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Abstract. We study the problem of learning deterministic one-clock timed au-
tomata in the framework of PAC (probably approximately correct) learning. The
use of PAC learning relaxes the assumption of having a teacher that can answer e-
quivalence queries exactly, replacing it with approximate answers from testing on
a set of samples. The framework provides correctness guarantees in terms of error
and confidence parameters. We further discuss several improvements to the basic
PAC algorithm. This includes a special sampling method, the use of a comparator
to reduce the number of equivalence queries, and the use of counterexample mini-
mization. We implemented a prototype for our learning algorithm, and conducted
experiments using the TCP protocol as well as a number of randomly generated
automata. The results demonstrate the effectiveness of our approach, as well as
the importance of the various improvements for learning complex models.

Keywords: Timed automata · Active learning · Automata learning · Probably
approximately correct learning.

1 Introduction

In recent years, model learning [30] is emerging as a highly effective technique for
learning black-box systems from system observations. It generally is divided into two
categories: active learning and passive learning. Active learning under the L∗ frame-
work [7] can be viewed as an interaction between a learner and a teacher, where the
learner asks membership queries and equivalence queries to a teacher who holds ora-
cles to answer these queries. This is distinguished from passive learning, i.e., generating
a model consistent with a given data set. Recently, active learning has been extended to
many formal models.

In previous work [5], we introduced active learning algorithms for deterministic
one-clock timed automata (DOTA). There are two variants of the algorithm. The first
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variant is based on the assumption of a smart teacher who can provide clock-reset in-
formation along queries. The idea then is to use the reset information to convert the
learning problem to that of learning the corresponding reset-logical-timed language,
which can be solved following the approaches to learning symbolic automata [12,20].
The second variant assumes only a normal teacher who does not provide reset informa-
tion. The learner then needs to guess reset information on transitions discovered in the
observation table. Due to these guesses, the second variant has exponential complexity
in the size of the learned automata, while the first variant has polynomial complexity.

In both variants, we assumed that the equivalence queries can be answered exactly.
In the experiments, this is implemented using a decision procedure for language inclu-
sion. This kind of equivalence queries is difficult to realize in practical applications,
as it essentially require a teacher to have the power to compare two systems exactly.
This problem is addressed in [1] using conformance testing. Another way is to fol-
low the PAC (probably approximately correct) framework, which is studied in existing
work [7,10,21] for other kinds of models. Under this framework, for a given error ε and
confidence δ, we can determine the number of test cases needed for each equivalence
query. If the current hypothesis passes all test cases, then with probability 1−δ, it agrees
with the target model on at least 1− ε proportion of behaviours.

In this paper, we integrate PAC learning into the framework for learning DOTAs.
This involves replacing the exact equivalence query with PAC-style equivalence query.
To further reduce the number of such equivalence queries, we also integrate the idea of
comparators [28,9] into the learning framework. The comparator enforces that the qual-
ity of intermediate hypotheses obtained during learning does not decrease, by finding
the smallest difference between successive hypotheses and then perform one member-
ship query. This has the advantage of replacing some equivalence queries by mem-
bership queries, which accelerates the learning process. Replacing exact equivalence
queries with PAC-style equivalence queries also introduces other problems. In particu-
lar, the distribution of inputs from which the test cases are sampled become very impor-
tant. In general, sampling from a naı̈ve uniform distribution of action and delay times
is unlikely to yield good results, as too few of the samples are focused on the “interest-
ing” parts of system behaviors. Hence, we design special sampling techniques adapted
to our setting. Second, in contrast to exact decision procedures for equivalence which
are likely to produce minimal counterexamples, there are no such guarantees for PAC-
style testing. While this does not affect theoretical correctness of the algorithm, it can
lead the algorithm to produce unnecessarily large learned models. Hence, we introduce
a method for minimizing counterexamples that involves only membership queries to the
teacher. In summary, the contributions of this paper are as follows.

– We describe the PAC learning of deterministic one-clock timed automata. In this
setting, both membership and equivalence queries are conducted via testing, with
PAC-style equivalence checking replacing exact equivalence queries.

– We accelerate learning by adding a comparator component to reduce the number
of equivalence queries. We also propose approaches for better sampling and coun-
terexample minimization to improve learning performance.

– We produce a prototype implementation of our methods, and perform experiments
on a number of randomly generated automata, as well as a model of the functional
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specification of the TCP protocol. These experiments suggest that DOTAs can be
learned under the more realistic assumptions of this paper.

The rest of the paper is organized as follows. In Section 2, we review the learning al-
gorithm for deterministic one-clock timed automata and PAC learning of DFA. Section
3 describes the PAC learning framework for DOTA in detail, including improvements
such as comparators, a special sampling method and the counterexample minimization.
In Section 4, we extend this PAC framework to the case of normal teachers. The ex-
perimental results are reported in Section 5. Section 6 discusses related work. Finally,
Section 7 concludes this paper.

2 Preliminaries

Let N be the natural numbers and R≥0 be the non-negative reals numbers. We use > to
stand for true and ⊥ for false. Let B = {>,⊥}.

2.1 Deterministic one-clock timed automata

In this paper, we consider a subclass of timed automata [2] that are deterministic and
contain only a single clock, called Deterministic One-Clock Timed Automata (DOTA).
Let c be the clock variable, denote by Φc the set of clock constraints of the form φ ::=
> | c ./ m | φ ∧ φ, where m ∈ N and ./ ∈ {=, <,>,≤,≥}.

Definition 1 (One-clock timed automata). A one-clock timed automata is a 6-tuple
A = (Σ,Q, q0, F, c,∆), where Σ is a finite set of actions, Q is a finite set of locations,
q0 is the initial location, F ⊆ Q is a set of final locations, c is the unique clock and
∆ ⊆ Q×Σ × Φc × B×Q is a finite set of transitions.

A transition δ ∈ ∆ is a 5-tuple (q, σ, φ, b, q′), where q, q′ ∈ Q are the source and
target locations, σ ∈ Σ is an action, φ ∈ Φc is a clock constraint, and b is the reset
indicator. Such δ allows a jump from q to q′ by performing an action σ if the current
clock valuation ν satisfies the constraint φ. Meanwhile, clock c is reset to zero if b = >
and remains unchanged otherwise. A clock valuation is a function ν : c 7→ R>0 that
assigns a non-negative real number to the clock. For t ∈ R≥0, let ν + t be the clock
valuation with (ν + t) (c) = ν (c) + t. A timed state of A is a pair (q, ν), where q ∈ Q
and ν is a clock valuation. A timed action is a pair (σ, t) that indicates the action σ is
applied after t time units since the occurrence of the previous action. A run ρ of A is a
finite sequence ρ = (q0, ν0)

σ1,t1−→ (q1, ν1)
σ2,t2−→ · · · σn,tn−→ (qn, νn) where ν0 = 0, and

for all 1 ≤ i ≤ n there exists a transitions (qi−1, σi, φi, bi, qi) ∈ ∆ such that νi−1 + ti
satisfies φi, and νi(c) = 0 if bi = >, νi(c) = νi−1(c) + ti otherwise. The timed trace
of a run ρ is a timed word trace(ρ) = (σ1, t1) (σ2, t2) . . . (σn, tn).

Since time values ti represent delay times, we call such a timed trace a delay-timed
word, denoted as ω. If ρ is an accepting run of A, trace(ρ) is called an accepting
timed word. The recognized timed language of A is the set of accepting delay-timed
words, i.e., L(A) = {trace(ρ) | ρ is an accepting run of A}. The corresponding reset-
delay-timed word can be defined as tracer(ρ) = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn),
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denoted as ωr, where each bi is the reset indicator for δi. The recognized reset-timed
language Lr(A) is defined as {tracer(ρ) | ρ is an accepting run of A}.

The delay-timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn) is observed outside, from
the view of the global clock. On the other hand, the behaviour can also be observed
inside, from the view of the local clock. This results in a logical-timed word of the
form γ = (σ1, µ1)(σ2, µ2) · · · (σn, µn) with µi = ti if i = 1 ∨ bi−1 = > and
µi = µi−1 + ti otherwise. We will denote the mapping from delay-timed words to
logical-timed words above by Γ . Similarly, we introduce reset-logical-timed word γr =
(σ1, µ1, b1)(σ2, µ2, b2) · · · (σn, µn, bn) as the counterpart of ωr = (σ1, t1, b1)(σ2, t2, b2)
· · · (σn, tn, bn) in terms of the local clock. Without any substantial change, we can
extend the mapping Γ to map reset-delay-timed words to reset-logical-timed word-
s. The recognized logical-timed language of A is given as L(A) = {Γ (trace(ρ)) | ρ
is an accepting run of A}, and the recognized reset-logical-timed language of A as
Lr(A) = {Γ (tracer(ρ)) | ρ is an accepting run of A}.

Definition 2 (Deterministic OTA). An OTA is a deterministic one-clock timed automa-
ton (DOTA) if there is at most one run for a given delay-timed word.

We say a DOTA A is complete if for any location q and action σ, the constraints
form a partition of R≥0. Any incomplete DOTA A can be transformed into a complete
DOTA accepting the same timed language by adding a non-accepting sink location (see
more details in [5]).

2.2 Exact learning algorithm for DOTAs

In this section, we describe the active learning problem for DOTA and the learning
algorithms. We refer to [5] for more details. Active learning of a DOTA assumes the ex-
istence of a teacher who can answer two kinds of queries: membership and equivalence
queries. We will consider two different settings, depending on whether the teacher also
provides clock-reset information along with answers to queries.

A smart teacher permits a logical-timed word as input to a membership query, and
returns whether the timed-word is accepted, as well as reset information at each tran-
sition along the trace. Moreover, if the equivalence query yields a counterexample, the
counterexample is provided as a reset-delay-timed word. In practical applications, this
corresponds to the case where some parts of the model (information of clock-reset)
are known by testing or watchdogs (refer to the concept of testable system in [14,13]).
This also conforms with the idea of combining black-box learning with white-box tech-
niques, as exploited in [17].

A normal teacher corresponds to the usual case for active learning of automata. The
teacher permits a delay-timed word as input to a membership query, and only returns
whether the timed word is accepted. The equivalence query returns a delay-timed word
as a counterexample in the non-equivalent case. The active learning problem in both
settings is to learn DOTAs by asking only these two kinds of queries.

The algorithm converts the learning problem to that of learning the reset-logical-
timed language, based on the following theorem in [5].

Theorem 1. Given two DOTAs A and B, if Lr(A) = Lr(B), then L(A) = L(B).
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In the smart teacher setting, the conversion is direct. The problem of learning the
reset-logical-timed language follows existing techniques for learning symbolic automa-
ta. The algorithm maintains a timed observation table T to store answers from all pre-
vious queries. Once the learner has gained sufficient information, i.e., T is closed and
consistent, a hypothesis H is constructed. Then the learner poses an equivalence query
to the teacher to judge the equivalence between the hypothesis and the target model.
If equivalent, the algorithm terminates with the answer H. Otherwise, the teacher re-
sponds with a reset-delay-timed word ωr as a counterexample. After processing ωr, the
algorithm starts a new round of learning. The whole procedure repeats until the teacher
gives a positive answer for an equivalence query.

In the case of normal teacher, the learner needs to guess the reset information on
each transition discovered in the observation table. At each iteration, the learner guess-
es all needed reset information and forms a number of table candidates. These table
candidates are put into a priority queue, ordered by the number of needed guesses.
Each iteration begins by taking the first table candidate from the queue. Operations on
the table is then the same as the smart teacher case. Termination of the algorithm is
due to the fact that the learner will eventually consider the case where all guesses are
correct. Due to the needed guesses, the complexity of the algorithm is exponential in
the size of the learned model.

2.3 PAC learning of DFA

In reality, even in the case of DFA, it is difficult to implement teachers that can an-
swer the equivalence query exactly. Hence, Angluin also introduced the concept of PAC
learning for DFA in [7]. We review the basic ideas here.

Assume we are given a probability distributionP over elements of the languageΣ∗.
Fix a target regular language L ⊆ Σ∗. Let LH be the recognized regular language of an
hypothesisH . The quality ofH is defined by its distance from L, that is, the probability
of choosing a mismatched word ω ∈ Σ∗ that belongs to one language but not the other.
The set of all mismatched words is exactly the symmetric difference of the languages L
andLH . Hence, the distance is defined asP(L⊕LH), whereL⊕LH = L\LH]LH\L.

Definition 3 (PAC-style correctness for DFA). Let ε be the error parameter and δ
the confidence parameter. We say a learning algorithm is PAC(ε,δ)-correct if its output
DFA hypothesis H satisfies Pr(P(L ⊕ LH) ≤ ε) ≥ 1 − δ, where Pr represents the
probability of the event P(L⊕ LH) ≤ ε.

Under this setting, we replace exact equivalence checking, i.e, whether LH = L,
with the checking of approximate equivalence. In other words, we check approximate
equivalence by randomly sampling test sequences according to a certain distribution.
The minimum number of tests required for each equivalence query to ensure the above
PAC-style correctness depends on the error and confidence parameters as well as the
number of previous equivalence queries. This number was first introduced in [7] for
learning DFA and then used in the PAC learning of symbolic automata [21].

Theorem 2. The DFA learning algorithm PAC-learns a regular language L if the i-
th equivalence query tests ri = 1

ε

(
ln 1

δ + (i+ 1) ln 2
)

random words from a fixed
distribution over Σ∗ without finding a counterexample.
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3 PAC learning of DOTA

In this section, we explain the PAC learning algorithm utilized to obtain a DOTA ap-
proximating the target timed language. In contrast to the learning algorithm given in [5],
where equivalence checking is conducted between a hypothesis and the target model,
here we allow more flexible implementation of the teacher via testing on the target
system. In our PAC learning, membership queries as well as equivalence queries are
conducted by testing on the implementation of the system.

3.1 PAC-style correctness

Let P be a probability distribution over elements of the delay-timed language (Σ ×
R≥0)∗. Again, let L ⊆ (Σ × R≥0)∗ be the timed language of the target system, and
L(H) be the timed language of the hypothesisH. As before, the quality ofH is defined
as P(L ⊕ L(H)), where L ⊕ L(H) = L\L(H) ] L(H)\L.

Definition 4 (PAC-style correctness for DOTA). Let ε be the error parameter and δ
the confidence parameter. We say a learning algorithm for DOTA is PAC(ε,δ)-correct if
its output timed hypothesisH satisfies:

Pr(P(L ⊕ L(H)) ≤ ε) ≥ 1− δ, (1)

where Pr represents the probability of the event P(L ⊕ L(H)) ≤ ε.

As before, PAC-style correctness can be obtained by performing a sufficient number
of tests for each equivalence query. The main result for the DOTA case is given below,
following [23].

Theorem 3. The DOTA learning algorithm PAC-learns a timed language L if the i-th
equivalence query tests

ri =
1

ε

(
ln

1

δ
+ (i+ 1) ln 2

)
(2)

random delay-timed words from a fixed distribution over (Σ×R≥0)∗ without finding a
counterexample.

3.2 PAC-style equivalence query

In this section, we present the overall procedure for the PAC-style equivalence query.
The procedure is shown in Algorithm 1. Three improvements to the procedure will be
discussed in the next three subsections.

The equivalence query accepts as input the hypothesis H, the count i of the cur-
rent query, the error parameter ε, and the confidence parameter δ. We first compute the
number of samples needed according to Equation (2). Then, we repeatly draw samples
from a distribution. The choice of distribution is significant for the learning perfor-
mance, and will be discussed in detail in Section 3.3. For each sample ω (a delay-timed
word), we test it on both the target system S and the hypothesisH (testing on the target
system uses a membership query). The test on S returns a pair v, ωr, where v repre-
sents whether ω is an accepted timed word according S, and ωr is the reset-delay-timed
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Algorithm 1: PAC-style equivalence query pac equivalence(H, i, ε, δ)
input : a hypothesisH; the count i of current equivalent query; error parameter ε; confidence parameter δ.
output: equivalent : a boolean value to identify whetherH passes all tests;

ctx: a counterexample.
1 equivalent ← >;
2 counter ← 1;
3 testNum ← 1

ε

(
ln 1
δ + (i+ 1) ln 2

)
;

4 while counter < testNum do
5 ω ← sample(P); // P is a distribution over (Σ × R≥0)

∗

6 v, ωr ← test dtw(ω,S); // test a timed word ω on system S
7 v′, ω′r ← test dtw(ω,H); // test a timed word ω on hypothesis H
8 if v 6= v′ then
9 equivalent ← ⊥; ctx← ωr ;

10 return equivalent , ctx;

11 counter ← counter + 1;

12 return equivalent , ctx

word corresponding to ω. Likewise, the test on H returns a pair v′, ω′r. If v 6= v′, then
ω is a counterexample to the equivalence between H and S, and is returned directly.
Otherwise, if all tests pass, we concludeH is PAC (ε, δ)-correct, based on Theorem 3.

Two further improvements reduce the number of needed equivalence queries by
adding a comparator (Section 3.4) and the counterexample minimization (Section 3.5).

3.3 Sampling mechanism

The choice of the sampling distribution over (Σ × R≥0)∗ is important to whether PAC
learning yields good results in real applications. While the theory guarantees the success
of learning under any distribution, an inappropriate choice of distribution may lead to
models that are not useful in practice. In particular, we observe that a naı̈ve uniform
distribution of action and time values is not useful in our case. The reason is that for
many examples, e.g. the TCP protocol and the randomly generated automata on which
we performed experiments, the vast majority of timed traces under uniform distribution
are invalid for the automata. Hence, only a very small proportion lead to valid paths
and test interesting behaviours of the system. This situation may also occur for other
real-life systems. For many reactive systems and protocols, an input that is completely
randomly generated will most likely be invalid in the current state, and hence will not
test the interesting aspect of the system.

We address this problem by designing a custom sampling mechanism. Our aim is
for one half of the overall distribution to consist of timed words that are guaranteed
to be valid for the system. The other half consists of possibly invalid timed words,
obtained from the valid ones by introducing a random change. In more detail, for both
valid and possibly invalid timed traces, we first choose the length uniformly between
1 and an upper bound M (i.e. 1.5 times the number of locations in the experiments).
For a given length, we could sample valid timed traces by repeatedly sampling random
timed words, testing each on the system, and taking only the valid traces. This method
is inefficient if the vast majority of timed words are invalid. We design a more efficient
sampling method as follows. First, we perform a random walk on the locations of the
system starting from the initial location. This gives a sequence of actions and bounds on
the logical time of the timed trace. Next, we uniformly sample the logical time, subject
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to the obtained bounds, as well as the constraint that if the previous transition is not
a reset, then the logical time should be greater than or equal to the previous logical
time. To make sure that we will test traces with integer time values, we actually sample
from the allowed regions of logical time, so that about half of sampled time values are
integers. Otherwise, most of the sampled time values will contain fractions. Finally, the
resulting logical-timed word is converted to delay-timed word, which is guaranteed to
be valid. To sample possibly invalid timed traces of a given length, we first sample a
valid timed trace of the same length using the above procedure, then randomly change
one transition to a timed word with uniformly chosen action and time.

This sampling mechanism yield timed traces that are more likely to reflect interest-
ing behaviours of the system. We note that while the sampling depends on the target
system, it does not reveal the internal structure of the system to the learner. It only
helps the learner by providing counterexamples that are more likely to be relevant. In
real applications, this sampling distribution can be approximated by sampling from user
inputs (which are more likely to be valid) and their slight variations. Another way to
approximate the distribution is to first sample random timed words, then remove most
of the invalid ones as mentioned before. The target system continues to be viewed as a
black-box. In Section 5, we will show that while the learning algorithm succeeds with
any sampling distribution, the model learned using the distribution described above are
far more likely to be completely correct (or at least very close to the target system from
a human point of view) than using a naı̈ve uniform distribution.

3.4 Comparator

During the learning process, the aforementioned algorithm generates a series of hy-
potheses. Ideally, we would prefer that each successive hypothesis gradually approach-
es the target system according to some measure. However, this may not be the case. As
observed in [23] for symbolic automata, processing of counterexamples will generate
two kinds of changes to the hypothesis. The first kind is called expansive modification,
which means the latter hypothesisH′ has more states and/or transitions than the former
hypothesisH. The second is called non-expansive modification, which implies that be-
tween the two hypotheses, only the symbols of the alphabet on the transitions differ. It
is noted in [23] thatH′ is closer to the target system thanH.

However, in the case of expansive modification, this cannot be guaranteed. Vaan-
drager et al. showed in [9,28] that the successive hypothesis is not always better than the
previous one, under a well-known metric based on minimal length counterexamples. To
correct this, they proposed a modification to L∗ to make sure that each stable hypothe-
sis (see Definition 6) is at least as good as the previous one. Although the modification
is for the DFA setting, we find that it is still applicable to the DOTA case. The distance
metric to measure the quality of a hypothesis is defined as follows.

Definition 5 (Metric function). LetL(H) andL(H′) be timed languages of two DOTAs
H andH′. The ultrametric function d is

d (L(H),L(H′)) =
{
0 if L(H) = L(H′)
2−n otherwise, (3)

where n is the length of a minimal timed word that distinguishes L(H) and L(H′).
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Algorithm 2: Find new stable hypothesis comparator(H,H′)
input : current stable hypothesisH; new hypothesisH′.
output: new stable hypothesisH.

1 compareFlag ← ⊥;
2 repeat

/* obtain minimal timed word ω that distinguishes H and H′. */

3 ω ← min distinguishing dtw(H,H′);
4 v, ωr ← test dtw(ω,S); // test a timed word ω on system S
5 v′, ω′r ← test dtw(ω,H′); // test a timed word ω on hypothesis H′

6 if v 6= v′ then
7 ctx← ωr ; // found a counterexample
8 ctx processing(T, ctx); // handle the counterexample
9 Make table T closed and consistent;

10 Construct new hypothesisH′;
11 else
12 H ← H′; // set H′ as new stable hypothesis
13 compareFlag ← >;

14 until compareFlag = >;
15 return new stable hypothesisH;

Definition 6 (Stable hypothesis). Let S be the target system, and let H and H′ be
two hypotheses in the learning process. Then H′ is called stable if d(L(H),L(S)) ≥
d(L(H′),L(S)).

The procedure for finding stable hypotheses with a comparator is shown in Algo-
rithm 2. For each newly learned hypothesisH′, before asking the teacher an equivalence
query, it is compared with the current stable hypothesis H. This involves first generat-
ing a minimal-length sequence ω (a delay-timed word) distinguishingH andH′, which
can be achieved via a language equivalence checking since the model H and H′ are
known. Then ω is tested against the target system S. If the result is inconsistent with
that ofH′, the comparator found a counterexample toH′ and returns the corresponding
reset-delay-timed word ωr to the learner to construct a new (and bigger) hypothesis.
Otherwise (when the outputs are consistent), we promote H′ to be the new stable hy-
pothesis, and proceeds to perform a PAC-style equivalence query. This ensures that
each stable hypothesis is at least as good as the previous one according to the metric
function. It also has the practical effect of reducing the number of equivalence queries
(replacing some of them by membership queries). This is particularly significant in the
PAC learning setting as the number of tests of each equivalence query increases with
the number of previously performed equivalence queries.

Because H and H′ are both explicit DOTAs (in contrast to the target system which
is a black box), finding the minimal distinguishing timed word between them can use
the same timed language inclusion tests in [5,24] (or using the technique of comple-
mentation and intersection of automata). The following theorem is adapted from [28].

Theorem 4. The execution of Algorithm 2 terminates, and each stable hypothesis is at
least as good as the previous one according to the metric function.

3.5 Counterexample minimization

When the equivalence query is answered using a decision procedure, the decision pro-
cedure can usually return counterexamples of small size. In fact, existing work on sym-
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bolic automata [23] introduces the concept of helpful teacher to indicate the ability of
the teacher to return a minimal counterexample (which is a counterexample of minimal
length and also minimal with respect to lexicographic order). Under this assumption,
the learning algorithm for symbolic automata has better theoretical properties.

In the case of exact learning of DOTA, the correctness and termination of the al-
gorithm [5] do not depend on being provided minimal counterexamples. However, the
actual performance of the algorithm can still be significantly affected. In particular, if
the counterexample is not minimal, it can lead to unnecessary splitting of edges in the
learned model. For example, a guard [5,∞) on a transition can be unnecessarily split
into [5, 7) and [7,∞) on two transitions, if the learner is provided with a counterexam-
ple with time value 7 first, whereas directly providing a counterexample with time value
5 will not lead to splitting. This is particularly significant in the case of normal teacher,
as its complexity is exponential in the number of edges in the learned model.

Hence, we propose a simple heuristic for improving a counterexample using on-
ly membership queries. First, when performing PAC-style equivalence queries, sam-
ples are tested in increasing order by length. When a minimal length counterexample
(as a delay-timed word) is found, it is minimized according to lexicographic order as
follows. We first run the timed word on the hypothesis, obtaining the corresponding
logical-timed word. Then, for each transition of the logical-timed word starting from
the beginning, we decrease the logical time step-by-step, at each step converting back
to delay-timed word using the reset information and send the result as a membership
query. The new delay-timed word is kept only if it is still a counterexample. Note this
procedure finds locally minimal counterexamples, but is not guaranteed to find the glob-
ally minimal one.

3.6 The whole procedure

Integrating the previously introduced techniques, the overall learning framework is
summarized in Algorithm 3. As described in Section 2.2, the learner performs sever-
al rounds of membership queries to make the observation table T prepared (closed and
consistent) before constructing a new hypothesis. Then, the comparator is used to make
sure that the current stable hypothesis always approaches the target system according to
the metric function in Definition 5, which reduces the number of equivalence queries.
On the stable hypothesis, PAC-style equivalence query is performed by testing. The
whole procedure repeats until the PAC-style equivalence query terminates without find-
ing a counterexample, so the hypothesis is considered correct with some probability of
error. Since the new learning procedure only modifies the equivalence query, the main
theoretical results from [5] still hold. This allows us to state the following main cor-
rectness theorem for the new procedure. Note that in [21,23] for the case of symbolic
automata, termination is only with probability 1 if the alphabet is infinitely divisible.
In our case, the endpoints of guards are integers, hence the algorithm is guaranteed to
terminate.

Theorem 5. Algorithm 3 terminates after polynomial number of membership and PAC-
style equivalence queries, and learns the target system in a probably approximately
correct manner with error ε and confidence δ.
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Algorithm 3: PAC Learning of DOTAs
input : timed observation table T; error ε; confidence δ.
output: hypothesisH, which is a PAC(ε,δ)-correct output for the target timed language L.

1 Initialize timed observation table T;
2 Make T closed and consistent;
3 Construct a hypothesisH′ from T;
4 H ← H′; // initial stable hypothesis
5 equivalent← ⊥;
6 i← 0; // the number of PAC-style equivalence queries
7 while equivalent = ⊥ do
8 if i > 0 then
9 H ← comparator(H,H′); // current stable hypothesis

10 i← i+ 1;
11 equivalent, ctx← pac equivalence(H, i, ε, δ); // PAC equivalence query
12 if equivalent = ⊥ then
13 ctx processing(T, ctx); // handle counterexample
14 Make table T closed and consistent;
15 Construct a hypothesisH′ from T;

16 returnH;

4 Extending PAC learning to normal teacher

In this section, we extend the algorithm given in [5] for the case of normal teacher to
the PAC learning setting. The needed changes are similar to the smart teacher case, with
each equivalence query for a hypothesis constructed from a prepared table candidate re-
placed by a PAC-style equivalence query. It should be noted that the count i of current
equivalence query still increases with each query, regardless of the tree structure caused
by the guesses. This can be justified as follows: in the derivation of Equation (3), the
number of needed queries is set so that the total probability of making a mistake (result-
ing in a model with error greater than ε) is at most δ, with δ/2i+1 being the bound on
the probability of making a mistake at the i-th equivalence query. In the normal teacher
setting, we should still accumulate the probabilities of making mistakes along different
branches of the tree, so the derivation of Equation (3) is still the same as before. As for
the improvements reported in Section 3, they are still applied to the normal teacher set-
ting. While in counterexample minimization, we run the timed word on the hypothesis,
obtaining the corresponding logical-timed word based on the guessed resets.

The theoretical results (following [5]) are similar to the smart teacher case, except
the complexity is now exponential due to the guessing of resets.

Theorem 6. The learning process for the normal teacher terminates after exponential
number of membership and PAC-style equivalence queries, and learns the target system
in a probably approximately correct manner with error ε and confidence δ.

In a variant of the above procedure, we can also group prepared table candidates by
level, for example by the number of guesses made. If there are mi tables at level i, then
the number of samples for each PAC-style equivalence query at level i is modified to be
1
ε (ln

1
δ +(i+1) ln 2+lnmi). We can also consider pruning the search tree by removing

table candidates that appear to be less promising, for example with lower passing rate at
the current iteration (which is similar to the genetic programming method in [26,29]).
With such a pruning method, we obtain a procedure that is sound but not necessarily
complete or terminating.
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5 Implementation and Experimental Results

In order to further investigate the efficiency and scalability of the proposed methods, we
implemented a prototype in PYTHON and evaluated it on the functional specification
of the TCP protocol and a set of randomly generated DOTAs. All of the experiments
were carried out on a MacBook Pro with 8GB RAM, Intel Core i5 with 2.7 GHz and
running macOS Catalina 10.15.3.The tool and experiments are available in the tool page
https://github.com/MrEnvision/learning OTA by testing.

5.1 TCP protocol

We refer to [5] for a state diagram specifying the state changes in the functional spec-
ification of the TCP protocol. It can be represented as a DOTA A (see Appendix D of
[4]) with |Q| = 11 locations, |Σ| = 10 untimed actions, |F | = 2 final locations, and
|∆| = 19 transitions with appropriately specified timing constraints including guards
and resets. With our sampling method, comparator, and counterexample minimization,
we run the prototype on this example 30 times with the error parameter ε = 0.001
and confidence parameter δ = 0.001 in the smart teacher setting. Our tool learned out
30 PAC(ε, δ)-correct DOTAs in which 28 models are exactly correct. In theory, the re-
maining two models should have at least 0.999 accuracy with confidence 0.999. In order
to further check the quality of the remaining two models, we test them on 20000 more
samples generated from the same distribution in the learning process. Both models have
a passing rate of at least 0.9999. The minimum, mean and maximum numbers for mem-
bership and PAC equivalence queries are 608, 717.3, 912 and 18, 18.7, 20, respectively.
The minimum, mean and maximum numbers of tests in the PAC equivalence queries
are 107925, 122565.2 and 143806. The average time of learning is 138.9 seconds.

5.2 Random experiments

We continue to use the random DOTAs in [5] to evaluate our PAC learning method. Ad-
ditionally, we compare the performances with and without each of our three improve-
ments, i.e. the specific sampling mechanism, the comparator and the counterexample
minimization method.
Evaluation results on benchmark. With our specific sampling method, comparator,
and counterexample minimization method, the experimental results on the benchmark
are shown in Table 1. For each case, we run our tool 10 times and our tool learns all
models in the corresponding PAC settings and sometimes generates a model which is
exactly equivalent to the target model. The number of tests taken is also quite stable
across the random trials, with minimum and maximum numbers usually within 50% of
each other in each case.
With/without specific sampling method. We evaluated our tool on the TCP protocol
case study and the random examples by replacing the specific sampling method (Sec-
tion 3.3) with sampling from a naı̈ve uniform distribution. As expected, the algorithm
also returns with models which are PAC(ε, δ)-correct outputs according to the naı̈ve u-
niform distribution. However, the learned models sometimes have big differences with
the target model even when choosing high accuracy and confidence. For example, when

https://github.com/MrEnvision/learning_OTA_by_testing
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Table 1: Experimental results on random examples for the smart teacher situation.

Case ID |∆| ε, δ
#Membership #Equivalence #Tests

nexact rpass tmean

Nmin Nmean Nmax Nmin NmeanNmax Nmin Nmean Nmax

4 4 20 18 0.001 167 173.1 181 28 29.3 30 418765 455798.8 487670 4 0.999945 90.2
4 4 20 18 0.01 140 161.5 178 23 26.7 29 26084 34647.1 41470 0 0.999460 34.5
7 2 10 18 0.001 471 561.1 781 28 31.6 39 333340 424286.5 592363 0 0.999964 88.6
7 2 10 18 0.01 375 487.4 717 23 26.5 31 21024 27676.6 36805 0 0.999695 24.8
7 4 10 26 0.001 746 766.5 796 46 47.7 51 533562 569403.8 618769 3 0.999995 133.8
7 4 10 26 0.01 729 778.0 853 46 48.0 50 49473 54829.8 63353 0 0.999960 59.8
7 6 10 32 0.001 676 832.7 1035 53 61.3 68 749773 1025486.9 1274129 4 1.0 341.5
7 6 10 32 0.01 678 807.7 998 54 58.2 63 72714 87215.3 101603 1 0.999870 137.3
7 4 20 26 0.001 419 442.2 480 41 42.4 43 599115 648487.5 690735 5 0.999986 160.7
7 4 20 26 0.01 382 451.6 733 36 38.8 42 44183 50828.7 62079 0 0.999860 101.0

10 4 20 36 0.001 682 935.5 1492 59 67.2 82 607149 816399.8 1233177 10 1.0 267.4
10 4 20 36 0.01 732 1029.4 1369 56 63.4 77 51185 69562.7 100264 2 0.999960 159.5

Case ID: n m κ, consisting of the number of locations, the size of the alphabet and the maximum constant appearing in the
clock constraints, respectively, of the corresponding model.
|∆|: the number of transitions in the corresponding model.
ε, δ: the error and confidence parameters in PAC learning. (Here choose a same value.)
#Membership & #Equivalence & #Tests: the number of conducted membership queries, PAC-style equivalence queries and
tests utilized in equivalence queries, respectively.Nmin: the minimal,Nmean: the mean,Nmax: the maximum.
nexact: the number of exactly learned model.
rpass: the average passing rate of the learned model on extra 20000 test cases randomly generated from the same distribution
in the learning process.
tmean: the average wall-clock time in seconds, including that taken by the learner and the teacher.

we choose ε = δ = 0.001 and sample testing timed words from the uniform distribu-
tion U(1, 2 · |Q|) in the TCP protocol case, the tool learned out models without some
transitions back to the initial state which is one of the accepting states.
With/without comparator. As introduced in Section 3.4, the comparator could reduce
the number of equivalence queries, and hence the number of test cases needed in such
queries. We evaluated our tool without the comparator, and the number of PAC-style
equivalence queries and test cases increased by 10% on average.
With/without counterexample minimization. Fig. 1 shows the experimental result-
s with and without counterexample minimization for some of the randomly generat-
ed examples. We find that the number of PAC-style equivalence queries and tests in-
creased by around 150% and 400% respectively. Hence, counterexample minimization
improves the learning performance significantly on the random examples.
Evaluation on random example in normal teacher setting. Finally, we evaluate the
PAC-style learning method in the normal teacher situation. The results are shown in
Table 2. As the method still depends on the quality of the provided counterexamples, a
few of the cases can no longer be learned within the time limit of 2 minutes, compared
to the case of exact equivalence query. Overall, the results still show that our method
is effective in the normal teacher setting, which most importantly, provides a way to
implement a teacher in practice.

6 Related work

Various attempts have been carried out in the literature on learning timed models, which
can be divided into two directions. The first direction is about passive learning. An algo-
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Fig. 1: Experimental results with and without counterexample minimization.

Table 2: Experimental results on random examples for the normal teacher situation.

Case ID |∆|mean ε, δ
#Membership #Equivalence

tmean #Texplored #Learnt nexact

Nmin Nmean Nmax Nmin Nmean Nmax

3 2 10 4.8 0.001 63 142.0 346 5 7.6 12 4.8 96.3 9/10 6
4 2 10 6.8 0.001 128 224.2 394 6 13.0 19 10.3 200.2 9/10 6
5 2 10 8.8 0.001 155 308.1 534 9 15.0 20 12.6 292.6 7/10 7
6 2 10 11.9 0.001 96 446.0 661 9 16.0 22 19.9 454.4 7/10 4

#Membership & #Equivalence: the number of conducted membership and equivalence queries with the cached methods,
respectively.Nmin: the minimal,Nmean: the mean,Nmax: the maximum.
|∆|mean: the average number of transitions in the corresponding group.
#Texplored: the average number of the explored table instances.
#Learnt: the number of the learnt DOTAs in the group (learnt/total).

rithm was proposed to learn deterministic real-time automata in [33]. A passive learning
algorithm for timed automata with one clock was further proposed in [32]. We further-
more refer the readers to [22,25] for learning specialized forms of practical timed sys-
tems in a passive manner. A common weakness of passive learning is that the generated
model merely accepts all positive traces and rejects all negative ones for the given set
of traces, without guaranteeing that it is a correct model of the target system. As to ac-
tive learning, a learning algorithm for event recording automata [3] is proposed in [16].
The underlying learning algorithm has double-exponential complexity. In [19], Lin et
al. proposed an efficient learning method for the same model. Learning techniques for
symbolic automata are introduced in [20,12] and An et al. applied the techniques to
learning real-time automata [6].

Recently, applying the ideas of PAC learning [31] to model learning is receiving in-
creasing attention. Angluin introduced a PAC learning algorithm of DFA in [7]. In [21],
Maler et al. applied PAC learning to symbolic automata. In [10], using PAC learning to
obtain an approximate regular model of the set of feasible paths in a program, Chen et
al. introduced a novel technique for verification and model synthesis of sequential pro-
grams. Another way to replace exact equivalence queries is conformance testing [8,18]
via a finite number of testing queries. Well-known methods for conformance testing
include W-method [11,15], UIO-method [27], etc. These methods can also be modi-
fied to test timed models [13,14]. In [29], Aichernig et al. introduced an approach to
learn timed automata based on genetic programming. In subsequent work [26], they
combined genetic programming with conformance testing to improve its performance.
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7 Conclusion

In this paper, we presented a PAC learning algorithm for black-box systems that can
be specified by DOTAs. We relax the ideal setting of a teacher that maintains oracles
for both membership queries and exact equivalence queries. In our new setting, both
membership and equivalence queries are conducted via testing, with PAC-style equiv-
alence query replacing exact equivalence query. In addition, to reduce the number of
equivalence queries, we introduced comparator into our learning framework. We also
discussed the sampling approach, and a heuristic method to minimize counterexamples.
A prototype is implemented in PYTHON, and is evaluated on the functional specification
of the TCP protocol as well as a set of randomly generated examples. The experiments
shows the positive effects of each of the improvements on realistic examples. Possible
future work include extension to timed automata with multiple clocks.
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Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 485–499. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54862-8 41

21. Maler, O., Mens, I.: A generic algorithm for learning symbolic automata from membership
queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (ed-
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