
NIL: Learning Nonlinear Interpolants

Mingshuai Chen1,2(B) , Jian Wang1,2 , Jie An3 , Bohua Zhan1,2(B) ,
Deepak Kapur4 , and Naijun Zhan1,2(B)

1 State Key Laboratory of Computer Science,
Institute of Software, CAS, Beijing, China

{chenms,bzhan,znj}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 School of Software Engineering, Tongji University, Shanghai, China
4 Department of Computer Science, University of New Mexico, Albuquerque, USA

Abstract. Nonlinear interpolants have been shown useful for the veri-
fication of programs and hybrid systems in contexts of theorem proving,
model checking, abstract interpretation, etc. The underlying synthesis
problem, however, is challenging and existing methods have limitations
on the form of formulae to be interpolated. We leverage classification
techniques with space transformations and kernel tricks as established
in the realm of machine learning, and present a counterexample-guided
method named NIL for synthesizing polynomial interpolants, thereby
yielding a unified framework tackling the interpolation problem for the
general quantifier-free theory of nonlinear arithmetic, possibly involving
transcendental functions. We prove the soundness of NIL and propose
sufficient conditions under which NIL is guaranteed to converge, i.e.,
the derived sequence of candidate interpolants converges to an actual
interpolant, and is complete, namely the algorithm terminates by pro-
ducing an interpolant if there exists one. The applicability and effective-
ness of our technique are demonstrated experimentally on a collection
of representative benchmarks from the literature, where in particular,
our method suffices to address more interpolation tasks, including those
with perturbations in parameters, and in many cases synthesizes simpler
interpolants compared with existing approaches.

Keywords: Nonlinear Craig interpolant ·
Counterexample-guided learning · Program verification ·
Support vector machines (SVMs)

1 Introduction

Interpolation-based technique provides a powerful mechanism for local and mod-
ular reasoning, thereby improving scalability of various verification techniques,

This work has been supported through grants by NSFC under grant No. 61625206
and 61732001, by the CAS Pioneer Hundred Talents Program under grant No.
Y9RC585036, and by the National Science Foundation Award DMS-1217054.

c© Springer Nature Switzerland AG 2019
P. Fontaine (Ed.): CADE 2019, LNAI 11716, pp. 178–196, 2019.
https://doi.org/10.1007/978-3-030-29436-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29436-6_11&domain=pdf
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0002-8840-5605
http://orcid.org/0000-0001-9260-9697
http://orcid.org/0000-0001-5377-9351
http://orcid.org/0000-0003-2464-2895
http://orcid.org/0000-0003-3298-3817
https://doi.org/10.1007/978-3-030-29436-6_11

NIL: Learning Nonlinear Interpolants 179

e.g., theorem proving, model checking and abstract interpretation, to name just
a few. The study of interpolation was pioneered by Kraj́ıček [27] and Pudlák [35]
in connection with theorem proving, by McMillan [30] in the context of model
checking, by Graf and Säıdi [17], McMillan [31] and Henzinger et al. [20] per-
taining to abstraction like CEGAR [8], and by Wang et al. [24] in the context
of learning-based invariant generation. Developing efficient algorithms for gen-
erating interpolants for various theories and their combination has become an
active research area, see e.g., [7,25,26,31,32,36,46].

Though established methods addressing interpolant generation for Pres-
burger arithmetic, decidable fragments of first-order logic, theory of equality
over uninterpreted functions (EUFs) as well as their combination have been
extensively studied in the literature, there appears to be little work on syn-
thesizing nonlinear interpolants. Dai et al. proposed an algorithm in [11] for
generating interpolants for nonlinear polynomial inequalities based on the exis-
tence of a witness guaranteed by Stengle’s Positivstellensatz [16] that can be
computed using semi-definite programming (SDP). A major limitation of this
method is that the two mutually contradictory formulas to be interpolated must
share the same set of variables. Okudono et al. extended [11] in [33] to cater
for the so-called sharper and simpler interpolants by developing a continuous
fraction-based algorithm that rounds off numerical solutions. In [14], Gan et al.
considered the interpolation for inequalities combined with EUFs by employ-
ing the hierarchical calculus framework proposed in [38] (and its extension [39]),
while the inequalities are limited to be of the concave quadratic form. In [15], Gao
and Zufferey transformed proof traces from δ-complete decision procedures into
interpolants, composed of Boolean combinations of linear constraints, which can
deal with certain transcendental functions beyond polynomials. The techniques
of encoding interpolants as logical combinations of linear constraints, includ-
ing [15,28,37], however, yield potentially large interpolants (requiring even an
infinite length in the worst case) and their usage thus becomes difficult in prac-
tical applications (cf. Example 1).

Interpolants can be viewed as classifiers that distinguish, in the context of
program verification for instance, positive program states from negative ones
(unreachable/error states) and consequently the state-of-the-art classification
algorithms can be leveraged for synthesizing interpolants. The universal appli-
cability of classification techniques substantially extends the scope of theories
admitting interpolant generation. This idea was first employed by Sharma et al.
in [37], which infers linear interpolants through hyperplane-classifiers generated
by support vector machines (SVMs) [3,45] whilst handles superficial nonlinear-
ities by assembling interpolants in the form purely of conjunctions (or dually,
disjunctions) of linear half-spaces, which addresses only a limited category of
formulae featuring nonlinearities. The learning-based paradigm has also been
exploited in the context of nonlinear constraint solving, see e.g., [12].

In this paper, we present a classification-based learning method for the syn-
thesis of polynomial interpolants for the quantifier-free theory of nonlinear arith-
metic. Our approach is based on techniques of space transformations and ker-
nel tricks pertinent to SVMs that have been well-developed in the realm of

180 M. Chen et al.

machine learning. Our method is described by an algorithm called NIL (and
its several variants) that adopts the counterexample-guided inductive synthesis
framework [22,40]. We prove the soundness of NIL and propose sufficient condi-
tions under which NIL is guaranteed to converge, that is, the derived sequence
of classifiers (candidate interpolants) converges to an actual interpolant, and is
complete, i.e., if an interpolant exists, the method terminates with an actual
interpolant. In contrast to related work on generation of nonlinear interpolants,
which restrict the input formulae, our technique provides a uniform framework,
tackling the interpolation problem for the general quantifier-free theory of non-
linear arithmetic, possibly involving transcendental functions. The applicabil-
ity and effectiveness of NIL are demonstrated experimentally on a collection of
representative benchmarks from the literature; as is evident from experimental
results, our method is able to address more demands on the nature of inter-
polants, including those with perturbations in parameters (due to the robust-
ness inherited from SVMs); in many cases, it synthesizes simpler interpolants
compared with other approaches, as shown by the following example.

Example 1 ([15]). Consider two mutually contradictory inequalities φ =̂ y ≥ x2

and ψ =̂ y ≤ − cos(x) + 0.8. Our NIL algorithm constructs a single polynomial
inequality I =̂ 15x2 < 4 + 20y as the interpolant, namely, φ |= I and I ∧ ψ
is unsatisfiable; while the interpolant generated by the approach in [15], only
when provided with sufficiently large finite domains, e.g., x ∈ [−π, π] and y ∈
[−0.2, π2], is y > 1.8 ∨ (0.59 ≤ y ≤ 1.8 ∧ −1.35 ≤ x ≤ 1.35) ∨ (0.09 ≤ y <
0.59 ∧ −0.77 ≤ x ≤ 0.77) ∨ (y ≥ 0 ∧ −0.3 ≤ x ≤ 0.3). As will be discussed later,
we do not need to provide a priori information to our algorithm such as bounds
on variables.

The rest of the paper is organized as follows. Section 2 introduces some pre-
liminaries on Craig interpolants and SVMs. In Sect. 3, we present the NIL algo-
rithm dedicated to synthesizing nonlinear interpolants, followed by the analysis
of its soundness, conditional completeness and convergence in Sect. 4. Section 5
reports several implementation issues and experimental results on a collection
of benchmarks (with the robustness discussed in Sect. 6). The paper is then
concluded in Sect. 7.

2 Preliminaries

Let N, Q and R be the set of natural, rational and real numbers, respectively.
We denote by R[x] the polynomial ring over R with variables x = (x1, . . . ,xn),
and ‖x‖ denotes the �2-norm [4]. For a set X ⊆ R

n, its convex hull is denoted by
conv(X). For x,x′ ∈ X, dist(x,x′) = ‖x − x′‖ denotes the Euclidean distance
between two points, which generalizes to dist(x,X ′) = minx′∈X′ dist(x,x′).
Given δ ≥ 0, define B(x, δ) = {x′ ∈ R

n|‖x′ −x‖ ≤ δ} as the closed ball of radius
δ centered at x. Consider the quantifier-free fragment of a first-order theory of
polynomials over the reals, denoted by TP , in which a formula ϕ is of the form

ϕ =̂ p(x) 	 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

NIL: Learning Nonlinear Interpolants 181

where p(x) ∈ R[x] and 	 ∈ {<,>,≤,≥,=}. A natural extension of our method
to cater for more general nonlinearities involving transcendental functions will
be demonstrated in subsequent sections. In the sequel, we use ⊥ to stand for false
and � for true. Let R[x]m consist of all polynomials p(x) of degree ≤ m ∈ N.
We abuse the notation ϕ ∈ R[x]m to abbreviate ϕ =̂ p(x) 	 0 and p(x) ∈ R[x]m
if no ambiguity arises.

Given formulas φ and ψ in a theory T , φ is valid w.r.t. T , written as |=T φ,
iff φ is true in all models of T ; φ entails ψ w.r.t. T , written as φ |=T ψ, iff
every model of T that makes φ true makes ψ also true; φ is satisfiable w.r.t. T ,
iff there is a model of T in which φ is true; otherwise unsatisfiable. It follows
that φ is unsatisfiable iff φ |=T ⊥. The set of all the models that make φ true
is denoted by [[φ]]T .

2.1 Craig Interpolant

Craig showed in [10] that given two formulas φ and ψ in a first-order logic T s.t.
φ |=T ψ, there always exists an interpolant I over the common symbols of φ
and ψ s.t. φ |=T I and I |=T ψ. In the verification literature, this terminology
has been abused by [31], which defined an interpolant over the common symbols
of φ and ψ as

Definition 1 (Interpolant). Given φ and ψ in a theory T s.t. φ∧ψ |=T ⊥, a
formula I is a (reverse) interpolant of φ and ψ if (i) φ |=T I; (ii) I ∧ψ |=T ⊥;
and (iii) I contains only common symbols shared by φ and ψ.

It is immediately obvious that φ |=T ψ iff φ ∧ ¬ψ |=T ⊥, namely, I is an
interpolant of φ and ψ iff I is a reverse interpolant in McMillan’s sense of φ and
¬ψ. We follow McMillan in continuing to abuse the terminology.

2.2 Support Vector Machines

In machine learning, support vector machines [3,45] are supervised learning
models for effective classification based on convex optimization. In a binary
setting, we are given a training dataset X = X+ � X− of n sample points
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ R

d, and yi is either 1, indicating a
positive sample xi ∈ X+, or −1, indicating a negative one in X−. The goal of
classification here is to find a potential hyperplane (a.k.a. linear classifier) to
separate the positive samples from the negative ones. There however might be
various or even infinite number of separating hyperplanes, and an SVM aims
to construct a separating hyperplane that yields the largest distance (so-called
functional margin) to the nearest positive and negative samples. Such a clas-
sification hyperplane is called the optimal-margin classifier while the samples
closest to it are called the support vectors.

Linear SVMs. Assume that X+ and X− are linearly separable, meaning that
there exists a linear separating hyperplane wTx+b = 0 such that yi(wTxi+b) >
0, for all (xi, yi) ∈ X. Then the functional margin can be formulated as

182 M. Chen et al.

γ =̂ 2min1≤i≤n 1/‖w‖|wTxi + b|.

Linear SVMs are committed to finding appropriate parameters (w, b) that max-
imize the functional margin while adhering to the constraints of separability,
which reduces equivalently to the following convex quadratic optimization prob-
lem [2] that can be efficiently solved by off-the-shelf packages for quadratic pro-
gramming:

minimize
w ,b

1
2
wTw subject to yi(wTxi + b) ≥ 1, i = 1, 2, . . . , n. (1)

Lemma 1 (Correctness of SVMs [37]). Given positive samples X+ which are
linearly separable from negative samples X−, SVMs produce, under computations
of infinite precision, a half-space h s.t. ∀x ∈ X+. h(x) > 0 and ∀x ∈ X−. h(x) <
0.

Corollary 1 (Separation of Convex Hulls [1]). The half-space h in Lemma 1
satisfies that ∀x ∈ conv(X+). h(x) > 0 and ∀x ∈ conv(X−). h(x) < 0.

Φ

Fig. 1. Mapping from a two-dimensional input space into a three-dimensional feature
space with linear separation thereof.

Nonlinear SVMs. When φ and ψ are formulas over nonlinear arithmetic, often
after sampling X, it is not possible to find a linearly separable hyperplane in the
common variables. However, a nonlinear surface that can be described as a linear
hyperplane in the space of monomials of bounded degree may separate X+ and
X−. The above construction is generalized by introducing a transformation from
R

d to R
d̃, the vector space of monomials in the common variables up to some

bounded degree, with yi(wTxi + b) ≥ 1 in (1) replaced by yi(wTΦ(xi) + b) ≥ 1,
where Φ is a linear expression in monomials in the common variables up to a
bounded degree. Here, the vectors Φ(x) span the feature space.

Consider the Lagrangian dual [3] of the modified optimization problem:

minimize
α

1
2

∑n

i=1

∑n

j=1
αiαjyiyjΦ(xi)TΦ(xj) −

∑n

i=1
αi

subject to
∑n

i=1
αiyi = 0, and αi ≥ 0 for i = 1, 2, . . . , n.

A kernel function κ : Rd × R
d �→ R is defined as κ(x,x′) =̂ Φ(x)TΦ(x′). The

introduction of the dual problem and the kernel function [3] reduces the compu-
tational complexity essentially from O(d̃) down to O(d). For the sake of post-

NIL: Learning Nonlinear Interpolants 183

verifying a candidate interpolant given by SVMs, we adopt an inhomogeneous
polynomial kernel function of the form

κ(x,x′) =̂ (βxTx′ + θ)m,

where m is the polynomial degree describing complexity of the feature space, θ ≥
0 is a parameter trading off the influence of higher-order versus lower-order terms
in the polynomial, and β is a scalar parameter. Henceforth, the optimal-margin
classifier (if there exists one) can be derived as wTΦ(x) =

∑n
i=1 αiκ(xi,x) = 0,

with xi being a support vector iff αi > 0. In practice, usually a large amount of
αis turn out to be zero and this leads to a simple representation of a classifier.
Figure 1 illustrates the intuitive idea of the transformation from the original
input space to the feature space. We will show in the sequel that the resulting
classifier can be viewed as a candidate interpolant, while its optimal-margin
feature contributes to a certain “medium” logical strength of the interpolant,
which is thus robust to perturbations (in the feature space) in the formulae to
be interpolated.

3 Learning Interpolants

In this section, we present the NIL algorithm for synthesizing nontrivial (reverse)
Craig interpolants for the quantifier-free theory of nonlinear arithmetic. It takes
as input a pair 〈φ, ψ〉 of formulas in TP as well as a positive integer m, and
aims to generate an interpolant I of maximum degree m, i.e., I ∈ R[x]m, if it
exists, such that φ |=TP

I and I ∧ ψ |=TP
⊥. Here, 〈φ, ψ〉 can be decorated as

〈φ(x,y), ψ(x, z)〉 with variables involved in the predicates, and thus x denotes
variables that are common to φ and ψ. In the sequel, we drop the subscript TP

in |=TP
and [[·]]TP

wherever the context is unambiguous.
Due to the decidability of the first-order theory of real-closed fields estab-

lished by Tarski [44], TP admits quantifier elimination (QE). This means that
the satisfiability of any formula in TP can be decided (in doubly exponential
time in the number of variables for the worst case). If the formula is satisfiable,
models satisfying the formula can also be constructed algorithmically (follow-
ing the same time complexity). Though the introduction of general forms of
transcendental functions renders the underlying theory undecidable, there does
exist certain extension of TP with transcendental functions (involving exponen-
tial functions, logarithms and trigonometric functions), e.g. that identified by
Strzeboński in [43] and references therein, which still admits QE. This allows a
straightforward extension of NIL to such a decidable fragment involving tran-
scendental functions. Specifically, the decidability remains when the transcen-
dental functions involved are real univariate exp-log functions [41] or tame ele-
mentary functions [42] which admit a real root isolation algorithm.

184 M. Chen et al.

Algorithm NIL: Learning nonlinear interpolant

input : φ and ψ in TP over common variables x;
m, degree of the polynomial kernel, and hence

maximum degree of the interpolant.
/* checking unsatisfiability */

1 if φ ∧ ψ �|= ⊥ then
/* no interpolant exists */

2 abort;

/* generating initial sample points */

3 〈X+, X−〉 ← Sampling(φ, ψ);
/* counterexample-guided learning */

4 while � do
/* generating a classifier by SVMs */

5 C ← SVM(X+, X−, m);
/* checking classification result */

6 if C = Failed then
/* no interpolant exists in R[x]m */

7 abort;

/* classifier as candidate interpolant */
8 else
9 I ← C;

/* valid interpolant found */
10 if φ |= I and I ∧ ψ |= ⊥ then
11 return I;

/* adding counterexamples */
12 else
13 X+ ← X+
 FindInstance(φ ∧ ¬I);

14 X− ← X−
 FindInstance(I ∧ ψ);

Fig. 2. In NIL, a candidate inter-

polant (black line as its boundary) is

refined to an actual one (red line as its

boundary) by adding a counterexample

(red dot). (Color figure online)

Fig. 3. In NILδ , a counterexample

(red dot) stays at least a distance

of δ away from the candidate inter-

polant (black line as its boundary) to

be refined, leading to an interpolant

(red line as its boundary) with toler-

ance δ. (Color figure online)

3.1 The Core Algorithm

The basic idea of NIL is to view interpolants as classifiers and use SVMs with
the kernel trick to perform effective classification. The algorithm is based on the
sampling-guessing-refining technique: in each iteration, it is fed with a classi-
fier (candidate interpolant) for a finite set of sample points from [[φ]] and [[ψ]]
(line 5), and verify the candidate (line 10) by checking the entailment problem
that defines an interpolant (as in Definition 1). If the verification succeeds, the
interpolant is returned as the final result. Otherwise, a set of counterexamples is
obtained (line 13 and 14) as new sample points to further refine the classifier. In
what follows, we explain the steps of the interpolation procedure in more detail.

Initial Sampling. The algorithm begins by checking the satisfiability of φ ∧ ψ.
If the formula is satisfiable, it is then impossible to find an interpolant, and the
algorithm stops declaring no interpolant exists.

Next, the algorithm attempts to sample points from both [[φ]] and [[ψ]]. This
initial sampling stage can usually be done efficiently using the Monte Carlo
method, e.g. by (uniformly) scattering a number of random points over certain
bounded range and then selecting those fall in [[φ]] and [[ψ]] respectively. However,
this method fails when one or both of the predicates is very unlikely to be sat-
isfied. One common example is when the predicate involves equalities. For such
situations, solving the satisfiability problem using QE is guaranted to succeed
in producing the sample points.

NIL: Learning Nonlinear Interpolants 185

To meet the condition that the generated interpolant can only involve sym-
bols that are common to φ and ψ, we can project the points sampled from [[φ]]
(resp. [[ψ]]) to the space of x by simply dropping the components that pertain
to y (resp. z) and thereby obtain sample points in X+ (resp. X−).

Entailment Checking. The correctness of SVM given in Lemma 1 only guaran-
tees that the candidate interpolant separates the finite set of points sampled from
[[φ]] and [[ψ]], not necessarily the entirety of the two sets. Hence, post-verification
by checking the entailment problem (line 10) is needed for the candidate to be
claimed as an interpolant of φ and ψ. This can be achieved by solving the equiv-
alent QE problems ∀x. φ(x,y)|x =⇒ I(x) and ∀x. I(x) ∧ ψ(x, z)|x =⇒ ⊥,
where ·|x is the projection to the common space over x. The candidate will be
returned as an actual interpolant if both formulae reduce to � after eliminat-
ing the universal quantifiers. The satisfiability checking at line 1 can be solved
analogously. Granted, the entailment checking can also be encoded in SMT tech-
niques by asking the satisfiability of the negation of the universally quantified
predicates, however, limitations of current SMT solvers in nonlinear arithmetic
hinders them from being practically used in our framework, as demonstrated
later in Sect. 5.

Counterexample Generation. If a candidate interpolant cannot be verified as
an actual one, then at least one witness can be found as a counterexample to that
candidate, which can be added to the set of sample points in the next iteration to
refine further candidates (cf. Fig. 2). Multiple counterexamples can be obtained
at a time thereby effectively reducing the number of future iterations.

In general, we have little control over which counterexample will be returned
by QE. In the worst case, the counterexample can lie almost exactly on the
hyperplane found by SVM. This poses issues for the termination of the algorithm.
We will address this theoretical issue by slightly modifying the algorithm, as
explained in Sects. 3.3 and 4.

3.2 Comparison with the Näıve QE-Based Method

Simply performing QE on ∃y. φ(x,y) yields already an interpolant for mutu-
ally contradictory φ and ψ. Such an interpolant is actually the strongest in the
sense of [13], which presents an ordered family of interpolation systems due to
the logical strength of the synthesized interpolants. Dually, the negation of the
result when performing QE over ∃z. ψ(x, z) is the weakest interpolant. However,
as argued by D’Silva et al. in [13], a good interpolant (approximation of φ or
ψ) –when computing invariants of transition systems using interpolation-based
model checking– should be coarse enough to enable rapid convergence but strong
enough to be contained within the weakest inductive invariant. In contrast, the
advantages of NIL are two-fold: first, it produces better interpolants (in the above
sense) featuring “medium” strength (due to the way optimal-margin classifier is
defined) which are thus more effective in practical use and furthermore resilient
to perturbations in φ and ψ (i.e., the robustness shown later in Sect. 6); second,
NIL always returns a single polynomial inequality as the interpolant which is

186 M. Chen et al.

often simpler than that derived from the näıve QE-based method, where the
direct projection of φ(x,y) onto the common space over x can be as complex as
the original φ.

These issues can be avoided by combining this method with a template-based
approach, which in turn introduces fresh quantifiers over unknown parameters
to be eliminated. Note that in NIL the candidate interpolants I ∈ R[x]m under
verification are polynomials without unknown parameters, and therefore, in con-
trast to performing QE over an assumed template, the learning-based technique
can practically generate polynomial interpolants of higher degrees (with accept-
able rounds of iterations). For example, NIL is able to synthesize an interpolant
of degree 7 over 2 variables (depicted later in Fig. 4(b)), which would require a
polynomial template with

(

7+2
2

)

= 36 unknown parameters that goes far beyond
the capability of QE procedures.

On the other hand, performing QE within every iteration of the learning
process, for entailment checking and generating counterexamples, limits the effi-
ciency of the proposed method, thereby confining NIL currently to applications
only of small scales. Potential solutions to the efficiency bottleneck will be dis-
cussed in Sect. 5.

3.3 Variants of NIL

While the above basic algorithm is already effective in practice (as demonstrated
in Sect. 5), it is guaranteed to terminate only when there is an interpolant with
positive functional margin between [[φ]] and [[ψ]]. In this section, we present two
variants of the algorithm that have nicer theoretical properties in cases where
the two sets are only separated by an interpolant with zero functional margin,
e.g., cases where [[φ]] and [[ψ]] share adjacent or even coincident boundaries.

Entailment Checking with Tolerance δ. When performing entailment check-
ing for a candidate interpolant I, instead of using, e.g., the formula p(x) ≥ 0
for I, we can introduce a tolerance of δ. That is, we check the satisfiability of
φ ∧ (p(x) < −δ) and (p(x) ≥ δ) ∧ ψ instead of the original φ ∧ (p(x) < 0) and
(p(x) ≥ 0) ∧ ψ. This means that a candidate that is an interpolant “up to a
tolerance of δ” will be returned as a true interpolant, which may be acceptable
in some applications. If the candidate interpolant is still not verified, the coun-
terexample is guaranteed to be at least a distance of δ away from the separating
hyperplane. Note the distance δ is taken in the feature space R

d̃, not in the origi-
nal space. We let NILδ(φ, ψ,m) denote the version of NIL with this modification
(cf. Fig. 3). In the next section, we show NILδ(φ, ψ,m) terminates as long as
[[φ]] and [[ψ]] are bounded, including the case where they are separated only by
interpolants of functional margin zero.

Varying Tolerance During the Execution. A further refinement of the algo-
rithm can be made by varying the tolerance δ during the execution. We also
introduce a bounding box B of the varying size to handle unbounded cases.
Define algorithm NIL∗

δ,B(φ, ψ,m) as follows. Let δ1 = δ and B1 = B. For each
iteration i, execute the core algorithm, except that the counterexample must be

NIL: Learning Nonlinear Interpolants 187

a distance of at least δi away from the separating boundary, and have absolute
value in each dimension at most B (both in R

d̃). After the termination of iter-
ation i, begin iteration i + 1 with δi+1 = δi/2 and Bi+1 = 2Bi. This continues
until an interpolant is found or until a pre-specified cutoff. For any [[φ]] and [[ψ]]
(without the boundedness condition), this variant of the algorithm converges to
an interpolant in the limit, which will be made precise in the next section.

4 Soundness, Completeness and Convergence

In this section, we present theoretical results obtained for the basic NIL algo-
rithm and its variants. Proofs are available in the appendix of [6].

First, the basic algorithm is sound, as captured by Theorem1.

Theorem 1 (Soundness of NIL). NIL(φ, ψ,m) terminates and returns I if
and only if I is an interpolant in R[x]m of φ and ψ.

Under certain conditions, the algorithm is also terminating (and hence com-
plete). We prove two such situations below. In both cases, we require bounded-
ness of the two sets that we want to separate. In the first case, there exists an
interpolant with positive functional margin between the two sets.

Theorem 2 (Conditional Completeness of NIL). If [[φ]] and [[ψ]] are
bounded and there exists an interpolant in R[x]m of φ and ψ with positive func-
tional margin γ when mapped to R

d̃, then NIL(φ, ψ,m) terminates and returns
an interpolant I of φ and ψ.

The standard algorithm is not guaranteed to terminate when [[φ]] and [[ψ]] are
only separated by interpolants of functional margin zero. However, the modified
algorithm NILδ(φ, ψ,m) does terminate (with the cost that the resulting answer
is an interpolant with tolerance δ).

Theorem 3 (Completeness of NILδ with zero margin). If [[φ]] and [[ψ]] are
bounded, and δ > 0, then NILδ(φ, ψ,m) terminates. It returns an interpolant I
of φ and ψ with tolerance δ whenever such an interpolant exists.

By iteratively decreasing δ during the execution of the algorithm, as well as
introducing an iteratively increasing bounding box, as in NIL∗

δ,B(φ, ψ,m), we
can obtain more and more accurate candidate interpolants. We now show that
this algorithm converges to an interpolant without restrictions on φ and ψ. We
first make this convergence property precise in the following definition.

Definition 2 (Convergence of a sequence of equations to an inter-
polant). Given two sets [[φ]] and [[ψ]] that we want to separate, and an infinite
sequence of equations I1, I2, . . . , we say the sequence In converges to an inter-
polant of φ and ψ if, for each point p in the interior of [[φ]] or [[ψ]], there exists
some integer Kp such that Ik classifies p correctly for all k ≥ Kp.

Theorem 4 (Convergence of NIL∗
δ,B). Given two regions [[φ]] and [[ψ]]. Sup-

pose there exists an interpolant of φ and ψ, then the infinite sequence of can-
didates produced by NIL∗

δ,B(φ, ψ,m) converges to an interpolant in the sense of
Definition 2.

Mingshuai Chen
Cross-Out
Typo. See the corrected version at http://lcs.ios.ac.cn/~chenms/papers/CADE-27_FULL.pdf

188 M. Chen et al.

5 Implementation and Experiments

5.1 Implementation Issues

We have implemented the core algorithm NIL as a prototype1 in Wolfram Math-
ematica with LIBSVM [5] being integrated as an engine to perform SVM clas-
sifications. Despite featuring no completeness for adjacent [[φ]] and [[ψ]] nor con-
vergence for unbounded [[φ]] or [[ψ]], the standard NIL algorithm yields already
promising results as shown later in the experiments. Key Mathematica functions
that are utilized include Reduce, for entailment checking, e.g., the unsatisfia-
bility checking of φ ∧ ψ and the post-verification of a candidate interpolant,
and FindInstance, for generating counterexamples and sampling initial points
(when the random sampling strategy fails). The Reduce command implements a
decision procedure for TP and its appropriate extension to catering for transcen-
dental functions (cf. [43]) based on cylindrical algebraic decomposition (CAD),
due to Collins [9]. The underlying quantifier-elimination procedure, albeit induc-
ing rather high computation complexity, cannot in practice be replaced by SMT-
solving techniques (by checking the negation of a universally quantified predi-
cate) as in the linear arithmetic. For instance, the off-the-shelf SMT solver Z3
fails to accomplish our tasks particularly when the coefficients occurring in the
entailment problem to be checked get larger2.

Numerical Errors and Rounding. LIBSVM conducts floating-point compu-
tations for solving the optimization problems induced by SVMs and consequently
yields numerical errors occurring in the candidate interpolants. Such numerical
errors may block an otherwise valid interpolant from being verified as an actual
one and additionally bring down the simplicity and thereby the effectiveness of
the synthesized interpolant, thus not very often proving humans with clear-cut
understanding. This is a common issue for approaches that reduce the inter-
polation problem to numerical solving techniques, e.g. SDP solvers exploited
in [11,14,33], while an established method to tackle it is known as rational
recovery [29,47], which retrieves the nearest rational number from the continued
fraction representation of its floating-point approximation at any given accuracy
(see e.g. [47] for theoretical guarantees and [33] for applications in interpola-
tion). The algorithm implementing rational recovery has been integrated in our
implementation and the consequent benefits are two-fold: (i) NIL can now cope
with interpolation tasks where only exact coefficients suffice to constitute an
actual interpolant while any numerical error therein will render the interpolant
invalid, e.g., cases where [[φ]] and [[ψ]] share parallel, adjacent, or even coincident
boundaries, as demonstrated later by examples with ID 10–17 in Table 1; (ii)
rationalizing coefficients moreover facilitates simplifications over all of the can-
didate interpolants and therefore practically accelerating the entailment checking
and counterexample generation processes, which in return yields simpler inter-
polants, as shown in Table 2 in the following section.

1 Available at http://lcs.ios.ac.cn/∼chenms/tools/NIL.tar.bz2.
2 As can be also observed at https://github.com/Z3Prover/z3/issues/1765.

http://lcs.ios.ac.cn/~chenms/tools/NIL.tar.bz2
https://github.com/Z3Prover/z3/issues/1765

NIL: Learning Nonlinear Interpolants 189

5.2 Benchmark and Experimental Results

Table 1 collects a group of benchmark examples from the literature on synthe-
sizing nonlinear interpolants as well as some geometrically contrived ones. All of
the experiments have been evaluated on a 3.6 GHz Intel Core-i7 processor with
8 GB RAM running 64-bit Ubuntu 16.04.

In Table 1, we group the set of examples into four categories comprising 20
cases in total. For each example, ID numbers the case, φ, ψ and I represent the
two formulas to be interpolated and the synthesized interpolant by our method
respectively, while Time/s indicates the total time in seconds for interpolation.
The categories are described as follows, and the visualization of a selected set of
typical examples thereof is further depicted in Fig. 4.

Cat. I: with/without rounding. This category includes 9 cases, for which
our method generates the polynomial interpolants correctly with or without
the rounding operation.

Cat. II: with rounding. For cases 10 to 17 in this category, where [[φ]] and [[ψ]]
share parallel, adjacent, or even coincident boundaries, our method produces
interpolants successfully with the rouding process based on rational recovery.

Cat. III: beyond polynomials. This category encloses two cases beyond the
theory TP of polynomials: for case 18, a verified polynomial interpolant is
obtained in spite of the transcendental term in ψ; while for case 19, the SVM
classification fails since [[φ]] and [[ψ]] are not linearly separable in any finite-
dimensional feature space and hence no polynomial interpolant exists for this
example. Note that our counterexample-guided learning framework admits a
straightforward extension to a decidable fragment of more general nonlinear
theories involving transcendental functions, as investigated in [43].

Cat. IV: unbalanced. The case 20, called Unbalanced, instantiates a particular
scenario where φ and ψ have extraordinary “unbalanced” number of models
that make them true respectively. For this example, there are an infinite num-
ber of models satisfying φ yet one single model (i.e., x = 0) satisfying ψ. The
training process in SVMs may fail when encountering extremely unbalanced
number of positive/negative samples. This is solved by specifying a weight
factor for the positive set of samples as the number of negative ones, and
dually for the other way around, to balance biased number of training sam-
ples before triggering the classification. Such a balancing trick is supported
in LIBSVM.

Remark that examples named CAV13-1/3/4 are taken from [11] (and the lat-
ter two originally from [28] and [18] respectively), where interpolation is applied
to discovering inductive invariants in the verification of programs and hybrid
systems. For instance, CAV13-3 is a program fragment describing an acceler-
ating car and the synthesized interpolant by NIL suffices to prove the safety
property of the car concerning its velocity.

Applicability and Comparison with Existing Approaches. As shown in
Table 1, our learning-based technique succeeds in all of the benchmark examples

190 M. Chen et al.
T
a
b
le

1
.

B
en

ck
m

a
rk

ex
a
m

p
le

s
fo

r
sy

n
th

es
iz

in
g

n
o
n
li
n
ea

r
in

te
rp

o
la

n
ts

.

NIL: Learning Nonlinear Interpolants 191

Fig. 4. Visualization in NIL on a selected set of examples. Legends: gray region: [[φ]],
blue region: [[ψ]], pink region: [[I]] with a valid interpolant I, red dots: X+, blue dots:
X−, circled dots: support vectors. Sample points are hidden in 3D-graphics for a clear
presentation.

that admit polynomial interpolants. Due to theoretical limitations of existing
approaches as elaborated in Sect. 1, none of the aforementioned methods can
cope with as many cases in Table 1 as NIL can. For instances, the Twisted
example as depicted in Fig. 4(c) falls beyond the scope of concave quadratic
formulas and thus cannot be addressed by the approach in [14], while the Parallel
parabola example as shown in Fig. 4(d) needs an infinite combination of linear
constraints as an interpolant when performing the technique in [15] and hence not
of practical use, to name just a few. Moreover, we list in Table 2 a comparison
of the synthesized interpolants against works where the benchmark examples
are collected from. As being immediately obvious from Table 2, our technique

192 M. Chen et al.

Table 2. Comparison of the synthesized interpolants.

often produces interpolants of simpler forms, particularly for examples CAV13-
2, CAV13-4 and TACAS16. Such a simplicity benefits from both the rounding
effect and the form of interpolant (i.e., a single polynomial inequality) that we
tend to construct.

Bottleneck of Efficiency and Potential Solutions. The current implemen-
tation of NIL works promisingly for small examples; it does not scale to interpo-
lation problems with large numbers of common variables, as reported in Table 1.
The bottleneck stems from quantifier eliminations performed within every iter-
ation of the learning process, for entailment checking and generating counterex-
amples. We pose here several potential solutions that are expected to signifi-
cantly reduce computational efforts: (i) substitute general purpose QE procedure
that perform CAD by the so-called variant quantifier-elimination (VQE) algo-
rithm [21], which features singly-exponential complexity in the number of vari-
ables. This however requires a careful inspection of whether our problem meets
the geometric conditions imposed by VQE; (ii) incorporate relaxation schemes,
e.g., Lagrangian relaxation and sum-of-squares decompositions [34], and com-
plement with QE only when the relaxation fails to produce desired results.

Mingshuai Chen
Text Box
> 0

NIL: Learning Nonlinear Interpolants 193

Fig. 5. ε-Face: introducing perturbations (with ε up to 0.5) in the Face example. The
synthesized interpolant is resilient to any ε-perturbation in the radii satisfying −0.5 ≤
ε ≤ 0.5.

6 Taming Perturbations in Parameters

An interpolant synthesized by the SVM-based technique features inherent
robustness due to the way optimal-margin classifier is defined (Sect. 2). That
is, the validity of such an interpolant is not easily perturbed by changes (in
the feature space) in the formulae to be interpolated. It is straightforward in
NIL to deal with interpolation problems under explicitly specified perturba-
tions, which are treated as constraints over fresh variables. An example named
ε-Face is depicted in Fig. 5, which perturbs 〈φ, ψ〉 in the Face example as
φ =̂ −0.5 ≤ ε1 ≤ 0.5∧((x+4)2+y2−(1+ε1)2 ≤ 0∨(x−4)2+y2−(1+ε1)2 ≤ 0)
and ψ =̂ − 0.5 ≤ ε2 ≤ 0.5 ∧ x2 + y2 − 64 ≤ 0 ∧ (x + 4)2 + y2 − (3 + ε2)2 ≥
0 ∧ (x − 4)2 + y2 − (3 + ε2)2 ≥ 0. The synthesized interpolant over common
variables of φ and ψ is x4

139 + x3y
268 + x2

(

y2

39 − 11
36

)

+ x
(

−y3

52 − y2

157 − y
52 − 1

116

)

+
y4

25 − y3

182 + 2y2

19 − y
218 + 1 < 0 which is hence resilient to any ε-perturbation in

the radii satisfying −0.5 ≤ ε ≤ 0.5, as illustrated in Fig. 5(b).

7 Conclusions

We have presented a unified, counterexample-guided method named NIL for gen-
erating polynomial interpolants over the general quantifier-free theory of non-
linear arithmetic. Our method is based on classification techniques with space
transformations and kernel tricks as established in the community of machine-
learning. We proved the soundness of NIL and proposed sufficient conditions for
its completeness and convergence. The applicability and effectiveness of our tech-
nique are demonstrated experimentally on a collection of representative bench-
marks from the literature, including those extracted from program verification.
Experimental results indicated that our method suffices to address more inter-
polation tasks, including those with perturbations in parameters, and in many
cases synthesizes simpler interpolants compared with existing approaches.

194 M. Chen et al.

For future work, we would like to improve the efficiency of NIL by substitut-
ing the general purpose quantifier-elimination procedure with alternative meth-
ods previously discussed in Sect. 5. An extension of our approach to cater for
the combination of nonlinear arithmetic with EUFs, by resorting to predicate-
abstraction techniques [23], will be of particular interest. Additionally, we plan to
investigate the performance of NIL over different classification techniques, e.g.,
the widespread regression-based methods [19], though SVMs are expected to be
more competent concerning the robustness and predictability, as also observed
in [37].

References

1. Bennett, K.P., Bredensteiner, E.J.: Duality and geometry in SVM classifiers. In:
ICML 2000, pp. 57–64 (2000)

2. Bishop, C.M.: Pattern Recognition and Machine Learning, pp. 326–328. Springer,
New York (2006)

3. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin clas-
sifiers. In: COLT 1992, pp. 144–152 (1992)

4. Bourbaki, N.: Topological Vector Spaces. Elements of Mathematics. Springer, Hei-
delberg (1987). https://doi.org/10.1007/978-3-642-61715-7

5. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM TIST
2(3), 27:1–27:27 (2011)

6. Chen, M., Wang, J., An, J., Zhan, B., Kapur, D., Zhan, N.: NIL: learning nonlinear
interpolants (full version). http://lcs.ios.ac.cn/∼chenms/papers/CADE-27 FULL.
pdf

7. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satis-
fiability modulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78800-3 30

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

9. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

10. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symb. Log. 22(3), 250–268 (1957)

11. Dai, L., Xia, B., Zhan, N.: Generating non-linear interpolants by semidefinite pro-
gramming. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
364–380. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 25

12. Dathathri, S., Arechiga, N., Gao, S., Murray, R.M.: Learning-based abstractions
for nonlinear constraint solving. In: IJCAI 2017, pp. 592–599 (2017)

13. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–
145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11319-2 12

https://doi.org/10.1007/978-3-642-61715-7
http://lcs.ios.ac.cn/~chenms/papers/CADE-27_FULL.pdf
http://lcs.ios.ac.cn/~chenms/papers/CADE-27_FULL.pdf
https://doi.org/10.1007/978-3-540-78800-3_30
https://doi.org/10.1007/978-3-540-78800-3_30
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/978-3-642-39799-8_25
https://doi.org/10.1007/978-3-642-39799-8_25
https://doi.org/10.1007/978-3-642-11319-2_12

NIL: Learning Nonlinear Interpolants 195

14. Gan, T., Dai, L., Xia, B., Zhan, N., Kapur, D., Chen, M.: Interpolant synthesis
for quadratic polynomial inequalities and combination with EUF. In: Olivetti, N.,
Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 195–212. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 14

15. Gao, S., Zufferey, D.: Interpolants in nonlinear theories over the reals. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 625–641. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 41

16. Gilbert, S.: A nullstellensatz and a positivstellensatz in semialgebraic geometry.
Math. Ann. 207(2), 87–97 (1974)

17. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

18. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refin-
ing abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78800-3 33

19. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. SSS, 2nd edn. Springer, New York (2009).
https://doi.org/10.1007/978-0-387-84858-7

20. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL 2004, pp. 232–244 (2004)

21. Hong, H., Din, M.S.E.: Variant quantifier elimination. J. Symb. Comput. 47(7),
883–901 (2012)

22. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE 2010, pp. 215–224 (2010)

23. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program ver-
ification. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of
Model Checking, pp. 447–491. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8 15

24. Jung, Y., Lee, W., Wang, B.-Y., Yi, K.: Predicate generation for learning-based
quantifier-free loop invariant inference. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 205–219. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19835-9 17

25. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: FSE
2006, pp. 105–116 (2006)

26. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 199–213. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02959-2 17

27. Kraj́ıček, J.: Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. J. Symb. Log. 62(2), 457–486 (1997)

28. Kupferschmid, S., Becker, B.: Craig interpolation in the presence of non-linear
constraints. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol.
6919, pp. 240–255. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24310-3 17

29. Lang, S.: Introduction to Diophantine Approximations: New Expanded Edition.
Springer, New York (2012)

30. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6 1

https://doi.org/10.1007/978-3-319-40229-1_14
https://doi.org/10.1007/978-3-662-49674-9_41
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-540-78800-3_33
https://doi.org/10.1007/978-3-540-78800-3_33
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-642-19835-9_17
https://doi.org/10.1007/978-3-642-19835-9_17
https://doi.org/10.1007/978-3-642-02959-2_17
https://doi.org/10.1007/978-3-642-24310-3_17
https://doi.org/10.1007/978-3-642-24310-3_17
https://doi.org/10.1007/978-3-540-45069-6_1

196 M. Chen et al.

31. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24730-2 2

32. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
413–427. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-
3 31

33. Okudono, T., Nishida, Y., Kojima, K., Suenaga, K., Kido, K., Hasuo, I.: Sharper
and simpler nonlinear interpolants for program verification. In: Chang, B.-Y.E.
(ed.) APLAS 2017. LNCS, vol. 10695, pp. 491–513. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71237-6 24

34. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems.
Math. Program. 96(2), 293–320 (2003)

35. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log. 62(3), 981–998 (1997)

36. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69738-1 25

37. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 11

38. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 235–250. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814771 21

39. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory
extensions. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol.
9706, pp. 273–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 19

40. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-
ing for bit-streaming programs. In: PLDI 2005, pp. 281–294 (2005)

41. Strzeboński, A.W.: Real root isolation for exp-log functions. In: ISSAC 2008, pp.
303–314 (2008)

42. Strzeboński, A.W.: Real root isolation for tame elementary functions. In: ISSAC
2009, pp. 341–350 (2009)

43. Strzeboński, A.W.: Cylindrical decomposition for systems transcendental in the
first variable. J. Symb. Comput. 46(11), 1284–1290 (2011)

44. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley (1951)

45. Vladimir, V.: Pattern recognition using generalized portrait method. Autom.
Remote Control 24, 774–780 (1963)

46. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer,
Heidelberg (2005). https://doi.org/10.1007/11532231 26

47. Zhang, J., Feng, Y.: Obtaining exact value by approximate computations. Sci.
China Ser. A Math. 50(9), 1361 (2007)

https://doi.org/10.1007/978-3-540-24730-2_2
https://doi.org/10.1007/978-3-540-78800-3_31
https://doi.org/10.1007/978-3-540-78800-3_31
https://doi.org/10.1007/978-3-319-71237-6_24
https://doi.org/10.1007/978-3-540-69738-1_25
https://doi.org/10.1007/978-3-642-31424-7_11
https://doi.org/10.1007/11814771_21
https://doi.org/10.1007/978-3-319-40229-1_19
https://doi.org/10.1007/978-3-319-40229-1_19
https://doi.org/10.1007/11532231_26

	NIL: Learning Nonlinear Interpolants
	1 Introduction
	2 Preliminaries
	2.1 Craig Interpolant
	2.2 Support Vector Machines

	3 Learning Interpolants
	3.1 The Core Algorithm
	3.2 Comparison with the Naïve QE-Based Method
	3.3 Variants of NIL

	4 Soundness, Completeness and Convergence
	5 Implementation and Experiments
	5.1 Implementation Issues
	5.2 Benchmark and Experimental Results

	6 Taming Perturbations in Parameters
	7 Conclusions
	References

