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Motivation

Many symbolic computations are involved in science and engineering, 

including reasoning about safety-critical systems. 



Motivation

In this work, we consider definite integrals on a finite interval.

Q: find the error in the following calculation:

න
0

𝜋

1 + cos 2𝑥 𝑑𝑥 = න
0

𝜋

1 + cos2 𝑥 − sin2(𝑥) 𝑑𝑥

= 0׬
𝜋

2 cos2 𝑥 𝑑𝑥

= 0׬
𝜋

2 cos 𝑥 𝑑𝑥 = 2 sin 𝜋 − 2 sin 0 = 0

A: 2 cos2 𝑥 should be simplified to 2 cos(𝑥) . The correct answer is 

2 2.

On Python’s SymPy 1.5.1:



Motivation

1. Use computer algebra systems, such as Mathematica and Maple:
• Advantage: easy to use and automatic.

• Disadvantage: cannot solve everything, cannot actually guarantee 

correctness (Durán et al, 2014)

2. Use interactive theorem provers, such as Isabelle/HOL, Coq, 

HOL Light, HOL4...
• Advantage: strong guarantees of correctness. 

• Disadvantage: not automatic, requires users to be proficient in higher-

order logic, analysis library, etc.

How to guarantee the correctness of symbolic computation?

Can we combine the advantages of computer algebra systems and ITP?



Architecture

Goal: let user perform computations in a familiar CAS-like setting, 

then convert the computation into higher-order logic proofs.

Overall plan: fix an intermediate language of computational rules, 

as a bridge between formal and “informal”.

“Informal” computations

Formal proofs

1.

2. 3.

4.



Terms and Computations

• Syntax:

𝑒 ∷= 𝑣 𝑐 𝑒1 𝑜𝑝 𝑒2 𝑓 𝑒 Deriv(𝑒) | Integral(𝑒, 𝑎, 𝑏)

• Location: point to subexpressions by specifying the path to a 

subtree in the AST of the expression.
1 + Integral(1 + sin3 𝑥 , 𝑥, 0, 1)

sin3 𝑥

0 1

0

0 1

• A computation is represented as a list of 

steps, each step containing:

• which rule is used;

• location the rule is applied;

• parameters for the rule;

• result of computation.

• Around 10 kinds of steps in current work.

1

1

1 + sin3 𝑥

Integral(1 + sin3 𝑥 , 𝑥, 0, 1)

𝑙𝑜𝑐 sin3 𝑥 = 1.0.1

0 1

1 2



Simplification: rewrite an expression to an equivalent simpler form.

 Combine terms:

𝜋 +
𝜋

3
⟹

4𝜋

3

 Expand products of polynomials:
𝑥 + 1 × 𝑥 − 1 ⟹ 𝑥2 − 1

 Simplify values of trigonometric functions:

sin
𝜋

6
⟹

1

2
sin

𝜋

2
− 𝑥 ⟹ cos(𝑥)

 Basic integrals:

න
0

1

6𝑥 𝑑𝑥 ⟹ 3 න
1

2 2

𝑥
𝑑𝑥 ⟹ 2log(2) න

0

𝜋
2
cos 𝑥 𝑑𝑥 ⟹ 1

Not included:

Expansion of large powers (e.g. (𝒙 + 𝒚 + 𝟏)𝟕).

Reduce quotients of polynomials (e.g. 
𝒙𝟐−𝟏

𝒙−𝟏
= 𝒙 + 𝟏).

Integration Rules



Integration Rules

Substitution: apply ׬𝑎
𝑏
𝑓 𝑔 𝑥 𝑔′ 𝑥 𝑑𝑥 = 𝑔(𝑎)׬

𝑔(𝑏)
𝑓 𝑢 𝑑𝑢 in either direction.

Forward substitution:

න
𝑎

𝑏

𝑓 𝑔 𝑥 𝑔′ 𝑥 𝑑𝑥 ⟹ න
𝑔(𝑎)

𝑔(𝑏)

𝑓 𝑢 𝑑𝑢

Example:

න
3/4

1 1

1 − 𝑥 − 1
𝑑𝑥

= න
0

1/2 2𝑢

𝑢 − 1
𝑑𝑢 (substitute 𝑢 for 1 − 𝑥)

Record both 𝑓 and 𝑔 as parameters.

Here 𝑓 =
2𝑢

𝑢−1
and 𝑔 = 1 − 𝑥.

Backward Substitution:

න
𝑔(𝑎)

𝑔(𝑏)

𝑓 𝑢 𝑑𝑢 ⟹ න
𝑎

𝑏

𝑓 𝑔 𝑥 𝑔′ 𝑥 𝑑𝑥

Example:

න
0

1

1 − 𝑥2 𝑑𝑥

= න
0

𝜋
2

1 − sin2 𝑡 cos 𝑡 𝑑𝑡 (substitute 𝑥 by sin(𝑡))

Record 𝑔, 𝑎, 𝑏 as parameters.

Here 𝑔 = sin 𝑡 , 𝑎 = 0, 𝑏 = 𝜋/2.



Integration Rules

Trigonometric Identities: rewrite an expression to a possibly more complex form, 

in order to prepare for a substitution or integration by parts.

Fu et al. divides the trigonometric identities into several groups, with name of the 

form TR𝑖, for example:

 TR5: sin2 𝑥 = 1 − cos2 𝑥

 TR7: cos2 𝑥 =
1

2
(1 + cos(2𝑥))

 TR9: sin 𝑥 + cos 𝑥 = 2 sin
𝑥+𝑦

2
cos

𝑥−𝑦

2
, etc

 TR11: sin 2𝑥 = 2 sin 𝑥 cos 𝑥 , cos 2𝑥 = cos2 𝑥 − sin2 𝑥 , etc

In the computation step, record name of Fu’s rule and location of application.

Example: 

π/6׬
π/2

cos2 𝑥 𝑑𝑥 = π/6׬
π/2 cos 2𝑥 +1

2
𝑑𝑥 (Trigonometric identity, TR7)



Integration Rules

Integration by Parts:

න
𝑎

𝑏

𝑢 𝑥 𝑣′ 𝑥 𝑑𝑥 = 𝑢 𝑥 𝑣 𝑥 |𝑎
𝑏 −න

𝑎

𝑏

𝑢′ 𝑥 𝑣 𝑥 𝑑𝑥

Example: 

1−׬
2
𝑥𝑒𝑥𝑑𝑥 = 𝑥𝑒𝑥|−1

2 − 1−׬
2
𝑒𝑥𝑑𝑥 (Integration by parts, 𝑢 = 𝑥, 𝑣 = 𝑒𝑥)

Splitting an integral:

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = න
𝑎

𝑐

𝑓 𝑥 𝑑𝑥 + න
𝑐

𝑏

𝑓 𝑥 𝑑𝑥 (𝑎 ≤ 𝑐 ≤ 𝑏)

Example:

1−׬
1

𝑥2 𝑑𝑥 = 1−׬
0

𝑥2 𝑑𝑥 + 0׬
1

𝑥2 𝑑𝑥 (Splitting an integral, 𝑐 = 0)



User Interface

Allows user to specify computation steps, provides various conveniences:

 Display in LaTeX format.

 Selection of actions and subexpressions to perform the action on.

 Automatically generate some parameters of steps (e.g. name of Fu’s rule).

 Automatic integration algorithms (Slagle’s method).

 Conversion to higher-order logic, showing     if successful.



User Interface: Example



Slagle’s Method

A heuristic integration algorithm (Slagle, 1963)

• Simple but effective.

• Output is human readable, can be translated to computation steps.

• Search on algorithmic and heuristic transformations, maintaining a tree 

consisting of AND nodes and OR nodes.

AND node
(all child nodes must be resolved)

න
0

1

𝑥3 + 𝑥2 + 𝑥 𝑑𝑥

න
0

1

𝑥3 𝑑𝑥 න
0

1

𝑥2 𝑑𝑥 න
0

1

𝑥 𝑑𝑥

න
0

𝜋
2 sin4(𝑥)

cos4(𝑥)
𝑑𝑥

න
0

𝜋
2
tan4(𝑥) 𝑑𝑥 න

0

1

32
𝑧4

(1 + 𝑧2) (1 − 𝑧2)4
𝑑𝑥

OR node
(one child node need resolved)

න
0

𝜋
2
cot−4(𝑥) 𝑑𝑥



Slagle’s Method

Algorithmic transformation (always applied)

• Factor constant 

න
𝑎

𝑏

𝑐𝑓 𝑥 𝑑𝑥 = 𝑐න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

• Decomposition

න
𝑎

𝑏

∑𝑓𝑖 𝑥 𝑑𝑥 = ∑න
𝑎

𝑏

𝑓𝑖 𝑥 𝑑𝑥

• Linear substitution

න
𝑎

𝑏

𝑓 𝑐1 + 𝑐2𝑣 𝑑𝑣 = න
𝑐1+𝑐2𝑎

𝑐1+𝑐2𝑏 1

𝑐2
𝑓 𝑢 𝑑𝑢



Slagle’s Method

Heuristic Transformation (plausible but not always appropriate)

• Substitute a non-linear subexpression whose derivative divides the integrand:

න
𝑎

𝑏

𝑥𝑒𝑥
2
𝑑𝑥 = න

𝑐

𝑑 1

2
𝑑𝑢 (substitute 𝑒𝑥

2
by 𝑢, since 𝑒𝑥

2 ′
= 2𝑥𝑒𝑥

2
)

• For each quadratic subexpression of the form 𝑐2 + 𝑐1𝑥
2

• if 𝑐1 < 0, 𝑐2 > 0, try the substitution x =
𝑐2

−𝑐1
sin 𝑢 , which replaces the 

quadratic to 𝑐2cos
2 𝑢

න
𝑎

𝑏 𝑥4

(1 − 𝑥2)5/2
𝑑𝑥 = න

𝑐

𝑑 sin4(𝑥)

cos4(𝑥)
𝑑𝑥

• ......

• ...... (ten rules in total)



Proof Reconstruction

• From a sequence of computation steps, automatically reconstruct 

proof in higher-order logic. This is possible since all necessary 

information is already available.

• Main tasks:

• Proofs for simplification of expressions.

• Proofs for inequality checking.

• Applying integration theorems, including check side conditions 

(e.g. continuity, integrability, …)

• Implementation in HolPy, an interactive theorem prover written in 

Python, with Python API for proof automation.



Proof Automation

Simplification: reduce expressions to canonical form.

• Each monomial can be converted to the form

𝑐 ∙ 𝑎1
𝑝1𝑎2

𝑝2 …𝑎𝑘
𝑝𝑘

 𝑐: prime number

 𝑎𝑖: prime number / a term whose head is not an arithmetic operator

 𝑝𝑖 ∈ 0, 1 if 𝑎𝑖 is a prime number

• A polynomial is a sum of monomials which are all distinct and in sorted order.

Example

6 2 𝑥 + 32/3 = 61/221/2𝑥 + 61/221/232/3𝑥 = 21/231/221/2𝑥 + 21/221/321/232/3𝑥 = 2 ⋅ 31/2𝑥 + 6 ⋅ 31/6

𝑐 𝑎1

𝑝1

𝑎2



Proof Automation

Inequality checking

A major task in proof automation is inequality checking, for instance, if we want to 

simplify 𝑓(𝑥)2 to 𝑓(𝑥) when 𝑥 ∈ 𝑎, 𝑏 , then we need to prove that

𝑥 ∈ 𝑎, 𝑏 ⟹ 𝑓 𝑥 ≥ 0

We implemented a heuristic procedure for inequality checking which can be

considered as a simplified version of interval arithmetic. For instance, we can

deduce 2 − 2 ∙ sin2 𝑥 ≥ 0 by the following steps:

𝑥 ∈ 0,
𝜋

2
⟹ sin 𝑥 ∈ 0,1 ⟹ sin2 𝑥 ∈ 0,1 ⟹

2 − 2 ∙ sin2 𝑥 ∈ 0,2 ⟹2 − 2 ∙ sin2 𝑥 ≥ 0

In the future, consider other heuristic extensions (e.g. Avigad et al, JAR ’16).



Proof Automation

Applying theorems

• Automatic proofs of continuity, integrability, etc. (Currently can only 

handle the basic cases).

• Use of integration theorems such as substitution, integration by parts 

(simple because the parameters of the rule already contain required 

instantiations).

Background library

• Ported statements of over 1000 theorems from HOL Light.

• About 40% are proved using the point-and-click user interface in 

HolPy (ICFEM ’19).



Experiments

We evaluated our prototype on problems taken from

• Exam preparation books (Tongji)

• Online problems listed by D. Kouba

• MIT Integration Bee 



Future Work

• Long-term plan: implement a symbolic computation tool with 

correctness guaranteed by generating proofs.

• Extend expressions and integration rules to support:

 Multivariable integrals;

 Improper integrals, Laplace and Fourier transforms;

 Vector, matrix and tensor calculus.

• Generate proofs to different interactive theorem provers:

 Isabelle, HOL Light, HOL4 (higher-order logic).

 Coq, Lean (dependent type theory).



Q&A

THANK YOU!


