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Abstract—Combinatorial interaction testing (CIT) is a popular
approach to detecting faults in highly configurable software
systems. The core task of CIT is to generate a small test suite
called a t-way covering array (CA), where t is the covering
strength. A major drawback of existing solvers for CA generation
is that they usually need considerable time to obtain a high-
quality solution, which hinders its wider applications. In this
paper, we describe FastCA, an effective and efficient tool for
generating constrained CAs. We observe that the high time
consumption of existing meta-heuristic algorithms is mainly due
to the procedure of score computation. To this end, we present a
much more efficient method for score computation. Thanks to this
new lightweight score computation method, FastCA can work in
the gradient mode to effectively explore the search space. Experi-
ments on a broad range of real-world benchmarks and synthetic
benchmarks show that FastCA significantly outperforms state-
of-the-art solvers, in terms of both the size of obtained covering
array and the run time.

Video: https://youtu.be/-6CuojQIt-k
Repository: https://github.com/jkunlin/FastCATool.git
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I. INTRODUCTION

Modern software systems are usually highly-configurable.
The behaviours of the system can be controlled by setting
configurable options to meet the demand of users. However,
it is challenging to validate these software, as failures may
be caused by some combinations of options [1], [2], while
the number of configurations grows exponentially with the
number of options. To remedy this situation, the combinatorial
interaction testing (CIT) approach has emerged as a popular
paradigm for detecting option-combination faults of config-
urable software systems. It significantly reduces the number
of required test cases, by systematically sampling from the
configuration space.

The core task of CIT is to generate a test suite as small
as possible, by which each t-way combination of values of
options 〈pi1 = vi1 , . . . , pit = vit 〉 is covered at least once.
Such a test suite is called a t-way covering array (CA), where t
is the covering strength. Empirical studies suggest that most of
the failures in highly-configurable systems are caused by the
interaction of a limited number of t options, usually between
two and six [1]. These failures can be revealed by a t-way
CA.
§Corresponding author.

In most real-world systems, there are hard constraints on the
permissible combinations of values of the options, which must
be taken into account when generating CAs [3]. This gives rise
to the constrained covering array generation (CCAG) problem,
which aims at generating a CA of minimum size while
satisfying all constraints. A major drawback of existing solvers
for solving CCAG is that they usually need considerable time
to obtain a high-quality solution, which hinders its wider
applications. While the greedy solvers [4], [5], [6] are fast, they
usually generate CAs of large size. Meta-heuristic solvers [7],
[8], [9], [10] can find smaller CAs, but with the price of much
more time consumption.

This work describes an efficient meta-heuristic solver for
CCAG named FastCA [11], which can provide good solutions
within much shorter time compared to state-of-the-art CCAG
solvers. It utilizes a new lightweight score computation method
that is much faster than the previous methods. FastCA employs
three search modes, including the gradient mode, the greedy
mode, and the random mode. Note that this is the first time
a gradient step (which needs to query the scores of many
operations) is implemented in meta-heuristics solvers, thanks
to the lightweight score computation method. Experimental
results on a broad range of real-world benchmarks and syn-
thetic benchmarks show that FastCA is much faster and obtains
better solutions than previous heuristics.

II. OVERVIEW

The framework of the FastCA solver is presented in Al-
gorithm 1. Given an input system under test and the cov-
ering strength t , the FastCA solver outputs the best found
covering array within the cutoff time. It is based on the
local search methodology [12]. As a first step, the solver
calls an initialization function to construct a CA (Line 1),
which serves as a starting point for the search procedure.
The initialization is provided by a well-known greedy solver
ACTS [5]. Then, FastCA iteratively refines the current solution
until the cutoff time is reached (Line 3–12). In the course of
the procedure, whenever the solver successfully finds a CA
α (i.e., all interactions are covered), it randomly removes one
test case from α and continues to search for CA of smaller
sizes (Line 4–6). The search procedure is guided with the score
of operations, which indicates the reduction of the number of
uncovered interactions. It works among three different modes.



Algorithm 1: The FastCA algorithm
Input: System under test, covering strength t
Output: CA α∗

1 α← Initialization();
2 α∗ ← α;
3 while The termination criterion is not met do
4 if there is no uncovered interaction then
5 α∗ ← α;
6 Remove one row (test case) from α;

// Its effectiveness relies on the
lightweight score computation

7 α← Gradient Mode();
8 if Gradient Mode is not successful then
9 if With probability p then

10 α← Random Mode();
11 else
12 α← Greedy Mode();

13 return α∗;

The Gradient Mode — This is a particular mode of
FastCA. In this mode, it collects all candidate operations which
will cover at least one uncovered interaction. The operation
with the highest score is chosen. If the score is positive, it is
applied to the partial-CA α. Otherwise, the search procedure
switches to the other modes. The gradient mode is the major
mode of the search procedure. This mode intensively reduces
the number of uncovered interactions in order to obtain high-
quality solutions. More details are described in Section III-C.

The Greedy Mode — Unlike the gradient mode, this
mode only considers the operations related to one uncovered
interaction. It first randomly selects an uncovered interaction
and calculates the score of operations which will at least cover
the chosen interaction. The operation of the highest score is
applied to the partial-CA α, even when its score is negative.

The Random Mode — This mode is proposed for better
exploring the search space and diversifying the search. It
replaces one randomly chosen test case of the partial-CA to
cover a pre-selected uncovered interaction.

When the gradient mode is not successful, that is, there
is no candidate operation of positive score, the FastCA solver
works in the greedy mode with a probability p, otherwise (with
a probability 1− p) it works in the random mode.

III. MAIN IDEAS AND IMPLEMENTATION

This section introduces two main ideas of FastCA, including
the lightweight score computation and the gradient mode. We
also describe important implementation details here.

A. Bottlenecks of Meta-heuristic Solvers

Our analysis shows that a bottleneck that hinders the
performance of meta-heuristic solvers for CCAG is the high
time complexity of the score computation methods. For an
operation op(tc[p] ← v) that modifies the test case tc by

assigning v to the option p, a commonly used method for
computing score(op) is to check each interaction τ involving
(p, v) and measures the change in the number of uncovered
interactions. A simple analysis shows that there are

(
k−1
t−1

)
× 2

interactions to be checked for computing the score of only
one operation, where k is the number of options and t is the
required covering strength.

This process is of high complexity and is very time-
consuming in practice. For instance, considering the Apache
HTTP Server instance with k = 172 options, and supposing
the covering strength t = 3, we need to check 29 070 in-
teractions for computing an operation’s score. Many heuristic
strategies require computing scores for numbers of operations
in each step. Experimental results on TCA for solving real-
world benchmarks show that the time consumption of score
computation occupies 34.5%, 77.1%, and 77.4% of the time
budget for 2, 3, and 4 way covering strength respectively [11].

B. Lightweight Score Computation

An important fact is that only uncovered interactions and
1-covered interactions (interactions covered exactly once) are
related to the score of an operation. The number of these
interactions are expected to be small. By surveying a state-of-
the-art solver TCA, we found that the number of uncovered
interactions and related 1-covered interactions only occupy
0.01% and 0.11% of the

(
k−1
t−1

)
× 2 interactions on real-world

instances, respectively. Based on this observation, the score
can be computed in a lightweight manner as follows.

Lightweight score computation(operation op):
1) calculate make(op), which is the number of uncovered

interactions that will become 1-covered after applying
op.

2) calculate break(op), which is the number of 1-covered
interactions that will become uncovered after applying
op.

3) score(op) = make(op)− break(op).
To calculate make(op), we use an array to maintain the

uncovered interactions during the search procedure and check
whether each of them is covered after the op operation.
Since the number of uncovered interactions is rather small,
make(op) can be calculated efficiently. The break(op) can
also be calculated with low time complexity. We use a 3-
dimension array to store the 1-covered interactions indexed
by test case tc and option p. In this way, for an operation
op(tc[p] ← v), break(op) is equal to the number of interac-
tions stored in the array of option p in tc. Therefore, the time
complexity for calculating break(op) is O(1). To efficiently
maintain (i.e., push and pop) these data structures, we also
track the positions of each uncovered and 1-covered interaction
in the arrays.

C. The Gradient Mode

The main procedure of meta-heuristics algorithms is search-
ing for CAs of iteratively smaller size. The effectiveness of this
search procedure relies on the combination of intensification
and diversification strategies which are guided with the scores



of operations [12], [13], [14]. The state-of-the-art solver TCA
interleaves between the greedy mode (intensification) and the
random mode (diversification) [10]. However, the greedy mode
only considers operations involving one selected uncovered
interaction. Therefore, there is a considerable probability that
the score of the chosen operation is negative, even when there
are other operations of positive score.

Thanks to the lightweight score computation method, some
algorithmic strategies that are not affordable previously now
can be implemented with affordable time consumption. Instead
of considering only one uncovered interaction, the gradient
mode of FastCA searches for good operations in a much larger
space (Section II). Whenever operations of positive score exist,
the gradient mode leads to a reduction of the number of
uncovered interaction. Although the gradient mode involves
much more score computations than the greedy mode, the
enhancement of the search outweighs the time consumption
if the lightweight score computation method was used.

D. Constraint Support

To generate a valid covering array, the constraints on
the permissible combination of values of options must be
handled correctly. In FastCA, the constraints are encoded as
the conjunctive normal form of the first-order logic formula.
For example, the clause p1 6= a ∨ p2 = b means that if the
value of option p1 is set to a, then p2 must be set to b.
In the initialization, we use the greedy solver ACTS [5] to
generate a covering array subjecting to all constraints. After
the initialization, FastCA prohibits operations which violate
the constraints, so the validity of the partial-CA is guaranteed
during the entire search procedure. Noting that since each test
case is a complete assignment to all options, we do not need
any constraint solving in the course of the search procedure.
Using the concrete value of each option, it is straightforward
to check whether an operation violates the constraints.

E. Possible Extension

For industrial or safety-critical systems, it usually requires
higher covering strength testing for subsets of components,
while keeping relatively lower covering strength for other
components. In this case, variable strength covering arrays
may be more effective and efficient [15]. Currently, FastCA
only supports generating CAs with uniform covering strength
for all options. But it should be easily extended to support
variable covering strength by maintaining independent data
structures for score computation of each covering strength.

IV. EVALUATION

The performance of FastCA is evaluated on real-world
and synthetic benchmarks. Among them are 26 industrial
instances, including 6 popular instances SPINV, SPINS, GCC,
Apache HTTP Server, Bugzilla, and TCAS [3], as well as 20
instances from IBM covering a broad range of applications in-
cluding banking systems, telecommunications, healthcare, etc
[16]. The other 30 instances are synthetic instances generated
based on the characteristics of the industrial instances [8]. The

Fig. 1. Statistical results comparing search steps for FastCA with different
numbers of threads in 100s. The horizontal axis is the number of threads and
the vertical axis is the averaged ratio of the number of search steps using
multiple and single threads

covering strength is set to 3 , which is well studied by previous
literature [8], [9], [10].

While greedy solvers are faster, meta-heuristic solvers can
produce better solutions. FastCA is developed with the expec-
tation that it combines the advantage of greedy solvers and
meta-heuristic solvers. Therefore, we evaluate FastCA against
state-of-the-art solvers in terms of both the size of CAs and the
time consumption. The competitor solvers include three meta-
heuristic solvers TCA [10], HHSA [9] and CASA [8], as well as
a greedy solver ACTS [5]. We report the smallest size (‘min’)
and the averaged size (‘avg’) found by the respective algorithm
over 10 runs, with the cutoff time set to 1000 seconds for each
run. The running time (‘time’) is averaged over 10 runs for
finding the optimized CAs. To further illustrate the efficiency
of FastCA, we also report the results of FastCA in a much
shorter time budget of 100 seconds.

The experimental results on the industrial instances are
presented in Table I, which is taken from [11]. As it is shown,
under the same time budget of 1000 seconds, FastCA outper-
forms all its competitors significantly and achieves the smallest
covering arrays (cover all interactions) on most instances. It is
impressive that even within only one-tenth of the time budget,
FastCA still stands out to be the best solver. More experimental
results are available on the GitHub repository.

A. Speedup of Parallel Execution

To solve difficult instances more efficiently, parallelism is
supported in FastCA. In the course of the search procedure,
the score computation of operations, as well as the applying
of the selected operation, can be executed in parallel. We run
the multi-thread version of FastCA, which parallelizes both
score computation and operation applying, on three difficult
instances out of six industrial instances, including Apache,
GCC, and SPINV. On the other three easy instances (Bugzilla,
SPINS, and TCAS), the benefit brought by multi-threads may
not cover the cost of inter-thread communication.

Figure 1 presents the speedups in terms of step numbers
when using different numbers of threads. It is shown that the



TABLE I
COMPARING FastCA AGAINST STATE-OF-THE-ART COMPETITORS FOR 3-WAY CCAG ON THE INDUSTRIAL BENCHMARKS. THE RUNNING TIME IS

MEASURED IN CPU SECOND AND AVERAGED OVER 10 RUNS. THIS TABLE IS TAKEN FROM [11]

Instance FastCA (1000s) FastCA (100s) TCA (1000s) ACTS (1000s) HHSA (1000s) CASA (1000s)
min (avg) time min (avg) time min (avg) time min time min (avg) time min (avg) time

Apache 133 (134.7) 716.77 141 (142.7) 79.12 154 (156.1) 871.68 173 7.92 – >1000 245 (247.9) 920.36
Bugzilla 48 (48) 17.35 48 (48) 17.35 48 (48) 9.96 68 0.44 60 (60.9) 481.55 61 (64.6) 36.38
GCC 75 (76.8) 561.74 79 (80.6) 75.44 82 (83.6) 802.79 108 9.48 – >1000 134 (140) 943.47
SPINS 80 (80) 1.17 80 (80) 1.17 80 (80) 3.55 98 0.37 80 (85.7) 59.55 94 (100.5) 7.14
SPINV 195 (196) 415.45 196 (197.4) 65.26 198 (200.2) 152.27 286 1.27 – >1000 224 (233.1) 734.92
TCAS 400 (400) 0.47 400 (400) 0.47 400 (400) 0.1 405 0.32 400 (400) 337.88 400 (404.1) 4.27
Banking1 45 (45) 4.11 45 (45) 4.11 45 (45) 0.28 58 2.07 45 (45) 9.9 45 (46.2) 0.09
Banking2 30 (30) 0.66 30 (30) 0.66 30 (30) <0.01 39 0.44 30 (30) 1.1 30 (30.4) 0.35
CommProto. 41 (41) 16.68 41 (41) 16.68 41 (41) 1.4 49 3.22 41 (41) 76.94 41 (42.2) 0.25
Concurrency 8 (8) 0.31 8 (8) 0.31 8 (8) <0.01 8 0.51 8 (8) 7.51 8 (8) <0.01
Healthcare1 96 (96) 0.8 96 (96) 0.8 96 (96) 0.04 105 0.65 96 (96) 53.61 96 (96.6) 0.3
Healthcare2 50 (50.9) 225.47 50 (51.4) 26.74 52 (52) 129.18 67 1.26 51 (52.1) 23.5 53 (55.1) 6.16
Healthcare3 151 (151.5) 325.85 151 (152.4) 48.69 154 (154.8) 283.19 209 0.92 177 (186.9) 373.89 170 (175) 237.96
Healthcare4 238 (239) 417.3 240 (240.7) 56.61 240 (241.2) 651.75 294 1.21 320 (346.667) 725.21 278 (286.7) 835.15
Insurance 6851 (6851) 1.74 6851 (6851) 1.74 6851 (6851) 10.07 6866 0.54 – >1000 7027 (7156.4) 770.29
NetworkMg. 1100 (1100) 1.14 1100 (1100) 1.14 1100 (1100) 0.55 1125 0.59 1100 (1100) 440.68 1124 (1136.8) 5.72
Proc.Comm1 104 (104.8) 160.59 105 (105.3) 32.23 108 (108.5) 273.87 163 0.63 114 (117.6) 90.78 117 (120.7) 111.51
Proc.Comm2 125 (125.6) 189.36 125 (126.2) 53.81 126 (126.6) 516.91 161 1.64 140 (148.2) 572.5 140 (145) 236.73
Services 813 (815.2) 685.53 829 (834.2) 81.4 842 (848.5) 218.69 963 10.35 840 (860) 789.42 856 (894) 464.39
Storage1 25 (25) 2.05 25 (25) 2.05 25 (25) <0.01 25 1.52 25 (25) 15.53 25 (25) <0.01
Storage2 54 (54) 0.09 54 (54) 0.09 54 (54) <0.01 74 0.03 54 (54) 15.9 54 (55.8) 0.02
Storage3 222 (222) 3.43 222 (222) 3.43 222 (222) 7.68 239 1.54 224 (225.1) 675.16 241 (245.8) 1.83
Storage4 910 (910) 3.62 910 (910) 3.62 910 (910) 34.68 990 0.76 960 (960) 853.39 926 (951.6) 723.84
Storage5 1705 (1706.9) 445.17 1707 (1710.3) 72.45 1710 (1712.3) 796.41 1879 2.93 – >1000 1877 (1958.3) 971.23
SystemMg. 45 (45) 1.65 45 (45) 1.65 45 (45) 0.88 60 0.49 45 (45.2) 16.6 47 (48.3) 0.3
Telecom 120 (120) 0.57 120 (120) 0.57 120 (120) 0.12 126 0.53 120 (120) 12.4 120 (120.4) 0.37
#Better (#Euqal) of FastCA 10 (16) 24 (2) 16 (10) 24 (2)

performance of FastCA is further improved for solving difficult
instances with the support of multi-threads.

V. CONCLUSION

We present a new solver FastCA for CCAG, which can pro-
vide high quality solutions within much shorter time compared
to state-of-the-art CCAG solvers. Based on the lightweight
score computation method, FastCA works efficiently in the
new gradient mode to explore the search space more widely
and intensively. Experimental results show that FastCA out-
performs all state-of-the-art CCAG solvers significantly on the
metrics of the CA size and the run time. It is able to achieve
better solutions even within a much shorter time budget.

The testing benchmarks and the detailed experimental re-
sults are available at https://github.com/jkunlin/FastCATool.
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