
Verified Interactive Computation of
Definite Integrals

Runqing Xu, Liming Li, Bohua Zhan

SKLCS, Institute of Software, Chinese Academy of Sciences

Motivation

Many symbolic computations are involved in science and engineering,

including reasoning about safety-critical systems.

Motivation

In this work, we consider definite integrals on a finite interval.

Q: find the error in the following calculation:

න
0

𝜋

1 + cos 2𝑥 𝑑𝑥 = න
0

𝜋

1 + cos2 𝑥 − sin2(𝑥) 𝑑𝑥

= 0׬
𝜋

2 cos2 𝑥 𝑑𝑥

= 0׬
𝜋

2 cos 𝑥 𝑑𝑥 = 2 sin 𝜋 − 2 sin 0 = 0

A: 2 cos2 𝑥 should be simplified to 2 cos(𝑥) . The correct answer is

2 2.

On Python’s SymPy 1.5.1:

Motivation

1. Use computer algebra systems, such as Mathematica and Maple:
• Advantage: easy to use and automatic.

• Disadvantage: cannot solve everything, cannot actually guarantee

correctness (Durán et al, 2014)

2. Use interactive theorem provers, such as Isabelle/HOL, Coq,

HOL Light, HOL4...
• Advantage: strong guarantees of correctness.

• Disadvantage: not automatic, requires users to be proficient in higher-

order logic, analysis library, etc.

How to guarantee the correctness of symbolic computation?

Can we combine the advantages of computer algebra systems and ITP?

Architecture

Goal: let user perform computations in a familiar CAS-like setting,

then convert the computation into higher-order logic proofs.

Overall plan: fix an intermediate language of computational rules,

as a bridge between formal and “informal”.

“Informal” computations

Formal proofs

1.

2. 3.

4.

Terms and Computations

• Syntax:

𝑒 ∷= 𝑣 𝑐 𝑒1 𝑜𝑝 𝑒2 𝑓 𝑒 Deriv(𝑒) | Integral(𝑒, 𝑎, 𝑏)

• Location: point to subexpressions by specifying the path to a

subtree in the AST of the expression.
1 + Integral(1 + sin3 𝑥 , 𝑥, 0, 1)

sin3 𝑥

0 1

0

0 1

• A computation is represented as a list of

steps, each step containing:

• which rule is used;

• location the rule is applied;

• parameters for the rule;

• result of computation.

• Around 10 kinds of steps in current work.

1

1

1 + sin3 𝑥

Integral(1 + sin3 𝑥 , 𝑥, 0, 1)

𝑙𝑜𝑐 sin3 𝑥 = 1.0.1

0 1

1 2

Simplification: rewrite an expression to an equivalent simpler form.

 Combine terms:

𝜋 +
𝜋

3
⟹

4𝜋

3

 Expand products of polynomials:
𝑥 + 1 × 𝑥 − 1 ⟹ 𝑥2 − 1

 Simplify values of trigonometric functions:

sin
𝜋

6
⟹

1

2
sin

𝜋

2
− 𝑥 ⟹ cos(𝑥)

 Basic integrals:

න
0

1

6𝑥 𝑑𝑥 ⟹ 3 න
1

2 2

𝑥
𝑑𝑥 ⟹ 2log(2) න

0

𝜋
2
cos 𝑥 𝑑𝑥 ⟹ 1

Not included:

Expansion of large powers (e.g. (𝒙 + 𝒚 + 𝟏)𝟕).

Reduce quotients of polynomials (e.g.
𝒙𝟐−𝟏

𝒙−𝟏
= 𝒙 + 𝟏).

Integration Rules

Integration Rules

Substitution: apply ׬𝑎
𝑏
𝑓 𝑔 𝑥 𝑔′ 𝑥 𝑑𝑥 = 𝑔(𝑎)׬

𝑔(𝑏)
𝑓 𝑢 𝑑𝑢 in either direction.

Forward substitution:

න
𝑎

𝑏

𝑓 𝑔 𝑥 𝑔′ 𝑥 𝑑𝑥 ⟹ න
𝑔(𝑎)

𝑔(𝑏)

𝑓 𝑢 𝑑𝑢

Example:

න
3/4

1 1

1 − 𝑥 − 1
𝑑𝑥

= න
0

1/2 2𝑢

𝑢 − 1
𝑑𝑢 (substitute 𝑢 for 1 − 𝑥)

Record both 𝑓 and 𝑔 as parameters.

Here 𝑓 =
2𝑢

𝑢−1
and 𝑔 = 1 − 𝑥.

Backward Substitution:

න
𝑔(𝑎)

𝑔(𝑏)

𝑓 𝑢 𝑑𝑢 ⟹ න
𝑎

𝑏

𝑓 𝑔 𝑥 𝑔′ 𝑥 𝑑𝑥

Example:

න
0

1

1 − 𝑥2 𝑑𝑥

= න
0

𝜋
2

1 − sin2 𝑡 cos 𝑡 𝑑𝑡 (substitute 𝑥 by sin(𝑡))

Record 𝑔, 𝑎, 𝑏 as parameters.

Here 𝑔 = sin 𝑡 , 𝑎 = 0, 𝑏 = 𝜋/2.

Integration Rules

Trigonometric Identities: rewrite an expression to a possibly more complex form,

in order to prepare for a substitution or integration by parts.

Fu et al. divides the trigonometric identities into several groups, with name of the

form TR𝑖, for example:

 TR5: sin2 𝑥 = 1 − cos2 𝑥

 TR7: cos2 𝑥 =
1

2
(1 + cos(2𝑥))

 TR9: sin 𝑥 + cos 𝑥 = 2 sin
𝑥+𝑦

2
cos

𝑥−𝑦

2
, etc

 TR11: sin 2𝑥 = 2 sin 𝑥 cos 𝑥 , cos 2𝑥 = cos2 𝑥 − sin2 𝑥 , etc

In the computation step, record name of Fu’s rule and location of application.

Example:

π/6׬
π/2

cos2 𝑥 𝑑𝑥 = π/6׬
π/2 cos 2𝑥 +1

2
𝑑𝑥 (Trigonometric identity, TR7)

Integration Rules

Integration by Parts:

න
𝑎

𝑏

𝑢 𝑥 𝑣′ 𝑥 𝑑𝑥 = 𝑢 𝑥 𝑣 𝑥 |𝑎
𝑏 −න

𝑎

𝑏

𝑢′ 𝑥 𝑣 𝑥 𝑑𝑥

Example:

1−׬
2
𝑥𝑒𝑥𝑑𝑥 = 𝑥𝑒𝑥|−1

2 − 1−׬
2
𝑒𝑥𝑑𝑥 (Integration by parts, 𝑢 = 𝑥, 𝑣 = 𝑒𝑥)

Splitting an integral:

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = න
𝑎

𝑐

𝑓 𝑥 𝑑𝑥 + න
𝑐

𝑏

𝑓 𝑥 𝑑𝑥 (𝑎 ≤ 𝑐 ≤ 𝑏)

Example:

1−׬
1

𝑥2 𝑑𝑥 = 1−׬
0

𝑥2 𝑑𝑥 + 0׬
1

𝑥2 𝑑𝑥 (Splitting an integral, 𝑐 = 0)

User Interface

Allows user to specify computation steps, provides various conveniences:

 Display in LaTeX format.

 Selection of actions and subexpressions to perform the action on.

 Automatically generate some parameters of steps (e.g. name of Fu’s rule).

 Automatic integration algorithms (Slagle’s method).

 Conversion to higher-order logic, showing if successful.

User Interface: Example

Slagle’s Method

A heuristic integration algorithm (Slagle, 1963)

• Simple but effective.

• Output is human readable, can be translated to computation steps.

• Search on algorithmic and heuristic transformations, maintaining a tree

consisting of AND nodes and OR nodes.

AND node
(all child nodes must be resolved)

න
0

1

𝑥3 + 𝑥2 + 𝑥 𝑑𝑥

න
0

1

𝑥3 𝑑𝑥 න
0

1

𝑥2 𝑑𝑥 න
0

1

𝑥 𝑑𝑥

න
0

𝜋
2 sin4(𝑥)

cos4(𝑥)
𝑑𝑥

න
0

𝜋
2
tan4(𝑥) 𝑑𝑥 න

0

1

32
𝑧4

(1 + 𝑧2) (1 − 𝑧2)4
𝑑𝑥

OR node
(one child node need resolved)

න
0

𝜋
2
cot−4(𝑥) 𝑑𝑥

Slagle’s Method

Algorithmic transformation (always applied)

• Factor constant

න
𝑎

𝑏

𝑐𝑓 𝑥 𝑑𝑥 = 𝑐න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

• Decomposition

න
𝑎

𝑏

∑𝑓𝑖 𝑥 𝑑𝑥 = ∑න
𝑎

𝑏

𝑓𝑖 𝑥 𝑑𝑥

• Linear substitution

න
𝑎

𝑏

𝑓 𝑐1 + 𝑐2𝑣 𝑑𝑣 = න
𝑐1+𝑐2𝑎

𝑐1+𝑐2𝑏 1

𝑐2
𝑓 𝑢 𝑑𝑢

Slagle’s Method

Heuristic Transformation (plausible but not always appropriate)

• Substitute a non-linear subexpression whose derivative divides the integrand:

න
𝑎

𝑏

𝑥𝑒𝑥
2
𝑑𝑥 = න

𝑐

𝑑 1

2
𝑑𝑢 (substitute 𝑒𝑥

2
by 𝑢, since 𝑒𝑥

2 ′
= 2𝑥𝑒𝑥

2
)

• For each quadratic subexpression of the form 𝑐2 + 𝑐1𝑥
2

• if 𝑐1 < 0, 𝑐2 > 0, try the substitution x =
𝑐2

−𝑐1
sin 𝑢 , which replaces the

quadratic to 𝑐2cos
2 𝑢

න
𝑎

𝑏 𝑥4

(1 − 𝑥2)5/2
𝑑𝑥 = න

𝑐

𝑑 sin4(𝑥)

cos4(𝑥)
𝑑𝑥

•

• (ten rules in total)

Proof Reconstruction

• From a sequence of computation steps, automatically reconstruct

proof in higher-order logic. This is possible since all necessary

information is already available.

• Main tasks:

• Proofs for simplification of expressions.

• Proofs for inequality checking.

• Applying integration theorems, including check side conditions

(e.g. continuity, integrability, …)

• Implementation in HolPy, an interactive theorem prover written in

Python, with Python API for proof automation.

Proof Automation

Simplification: reduce expressions to canonical form.

• Each monomial can be converted to the form

𝑐 ∙ 𝑎1
𝑝1𝑎2

𝑝2 …𝑎𝑘
𝑝𝑘

 𝑐: prime number

 𝑎𝑖: prime number / a term whose head is not an arithmetic operator

 𝑝𝑖 ∈ 0, 1 if 𝑎𝑖 is a prime number

• A polynomial is a sum of monomials which are all distinct and in sorted order.

Example

6 2 𝑥 + 32/3 = 61/221/2𝑥 + 61/221/232/3𝑥 = 21/231/221/2𝑥 + 21/221/321/232/3𝑥 = 2 ⋅ 31/2𝑥 + 6 ⋅ 31/6

𝑐 𝑎1

𝑝1

𝑎2

Proof Automation

Inequality checking

A major task in proof automation is inequality checking, for instance, if we want to

simplify 𝑓(𝑥)2 to 𝑓(𝑥) when 𝑥 ∈ 𝑎, 𝑏 , then we need to prove that

𝑥 ∈ 𝑎, 𝑏 ⟹ 𝑓 𝑥 ≥ 0

We implemented a heuristic procedure for inequality checking which can be

considered as a simplified version of interval arithmetic. For instance, we can

deduce 2 − 2 ∙ sin2 𝑥 ≥ 0 by the following steps:

𝑥 ∈ 0,
𝜋

2
⟹ sin 𝑥 ∈ 0,1 ⟹ sin2 𝑥 ∈ 0,1 ⟹

2 − 2 ∙ sin2 𝑥 ∈ 0,2 ⟹2 − 2 ∙ sin2 𝑥 ≥ 0

In the future, consider other heuristic extensions (e.g. Avigad et al, JAR ’16).

Proof Automation

Applying theorems

• Automatic proofs of continuity, integrability, etc. (Currently can only

handle the basic cases).

• Use of integration theorems such as substitution, integration by parts

(simple because the parameters of the rule already contain required

instantiations).

Background library

• Ported statements of over 1000 theorems from HOL Light.

• About 40% are proved using the point-and-click user interface in

HolPy (ICFEM ’19).

Experiments

We evaluated our prototype on problems taken from

• Exam preparation books (Tongji)

• Online problems listed by D. Kouba

• MIT Integration Bee

Future Work

• Long-term plan: implement a symbolic computation tool with

correctness guaranteed by generating proofs.

• Extend expressions and integration rules to support:

 Multivariable integrals;

 Improper integrals, Laplace and Fourier transforms;

 Vector, matrix and tensor calculus.

• Generate proofs to different interactive theorem provers:

 Isabelle, HOL Light, HOL4 (higher-order logic).

 Coq, Lean (dependent type theory).

Q&A

THANK YOU!

