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Why verify quantum algorithms?

Quantum programming languages have been developing
rapidly in recent years:

Qwire, LIQUi|〉, Q#, OpenQASM, Cirq, ProjectQ, etc.

The quantum world is very unintuitive. There is a lot of
potential for mistakes.

Quantum programs are difficult to test or model-check on
classical computers. On the best (classical) computers today:

Simulation is limited to 50-60 qubits.
Model-checking algorithms are limited to 25-30 qubits.

Deductive verification can help: no need for simulation or
traversing the state space.
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Classical vs. Quantum programming

Classical Quantum
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State (function) Density matrix

Assignment Unitary transformation

Conditional Measurement

Assertion / predicate Quantum predicate

Entailment of predicates Löwner order
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Quantum variables and states

The state of each qubit is a vector in the 2-dimensional
complex vector space, spanned by

|0〉 and |1〉

The state space of two qubits is the tensor product of the two
vector spaces, spanned by

|00〉, |01〉, |10〉, and |11〉

The state space for n qubits has dimension 2n.

A mixed state on n qubits is given by a density matrix with
dimension 2n × 2n.
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Assignment

Assignment

m
Multiplying the state by a unitary matrix U

(satisfying U†U = I).

Unitary transformations may act on one or more variables:

U
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U acts on Vi
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U acts on Vi ⊗ Vj



Assignment

Assignment

m
Multiplying the state by a unitary matrix U

(satisfying U†U = I).

Unitary transformations may act on one or more variables:

U
vi

U acts on Vi

U

vi

vj

U acts on Vi ⊗ Vj



Conditional

Conditional

m
Measurement using hermitian matrices M1, . . . ,Mn

satisfying
∑
i

M†i Mi = IN .

Measurement returns a result between 1 and n, and can
modify the state!
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Assertions

Assertions and entailments are described using
positive (semi-definite) matrices (v †Av ≥ 0 for any v).

The Löwner (partial) order on positive matrices is defined as:

A ≤L B ⇐⇒ B − A is positive.

An assertion is a positive matrix P satisfying P ≤L IN .

Evalution of P on density state ρ is given by tr(Pρ).
(intuition: probability that ρ satisfies P).

Assertion P entails assertion Q if P ≤L Q.
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Quantum Hoare logic (TOPLAS, 2011)

Syntax:

S ::= skip | q = U[q] | S1; S2 | measure M[q] : S

| while M[q] = 1 do S

Semantics (mapping of density matrices):

[[skip]](ρ) = ρ.
[[q = U[q]]](ρ) = UρU†.
[[S1;S2]](ρ) = [[S2]]([[S1]](ρ)).

[[measure M[q] : S ]](ρ) =
∑

m[[Sm]](MmρM
†
m).

[[while M[q] = 1 do S ]](ρ) =
∑∞

k=0 E0 ◦ ([[S ]] ◦ E1)k(ρ),

where Ei (ρ) = MiρM
†
i for i = 0, 1.
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Quantum Hoare logic: semantic correctness

The correctness formula {P}S{Q} is true in the sense of partial
correctness, written

�p {P}S{Q}

if we have

tr(Pρ) ≤ tr(Q[[S ]](ρ)) + [tr(ρ)− tr([[S ]](ρ))]

for all density operator ρ in the state space of S .



Quantum Hoare logic: reasoning rules

(Skip) {P} skip {P}

(UT) {U†PU} q := Uq {P}

(Seq)
{P} S1 {Q} {Q} S2 {R}

{P} S1; S2 {R}

(Mea)
{Pm} Sm {Q} for all m

{
∑
m

Mm
†PmMm} measure M[q] : S {Q}

(Loop)
{Q} S {M†0PM0 + M†1QM1}

{M†0PM0 + M†1QM1} while M[q] = 1 do S {P}

(Order)
P ≤L P ′ {P ′} S {Q ′} Q ′ ≤L Q

{P} S {Q}



Isabelle/HOL

Proof assistant based on higher-order logic.

Extensive library for analysis and linear algebra, including
some material on complex matrices.



Formalization of Quantum Hoare logic

Our work:

Continued development of Isabelle/HOL’s library in linear
algebra, adding properties of positivity, hermitian and unitary
matrices.

Results about limits of matrices.

Formally verified soundness and completeness of the
deduction system (for partial correctness).

Library for working with tensor products of vectors and
matrices (for reasoning about operations on a subset of
variables).
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Application: Grover’s algorithm

Given a set of N elements, M of which satisfy f (x) = 1 for
some boolean function f (think M � N). Find one such
element.

f is given by an oracle.

Classically, takes N/M calls to the oracle on average.

Grover’s algorithm finds a solution in O(
√
N/M) calls to the

oracle.
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Grover’s algorithm: intuition

|s ′〉 contains bad elements,
|ω〉 contains good elements.

Start from |s〉, a linear
combination of |s ′〉 and |ω〉,
closer to |s ′〉.
Each iteration rotates the
state towards |ω〉.
The number of rotations is
O(

√
N/M).

1By Danski14 - Own work, CC BY-SA 3.0, Wikipedia Commons
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Grover’s algorithm: the verification

q0q1 . . . qn−1 := H⊗n[q0q1 . . . qn−1];

while M[qn] = 1 do

q0q1 . . . qn−1 := Uf [q0q1 . . . qn−1];

q0q1 . . . qn−1 := H⊗n[q0q1 . . . qn−1];

q0q1 . . . qn−1 := Ph[q0q1 . . . qn−1];

q0q1 . . . qn−1 := H⊗n[q0q1 . . . qn−1];

qn := Inc[qn];

measure N[q0q1 . . . qn−1] : skip
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Grover’s algorithm: the verification
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Grover’s algorithm: end of proof



Statistics

Description Files Lines of proof

Preliminaries Complex Matrix, . . . 4193

Semantics Quantum Program 1110

Hoare logic Quantum Hoare 1417

Tensor product Partial State 1664

Grover’s algorithm Grover 3184

Total 11568



Lessons learned

Deductive reasoning about quantum algorithms is more
difficult than for classical algorithms (but quite feasible).

Automation for working with linear algebra is very helpful.

Currently, can automatically prove:

tr(MM†(PP†)) = tr((P†M)(P†M)†)

tr(M0AM
†
0) + tr(M1AM

†
1) = tr((M†0M0 + M†1M1)A)

H†(Ph†(H†Q2H)Ph)H = (HPhH)†Q2(HPhH)
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Robert Rand’s implementation of Qwire in Coq.

Models quantum algorithms using circuits.

Program verification proceeds directly from the semantics.
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Future work

Verify more complex algorithms, including Shor’s algorithm.

Improvements to automation, which leads to more efficient
verification in general:

Verification condition generator.
Automatic procedures for dealing with the verification
conditions, involving positivity of matrices and tensor products.

Quantum communication protocols?
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