be solved if each of its
child nodes are solved. An OR-node specifies that the integral at the node would
be solved if one of its child nodes is solved. The method iteratively expands the
tree using a list of algorithmic and heuristic rules. Algorithmic rules involve basic
normalization operations such as simplification and polynomial division, they are
always applied to each node. In contrast, heuristic rules are more exploratory,
such as guessing potential expressions for substitution, and count as one step in
the search.

Our implementation is mostly faithful to the original presentation [45], with
some modifications to fit better with our framework. The output of Slagle’s
method (if successful) is a list of applications of algorithmic and heuristic rules.
Each rule can then be converted to one or more computation steps described in
Section 3.

5 Proof Translation

We now describe the process for translating a computation to a proof in higher-
order logic. This requires sufficiently strong proof automation for verifying the
application of each integration rule. The main components of the automation
include showing two expressions are equal by simplification, inequality checking,
and showing continuity, differentiability, and integrability of functions. The proof
automation is implemented in Python based on HolPy. However, it should be
possible to implement it in other proof assistants, and one aim of this section is
to provide details to facilitate this process.
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5.1 Introduction to HolPy

HolPy [49] is a new system for interactive theorem proving implemented in
Python. Like Isabelle [32], HOL Light [21], and HOL4 [1], it uses higher-order
logic as the logical foundation. The design of HolPy centers around explicit proof
terms that can be generated and checked as Python objects, and written to a file
in JSON format. Macros are used pervasively to control the size of proof terms.
An API for proof automation facilitates implementation of procedures generating
proof terms, in a manner similar to writing proof automation in the ML family
of languages, but in the setting of an imperative programming language.

5.2 Background Library

For the background library in analysis, we ported statements of over a thousand
theorems from HOL Light, of which about 40% are proved using the point-and-
click based user interface [49]. However, major parts of the theory are yet to be
formalized, including the construction of real numbers, the gauge integral, and
the fundamental theorem of calculus. At present, the statements of the theorems
need to be trusted. Finishing the formalization of the analysis library is planned
as future work.

5.3 Structure of Proof Automation

The procedure for translating a computation is as follows. For each step in the
computation, all expressions involved are first translated into terms in higher-
order logic. Depending on the rule used, the automation applies the appropriate
conversion to the input term, with the parameters of the rule serving as addi-
tional arguments to the conversion. Next, the automation attempts to show the
equality between the result of the conversion and the expected output of the step
by simplifying both sides. Hence, there does not need to be perfect agreement in
the expected output and what is computed by proof automation. The transla-
tion is successful as long as proof automation is able to show their equivalence.
In this way, we allow additional flexibility in the implementations.

We now discuss the overall structure of proof automation, which bears some
similarity to the structure of auto and simp tactics in Isabelle [48]. We maintain
two tables: a table of proof rules and a table of simplification rules. Each table
is indexed by the head of the predicate or term the rule expects. There may be
multiple rules associated to the same head term.

– A prove rule for a predicate p takes as input a goal whose head is p and
a list of assumptions, and attempts to prove the goal. A simple way to
specify a prove rule is from a list of theorems whose conclusion matches the
given predicate. The corresponding prove rule attempts to apply each of the
theorems in order. In case a theorem has assumptions, it recursively applies
the overall prove procedure (described below) to discharge each assumption.



12 R. Xu, L. Li, et al.

– A simplification rule for a function f takes as input a term whose head is f
and a list of assumptions, and computes the simplification of the term under
these assumptions. A simple way to specify a simplification rule is from a list
of theorems whose conclusion is an equality, where the left side has head f .
The corresponding simplification rule attempts to rewrite using each of the
equalities in order. Assumptions in the theorem are discharged by recursive
calls to prove as in the previous case.

The overall procedure is defined as a mutual recursion between two functions
prove and norm. The norm function receives a term and a list of assumptions as
input. It first recursively applies itself to the subterms of the term. Next, it looks
for simplification rules associated to the head of the term and applies them in
turn. If the head changes, the process is repeated. Note the prove function may
be called to discharge assumptions of rewrite rules. This continues until the term
is not changed by the simplification rules. The prove function takes a goal and a
list of assumptions as input. It first simplifies the goal, then look for prove rules
associated to the head term and applies each of them in turn. The case where
the goal is an equality reduces to simplifying both sides and then comparing
whether they are the same.

5.4 Inequality Checking

A major task of proof automation is checking inequalities in one variable x
constrained to lie in an interval [a, b] or (a, b). For example, if one wishes to
simplify

√
f(x)2 to f(x) in the integrand, where the integral is from a to b,

one needs to check f(x) ≥ 0 in the open interval (a, b). Here f may involve the
usual arithmetic operations, as well as logarithm, exponential, and trigonometric
functions.

The general problem of inequality checking is undecidable when special func-
tions are involved. Hence, we can only hope for methods that can solve most of
the inequality goals that appear in practice. There are many heuristic methods [7]
as well as decision procedures for inequalities. For our purposes, we found the
following, which can be considered as a simplified version of interval arithmetic,
to be both simple and effective: starting from the assumption that x lies in a cer-
tain interval, iteratively deduce the intervals constraining each of the subterms
in the expression. The derivation for each subterm depends on the head of the
subterm. Of course, this method is incomplete as it tends to over-approximate
the intervals of terms formed from binary operators. Implementation of more
advanced inequality checking methods is a goal for the future.

5.5 Simplification

Simplification for arithmetic operations follows the same principle as in Section
3.1: expand the expression into polynomial form, but do not expand powers.
We also do not reduce rational functions. This is similar to the normalization of
polynomials in other implementations of proof automation [7].
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More precisely, define a monomial to be a term of the form c ·(ap11 a
p2
2 · · · a

pk
k ),

where c is a rational number, and each ai is either a prime number or a term
whose head is not an arithmetic operator. If ai is a prime number, then the
corresponding pi must be either non-constant or a rational number between 0
and 1 exclusive. The ai’s are distinct and sorted in a pre-determined order. A
rational number is a special case of a monomial, with k = 0. We call c the
coefficient of a monomial and ap11 a

p2
2 · · · a

pk
k its body. A polynomial is a sum of

monomials, whose bodies are all distinct and in sorted order. It is clear that
any expression can be simplified into this form. For example,

√
6
√

2(x+ 32/3) is
simplified to

61/221/2x+ 61/221/232/3 = 21/231/221/2x+ 21/231/221/232/3 = 2 · 31/2x+ 6 · 31/6

Simplification of polynomials is implemented in the simplification rules for +,
× and power. a − b and a/b are simply reduced to a + (−1) · b and a · b−1,
respectively.

For logarithms and exponentials, we apply the standard simplification rules
log 1 = 0, log(ex) = x and e0 = 1, x > 0 −→ elog x = x. Simplifying trigonometric
functions applied to special values is trickier, as we may need to add or subtract
multiples of π. For example, cos 7π

3 is first rewritten to cos π3 and then to 1
2 .

When simplifying an integral over the closed interval [a, b], we apply the
following congruence rule:

∀x ∈ (a, b). f(x) = g(x) −→
∫ b

a

f(x) dx =

∫ b

a

g(x) dx.

This allows us to assume x ∈ (a, b) when simplifying f(x).

5.6 Applying Theorems

For proving continuity and differentiability, we set up the corresponding prove
rules using lists of introduction rules. Some of these rules require assumptions
that are discharged recursively. For example, the introduction rule for division
is as follows:

J continuous on S f, continuous on S g, ∀x ∈ S. g(x) 6= 0 K
−→ continuous on S (λx. f(x)/g(x))

Application of this rule involves recursively proving the three assumptions, in-
cluding the use of inequality checking from Section 5.4.

Substitution and integration by parts are implemented by applying the cor-
responding theorems. This is simple because the parameters of the rule already
contain instantiations for all function variables.

6 Evaluation and Examples

We evaluated our prototype implementation3 on problems taken from exam
preparation books (Tongji), online problem lists by D. Kouba [27] (Kouba) and

3 The code and examples are available online at https://github.com/bzhan/
holpy.

https://github.com/bzhan/holpy
https://github.com/bzhan/holpy
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the MIT Integration Bee [2] (MIT). We also compared our results with Maple
and WolframAlpha. Statistics from the evaluation are shown in Table 1.

Problem set Total Solved Ratio Slagle Ratio Maple WolframAlpha

Tongji 36 36 100% 26 72% 32 35
Kouba/Substitution 18 17 94% 13 72% 18 18
Kouba/Exponentials 12 7 58% 7 58% 12 11
Kouba/Trigonometric 27 22 81% 11 41% 18 22

Kouba/ByParts 23 22 96% 17 74% 23 23
Kouba/LogArcTangent 22 21 95% 13 59% 21 21
Kouba/PartialFraction 20 16 80% 8 40% 18 20

MIT/2013 25 20 80% 14 56% 20 24

Total 183 161 88% 109 60% 162 174

Table 1. Statistics on the problem lists. “Solved” indicates the number of problems
for which proofs can be successfully reconstructed from human-provided computations.
“Slagle” indicates the number of problems that can be solved by Slagle’s method, with
successful proof reconstruction. “Maple” represents the number of problems solved by
Maple. “WolframAlpha” represents the number of problems which WolframAlpha can
give step-by-step solutions without exceeding its time limit.

The Kouba problem lists are divided into different categories based on tech-
niques used. With human-provided computation steps, we can reconstruct proofs
for all of the Tongji problems, most of the problems in D. Kouba’s list, while
problems from the MIT Integration Bee are more challenging (with the later
years increasing in difficulty). Most of the failures are due to unable to show
equality after simplification, and during inequality checking. Some are due to
unsupported functions.

We show two interesting examples from our case studies. SymPy (version 1.5)
returns a wrong answer on the first example and times out on the second. The
second example takes a long time even for Mathematica, and cannot be solved by
its online version WolframAlpha. These examples demonstrate that our system
avoids the common errors, and since the user can guide the computation step-
by-step, is also able to verify integrals that are difficult even for sophisticated
computer algebra systems.

The first example (Tongji, #27) demonstrates the splitting of domain of in-
tegration, as well as use of trigonometric identities. The integral is∫ π

0

√
1 + cos 2x dx

This integral is incorrectly evaluated by SymPy as 0. It is correctly evaluated
by Mathematica almost instantly.

The evaluation begins with application of trigonometric identities, rewriting

the integrand to
√

1 + cos2 x− sin2 x and then to
√

2 cos2 x. For this, the user
simply needs to select cos 2x and then sin2 x, and choose the desired rewrite
targets. The resulting situation is similar to the example given in the introduc-
tion. It is then necessary to split the domain of integration where cosx = 0. The
system is able to automatically determine x = π

2 . The full computation is:
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I =

∫ π

0

√
1 + cos2 x− sin2 x dx (Rewrite trig. rule TR11)

=

∫ π

0

√
2 cos2 x dx =

√
2

∫ π

0

| cosx| dx (Rewrite trig. rule TR5, Simplification)

=
√

2

(∫ π
2

0

| cosx| dx+

∫ π

π
2

| cosx| dx

)
(Split region with c =

π

2
)

= 2
√

2 (Elim absolute value, Simplification)

The second example comes from MIT Integration Bee 2019, problem #14:

I =

∫ π/100

0

sin(20x) + sin(19x)

cos(20x) + cos(19x)
dx

It is simple if one notices to apply the sum-to-product identity first, but almost
impossible otherwise. WolframAlpha fails to find the symbolic answer. Using
Mathematica offline, it takes about 15 seconds to return an answer, which is
however much more complicated than necessary.

The full computation using our tool is:

I =

∫ π/100

0

sin
(
39
2
x
)

cos
(
39
2
x
) dx (Rewrite trigonometric, rule TR9)

=

∫ 1

cos ( 39π
200 )

2

39

1

t
dt (Substitution I with g = cos

(
39

2
x

)
)

= − 2

39
log

(
cos

39π

200

)
(Simplification).

7 Conclusion

In this paper, we proposed a framework for verifying symbolic computation
of definite integrals, where the user can perform computations in an interface
familiar from computer algebra systems, but with results verified by automatic
translation to proofs in higher-order logic. The design of the framework follows a
layered approach, with each layer focusing on a different aspect of the problem:
methods for solving integrals, computer algebra, and proof reconstruction. We
implemented a prototype system based on HolPy, and evaluated it on a test
suite consisting of publicly available problem lists at the undergraduate level,
showing its effectiveness on a large majority of cases.

One immediate piece of future work is to secure the foundation of the higher-
order logic proof, by formalizing the proofs of the required theorems. Another
gap is the arithmetic computation and comparison of real constants, which, in
the case of comparisons, would require approximation techniques [10].

Our prototype implementation focuses on definite integrals of one-variable
functions. However, the idea can be applied more generally, by suitably extending
the language of integration rules. For applications in the engineering domain,
some extensions that would be of high value include linear algebra, improper
integrals (including Laplace and Fourier transforms), and vector calculus.
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10. Bréhard, F., Mahboubi, A., Pous, D.: A certificate-based approach to formally
verified approximations. In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) 10th
International Conference on Interactive Theorem Proving, ITP 2019, September
9-12, 2019, Portland, OR, USA. LIPIcs, vol. 141, pp. 8:1–8:19 (2019)

11. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theorema
2.0: Computer-assisted natural-style mathematics. J. Formaliz. Reason. 9(1), 149–
185 (2016)

12. Butler, R.W.: Formalization of the integral calculus in the PVS theorem prover.
J. Formalized Reasoning 2(1), 1–26 (2009)

13. Chen, S., Wang, G., Li, X., Zhang, Q., Shi, Z., Guan, Y.: Formalization of camera
pose estimation algorithm based on rodrigues formula. Formal Aspects Comput.
32(4-6), 417–437 (2020)

14. Chyzak, F., Mahboubi, A., Sibut-Pinote, T., Tassi, E.: A computer-algebra-based
formal proof of the irrationality of ζ(3). In: Klein, G., Gamboa, R. (eds.) Interactive
Theorem Proving. Lecture Notes in Computer Science, vol. 8558, pp. 160–176.
Springer International Publishing, Cham (2014)
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