Formal verification of quantum algorithms using quantum Hoare logic

Junyi Liu, <u>Bohua Zhan</u>, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying and Naijun Zhan

State Key Lab. of Computer Science, Institute of Software, CAS

July 18, 2019

• Quantum programming languages have been developing rapidly in recent years:

Qwire, LIQUi $|\rangle$, Q#, OpenQASM, Cirq, ProjectQ, etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Quantum programming languages have been developing rapidly in recent years:

Qwire, LIQUi $|\rangle$, Q#, OpenQASM, Cirq, ProjectQ, etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• The quantum world is very unintuitive. There is a lot of potential for mistakes.

• Quantum programming languages have been developing rapidly in recent years:

Qwire, LIQUi $|\rangle$, Q#, OpenQASM, Cirq, ProjectQ, etc.

- The quantum world is very unintuitive. There is a lot of potential for mistakes.
- Quantum programs are difficult to test or model-check on classical computers. On the best (classical) computers today:
 - Simulation is limited to 50-60 qubits.
 - Model-checking algorithms are limited to 25-30 qubits.

• Quantum programming languages have been developing rapidly in recent years:

Qwire, LIQUi $|\rangle$, Q#, OpenQASM, Cirq, ProjectQ, etc.

- The quantum world is very unintuitive. There is a lot of potential for mistakes.
- Quantum programs are difficult to test or model-check on classical computers. On the best (classical) computers today:
 - Simulation is limited to 50-60 qubits.
 - Model-checking algorithms are limited to 25-30 qubits.

Deductive verification can help: no need for simulation or traversing the state space.

Classical	Quantum	
Variable (bit)	Qubit	
State (function)	Density matrix	
Assignment	Unitary transformation	
Conditional	Measurement	
Assertion / predicate	Quantum predicate	
Entailment of predicates	Löwner order	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classical	Quantum	
Variable (bit)	Qubit	
State (function)	Density matrix	
Assignment	Unitary transformation	
Conditional	Measurement	
Assertion / predicate	Quantum predicate	
Entailment of predicates	Löwner order	

 $\left| 0 \right\rangle {\rm and} \left| 1 \right\rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\left| 0 \right\rangle {\rm and} \left| 1 \right\rangle$

• The state space of *two qubits* is the tensor product of the two vector spaces, spanned by

 $|00\rangle, |01\rangle, |10\rangle, \, {\rm and} \, |11\rangle$

 $\left|0\right\rangle {\rm and}\left|1\right\rangle$

• The state space of *two qubits* is the tensor product of the two vector spaces, spanned by

 $|00\rangle, |01\rangle, |10\rangle, \, {\rm and} \, |11\rangle$

• The state space for n qubits has dimension 2^n .

 $\left|0\right\rangle {\rm and}\left|1\right\rangle$

• The state space of *two qubits* is the tensor product of the two vector spaces, spanned by

 $|00\rangle, |01\rangle, |10\rangle, \text{ and } |11\rangle$

- The state space for n qubits has dimension 2^n .
- A *mixed state* on *n* qubits is given by a *density matrix* with dimension $2^n \times 2^n$.

Classical	Quantum	
Variable (bit)	Qubit	
State (function)	Density matrix	
Assignment	Unitary transformation	
Conditional	Measurement	
Assertion / predicate	Quantum predicate	
Entailment of predicates	Löwner order	

Assignment $\widehat{\mathbf{U}}$ Multiplying the state by a unitary matrix U(satisfying $U^{\dagger}U = \mathbb{I}$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Unitary transformations may act on one or more variables:

Conditional $$\label{eq:main_static} \begin{split} & \textcircled{} \\ \text{Measurement using hermitian matrices } M_1, \dots, M_n \\ & \text{satisfying } \sum_i M_i^\dagger M_i = I_N. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Measurement returns a result between 1 and *n*, and can modify the state!

(日) (日) (日) (日) (日) (日) (日) (日)

Classical	Quantum	
Variable (bit)	Qubit	
State (function)	Density matrix	
Assignment	Unitary transformation	
Conditional	Measurement	
Assertion (predicate)	Quantum predicate	
Entailment of predicates	Löwner order	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Assertions and entailments are described using positive (semi-definite) matrices (v[†]Av ≥ 0 for any v).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Assertions and entailments are described using positive (semi-definite) matrices (v[†]Av ≥ 0 for any v).
- The Löwner (partial) order on positive matrices is defined as:

 $A \leq_L B \iff B - A$ is positive.

- Assertions and entailments are described using positive (semi-definite) matrices (v[†]Av ≥ 0 for any v).
- The Löwner (partial) order on positive matrices is defined as:

$$A \leq_L B \iff B - A$$
 is positive.

• An assertion is a positive matrix P satisfying $P \leq_L \mathbb{I}_N$.

- Assertions and entailments are described using positive (semi-definite) matrices (v[†]Av ≥ 0 for any v).
- The Löwner (partial) order on positive matrices is defined as:

$$A \leq_L B \iff B - A$$
 is positive.

- An assertion is a positive matrix P satisfying $P \leq_L \mathbb{I}_N$.
- Evalution of P on density state ρ is given by tr(Pρ). (intuition: probability that ρ satisfies P).

- Assertions and entailments are described using positive (semi-definite) matrices (v[†]Av ≥ 0 for any v).
- The Löwner (partial) order on positive matrices is defined as:

$$A \leq_L B \iff B - A$$
 is positive.

- An assertion is a positive matrix P satisfying $P \leq_L \mathbb{I}_N$.
- Evalution of P on density state ρ is given by tr(Pρ). (intuition: probability that ρ satisfies P).
- Assertion P entails assertion Q if $P \leq_L Q$.

Quantum Hoare logic (TOPLAS, 2011)

Syntax:

$$S ::= \mathsf{skip} \mid \overline{q} = U[\overline{q}] \mid S_1; S_2 \mid \mathsf{measure} \ M[\overline{q}] : \overline{S} \\ \mid \mathsf{while} \ M[\overline{q}] = 1 \ \mathsf{do} \ S$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Quantum Hoare logic (TOPLAS, 2011)

Syntax:

$$S ::= \mathsf{skip} \mid \overline{q} = U[\overline{q}] \mid S_1; S_2 \mid \mathsf{measure} \ M[\overline{q}] : \overline{S} \\ \mid \mathsf{while} \ M[\overline{q}] = 1 \ \mathsf{do} \ S$$

Semantics (mapping of density matrices):

$$\begin{split} \llbracket \mathbf{skip} \rrbracket(\rho) &= \rho. \\ \llbracket \overline{q} &= U[\overline{q}] \rrbracket(\rho) = U\rho U^{\dagger}. \\ \llbracket S_1; S_2 \rrbracket(\rho) &= \llbracket S_2 \rrbracket(\llbracket S_1 \rrbracket(\rho)). \\ \llbracket \mathbf{measure} \ M[\overline{q}] : \overline{S} \rrbracket(\rho) &= \sum_m \llbracket S_m \rrbracket(M_m \rho M_m^{\dagger}). \\ \llbracket \mathbf{while} \ M[\overline{q}] &= 1 \ \mathbf{do} \ S \rrbracket(\rho) &= \sum_{k=0}^{\infty} \mathcal{E}_0 \circ (\llbracket S \rrbracket \circ \mathcal{E}_1)^k(\rho), \\ \mathrm{where} \ \mathcal{E}_i(\rho) &= M_i \rho M_i^{\dagger} \ \mathrm{for} \ i = 0, 1. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

The correctness formula $\{P\}S\{Q\}$ is true in the sense of partial correctness, written

 $\models_p \{P\}S\{Q\}$

if we have

$$\operatorname{tr}(P\rho) \leq \operatorname{tr}(Q\llbracket S \rrbracket(\rho)) + [\operatorname{tr}(\rho) - \operatorname{tr}(\llbracket S \rrbracket(\rho))]$$

for all density operator ρ in the state space of *S*.

(Skip)	$\{P\}$ skip $\{P\}$
(UT)	$\{U^\dagger P U\} \ \overline{q} := U \overline{q} \ \{P\}$
(Seq)	$\frac{\{P\} \ S_1 \ \{Q\} \ \{Q\} \ S_2 \ \{R\}}{\{P\} \ S_1; \ S_2 \ \{R\}}$
(Mea)	$\frac{\{P_m\} S_m \{Q\} \text{ for all } m}{\{\sum_{m} M_m^{\dagger} P_m M_m\} \text{ measure } M[\overline{q}] : \overline{S} \{Q\}}$
(Loop)	$\frac{Q}{\{Q\}} S \{M_0^{\dagger} P M_0 + M_1^{\dagger} Q M_1\}$
	$\{M_0'PM_0 + M_1'QM_1\}$ while $M[\overline{q}] = 1$ do $S\{P\}$
(Order)	$\frac{P \leq_L P' \{P'\} S \{Q'\} Q' \leq_L Q}{\{P\} S \{Q\}}$

- Proof assistant based on higher-order logic.
- Extensive library for analysis and linear algebra, including some material on complex matrices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Our work:

 Continued development of Isabelle/HOL's library in linear algebra, adding properties of positivity, hermitian and unitary matrices.

Our work:

 Continued development of Isabelle/HOL's library in linear algebra, adding properties of positivity, hermitian and unitary matrices.

• Results about limits of matrices.

Our work:

 Continued development of Isabelle/HOL's library in linear algebra, adding properties of positivity, hermitian and unitary matrices.

- Results about limits of matrices.
- Formally verified soundness and completeness of the deduction system (for partial correctness).

Our work:

- Continued development of Isabelle/HOL's library in linear algebra, adding properties of positivity, hermitian and unitary matrices.
- Results about limits of matrices.
- Formally verified soundness and completeness of the deduction system (for partial correctness).
- Library for working with tensor products of vectors and matrices (for reasoning about operations on a subset of variables).

```
datatype com =
   SKIP
| Utrans "complex mat"
| Seq com com ("_;;/ _" [60, 61] 60)
| Measure nat "nat ⇒ complex mat" "com list"
| While "nat ⇒ complex mat" com
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

```
fun denote :: "com \Rightarrow state \Rightarrow state" where
  "denote SKIP \varrho = \varrho"
| "denote (Utrans U) \varrho = U * \varrho * adjoint U"
| "denote (Seq S1 S2) \varrho = denote S2 (denote S1 \varrho)"
| "denote (Measure n M S) \varrho =
        denote_measure n M (map denote S) \varrho"
| "denote (While M S) \varrho =
        denote_while (M 0) (M 1) (denote S) \varrho"
```

```
inductive hoare_partial :: "complex mat \Rightarrow com \Rightarrow complex mat \Rightarrow bool"
("+p ({(1_)}/ (_)/ {(1_)})" 50) where
"is_quantum_predicate P \Rightarrow +p {P} SKIP {P}"
| "is_quantum_predicate P \Rightarrow is_quantum_predicate Q \Rightarrow is_quantum_predicate R \Rightarrow +p {P} $1 {Q} \Rightarrow +p {Q} $2 {R} \Rightarrow +p {P} $1 {Q} \Rightarrow +p {Q} $2 {R} \Rightarrow +p {P} $2 st 2 {R}"
| "(Ak. k < n \Rightarrow is_quantum_predicate (P k)) \Rightarrow is_quantum_predicate Q \Rightarrow (Ak. k < n \Rightarrow +p {P k} $1 ! (Q) \Rightarrow +P k {Q}) \Rightarrow
+p {P} $2 st 2 {R}"
| "(Ak. k < n \Rightarrow is_quantum_predicate (P k)) \Rightarrow is_quantum_predicate Q \Rightarrow (Ak. k < n \Rightarrow +p {P k} $1 ! k {Q}) \Rightarrow
+p {matrix_sum d (Ak. adjoint (M k) *P k * M k) n} Measure n M S {Q}"
| "is_quantum_predicate P \Rightarrow is_quantum_predicate Q \Rightarrow
+p {Q} $ {adjoint (M 0) *P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {adjoint (M 0) *P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {adjoint (M 0) *P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {adjoint (M 0) *P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {adjoint (M 0) *P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + Adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + Adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + Adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + Adjoint (M 1) * Q * M 1} \Rightarrow
+p {Adjoint (M 0) * P * M 0 + Adjoint (M 0) * P * P {Adjoint (M 0) * P * P {Ad
```

```
theorem hoare_partial_sound:

"\vdash_p {P} S {Q} \implies well_com S \implies

\models_p {P} S {Q}"
```

```
theorem hoare_partial_complete:

"\models_p {P} S {Q} \implies well_com S \implies

is_quantum_predicate P \implies

is_quantum_predicate Q \implies

\vdash_p {P} S {Q}"
```

 Given a set of N elements, M of which satisfy f(x) = 1 for some boolean function f (think M ≪ N). Find one such element.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

• Given a set of N elements, M of which satisfy f(x) = 1 for some boolean function f (think $M \ll N$). Find one such element.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

• f is given by an oracle.

 Given a set of N elements, M of which satisfy f(x) = 1 for some boolean function f (think M ≪ N). Find one such element.

- f is given by an oracle.
- Classically, takes N/M calls to the oracle on average.

- Given a set of N elements, M of which satisfy f(x) = 1 for some boolean function f (think M ≪ N). Find one such element.
- f is given by an oracle.
- Classically, takes N/M calls to the oracle on average.
- Grover's algorithm finds a solution in $O(\sqrt{N/M})$ calls to the oracle.

• $|s'\rangle$ contains *bad* elements, $|\omega\rangle$ contains *good* elements.

¹By Danski14 - Own work, CC BY-SA 3.0, Wikipedia Commons 🗤 📳 👘 🧕 🔊 ५.०

- $|s'\rangle$ contains *bad* elements, $|\omega\rangle$ contains *good* elements.
- Start from $|s\rangle$, a linear combination of $|s'\rangle$ and $|\omega\rangle$, closer to $|s'\rangle$.

¹By Danski14 - Own work, CC BY-SA 3.0, Wikipedia Commons + (= + = -) a (+

- $|s'\rangle$ contains *bad* elements, $|\omega\rangle$ contains *good* elements.
- Start from $|s\rangle$, a linear combination of $|s'\rangle$ and $|\omega\rangle$, closer to $|s'\rangle$.
- Each iteration rotates the state towards |ω⟩.

¹By Danski14 - Own work, CC BY-SA 3.0, Wikipedia Commons 🗤 📳 🖉 🤄 🕫

- $|s'\rangle$ contains *bad* elements, $|\omega\rangle$ contains *good* elements.
- Start from $|s\rangle$, a linear combination of $|s'\rangle$ and $|\omega\rangle$, closer to $|s'\rangle$.
- Each iteration rotates the state towards $|\omega\rangle$.
- The number of rotations is $O(\sqrt{N/M})$.

¹By Danski14 - Own work, CC BY-SA 3.0, Wikipedia Commons 🗤 📳 📃 🔊 ແຕ

$$\begin{aligned} q_0 q_1 \dots q_{n-1} &:= H^{\otimes n} [q_0 q_1 \dots q_{n-1}]; \\ \text{while } M[q_n] = 1 \text{ do} \\ q_0 q_1 \dots q_{n-1} &:= U_f [q_0 q_1 \dots q_{n-1}]; \\ q_0 q_1 \dots q_{n-1} &:= H^{\otimes n} [q_0 q_1 \dots q_{n-1}]; \\ q_0 q_1 \dots q_{n-1} &:= Ph [q_0 q_1 \dots q_{n-1}]; \\ q_0 q_1 \dots q_{n-1} &:= H^{\otimes n} [q_0 q_1 \dots q_{n-1}]; \\ q_n &:= Inc[q_n]; \\ \end{aligned}$$
measure $N[q_0 q_1 \dots q_{n-1}] := \overline{\text{skip}}$

$$\begin{array}{ll} q_{0}q_{1}\ldots q_{n-1} := H^{\otimes n}[q_{0}q_{1}\ldots q_{n-1}]; & \textit{Initialization} \\ \textbf{while } M[q_{n}] = 1 \textbf{ do} \\ q_{0}q_{1}\ldots q_{n-1} := U_{f}[q_{0}q_{1}\ldots q_{n-1}]; \\ q_{0}q_{1}\ldots q_{n-1} := H^{\otimes n}[q_{0}q_{1}\ldots q_{n-1}]; \\ q_{0}q_{1}\ldots q_{n-1} := Ph[q_{0}q_{1}\ldots q_{n-1}]; \\ q_{0}q_{1}\ldots q_{n-1} := H^{\otimes n}[q_{0}q_{1}\ldots q_{n-1}]; \\ q_{n} := Inc[q_{n}]; \\ \textbf{measure } N[q_{0}q_{1}\ldots q_{n-1}] : \overline{\textbf{skip}} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

 $\{ |0\rangle_{\overline{a}}\langle 0| \otimes |0\rangle_{a_n}\langle 0| \}$ $a_0 a_1 \dots a_{n-1} := H^{\otimes n}[a_0 a_1 \dots a_{n-1}];$ Initialization while $M[q_n] = 1$ do Compare counter $q_0q_1 \dots q_{n-1} := U_f[q_0q_1 \dots q_{n-1}];$ Oracle call $q_0q_1\ldots q_{n-1} := H^{\otimes n}[q_0q_1\ldots q_{n-1}];$ $a_0 a_1 \dots a_{n-1} := Ph[a_0 a_1 \dots a_{n-1}];$ $a_0 a_1 \dots a_{n-1} := H^{\otimes n}[a_0 a_1 \dots a_{n-1}];$ $q_n := Inc[q_n];$ Increment counter measure $N[q_0q_1 \dots q_{n-1}]$: skip Project to basis $\left\{ \sum_{f(x)=1} |x\rangle_{\overline{q}} \langle x| \otimes I_{q_n} \right\}$

 $\{ |0\rangle_{\overline{a}}\langle 0| \otimes |0\rangle_{a_n}\langle 0| \}$ $a_0 a_1 \dots a_{n-1} := H^{\otimes n}[a_0 a_1 \dots a_{n-1}];$ Initialization while $M[q_n] = 1$ do Compare counter $\left\{ \sum_{k=0}^{R} |\psi_k\rangle_{\overline{a}} \langle \psi_k | \otimes |k\rangle_{a_n} \langle k| \right\}$ $q_0q_1\ldots q_{n-1} := U_f[q_0q_1\ldots q_{n-1}];$ Oracle call $a_0 a_1 \dots a_{n-1} := H^{\otimes n}[a_0 a_1 \dots a_{n-1}]:$ $q_0q_1 \dots q_{n-1} := Ph[q_0q_1 \dots q_{n-1}];$ $a_0 a_1 \dots a_{n-1} := H^{\otimes n}[a_0 a_1 \dots a_{n-1}];$ $a_n := Inc[a_n];$ Increment counter measure $N[q_0q_1 \dots q_{n-1}]$: skip Project to basis $\left\{ \sum_{f(x)=1} |x\rangle_{\overline{q}} \langle x| \otimes I_{q_n} \right\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

```
theorem grover_partial_correct:
    "⊨p
    {tensor_P pre (proj_k 0)}
    Grover
    {tensor_P post (1<sub>m</sub> K)}"
    using grover_partial_deduct well_com_Grover qp_pre qp_post
    hoare partial sound by auto
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Description	Files	Lines of proof
Preliminaries	<i>Complex_Matrix,</i>	4193
Semantics	Quantum_Program	1110
Hoare logic	<i>Quantum_Hoare</i>	1417
Tensor product	Partial_State	1664
Grover's algorithm	Grover	3184
Total		11568

• Deductive reasoning about quantum algorithms is more difficult than for classical algorithms (but quite feasible).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Deductive reasoning about quantum algorithms is more difficult than for classical algorithms (but quite feasible).
- Automation for working with linear algebra is very helpful.

- Deductive reasoning about quantum algorithms is more difficult than for classical algorithms (but quite feasible).
- Automation for working with linear algebra is very helpful.
- Currently, can automatically prove:

$$tr(MM^{\dagger}(PP^{\dagger})) = tr((P^{\dagger}M)(P^{\dagger}M)^{\dagger})$$

$$tr(M_{0}AM_{0}^{\dagger}) + tr(M_{1}AM_{1}^{\dagger}) = tr((M_{0}^{\dagger}M_{0} + M_{1}^{\dagger}M_{1})A)$$

$$H^{\dagger}(Ph^{\dagger}(H^{\dagger}Q_{2}H)Ph)H = (HPhH)^{\dagger}Q_{2}(HPhH)$$

• Robert Rand's implementation of *Qwire* in Coq.

• Robert Rand's implementation of Q wire in Coq.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Models quantum algorithms using circuits.

- Robert Rand's implementation of Q wire in Coq.
- Models quantum algorithms using circuits.
- Program verification proceeds directly from the semantics.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

• Verify more complex algorithms, including Shor's algorithm.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Verify more complex algorithms, including Shor's algorithm.
- Improvements to automation, which leads to more efficient verification in general:
 - Verification condition generator.
 - Automatic procedures for dealing with the verification conditions, involving positivity of matrices and tensor products.

- Verify more complex algorithms, including Shor's algorithm.
- Improvements to automation, which leads to more efficient verification in general:
 - Verification condition generator.
 - Automatic procedures for dealing with the verification conditions, involving positivity of matrices and tensor products.

• Quantum communication protocols?