
Design of point-and-click user interfaces for proof
assistants

Bohua Zhan1(B), Zhenyan Ji2(B), Wenfan Zhou2, Chaozhu Xiang2, Jie Hou2, Wenhui
Sun2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences, Beijing, China
bzhan@ios.ac.cn

2 Beijing Jiaotong University, Beijing, China
{zhyji,zhouwenfan,czxiang,houjie,whsun1}@bjtu.edu.cn

Abstract. In interactive theorem proving, human users interact with proof as-
sistants to construct and verify formal proofs. The most popular proof assistants
today all have user interfaces that are largely text-based. This leads to a steep
learning curve for new users of these tools. In this paper, we propose a framework
for designing user interfaces for proof assistants based on pointing and clicking.
While a main goal of the design is ease of learning for new users, we intend for
the design to be suitable for real verification tasks. The design is also extensible,
allowing custom proof methods and search functionality to be added in a con-
venient way. We implement our ideas in a web interface, with backend provided
by holpy, a new system for interactive theorem proving implemented in Python.
The resulting user interface is tested on theorems in logic, sets, functions, Peano
arithmetic, and lists, demonstrating its applicability in a wide range of areas.

Keywords: Proof assistants · User interface · Tactics

1 Introduction

Interactive theorem proving aims to construct and verify formal proofs via interaction
between the computer and the human user. In recent years, it has seen several major
accomplishments, including formal verification of the seL4 microkernel [13], verifica-
tion of a realistic C compiler [14], and formal proofs of the Feit-Thompson theorem
[11] and Kepler’s conjecture [10]. These works show that interactive theorem proving
can be applied to very complex mathematical theorems and computer systems. Howev-
er, verification projects still take considerable human effort. Work on the seL4 project,
the Feit-Thompson theorem, and Kepler’s conjecture each have an estimated cost of
over 20 person years. In addition, the proof assistants used – HOL Light [12], Coq [4],
and Isabelle [15], are generally considered to have a steep learning curve for new user-
s, making it difficult and time consuming to form and train new teams. These factors
can be seen as a major obstacle to more widespread application of interactive theorem
proving. Hence, how to design proof assistants to make it more accessible to users is an
important problem for this field.

The most popular proof assistants today have user interfaces that are largely text-
based. The main form of interaction consists of the user editing a text file containing the



2 B. Zhan et al.

proof, either as a sequence of tactics or (as in Isabelle/Isar [17]) written in a structured
proof language. During editing, the user interface displays the state of the proof at the
current location of the proof text. To use the proof assistant, the user needs to be familiar
with names of the major tactics, as well as some of the commonly used theorems.
The Isabelle/Isar language makes the resulting proof text more readable. However, it
requires the user to further understand the use of a number of keywords for structuring
the proof.

Naturally, we may ask whether it is realistic to have user interfaces for proof assis-
tants that is based on pointing and clicking. In an ideal setting, most of the interaction
with the user interface should consist of choosing which facts to consider, and which
actions to take through clicks of the mouse. The user interface performs the selected
actions, and offers suggestions for future actions. Only occasionally will the user need
to enter text using the keyboard, and even then only mathematical expressions rather
than names of tactics or theorems.

While there have been attempts to build point-and-click user interfaces in the past,
they have not gained widespread adoptance for general-purpose theorem proving. Po-
tential problems with existing designs include limited search functionality – the user
still need to find names of theorems to use, and limited extensibility – there is usually a
fixed set of proof methods, with no easy way to grow them for new application domains.
This limits the use of user interfaces to simple examples, or to the special domains for
which they are designed.

In this paper, we propose a new framework for designing user interfaces for proof
assistants that is based on pointing and clicking. In this design, the user interacts with
the interface mainly in three ways. First, at each step of the proof, the user chooses
which goal to consider and which facts in the proof to use. Second, the user chooses
an action from the list of actions suggested by the computer. The suggestion process
may involve (but is not limited to) matching the chosen facts and goal with existing
theorems. Third, the user annotates each proved theorem, to tell the computer which
directions for applying the theorem are the most common, and should be considered
during the suggestion process in future proofs. We give a general definition of proof
methods. Any function satisfying this general definition can be added as a method in the
user interface. This makes the design extensible: new proof methods reflecting domain-
specific knowledge can be added in a convenient way.

We implement our design in a web interface3. The backend for the interface is pro-
vided by holpy, a new system for interactive theorem proving implemented in Python
[18]. There are several aspects in holpy’s design that are different from systems such as
Isabelle and Coq, including a format for explicit representation of proofs and theories
based on JSON [8]. The format for theory files is not designed for direct editing by
the user. This means any user interface must interpret the theory files for display in a
more readable form, and reflect user changes back to the file. While this makes user
interfaces more difficult to implement at first, it has the long-term advantage of allow-
ing more flexibility in its design. The current work can be viewed as a first attempt to
implement a user interface for holpy, justifying its choice of the theory format.

3 code available at https://gitee.com/bhzhan/holpy



Design of point-and-click user interfaces for proof assistants 3

We now give an outline for the rest of this paper. In Section 2, we give an overview
of the holpy system, focusing on those aspects of design that are different from the
major proof assistants, and which are relevant to the current work. In Section 3, we
describe the design of the user interface on an abstract level, then present the con-
crete implementation in Section 4, and give some statistics from tests on theorems from
various domains. In Section 5, we present the proof of the Knaster-Tarski fixed point
theorem as a detailed example. Finally, we conclude in Section 6 with a discussion of
future work.

Related work There have been a few early attempts to build point-and-click user inter-
faces for proof assistants. The work of Bertot et al. in [5], and extended in [6], intro-
duced the idea of “Proof by Pointing”. In this framework, the user can trigger deduction
rules in logic by pointing to specific parts of the goal formula. The latter work also
studied how to implement script management (including undoing and redoing steps),
and textual explanation of proofs. Another line of work by Abrial et al. [2] developed a
user interface for Atelier B to perform formal proofs in set theory. The work by Breitner
in [7] constructed a visual theorem proving interface based on connecting blocks, albeit
also limited to proofs in logic.

In the area of program and system verification, several tools have user interfaces
that allow proofs to be conducted by pointing-and-clicking. These include KeY [3] and
KeYmaera/KeYmaera X [16, 9]. These tools allow users to choose subgoals and select
which actions to take from a menu. There is some similarity in the mode of interaction
between our work and these systems. However, our focus is on general-purpose theorem
proving in higher-order logic, rather than for specific program logics.

Acknowledgements We would like to thank the referees for their helpful comments.
This work is supported by the CAS Pioneer Hundred Talents Program under grant No.
Y9RC585036.

2 Overview of holpy

In this section, we give an overview of the holpy system, focusing on aspects that are
different from systems such as Isabelle and Coq, and which are relevant to the current
work. More details on the design of holpy can be found in [18].

holpy is a new system for interactive theorem proving implemented in Python. It-
s logical foundation is higher-order logic, similar to existing proof assistants such as
Isabelle/HOL [15], HOL Light [12], and HOL4 [1]. On the other hand, holpy makes
major changes to how proofs and theories are represented. In particular, it exports ex-
plicit proofs, with abbreviations by macros so they can be stored and checked by third-
party tools without running into the usual scalability problems. For representing theo-
ries, holpy chooses a JSON-based format. This format is not designed for direct human
editing, but is convenient to read and write by computer programs. Finally, holpy pro-
vides an API in Python for implementing proof automation (as well as other tools). A
major goal of holpy’s design is to show that with export of explicit proofs, the type
and memory safety issues of Python does not pose any problems for the soundness of
proof-checking.



4 B. Zhan et al.

In the remainder of this section, we discuss various aspects of holpy in more detail,
in particular the concepts of macros, proof representation, and tactics as it relates to
holpy.

2.1 Proof rules and macros

Proofs in holpy are conducted in natural deduction style. The basic objects are sequents
with a number of antecedents and a single consequent. A sequent with antecedent
A1, . . . , An and consequent C is written in the usual notation as A1, . . . , An ` C.

The logical foundation fixes a set of primitive deduction rules, with each rule taking
a number of input sequents and possibly additional arguments, and outputs a sequent
(or raises an exception). Examples of primitive deduction rules include introduction
and elimination rules for implication and forall quantification, congruence properties of
equality, substitution of type and term variables, and so on.

Proof rules can be considered as a generalization of primitive deduction rules. They
are intended to represent a number of more basic steps of proof. In general, a proof rule
takes as input the current theory environment (list of existing constants, theorems, etc),
a list of input sequents, and possibly additional arguments, and outputs a single sequent
(or raises an exception). Each proof rule defines a precise signature for its additional
arguments.

Primitive deduction rules form one class of proof rules. Another fundamental proof
rule is theorem, which takes no input sequents and a theorem name as additional ar-
gument. If there exists a theorem with that name in the current theory environment, it
outputs that theorem as a sequent. Otherwise, it raises an exception.

The other proof rules are called macros. They represent multiple steps of proof as
a single step. In addition to the function returning the output sequent directly, each
macro may also specify an expansion function which, given the same inputs, returns
the invocations of proof rules used to obtain the output sequent (or raises an exception).
The expanded proof can be used during proof checking, so the implementation of the
macro need not be trusted. The use of macros means any portion of proof that can be
algorithmically generated can be stored as a single step, so large proofs can be stored for
proof-checking by third-party tools, without encountering the usual scalability issues.
Some examples of common macros will be given in the following sections.

2.2 Format for proofs

Proofs in holpy are exported into a linear form. A linear proof consists of an ordered
list of proof items. Each proof item consists of an identifier, the name of a proof rule,
additional arguments for the proof rule, and a list of identifiers of earlier proof items,
representing the input sequents. A linear proof can be checked (within a theory environ-
ment) by reading the proof items in order, computing the sequent for each proof item
by invoking the corresponding proof rule. The result of a linear proof is the sequent
corresponding to the last proof item.

How to represent identifiers is largely conventional. We choose to represent each
identifier as a tuple of natural numbers, written in dot-separated form (e.g. 0.2.1). This



Design of point-and-click user interfaces for proof assistants 5

allows us to express sub-proofs. For example, steps in the main trunk of the proof have
identifiers 0, 1, 2, etc. Proving the sequent in the proof item with identifier 1 may take
place outside the main trunk, with steps having identifiers 1.0, 1.1, 1.2, and so on. In
practice, we use sub-proofs when introducing variables and assumptions, as will be seen
in the examples in the next subsection.

Internally for proof automation, holpy works with another form of proof represen-
tation: as directed acyclic graphs located in memory. Each vertex of the graph is a proof
item, where the input sequents are referenced directly (so identifiers are not needed).
There is a standard algorithm for converting proof terms to linear proofs. Hence, the
general idea for proof automation in holpy is to first construct proof terms, then convert
them to linear proofs for storage and viewing by the user.

2.3 Examples of proofs

We give two simple examples of proofs for illustration. First, consider the proposition
A ∧B −→ B ∧A. The linear proof is as follows:

0. A ∧B ` A ∧B by assume A ∧B
1. A ∧B ` A by apply theorem conjD1 from 0
2. A ∧B ` B by apply theorem conjD2 from 0
3. A ∧B ` B ∧A by apply theorem conjI from 2, 1
4. ` A ∧B → B ∧A by implies intr from 3

Each line in the above text represents a proof item. It starts with the identifier of the
proof item. The part before by is the computed sequent. The part after by specifies
the proof rule, the additional arguments, and identifiers of the input sequents. The
proof rules assume and implies intr are primitive deduction rules. The proof rule
apply theorem is the macro for applying a single theorem. It can be expanded in-
to theorem rule for obtaining the theorem with the given name, subst type (resp.
substitution) for substituting the type (resp. term) variables, and implies elim for
discharging the assumptions.

As another example, consider the proof by induction of n + 0 = n in Peano arith-
metic.

0. ` 0 + 0 = 0 by rewrite goal plus def 1, 〈goal〉
1.0. ` VAR n by variable n :: nat
1.1. n+ 0 = n ` n+ 0 = n by assume n+ 0 = n
1.2. n+ 0 = n ` Suc (n+ 0) = Suc n by rewrite goal with prev 〈goal〉 from 1.1
1.3. n+ 0 = n ` Suc n+ 0 = Suc n by rewrite goal plus def 2, 〈goal〉 from 1.2

1. ` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n by intros from 1.0, 1.1, 1.3
2. ` n+ 0 = n by apply theorem for nat induct, {P : λn. n+ 0 = n, x: n} from 0, 1

Here 〈goal〉 is an abbreviation for the goal statement, the trivial rule variable des-
ignate new variables, and macro intros introduces variables and assumptions (ex-
panding into forall intr and implies intr). The macro rewrite goal as well
as rewrite goal with prev are for rewriting (using a theorem and using a previous
fact). Items 1.1 to 1.3 should be read in the backward direction: the goal from applying
induction is Suc n + 0 = Suc n. Rewriting using plus def 2 (inductive definition



6 B. Zhan et al.

of +) changes it to Suc (n + 0) = Suc n, which is resolved by rewriting using the
inductive hypothesis.

This format for displaying linear proofs is still not easy to read. We choose to use
this format in this and the next section in order to show the workings of tactics and
methods more clearly. An improved format will be introduced in Section 4.

2.4 Format for theories

In holpy, as in other proof assistants such as Isabelle and Coq, mathematical knowledge
is organized as a collection of theories. Each theory imports a list of other theories, and
may define new types, constants, and theorems. Proof of theorems are also contained in
theories. The format for theories in holpy is based on JSON, hence holpy theory files
have extension .json.

The main part of the theory file consists of a list of items, where each item represent
a new type, constant, theorem, and so on. Each item is a dictionary consisting of both
required and optional data for the item. For example, a theorem item may contain the
proof of the theorem. It may also contain theorem attributes: a list of strings indicating
(among others) how the theorem is usually used in proofs (the name is taken from a
similar notion in Isabelle). For example, the attribute backward means the theorem is
usually applied in the backward direction. This information is used during the search
for suggested actions, in order to limit the number of suggestions (see Section 3.4).

Storing theories as a JSON file, rather than as a text file to be edited directly, makes
the initial implementation of a user interfaces more difficult. However, it also creates
more flexibility when designing the user interface. In particular, not all information in
the JSON file has to be displayed. Some information can be hidden depending on the
context. Another advantage is that it is easier to develop other tools to analyze theories –
for example, to profile the performance of proof automation or the search functionality.
In particular, we make use of this to produce the test results shown in Table 1.

2.5 Tactics

The notion of tactics in holpy is analogous, but not exactly the same, to tactics in Is-
abelle and Coq. In holpy, a tactic is a function taking as input a sequent to be proved, a
list of input sequents, and possibly additional arguments (with fixed signature for each
tactic), and returns a proof whose output is the target sequent (or raises an exception).
The resulting proof may refer to input sequents, and it may also contain holes: sequents
whose proof is left for later, indicated by the sorry proof rule. Intuitively, a tactic con-
verts the current goal (the sequent to be proved) to a list of subgoals (those proof items
with rule sorry), possibly making use of other known facts (the input sequents).

We give two examples for illustration. First, consider the introduction tactic, which
takes a goal in the forall-implies form, and introduces the variables and assumptions in
a sub-proof. It takes as additional arguments the names of the new variables (and no
input sequents). For example, given the goal

` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n,

and name n for the new variable, the tactic returns the proof



Design of point-and-click user interfaces for proof assistants 7

0.0. ` VARn by variable n :: nat
0.1. n+ 0 = n ` n+ 0 = n by assume n+ 0 = n
0.2. n+ 0 = n ` Suc n+ 0 = Suc n by sorry

0. ` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n by intros from 0.0, 0.1, 0.2

As a second example, consider the tactic for applying a theorem in the backward
direction. Given the goal A∧B ` B∧A, a theorem name conjI, and no input sequents,
the tactic produces the following proof:

0. A ∧B ` B by sorry
1. A ∧B ` A by sorry
2. A ∧B ` B ∧A by apply theorem conjI from 0, 1

Note how the macro apply theorem is used in the last step of the proof generated
by the tactic for applying a theorem. If A ∧ B ` B is given as an input sequent, the
resulting proof has only one sorry, and the invocation of apply theorem refers to that
input sequent.

3 Design of the user interface

In this section, we describe the overall design of the user interface on an abstract level,
leaving the concrete implementation to the next section.

The basic principle of the design is as follows: we primarily allow user interaction
with the interface in the following three ways:

1. During the proof, choose the current goal to consider and a list of facts available in
the proof to use.

2. After choosing the current goal and a list of facts, choose an action to perform
from the list of suggestions or from the menu, entering additional arguments for
the action if necessary.

3. After a theorem is proved, annotate the theorem with how it should be used in future
proofs (for example, direction of rule application or rewriting).

A key component of the user interface is the search functionality. Depending on the
user annotations, the system searches in the list of existing theorems to see which ones
are applicable to the current goal and selected facts, and display the results among the
list of suggestions.

3.1 Methods

The central concept in this design is that of methods. Our definition of methods has
some similarities to that in Isabelle, but there are also some important differences.

In our framework, the proof state is simply a linear proof with gaps. These gaps can
be considered as the remaining goals. A method defines a transformation on the proof
state. More precisely, it is a function taking the following input arguments, and either
returns a new proof state or raises an exception:

– The current proof state.



8 B. Zhan et al.

– One selected goal in the proof state.
– A list of selected facts in the proof state (which must occur before the goal).
– Some additional arguments, with signature fixed by the method.

Unlike macros and tactics, the additional arguments for methods are always strings
indexed by a set of keys (as determined by the method). Each method is responsible for
parsing the input strings to the right kinds of objects (e.g. types and terms).

The above definition of methods is quite general. A method can literally make any
change to the proof state. In practice, most methods fall into one of two common forms,
corresponding to backward and forward reasoning. We now describe these two kinds of
methods in more detail.

3.2 Backward reasoning

Methods for backward reasoning take the selected goal, and attempt to replace it by a
number of simpler goals. Such methods can be constructed directly from tactics. Given
a tactic, the corresponding method performs the following actions:

1. Lookup the selected goal and facts in the proof state, to obtain the sequent to be
proved and the list of input sequents.

2. Parse the input strings to the right kinds of objects (e.g. types and terms).
3. Apply the tactic on these inputs (and the theory environment of the proof), yielding

a proof (possibly with holes) of the goal.
4. Splice the proof into the proof state. This involves modifying the proof item for the

goal so it is no longer a sorry, and possibly inserting proof items before the goal.

The last splicing process is easy to understand intuitively, but can be quite tricky
to implement. Inserting proof items in the middle of a proof involves changing the
identifiers in the output of the tactic, and also in the part of the proof state after the goal
(if we wish to keep the identifiers in order). It also needs to link up references to input
sequents in the output of the tactic. We give two examples for illustration.

Introduction Consider the proof of n+0 = n by induction. After applying induction,
we have the following proof state:

0. ` 0 + 0 = 0 by sorry
1. ` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n by sorry
2. ` n+ 0 = n by apply theorem for nat induct, {P : λn. n+ 0 = n, x: n} from 0, 1

We invoke the method corresponding to the introduction tactic, with item 1 as the
goal, and n as the additional argument for the name of the new variable. The result is:

0. ` 0 + 0 = 0 by sorry
1.0. ` VARn by variable n :: nat
1.1. n+ 0 = n ` n+ 0 = n by assume n+ 0 = n
1.2. n+ 0 = n ` Suc n+ 0 = Suc n by sorry

1. ` ∀n. n+ 0 = n −→ Suc n+ 0 = Suc n by intros from 1.0, 1.1, 1.2
2. ` n+ 0 = n by apply theorem for nat induct, {P : λn. n+ 0 = n, x: n} from 0, 1

Note the output of the tactic (shown in Section 2.5) is modified to start with identifier
1, and spliced into the proof state.



Design of point-and-click user interfaces for proof assistants 9

Applying a theorem For this example, consider again the proof of A∧B −→ B ∧A.
Suppose we are at the following intermediate stage of the proof:

0. A ∧B ` A ∧B by assume A ∧B
1. A ∧B ` B by apply theorem conjD2 from 0
2. A ∧B ` B ∧A by sorry
3. ` A ∧B → B ∧A by implies intr from 2

Invoking the method corresponding to backward application of a theorem, with item 2
as the selected goal, item 1 as (the only) selected fact, and conjI as the name of the
theorem, the result is:

0. A ∧B ` A ∧B by assume A ∧B
1. A ∧B ` B by apply theorem conjD2 from 0
2. A ∧B ` A by sorry
3. A ∧B ` B ∧A by apply theorem conjI from 1, 2
4. ` A ∧B → B ∧A by implies intr from 3

Note items 2 and 3 in the original proof state are automatically re-numbered, along with
their references.

3.3 Forward reasoning

Methods for forward reasoning considers only the selected facts. It can be created di-
rectly from a macro: the selected facts become the input sequents to the macro, and
the input strings are parsed to the arguments for the macro. The output of the macro is
added as a new proof item directly in front of the selected goal.

For example, given the following initial proof state:

0. A ∧B ` A ∧B by assume A ∧B
1. A ∧B ` B ∧A by sorry
2. ` A ∧B → B ∧A by implies intr from 1

We invoke the method corresponding to the macro apply theorem, with item 1 as
goal, item 0 as fact, and conjD2 for the theorem name. The resulting proof state is as
follows.

0. A ∧B ` A ∧B by assume A ∧B
1. A ∧B ` B by apply theorem conjD2 from 0
2. A ∧B ` B ∧A by sorry
3. ` A ∧B → B ∧A by implies intr from 2

Again, note the re-numbering of proof items 1 and 2 and their references after adding a
new proof item before 1.

3.4 Search for suggestions

In addition to the function transforming the proof state, each method also provides a
search function. The search function takes as input the current proof state, the selected
goal, and the list of selected facts, and outputs a list of suggested invocations of the



10 B. Zhan et al.

method. Each suggested invocation provides input strings for some (but not necessarily
all) of the required arguments.

For example, the method applying a single theorem in the forward (resp. backward)
direction has search function that iterates through theorems having the forward (resp.
backward) attribute. For each theorem, it matches the selected facts and goal with
the assumptions and conclusion of the theorem, and returns a suggestion whenever the
match succeeds. Likewise, the method for rewriting a fact (resp. goal) using a theorem
has search function matching the left side of each theorem having the rewrite attribute
with subterms of the selected fact (resp. goal).

The search function for methods is an important part of the system. The output
of all search functions are combined to form the list of suggestions to the user. For
methods applying a theorem in the forward/backward direction or for rewriting, this
means the user does not need to lookup the name of the theorem, but the system will
find it automatically based on the selected goal and facts. For methods requiring no
input arguments (for example, automation that attempts to directly resolve the goal),
the search function tests whether the method can be applied.

3.5 Summary

We now summarize the three notions of macros, tactics, and methods. All of them
can be defined by the user, through which the system can be extended with domain-
specific functionality. All three take as side inputs the current theory environment and
additional arguments (where the signature is specified by individual functions). They
are distinguished by their main input and output. We summarize these below.

– Macros take a list of sequents and return a new sequent. They may also return a
proof of the new sequent when desired. They are mainly used to abbreviate a proof.

– Tactics take a sequent and return a proof (possibly with holes) of the sequent. A
common pattern is to use a macro in the last step of the output proof.

– Methods take a proof state with selected goal and facts and apply a transformation
to the proof state, and may provide a search functionality. Common patterns include
applying a tactic at some goal, or applying a macro to obtain a new sequent just
before the goal. They form the direct link to the user interface.

4 Implementation

We implemented the above design in a web interface. The main reason for building a us-
er interface from scratch (as well as using the new holpy system as backend) is to allow
full flexibility in its design. In principle, the core ideas can be applied to other proof as-
sistants, perhaps with additional work on creating another layer of proof representation
in these systems.

Besides functionality for constructing a proof, the user interface handles display and
editing of theory files. In particular, it allows the user to manage the list of theories, and
the list of items in a theory. The user may also specify attributes for theorems in the
edit area. Hence, it provides all of the necessary functionality for interactive theorem
proving based on holpy.



Design of point-and-click user interfaces for proof assistants 11

Fig. 1. Screenshot showing an intermediate stage in the proof of lfp unfold.

Figure 1 shows a screenshot of the user interface. At the top, there is a menu of
commands for file management, actions during a proof, and managing the list of items
in a theory. The left panel displays the content of the current theory (it can also be
changed to display the list of theories, or show more information about the current state
of the proof). On the right side, the top panel displays the current state of the proof.
The user selects goal and facts in the proof by clicking on the corresponding lines. The
selected goal and facts are colored in red and yellow, respectively. After each change
of selection, the user interface queries the backend for a list of suggestions of method
applications, and displays them in the bottom panel, together with their expected effects.
The user performs one of the suggested actions by clicking on the corresponding line.
If the suggestion does not provide all of the required arguments, the user is prompted to
enter the missing arguments.

Occasionally, the user will want to invoke a method not among the suggestions. Two
common methods that are not searched are cases and cut. Both take a string which is
parsed into a term A of boolean type. The cases method reduces the selected goal C
into two goals A −→ C and ¬A −→ C. The cut method inserts A as a new goal right
before the current goal. When A is proved, it can be used in the proof of the original
goal. The user can select invocation of these (and other) methods from the menu, and
then enter the required arguments.

When displaying the proof, the user interface converts the proof to a more readable
form compared to that used in Section 2 and 3. The basic transforms applied include
the following. Examples will be given in Section 5.

– Use fix and assume for variable and assume rules.
– Hide antecedents of sequents (which can be inferred from previous assumes).
– Change invocations of intros to with blocks.
– Add show for the last sequent of a block, and have for other intermediate sequents.



12 B. Zhan et al.

– Indentation according to with blocks.

We applied our tool to a selection of theorems about logic, sets, functions, Peano
arithmetic, and lists. The results are given in Table 1. In the table, #S is the total number
of steps to prove the theorem, #Y is the number of steps that are among the suggestions,
and #N is the number of steps that must be invoked from the menu. The results show
that the current user interface is already applicable to a wide range of areas, allowing
proofs of basic results to be conducted largely by choosing from the suggestions.

Name Proposition #S #Y #N

double neg ¬¬A←→ A 9 8 1
disj conv imp ¬A ∨B ←→ A −→ B 12 11 1
ex conj distrib (∃x. A x ∧B x) −→ (∃x. A x) ∧ (∃x. B x) 6 6 0
all conj distrib (∀x. A x ∧B x) −→ (∀x. A x) ∧ (∀x. B x) 7 7 0

conj disj distribL1 A ∧ (B ∨ C)←→ A ∧B ∨A ∧ C 23 23 0
pierce ((A −→ B) −→ A) −→ A 5 4 1
drinker ∃x. P x −→ (∀x. P x) 11 8 3

subset antisym A ⊆ B −→ B ⊆ A −→ A = B 7 7 0
subset trans A ⊆ B −→ B ⊆ C −→ A ⊆ C 4 4 0

cantor ∃S. ∀x. ¬f x = S 13 12 1
Inter subset A ∈ S −→

⋂
S ⊆ A 4 4 0

subset Inter (∀C. C ∈ S −→ A ⊆ C) −→ A ⊆
⋂
S 6 6 0

Union union
⋃
(A ∪B) =

⋃
A ∪

⋃
B 43 43 0

lfp lowerbound h A ⊆ A −→ lfph ⊆ A 3 3 0
lfp greatest (∀X. h X ⊆ X −→ A ⊆ X) −→ A ⊆ lfph 5 5 0
lfp unfold bnd monoh −→ h (lfph) = lfph 10 9 1

fun upd triv (f)(a := f a) = f 8 7 1
fun upd upd (f)(a := b, a := c) = (f)(a := c) 9 8 1
fun upd twist ¬c = a −→ (f)(a := b, c := d) = (f)(c := d, a := b) 19 17 2

comp fun assoc (f ◦ g) ◦ h = f ◦ g ◦ h 4 4 0
injective comp fun injective f −→ injective g −→ injective(g ◦ f) 5 5 0
surjective comp fun surjective f −→ surjective g −→ surjective(g ◦ f) 11 9 2

add comm x+ y = y + x 7 6 1
add assoc x+ y + z = x+ (y + z) 6 6 0
distrib l x ∗ (y + z) = x ∗ y + x ∗ z 7 7 0

mult assoc x ∗ y ∗ z = x ∗ (y ∗ z) 7 6 1
mult comm x ∗ y = y ∗ x 7 6 1
less eq trans k ≤ m −→ m ≤ n −→ k ≤ n 9 9 0

append right neutral xs @ [] = xs 5 5 0
append assoc (xs @ ys) @ zs = xs @ ys @ zs 6 6 0
length append length(xs @ ys) = lengthxs+ length ys 9 9 0

rev append rev(xs @ ys) = rev ys @ rev xs 9 8 1
rev rev rev(rev xs) = xs 12 12 0

rev length length(rev xs) = lengthxs 10 10 0
Total: 34 theorems 318 300 18
Table 1. Statistics on the test suite.



Design of point-and-click user interfaces for proof assistants 13

5 Case study: Knaster-Tarski theorem

In this section, we use the proof of the Knaster-Tarski fixed point theorem to demon-
strate how user interaction works in practice for a nontrivial result. Roughly speaking,
the theorem states that any bounded monotone function has a (smallest) fixpoint. We
state and prove a basic version of the theorem using our user interface.

The definition of bounded monotone functions is given as follows (here h is of type
′a set⇒ ′a set, and we assume the bound on h is given by the type ′a).

bnd monoh←→ (∀W. ∀X. W ⊆ X −→ hW ⊆ hX)

Given a bounded monotone function, its least fixed point is constructed using the
following definition:

lfph =
⋂
{X. hX ⊆ X}

Two properties of lfph follow immediately from the definition. The first says that
lfph is contained in any set A satisfying hA ⊆ A. The second says that in order to
show any set A is a subset of lfph, it suffices to show A is a subset of any X satisfying
hX ⊆ X . These properties are stated in higher-order logic as follows.

lfp lowerbound : hA ⊆ A −→ lfph ⊆ A
lfp greatest : (∀X. hX ⊆ X −→ A ⊆ X) −→ A ⊆ lfph

The main theorem states that lfph is in fact a fixed point of h:

lfp unfold : bnd monoh −→ h (lfph) = lfph

We now show how to prove this theorem using our user interface. The initial state
of the proof is:

0 assume bnd monoh
1 show h (lfph) = lfph by sorry

First, select item 0 as a fact, and apply the suggestion to rewrite the fact using theorem
bnd mono def. Next, select item 1 (now item 2) as the goal (without selecting any
facts), and use the suggestion to apply subset antisym, to reduce the goal to two
subset relations. The resulting state after these two operations is:

0 assume bnd monoh
1 have ∀W. ∀X. W ⊆ X −→ hW ⊆ hX by rewrite fact bnd mono def from 0
2 have h (lfph) ⊆ lfph by sorry
3 have lfph ⊆ h (lfph) by sorry
4 show h (lfph) = lfph by apply theorem subset antisym from 2, 3

Next, select item 2 and follow the suggestion to apply lfp greatest. This results
in a forall goal. Select the goal and using the introduction method, entering X for the
name of the new variable, we get the following proof state:

0 assume bnd monoh



14 B. Zhan et al.

1 have ∀W. ∀X. W ⊆ X −→ hW ⊆ hX by rewrite fact bnd mono def from 0
2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with

2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 show h (lfph) ⊆ X by sorry

3 have h (lfph) ⊆ lfph by apply theorem lfp greatest from 2
4 have lfph ⊆ h (lfph) by sorry
5 show h (lfph) = lfph by apply theorem subset antisym from 3, 4

Next, we perform the only manual step in this proof, inserting an intermediate goal
h (lfph) ⊆ hX before h (lfph) ⊆ X (choose “Insert goal” from the menu with item
2.2 selected as goal). The resulting proof state is (now showing only the block for proof
of item 2):

2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with
2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have h (lfph) ⊆ hX by sorry
2.3 show h (lfph) ⊆ X by sorry

Next, select goal 2.2 and fact 1, and follow the suggestion to apply fact 1 to goal
2.2, resulting in a new goal lfph ⊆ X:

2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with
2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have lfph ⊆ X by sorry
2.3 have h (lfph) ⊆ hX by apply fact for lfph,X from 1, 2.2
2.4 show h (lfph) ⊆ X by sorry

Select item 2.2, the user interface suggests using the theorem lfp lowerbound,
reducing the goal to hX ⊆ X , which is already available as a fact. This proves
2.2. Next, select goal 2.4 and fact 2.3, the user interface suggests use of the theorem
subset trans, again reducing the goal to hX ⊆ X . Performing these two steps fin-
ishes the proof of item 2. The resulting proof state is:

2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with
2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have lfph ⊆ X by apply theorem for lfp lowerbound, . . . from 2.1
2.3 have h (lfph) ⊆ hX by apply fact for lfph,X from 1, 2.2
2.4 show h (lfph) ⊆ X by apply theorem subset trans from 2.3, 2.1

Two more steps are needed to finish the overall proof: reducing goal 4 to showing
h (h (lfph)) ⊆ h (lfph) using lfp lowerbound, then using item 1 and 3 to resolve the
goal. The user interaction is similar to before. The final state of the proof is:

0 assume bnd monoh
1 have ∀W. ∀X. W ⊆ X −→ hW ⊆ hX by rewrite fact bnd mono def from 0
2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with

2.0 fix X :: ′a set
2.1 assume hX ⊆ X



Design of point-and-click user interfaces for proof assistants 15

2.2 have lfph ⊆ X by apply theorem for lfp lowerbound, . . . from 2.1
2.3 have h (lfph) ⊆ hX by apply fact for lfph,X from 1, 2.2
2.4 show h (lfph) ⊆ X by apply theorem subset trans from 2.3, 2.1

3 have h (lfph) ⊆ lfph by apply theorem lfp greatest from 2
4 have h (h (lfph)) ⊆ h (lfph) by apply fact for . . . from 1, 3
5 have lfph ⊆ h (lfph) by apply theorem for lfp lowerbound, . . . from 4
6 show h (lfph) = lfph by apply theorem subset antisym from 3, 5

As we can see, the resulting proof is quite readable, similar to a proof written in
Isabelle/Isar. All intermediate conclusions are shown, as well as the name of each theo-
rem and proof rule used. However, the entire proof is constructed using just a few clicks,
occasionally entering names of variables, instantiations (when it cannot be derived by
matching), and intermediate goals.

6 Conclusion

In this paper, we presented a framework for designing point-and-click user interfaces
in interactive theorem proving. While a major goal of the design is ease of learning for
newcomers to this field, we also intend to produce a fully functional system, able to be
used for general purpose theorem proving. We implemented a prototype user interface
based on this framework, and tested it on theorems about logic, sets, functions, Peano
arithmetic, and lists, showing that these theorems can be proved largely by clicking on
suggestions, and occasionally entering additional information.

We intend the current work to be the beginning of a long-term project to build a
proof assistant that is both easy to use and scalable to large formalizations. Immediate
next steps include extending the prover to make it work smoothly over a larger variety of
domains. In addition, we envision two major improvements to the user interface. First,
we currently lack strong proof automation in the system. This can be seen in the exam-
ples above, where the resulting proof consists of low-level theorem applications. Proof
assistants such as Isabelle benefit from powerful tactics (such as auto and blast), as
well as calls to external provers via Sledgehammer. In the future, we intend to incorpo-
rate both powerful internal automation, as well as connection to external provers. They
fit nicely into the current framework as follows: the user selects the goal and a number
of facts to use, and the system invokes proof automation in the background to check
whether the goal can be solved using the selected facts. In this way, we intend to allow
proofs that are a mix of high-level and low-level steps, where the user can choose the
granularity of the argument.

Second, we currently make no attempt to order the list of suggestions of method
applications. This does not pose a problem so far, since the test examples are still in the
beginning stages of mathematical development, so there are few options at each step. As
we move to formalizing deeper mathematical theories, it is expected that the number of
options at each step will increase, even as we try to control it with theorem annotations
and allowing the user to select which facts in the proof to use. One potentially promising
approach is to use machine learning models for ordering the suggestions.



16 B. Zhan et al.

References
1. The HOL 4 system. http://hol.sourceforge.net/
2. Abrial, J., Cansell, D.: Click’n Prove: Interactive proofs within set theory. In: Theorem

Proving in Higher Order Logics, 16th International Conference, TPHOLs 2003, Rom, Italy,
September 8-12, 2003, Proceedings. pp. 1–24 (2003)

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deductive
Software Verification - The KeY Book - From Theory to Practice, Lecture Notes in Computer
Science, vol. 10001. Springer (2016)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS
Series, Springer (2004)

5. Bertot, Y., Kahn, G., Théry, L.: Proof by pointing. In: Theoretical Aspects of Computer Soft-
ware, International Conference TACS ’94, Sendai, Japan, April 19-22, 1994, Proceedings.
pp. 141–160 (1994)

6. Bertot, Y., Théry, L.: A generic approach to building user interfaces for theorem provers. J.
Symb. Comput. 25(2), 161–194 (1998)

7. Breitner, J.: Visual theorem proving with the incredible proof machine. In: Interactive Theo-
rem Proving - 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016,
Proceedings. pp. 123–139 (2016)

8. The JSON data interchange syntax. http://ecma-international.org/publications/files/ECMA-
ST/ECMA-404.pdf (12 2017)

9. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical
theorem prover for hybrid systems. In: Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. pp.
527–538 (2015)

10. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S.L., Mah-
boubi, A., O’Connor, R., Biha, S.O., Pasca, I., Rideau, L., Solovyev, A., Tassi, E., Théry,
L.: A machine-checked proof of the odd order theorem. In: Interactive Theorem Proving -
4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings. pp.
163–179 (2013)

11. Hales, T., Adams, M., Bauer, G., Dang, T.T., Harrison, J., Hoang, L.T., Kaliszyk, C., Magron,
V., McLaughlin, S., Nguyen, T.T., et al.: A formal proof of the Kepler conjecture. Forum of
Mathematics, Pi 5, e2 (2017)

12. Harrison, J.: HOL light: An overview. In: Theorem Proving in Higher Order Logics, 22nd
International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceed-
ings. pp. 60–66 (2009)

13. Klein, G., Andronick, J., Elphinstone, K., Murray, T.C., Sewell, T., Kolanski, R., Heiser, G.:
Comprehensive formal verification of an OS microkernel. ACM Trans. Comput. Syst. 32(1),
2:1–2:70 (2014)

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)
15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order

Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)
16. Platzer, A., Quesel, J.: KeYmaera: A hybrid theorem prover for hybrid systems (system

description). In: Automated Reasoning, 4th International Joint Conference, IJCAR 2008,
Sydney, Australia, August 12-15, 2008, Proceedings. pp. 171–178 (2008)

17. Wenzel, M.: Isar - A generic interpretative approach to readable formal proof documents.
In: Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs’99,
Nice, France, September, 1999, Proceedings. pp. 167–184 (1999)

18. Zhan, B.: holpy: Interactive Theorem Proving in Python. arXiv e-prints arXiv:1905.05970
(May 2019)


