Learning One-Clock Timed Automata

Jie An¹, Mingshuai Chen², **Bohua Zhan**³, Naijun Zhan³, Miaomiao Zhang¹

- 1. School of Software Engineering, Tongji University, Shanghai, China
- 2. Lehrstuhl für Informatik 2, RWTH Aachen University, Aachen, Germany
- 3. SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China

bzhan@ios.ac.cn

TACAS · March 30, 2021

Table of contents

- Introduction and motivation
- Short introduction to model/automaton learning
- L*: Classic automaton learning of DFA
- Motivation
- 2 Learning one-clock timed automata
 - Basic idea
 - Learning from a smart teacher
 - Learning from a normal teacher
- Conclusion and future work

Outline

- Introduction and motivation
- Short introduction to model/automaton learning
- L*: Classic automaton learning of DFA
- Motivation
- 2 Learning one-clock timed automata
- 3 Conclusion and future work

• Machine learning

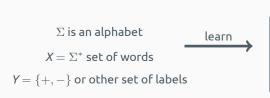
Machine learning

Machine learning

• Model/Automaton learning

Machine learning

Model/Automaton learning



Model

f is a language $L \subset \Sigma^*$

The model is a kind of Automaton

© The figure comes from Irini-Eleftheria Mens.

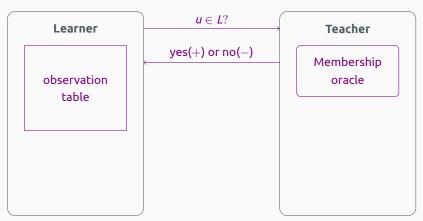
- Dana Angluin proposed an online, active, and exact learning framework L* for Deterministic Finite Automata (DFA) in 1987 [2].
- Two kinds of queries: membership query and equivalence query.

- Dana Angluin proposed an online, active, and exact learning framework L* for Deterministic Finite Automata (DFA) in 1987 [2].
- Two kinds of queries: membership query and equivalence query.

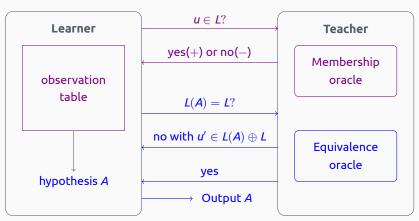
Learner

Teacher

- Dana Angluin proposed an online, active, and exact learning framework L* for Deterministic Finite Automata (DFA) in 1987 [2].
- Two kinds of queries: membership query and equivalence query.



- Dana Angluin proposed an online, active, and exact learning framework L* for Deterministic Finite Automata (DFA) in 1987 [2].
- Two kinds of queries: membership query and equivalence query.



Motivation

- More recent work extends L^* algorithm to different models
 - Mealy machines [9], I/O automata [1], register automata [6], NFA [3], Büchi automata [7], symbolic automata [8, 4] and MDP [10], etc..

Motivation

- More recent work extends L^* algorithm to different models
 - Mealy machines [9], I/O automata [1], register automata [6], NFA [3], Büchi automata [7], symbolic automata [8, 4] and MDP [10], etc..
- Motivation
 - How to actively learn a timed model for a real-time system?
- Related work
 - Active learning of event-recording automata [5].
 - Passive identification of timed automata in the limit via fitting a labelled sample $S = (S_+, S_-)$ [12].
 - Passive learning of timed automata via Genetic Programming and testing [11].

Outline

- 1 Introduction and motivation
- 2 Learning one-clock timed automata
- Basic idea
- Learning from a smart teacher
- Learning from a normal teacher
- 3 Conclusion and future work

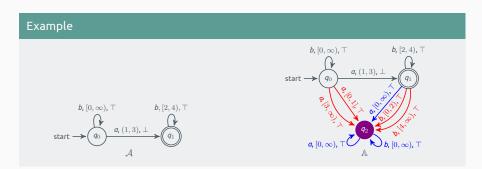
Basic idea

- Learning (regular) timed-automata with a single clock.
- Challenges
 - State now includes both location and clock value.
 - Determining the guard condition on transitions.
 - Determining reset information on transitions.
 - (related to the previous points) Matching time observed from outside to internal clock used on the quards.
- Solutions of learning deterministic one-clock timed automata (DOTA).
 - © A normalization map from delay timed words (outside) to logical timed words (inside).
 - Utilize a partition function to map logical-timed values to finite intervals (similar to learning symbolic automata).
 - © First consider the case of a smart teacher who can tell the learner reset informations. Then drop the assumption (i.e. reduction to a normal teacher) by guessing reset information.

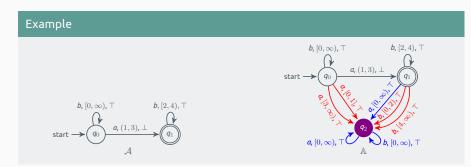
- ullet The DOTA ${\mathcal A}$ recognizes the target language ${\mathcal L}.$
- $\Sigma = \{a, b\}$; $\mathcal{B} = \{\top, \bot\}$ where \top is for reset, \bot otherwise.

Example

- The DOTA $\mathcal A$ recognizes the target language $\mathcal L$.
- $\Sigma = \{a, b\}$; $\mathcal{B} = \{\top, \bot\}$ where \top is for reset, \bot otherwise.
- A is a complete DOTA of A. Timed language $\mathcal{L}(A) = \mathcal{L}(A) = \mathcal{L}$.

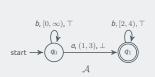


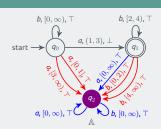
- ullet The DOTA ${\mathcal A}$ recognizes the target language ${\mathcal L}.$
- $\Sigma = \{a, b\}$; $\mathcal{B} = \{\top, \bot\}$ where \top is for reset, \bot otherwise.
- \mathbb{A} is a *complete* DOTA of \mathcal{A} . Timed language $\mathcal{L}(\mathbb{A}) = \mathcal{L}(\mathcal{A}) = \mathcal{L}$.
- **Delay timed words** $(\Sigma \times \mathbb{R}_{\geq 0})^*$: outside observations; e.g. $\omega = (b,0)(a,1.1)(b,1)$ is an accepting timed words.



- ullet The DOTA ${\mathcal A}$ recognizes the target language ${\mathcal L}.$
- $\Sigma = \{a, b\}$; $\mathcal{B} = \{\top, \bot\}$ where \top is for reset, \bot otherwise.
- \mathbb{A} is a *complete* DOTA of \mathcal{A} . Timed language $\mathcal{L}(\mathbb{A}) = \mathcal{L}(\mathcal{A}) = \mathcal{L}$.
- **Delay timed words** $(\Sigma \times \mathbb{R}_{\geq 0})^*$: outside observations; e.g. $\omega = (b,0)(a,1.1)(b,1)$ is an accepting timed words.
- Reset-logical timed words $(\Sigma \times \mathbb{R}_{\geq 0} \times \mathcal{B})^*$: inside logical actions; e.g. $\gamma_r = (b,0,\top)(a,1.1,\bot)(b,2.1,\top)$ is the reset-logical counterpart of ω . Logical counterpart $\gamma = (b,0)(a,1.1)(b,2.1)$.

Example





• Given a DOTA \mathbb{A} , $L_r(\mathbb{A})$ represents the recognized reset-logical timed language of \mathbb{A} ; $L(\mathbb{A})$ represents the logical timed language.

Theorem

Given two DOTAs \mathbb{A} and \mathcal{H} , if $L_r(\mathbb{A}) = L_r(\mathcal{H})$, then $\mathcal{L}(\mathbb{A}) = \mathcal{L}(\mathcal{H})$.

- Given a DOTA \mathbb{A} , $L_r(\mathbb{A})$ represents the recognized reset-logical timed language of \mathbb{A} ; $L(\mathbb{A})$ represents the logical timed language.
- Guiding principle: learning the (delayed) timed language of a DOTA $\mathbb A$ can be reduced to learning the reset-logical timed language of $\mathbb A$.

Theorem

Given two DOTAs $\mathbb A$ and $\mathcal H$, if $L_r(\mathbb A)=L_r(\mathcal H)$, then $\mathcal L(\mathbb A)=\mathcal L(\mathcal H)$.

- Given a DOTA \mathbb{A} , $L_r(\mathbb{A})$ represents the recognized reset-logical timed language of \mathbb{A} ; $L(\mathbb{A})$ represents the logical timed language.
- Guiding principle: learning the (delayed) timed language of a DOTA A can be reduced to learning the reset-logical timed language of A.
- Smart teacher setting: membership queries are logical timed words, teacher responds with reset information.

Theorem

Given two DOTAs $\mathbb A$ and $\mathcal H$, if $L_r(\mathbb A)=L_r(\mathcal H)$, then $\mathcal L(\mathbb A)=\mathcal L(\mathcal H)$.

Definition (Reset-logical-timed observation table)

A reset-logical-timed observation table for a DOTA $\mathbb A$ is a 7-tuple $\mathbf T=(\Sigma, \Sigma, \Sigma_r, S, R, E, f)$ where Σ is the finite alphabet; $\Sigma=\Sigma\times\mathbb R_{\geq 0}$ is the infinite set of logical-timed actions; $\Sigma_r=\Sigma\times\mathbb R_{\geq 0}\times\mathcal B$ is the infinite set of reset-logical-timed actions; $S,R\subset\Sigma_r^*$ and $E\subset\Sigma^*$ are finite sets of words, where S is called the set of prefixes, S the boundary, and S the set of suffixes. Specifically,

- S and R are disjoint, i.e., $S \cup R = S \uplus R$;
- The empty word is by default both a prefix and a suffix, i.e., $\epsilon \in \mathbf{\textit{E}}$ and $\epsilon \in \mathbf{\textit{S}}$;
- $f\colon (\mathbf{S}\cup\mathbf{R})\cdot\mathbf{E}\mapsto \{-,+\}$ is a classification function such that for a reset-logical-timed word $\gamma_{\mathit{f}},\gamma_{\mathit{f}}\cdot e\in (\mathbf{S}\cup\mathbf{R})\cdot\mathbf{E}$, $f(\gamma_{\mathit{f}}\cdot e)=-$ if $\Pi_{\{1,2\}}\gamma_{\mathit{f}}\cdot e$ is invalid ¹, otherwise if $\Pi_{\{1,2\}}\gamma_{\mathit{f}}\cdot e\notin L(\mathbb{A})$, $f(\gamma_{\mathit{f}}\cdot e)=-$, and $f(\gamma_{\mathit{f}}\cdot e)=+$ if $\Pi_{\{1,2\}}\gamma_{\mathit{f}}\cdot e\in L(\mathbb{A})$;

^{1.} The projection of an n-tuple x onto its first two components is denoted by $\Pi_{\{1,2\}}x$, which extends to a sequence of tuples as $\Pi_{\{1,2\}}(x_1,\ldots,x_k) = \left(\Pi_{\{1,2\}}x_1,\ldots,\Pi_{\{1,2\}}x_k\right)$.

- Reduced
 - $\forall s, s' \in \mathbf{S} : s \neq s' \text{ implies } row(s) \neq row(s');$
- Closed
 - $\forall r \in R, \exists s \in S : row(s) = row(r);$
- Consistent
 - $\forall \gamma_{\mathit{\Gamma}}, \gamma_{\mathit{\Gamma}}' \in \mathit{S} \cup \mathit{R}$, $row(\gamma_{\mathit{\Gamma}}) = row(\gamma_{\mathit{\Gamma}}')$ implies $row(\gamma_{\mathit{\Gamma}} \cdot \sigma_{\mathit{\Gamma}}) = row(\gamma_{\mathit{\Gamma}}' \cdot \sigma_{\mathit{\Gamma}}')$, for all $\sigma_{\mathit{\Gamma}}, \sigma_{\mathit{\Gamma}}' \in \Sigma_{\mathit{\Gamma}}$ satisfying $\gamma_{\mathit{\Gamma}} \cdot \sigma_{\mathit{\Gamma}}, \gamma_{\mathit{\Gamma}}' \cdot \sigma_{\mathit{\Gamma}}' \in \mathit{S} \cup \mathit{R}$ and $\Pi_{\{1,2\}} \sigma_{\mathit{\Gamma}} = \Pi_{\{1,2\}} \sigma_{\mathit{\Gamma}}'$;
- Evidence-closed
 - $\forall s \in S$ and $\forall e \in E$, the reset-logical-timed word $\pi(\Pi_{\{1,2\}}s \cdot e)$ belongs to $S \cup R^2$.

^{2.} For the sake of simplicity, we define a function π that maps a logical-timed word to its unique reset-logical-timed counterpart in membership queries.

Т	ϵ	
ϵ	_	
(a, 1.1, ⊥)	+	
(a, 0, ⊤)	_	
(<i>b</i> , 0, ⊤)	_	
$(a, 1.1, \perp)(a, 0, \top)$	_	
$(a, 1.1, \perp)(b, 0, \top)$	_	

S _T	ϵ ···
ϵ	_
(a, 1.1, ⊥)	+
$(a,0,\top)$	-
$(b,0,\top)$	_
$(a, 1.1, \perp)(a, 0, \top)$	_
$(a, 1.1, \perp)(b, 0, \top)$	_

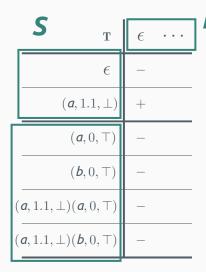
The prefixes set ${\it S}$ indicates the locations

S	Т	ϵ	
	ϵ	_	
(a,	$1.1, \perp)$	+	
(a	$(0, \top)$	_	
(<i>b</i>	$(0, \top)$	_	
$(a,1.1,\perp)(a,1.1)$	1 , 0, ⊤)	_	
$(a, 1.1, \perp)(b)$	0 , 0, ⊤)	_	

The prefixes set **S** indicates the locations

The boundary R indicates the transitions

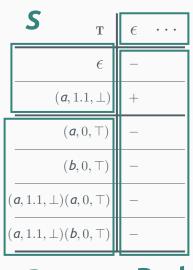
R



The prefixes set **S** indicates the locations

The boundary **R** indicates the transitions

The suffixes set ${\it E}$ distinguishes the locations



The prefixes set **S** indicates the locations

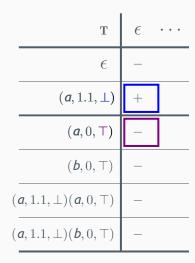
The boundary R indicates the transitions

The suffixes set $\boldsymbol{\it E}$ distinguishes the locations

Body records whether automaton accepts logical timed words

R

Body



The prefixes set ${\it S}$ indicates the locations

The boundary ${\it R}$ indicates the transitions

The suffixes set ${\it E}$ distinguishes the locations

Body records whether automaton accepts logical timed words

accepts $(\textbf{\textit{a}}, 1.1) \cdot \epsilon$ and gives the reset information \bot

does not accept $(\mathbf{a},0)\cdot \epsilon$ and gives the reset information \top

• Given a target timed language $\mathcal L$ which is recognized by a DOTA $\mathbb A$, let $n=|\mathcal Q|$ be the number of locations of $\mathbb A$, $m=|\Sigma|$ the size of the alphabet, and κ the maximal constant appearing in the clock constraints of $\mathbb A$.

Theorem

The learning process with a smart teacher terminates and returns a DOTA which recognizes the target timed language \mathcal{L} .

Theorem

The complexity of the algorithm is $\mathcal{O}(\mathsf{mn}^5\kappa^4)$ for number of membership queries, and $\mathcal{O}(\mathsf{mn}^2\kappa^3)$ for number of equivalence queries.

Learning from a normal teacher

- In the normal teacher setting, the teacher responds to delay timed words, and no longer returns reset information in answers to membership and equivalence queries.
- The learner guesses the resets in order to convert between delay and logical timed words.

Learning from a normal teacher

- In the normal teacher setting, the teacher responds to delay timed words, and no longer returns reset information in answers to membership and equivalence queries.
- The learner guesses the resets in order to convert between delay and logical timed words.
- Basic process
 - At every round, guess all needed resets and put all resulting table candidates into a set ToExplore.
 - Take out one table instance from the set *ToExplore*.
 - The operations on the table are same to those in the situation with a smart teacher.

Learning from a normal teacher

- Termination and complexity
 - At every iteration, the learner selects the table instance which requires the least number of guesses.
 - The learner keeps the correct table instance of each iteration in ToExplore since he guesses all reset informations.
 - If $\overrightarrow{\mathbf{T}} = (\Sigma, \Sigma, \Sigma_{\mathbf{f}}, \mathbf{S}, \mathbf{R}, \mathbf{E}, f)$ is the final observation table for the correct candidate in the situation with a smart teacher, the learner can find it after checking $\mathcal{O}(2^{(|\mathbf{S}|+|\mathbf{R}|)\times(1+\sum_{e_j\in E\setminus \{e\}}(|e_j|-1))})$ table instances in the worst situation with a normal teacher.
 - The process also may terminate and return a DOTA which is different to the one in the smart teacher situation.

Theorem

The learning process with a normal teacher terminates and returns a DOTA which recognizes the target timed language \mathcal{L} . It has exponential complexity in the number of membership and equivalence queries.

Experiment 1

Table 1 – Experimental results on random examples for the smart teacher situation.

Case ID	$ \Delta _{mean}$	#Membership				#Equivalence				n _{mean}	t _{mean}
	i iliculi	N _{min}	N_{mean}	N _{max}		N_{\min}	N_{mean}	N _{max}		iliculi	mean
4_4_20	16.3	118	245.0	650		20	30.1	42		4.5	24.7
7_2_10	16.9	568	920.8	1393		23	31.3	37		9.1	14.6
7_4_10	25.7	348	921.7	1296		34	50.9	64		9.3	38.0
7_6_10	26.0	351	634.5	1050		35	44.7	70		7.8	49.6
7_4_20	34.3	411	1183.4	1890		52	70.5	93		9.5	101.7
10_4_20	39.1	920	1580.9	2160		61	73.1	88		11.7	186.7
12 4 20	47.6	1090	2731.6	5733		66	97.4	125		16.0	521.8
14_4_20	58.4	1390	2238.6	4430		79	107.7	135		16.0	515.5

Case ID: n_m_κ , consisting of the number of locations, the size of the alphabet and the maximum constant appearing in the clock constraints, respectively, of the corresponding group of \mathcal{A} 's.

 $|\Delta|_{\text{mean}}$: the average number of transitions in the corresponding group.

#Membership & #Equivalence : the number of conducted membership and equivalence queries, respectively. N_{\min} : the minimal, N_{mean} : the mean, N_{max} : the maximum.

 $n_{\rm mean}$: the average number of locations of the learned automata in the corresponding group.

 $t_{\rm mean}$: the average wall-clock time in seconds, including that taken by the learner and by the teacher.

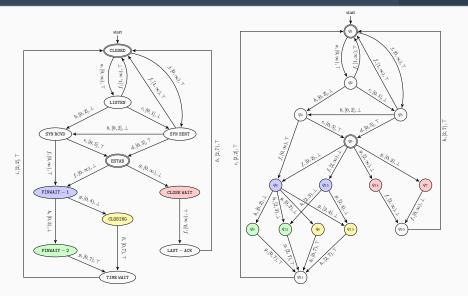


Figure 1 – Left: The functional specification of the TCP protocol with timing settings. Right: The learnt functional specification of the TCP protocol. Colors indicate the splitting of locations.

Experiment 3

Table 2 – Experimental results on random examples for the normal teacher situation.

Case ID	#Membership			#Equivalence			Nmean	t _{mean}	#T _{explored}	#Learnt	
	$ \Delta _{mean}$	N_{\min}	N_{mean}	N_{max}	N_{\min}	N_{mean}	N_{max}	mean	mean	explored	
3_2_10	4.8	43	83.7	167	5	8.8	14	3.0	0.9	149.1	10/10
4 2 10	6.8	67	134.0	345	6	13.3	24	4.0	7.4	563.0	10/10
5_2_10	8.8	75	223.9	375	9	15.2	24	5.0	35.5	2811.6	10/10
6_2_10	11.9	73	348.3	708	10	16.7	30	5.6	59.8	5077.6	7/10
4_4_20	16.3	231	371.0	564	27	30.9	40	4.0	137.5	8590.0	6/10

#Membership & #Equivalence : the number of conducted membership and equivalence queries with the cached methods, respectively. N_{\min} : the minimal, N_{mean} : the mean, N_{max} : the maximum.

 $\#T_{explored}$: the average number of the explored table instances.

#Learnt: the number of the learnt DOTAs in the group (learnt/total).

Outline

- Introduction and motivation
- 2 Learning one-clock timed automata
- 3 Conclusion and future work

Conclusion and future work

- Contributions
 - Give an active learning algorithm with a smart teacher for DOTAs. It is an
 efficient (polynomial) algorithm. (white-box or gray-box)
 - Give an active learning algorithm with a normal teacher for DOTAs. It has an exponential complexity increase. (black-box)

Conclusion and future work

Contributions

- Give an active learning algorithm with a smart teacher for DOTAs. It is an
 efficient (polynomial) algorithm. (white-box or gray-box)
- Give an active learning algorithm with a normal teacher for DOTAs. It has an
 exponential complexity increase. (black-box)
- Future work
 - Extension to non-deterministic and multi-clock timed automata.
 - Improvements to efficiency of the algorithms.

- [1] F. Aarts and F. W. Vaandrager. Learning I/O automata. In CONCUR'10, pages 71–85, 2010.
- [2] D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2):87–106, 1987.
- [3] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style learning of NFA. In IJCAI'09, pages 1004–1009, 2009.
- [4] S. Drews and L. D'Antoni. Learning symbolic automata. In TACAS'17, pages 173–189, 2017.
- [5] O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata. Theor. Comput. Sci., 411(47):4029–4054, 2010.
- [6] F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register automata. In VMCAl'12, pages 251–266, 2012.

Reference II

- [7] Y. Li, Y. Chen, L. Zhang, and D. Liu. A novel learning algorithm for Büchi automata based on family of DFAs and classification trees. In TACAS'17, pages 208–226, 2017.
- [8] O. Maler and I. Mens. Learning regular languages over large alphabets. In TACAS'14, pages 485–499, 2014.
- [9] M. Shahbaz and R. Groz. Inferring Mealy machines. In FM'09, pages 207–222, 2009.
- [10] M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen. L*-based learning of Markov decision processes. In FM'19, pages 651–669, 2019.
- [11] M. Tappler, B. K. Aichernig, K. G. Larsen, and F. Lorber. Time to learn learning timed automata from tests. In FORMATS'19, pages 216–235, 2019.
- [12] S. Verwer, M. de Weerdt, and C. Witteveen. The efficiency of identifying timed automata and the power of clocks. Inf. Comput., 209(3):606–625, 2011.

