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Abstract

The Boolean Satisfiability problem (SAT) is a prototypical NP-complete problem, and
is central to many domains of computer science and artificial intelligence. One of the
most famous local search algorithms for SAT is WalkSAT, which is an initial algorithm
that has wide influence among modern local search algorithms. Especially, WalkSAT
is shown to be very efficient in solving large random 3-SAT instances. The runtime
of a local search algorithm is determined not only by its search behavior, but also
the complexity of each iteration. This work proposes an efficient implementation for
WalkSAT, which leads to twice speedup over the latest (and fastest) implementation
version of WalkSAT, according to the experiments on random 3-SAT instances near
the phase transition with up to 1 million variables.
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1. Introduction

The Boolean satisfiability (SAT) problem is a prototypical NP-complete problem,
and is an important subject of study in many areas of computer science and artificial
intelligence. Given a conjunctive normal form (CNF) formula, the SAT problem is to
decide whether there is an assignment to its variables that satisfies the formula. Algo-
rithms for solving SAT can be mainly categorized into two classes: complete algorithms
and stochastic local search (SLS) algorithms.

Among SLS algorithms for SAT, WalkSAT [1] stands out as one of the most influ-
ential algorithms. Especially, it is still competitive with the sate of the art in solving
large random 3-SAT instances [2, 3]. Recently, there has been increasing interest in
WalkSAT due to the discovery of its great power on large random 3-SAT instances. In
2004, Aurell et al. observed that WalkSAT was far more powerful than had been ap-
preciated [4]. Further empirical studies showed that WalkSAT (with p = 0.567) scales
linearly in n for random 3-SAT instances with a ratio up to 4.2 [2, 5]. The more recent
study in [3] illustrated WalkSAT has extremely good performance on random 3-SAT
instances (r = 4.2) with up to 5× 105 variables.

One significant factor of the success of WalkSAT is its low complexity each step.
Recently, the authors of WalkSAT proposed a new implementation (WalkSAT_v50),
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which is optimized according to the suggestions by Donald E. Knuth and is 20% faster
than earlier versions.

This work proposes a more efficient implementation for WalkSAT. As will be in-
troduced in Section 3, WalkSAT mainly utilizes the property break to pick a variable
to flip from a falsified clause. Our implementation relies on the fact that for a variable
x, a clause contributes (one) to break(x) only when the clause has only one true literal,
which also happens to be a true literal of x.

As usual, we record the number of true literals for each clause c. However, the key
data structures are two index arrays for each variable x: one stores the index numbers of
clauses where its positive literal x appears, and the other stores those of clauses where
its negative literal ¬x appears.

Employing these data structures in a non-caching implementation framework, we
can compute the break values for variables in a clause very quickly. To compute
break(x), we only need to scan one of the two index arrays for x, i.e., the one that
records index numbers of clauses containing true literals of x, which contains only
1
2 ·

km
n = k

2 · r elements for k-SAT with the clause-to-variable ratio r. For 3-SAT
instances with r = 4.2 (near the phase transition), the expectation of this number is
3
2 · 4.2 = 6.3.

We would like to note that, although similar data structures have been used
in DPLL algorithms (and maybe some SLS ones), this is the first time to combine
them with the non-caching computing framework, to the best of our knowledge. It
is this combination of data structure and non-caching computing framework that
makes our implementation so efficient.

The experiments show that our new implementation of WalkSAT is twice faster
than WalkSAT_v50 on large random 3-SAT instances. When compared to the state-of-
the-art local search solver probSAT on random 3-SAT instances, our implementation
of WalkSAT is also obviously faster. The codes of our implementation of WalkSAT can
be downloaded online1.

The remainder of this paper is organized as follows. Some definitions and notations
are given in the next section. Section 3 introduces the WalkSAT algorithm. Section 4
proposes an efficient implementation for WalkSAT. Experiments for testing the new
implementation of WalkSAT are carried out in Section 5. Finally, we give some con-
cluding remarks.

2. Definitions and Notations

Given a set of n Boolean variables {x1, x2, ..., xn}, a literal is either a variable
x (which is called positive literal) or its negation ¬x (which is called negative literal).
A clause is a disjunction of literals. A Conjunctive Normal Form (CNF) formula F =
C1 ∧ C2 ∧ ... ∧ Cm is a conjunction of clauses. The Boolean Satisfiability problem
(SAT) consists in testing whether all clauses in a given CNF formula F can be satisfied
by some consistent assignment of truth values to variables. The clause-to-variable ratio

1www.shaoweicai.net/SAT.html
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of a CNF formula with n variables and m clauses is r = m/n. For a given clause C,
the set of all variables that appear in C is denoted as V ars(C).

A well known generation model for SAT is the random k-SAT model [6]. A random
k-SAT formula with n variables andm clauses, is a CNF formula where the clauses are
chosen uniformly, independently and without replacement among all 2k

(
n
k

)
non-trivial

clauses of length k, i.e., clauses with k distinct, non-complementary literals.
Given an assignment α, if a literal evaluates to true under α, we say it is a true

literal; otherwise, we say it is a false literal. A clause is satisfied if it has at least one
true literal, and falsified if it has no true literal. In this work, when talking about the
states of literals and clauses, the assignment α is always the current assignment, and
thus omitted. An important concept in WalkSAT is the variable property break. For a
variable x, break(x) is the number of satisfied clauses that would become falsified by
flipping x.

3. The WalkSAT Algorithm

This section introduces the WalkSAT algorithm, which was proposed in [1]. Walk-
SAT is one of the most influential SLS algorithms for SAT. It provides basic algorithmic
ideas in local search for SAT, and is still competitive with the state of the art in solving
random 3-SAT instances.

In each step, WalkSAT picks a variable to flip as follows. First, a falsified clause C
is selected randomly. If there exist variables with a break value of 0 in clause C, one
of such variables is flipped, with ties broken randomly. If no such variable exists, then
with a certain probability p (the noise parameter), one of the variables from C is ran-
domly selected; in the remaining cases, one of the variables with the minimum break
value from C is selected, with ties broken randomly. For details about the WalkSAT
algorithm, please refer to [7] and [8].

4. More Efficient Implementation for WalkSAT

The runtime of a local search algorithm is determined not only by its search be-
havior, but also the complexity of each iteration. In this section, we present an efficient
implementation for WalkSAT, which significantly improve the performance of Walk-
SAT.

4.1. The Compute-when-evaluate Framework
For GSAT-family algorithms, the caching and incremental updating scheme (for

calculating scores) is much more efficient than the one in which scores are computed
from scratch in every step. However, for the WalkSAT algorithm, computing a vari-
able’s break value straight before its evaluation (for being selected or not) leads to
better performance. For convenience, we refer to this implementation as “compute-
when-evaluate”, according to how it works. In this work, we adopt the compute-when-
evaluate implementation framework.

Based on this compute-when-evaluate framework, each step of WalkSAT is de-
scribed in Algorithm 1. Two important notations are breakmin and minbV ars. For a
clause C,
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breakmin = min
x∈V ars(C)

break(x) (1)

minbV ars = {x|x ∈ V ars(C), break(x) = breakmin} (2)

That is, breakmin is the minimum break value among break values of all variables
in the selected falsified clause, and minbV ars is a stack that stores all variables with
the minimum break in the selected falsified clause.

Algorithm 1: Each Step of WalkSAT in Compute-when-evaluate Implementation
Framework
C := a falsified clause chosen at random;1

breakmin :=MAXINT , minbV ars := ∅;2

for i := 1 to |C| do3

v := ith variable in clause C;4

compute break(v);5

if break(v) < breakmin then6

breakmin := break(v);7

reset minbV ars so that v is its only element;8

else if break(v) = breakmin then9

push v into minbV ars;10

if breakmin = 0 then11

v := a random variable in minbV ars;12

else13

With probability p:14

v := a random variable in C;15

With probability 1− p:16

v := a random variable in minbV ars;17

flip v;18

4.2. Computing break Efficiently
The efficiency of implementations based on the compute-when-evaluate framework

mainly depends on the efficiency of computing the break value of variables. In our
implementation, we need the following data structure to compute the break values of
variables:

1. TrueLitCount: an array that records the number of true literals for all clauses.
For example, TrueLitCount(0) = 2 means the first clause (suppose the index
numbers of clauses begin with 0) has 2 true literals;

2. PosLitClause(x) for each variable x: an array that stores the index numbers of
clauses where the positive literal x appears. For example, PosLitClause(x) =
{0, 3, 6, 8, 23, 90} means the literal x (only) appears in clauses whose index
numbers are 0,3,6,8,23,90.

4



3. NegLitClause(x) for each variable x: an array that stores the index numbers
of clauses where the negative literal ¬x appears.

Our implementation relies on the following observation.

Observation 1. For a variable x, a clause contributes (one) to break(x) only when
the clause has only one true literal, which is a true literal of x.

The procedure of computing break(x) for a variable x is given in Algorithm 2. As
shown in Algorithm 2, to compute break(x), we only need to scan one of the two
index arrays for x, i.e., PosLitClause(x) or NegLitClause(x). For a variable x
that we would like to compute its break value, first we initialize break(x) as 0. Then, if
the truth value of x is TRUE under current assignment, we scan the PosLitClause(x)
array and compute break(x) as follows. For each c ∈ PosLitClause(x), we check
whether clause c contains exactly one true literal. If this is the case, it means literal x
is the only true literal in clause c. Then, flipping the value of x would make clause c
become falsified from satisfied, and thus break(x) should be increased by one. If the
truth value of x is FALSE under current assignment, we scan NegLitClause(x) and
compute break(x) similarly.

It is clear that the procedure in Algorithm 2 correctly computes break(x), if x has
the minimum break among all variables in the clause. For those variables whose break
values are greater than the current value of breakmin, it is not necessary to compute
their break values, as we only care which are variables with the minimum break in
WalkSAT, rather than the concrete break value of each variable.

This computing procedure is very efficient. Given a k-SAT instance, for a vari-
able x, the size of either PosLitClause(x) or NegLitClause(x) is 1

2 ·
Km
n = k

2 r.
Particularly, for 3-SAT instances, in order to compute the break value for a variable,
we only need to perform 3

2r iterations, which is approximately only 6 when r = 4.2.
Moreover, as we just mentioned above, once the break value of a variable is greater
than breakmin, we can immediately quite and return, as this variable cannot have the
minimum break.

Previous implementations such as WalkSAT_50 also store clauses for positive lit-
eral and negative literal for each variable. However, this data structure — storing clause
index numbers for positive literal and negative literal in two arrays, is new in local
search. Especially, the power of this data structure is exploited fully in the compute-
when-evaluate framework, and their combination allows us to significantly improve the
performance of WalkSAT.

5. Experimental Results

We carry out experiments to compare our implementation of WalkSAT with the
existing fastest implementation, as well as the state-of-the-art local search solver prob-
SAT, on large random 3-SAT instances.

Benchmarks
For experiments, we generate 300 satisfiable huge random 3-SAT instances near

the phase transition (r = 4.2) according to the random k-SAT model, which have been
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Algorithm 2: Computing break(x)

break(x) := 0;1

if the truth value of x is TRUE then2

foreach clause c ∈ PosLitClause(x) do3

if TrueLitCount(c) = 1 then break(x)++;4

if break(x) > breakmin then return;5

else6

foreach clause c ∈ NegLitClause(x) do7

if TrueLitCount(c) = 1 then break(x)++;8

if break(x) > breakmin then return;9

cited as the hardest group of SAT problems [9]. There are 100 instances for each size
(n = 105, 5× 105, 106). Note that we do not include other kinds of benchmarks, such
as random 5-SAT, 7-SAT and structured ones, because the WalkSAT algorithm is not
good at solving those instances, and thus the implementation does not have an obvious
impact on the performance.

Solvers for Comparison

We compare our implementation of WalkSAT with the latest version (v50) of Walk-
SAT from its author’s website2, with the noise parameter set to 0.567. Note that this
version (v50) has done code optimizations suggested by Donald E. Knuth, and is 20%
faster than earlier versions3. For the purpose of comparision with state-of-the-art solver
on random 3-SAT, we also test probSAT [3] in our experiments, which made the re-
cent progress in solving random 3-SAT and won the random track of SAT Competition
2013.

Soft- and Hard-ware

Our implementation of WalkSAT is programmed in C++, complied by g++ with
the ‘-O3’ option. The noise parameter is set to 0.567, as suggested in literature [2, 5].

All experiments are carried out on a workstation under Linux, using 2 cores of
Intel(R) Core(TM) i7-2640M 2.8 GHz CPU and 8 GB RAM. The experiments are
conducted with EDACC [10], an experimental platform for testing SAT solvers, which
has been used for SAT Challenge 2012 and SAT Competition 2013. Each solver was
performed on each instance once within a cutoff time of 10000 seconds so that each
run can find a satisfying assignment within the cutoff time. We compare the averaged
run time for each instance class.

2http://www.cs.rochester.edu/~kautz/walksat/Walksat_v50.zip
3http://www.cs.rochester.edu/~kautz/walksat/
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#var WalkSAT_v50 WalkSAT(this work) probSAT
105 335 132 339

5× 105 2373 1002 2064
106 5347 2358 4807

Table 1: Averaged run time (in second) on random 3-SAT instances. Each solver is performed on each
instance within a cutoff time of 10000 seconds so that each run can find a satisfying assignment within the
cutoff time.

Results

The experimental results are reported in Table 1, which clearly show that the av-
eraged run time of our implementation of WalkSAT is consistently less than half that
of WalkSAT_v50. Also, our implementation of WalkSAT performs much faster than
probSAT.

6. Conclusions

We proposed a new implementation for WalkSAT, which combines a new data
structure with the non-caching implementation framework. This implementation en-
ables us to compute the break values of variables very efficiently, and thus improve the
performance of WalkSAT. The experiments on random 3-SAT with up to 1 million vari-
ables show that our implementation is more than twice faster than existing fastest im-
plementation of WalkSAT, and also significantly outperforms the state-of-the-art SLS
solver namely probSAT.

The implementation method in this work can be easily applied to improve other
local search algorithms for SAT of focused random walk style.
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