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In this timely and comprehensive article, the authors provide an insightful overview

of the lively field of automatic verification of hybrid systems. They focus on the funda-

mental problem of reachability, and consider both exact and approximate approaches.

I am sure that Oded Maler, to whom this contribution is very fittingly dedicated, would

have been proud to see such an authoritative and useful summary of the state of the

art of an area he had helped introduce.
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Hybrid automata are an elegant formal model seamlessly integrating differential equations representing
continuous dynamics with automata capturing switching behavior. Since the introduction of the computa-
tional model more than a quarter of a century ago [Maler et al. 1992], its algorithmic verification has been
an area of intense research. Within this note, which is dedicated to Oded Maler (1957–2018) as one of the
inventors of the model, we are trying to delineate major lines of attack to the reachability problem for hybrid
automata. Due to its relation to system safety, the reachability problem is a prototypical verification problem
for hybrid discrete-continuous system dynamics.

1. INTRODUCTION
Hybrid discrete-continuous dynamic behavior arises when discrete and continuous dy-
namic processes become connected, as in the case of embedded computers interacting
with their physical environment via sensors and actuators. Such interaction may be
complex and safety-critical, having sensitive variables of the environment in its sphere
of control. Everyday examples include process control at all scales, ranging from house-
hold appliances to nuclear power plants, or embedded systems in the transportation
domain, such as autonomous driving maneuvers in automotive, aircraft collision avoid-
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ance protocols in avionics, or automatic train control applications, as well as a broad
range of devices in health technologies, like cardiac pacemakers. The resulting close
interaction of computational devices and digital computing has motivated the terms
hybrid system or cyber-physical system.

As the behavior of such hybrid discrete-continuous systems may be safety-critical
and as it cannot be fully understood without explicitly modeling and analyzing the
tight interaction of their discrete switching behavior and their continuous dynamics,
models and algorithms for their behavioral verification have been suggested. Verifi-
cation here amounts to showing that the coupled dynamics of the embedded system
and its environment is well-behaved, regardless of the actual disturbance and the in-
fluences of the application context, as entering through the open inputs of the system
under investigation. Basic notions of being well-behaved demand that the system un-
der investigation may never reach an undesirable state (safety), that it will converge
to a certain set of states (stabilization), or that it can be guaranteed to eventually
reach a desirable operational state (progress). In the sequel, we will concentrate on
reachability or, dually, safety as a prototypic verification goal.

As a formal model of hybrid dynamics facilitating rigorous analysis at design level,
the model of hybrid automata has been suggested [Maler et al. 1992; Alur et al. 1993].
In order to facilitate a clean semantics, this model adopts an alternation between dis-
crete actions and continuous evolutions, interleaving durational continuous evolutions
with immediate discrete transitions. While providing a clean semantics, this semantic
idealization also induces extraneous dynamics that has impact on the possibility of
automatic key-press analysis of hybrid systems. A plethora of positive and negative
decidability or semi-decidability results has been obtained on this idealized model and
a broad range of approximation procedures has been devised. Within this note, we are
trying to group the various, mostly historic developments —and we hereby apologize
to all colleagues who should have been cited, yet could not due to lack of space— and
comment on in how far they rely on apparent artifacts of the idealized formal model
rather than inherent properties of the problem domain.

2. HYBRID AUTOMATA: A FORMAL MODEL
We start our investigation by providing a formalization of hybrid discrete-continuous
systems by hybrid automata (introduced in [Maler et al. 1992] and given their name
in [Alur et al. 1993]), which are finite automata extended with a vector of continuous
variables and “decorated” with ordinary differential equations (ODEs) in each location
plus assignments to these extra variables upon transitions. In the qualitative case, a
hybrid automaton is a tuple H = (V,X,m, f, Init , Inv , Jump), where:

— V is a finite set of discrete modes. The elements of V represent the discrete states of
the automaton.

— X = {x1, . . . , xn} is an (ordered) finite set of continuous variables. A real-valued valu-
ation ~z 2 Rn of x1, . . . , xn represents a continuous state. The overall state space of the
automaton is the Cartesian product of the discrete and the continuous state space,
i.e. is V ⇥ Rn. We call n the dimension of the hybrid automaton.

— f 2 V ⇥ Rn
⇥ Rm

! Rn with m 2 N assigns a vector field with input in Rm to each
mode. The dynamics in mode v 2 V is d~x

dt = f(v, ~x, ~u), where ~u 2 Rm is an uncontrolled
input (which may be absent in case of input-free ODEs, in which case m = 0). A
straightforward variant adopts a set-valued function f 2 V ⇥ Rn

⇥ Rm
!

�
2R

n

\ ;
�
,

leading to a differential inclusion d~x
dt 2 f(v, ~x, ~u).

— Init ✓ V ⇥ Rn is the initial condition. Init defines the admissible initial states of H,
i.e. those states that runs of the automaton may start in.
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— Inv ✓ V ⇥Rn specifies the mode invariants. Inv defines the admissible states of H, i.e.
those states that runs of the automaton may traverse through. We denote by Inv(v)
the set {~x | (v, ~x) 2 Inv}, called v’s mode invariant.

— Jump 2 V ⇥ Rn
! P (V ⇥ Rn) is the jump relation.

Jump defines the possible discrete actions of H. The jump relation may be non-
deterministic and covers both discrete modes and continuous variables. (For simplic-
ity, we omit inputs in jumps.) It is customary to write jumps as a set of transitions
consisting of a source and a target mode plus a pair of an enabling guard condition
and a corresponding update.
The interpretation is that whenever Jump(v, ~x) = ; then no discrete jump is enabled
from the current state (v, ~x). If Jump(v, ~x) 6= ; then a jump is possible and may be
taken, leading to one or more (if |Jump(v, ~x)| > 1) possible successor states. There is
no requirement that an enabled jump has to be taken: if the invariant permits to stay
in the current mode while following the differential equation pertinent to the mode
then an enabled transition does not need to be taken.

Given an input u : R�0 ! Rm, a run of H over u is a (finite or infinite) sequence
r = h(v0, g0), (v1, g1), . . .i 2

�
V ⇥ C1

�⇤|!, where C1 is the set of differentiable functions
g : I ! Rn which have a (bounded or unbounded) closed interval I ✓ R�0 as domain,
with the sequence satisfying the following three conditions:

(1) Initialization: min dom(g0) = 0 and (v0, g0(0)) 2 Init , i.e. the run starts in time
instant 0 and the start point is in the initial state set,

(2) Consistency with continuous dynamics: For each i  len r, where len r is the length
of the run r, the trajectory segment gi satisfies

8t 2 dom(gi) :
dgi
dt

(t) = f(vi, gi(t), u(t)) , (1)

8t 2 dom(gi) : (vi, gi(t)) 2 Inv . (2)
Each segment gi of the trajectory thus is, first, a solution of the input differential
equation associated to the mode vi held during this time period and, second, re-
mains within the invariant associated to the mode. The extension to differential
inclusions is straightforward.

(3) Consecution: For each i < len r,
maxdom(gi) = min dom(gi+1) , (3)

(vi+1,min dom(gi+1)) 2 Jump(vi, gi(max dom(g)i)) . (4)
I.e., the trajectory segments are consecutive in the sense that segment gi+1 starts
at the same time instant that gi ends and, furthermore, that trajectory segments
are connected by jumps in the sense that the endpoint of segment gi, together
with the mode vi pertinent to this trajectory segment, is connected to the start
point of segment gi+1 plus its mode vi+1. Note that jumps may follow each other
immediately as trajectory segments may have point intervals as their domain.

We say that r = h(v0, g0), (v1, g1), . . .i 2
�
V ⇥ C1

�⇤|! is a run of H iff there is an input
u —possibly from some restricted class of input signals— such that r is a run of H

over u. Let dur r = supilen r sup dom(gi) denote the duration of r. We say that run
r = h(v0, g0), (v1, g1), . . .i 2

�
V ⇥ C1

�⇤|! visits state s 2 V ⇥ Rn iff there is an index
i  len r and t 2 dom(gi) such that (vi, gi(t)) = s. We call state s reachable iff there is a
run r visiting s.

Particular intricacies of the above model are that hybrid automata evolve over con-
tinuous time, are obviously infinite state, feature non-determinism in jumps and pos-
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Fig. 1: A simple hybrid automaton (left) and a run thereof (right).

sibly in continuous evolutions due to open inputs, and that they involve a feedback
between the continuous and the discrete dynamics, as apparent from conditions (1)
and (4) which connect the endpoints of continuous evolutions to discrete jumps and
vice versa. See Fig. 1 for a simplistic example of a hybrid automaton (in an obvious
graphical notation) and a sample run thereof.

Among the dynamic properties of interest to engineers is the question whether a
hybrid system may ever reach an undesirable, hazardous state. While other properties,
like convergence and stability are also of interest, we do in this note concentrate on
such reachability questions and therefore define the following set of decision problems:

— Reachability: Given a set S ⇢ V ⇥ Rn, sometimes called the target, decide whether
some state s 2 S is reachable.

— Step-bounded reachability: Given a step bound k 2 N and a set S ⇢ V ⇥ Rn, decide
whether S is reachable within k steps, i.e., whether there is a run r of length len r  k
visiting some state s 2 S.

— Horizon-bounded reachability: Given a time horizon t 2 R�0 and a set S ⇢ V ⇥ Rn,
decide whether S is reachable within time t, i.e., whether there is a run r of duration
dur r  t visiting some state s 2 S.

— (Step-bounded) Mode reachability: Given a mode v 2 V (and a bound k 2 N, resp.),
decide whether {v}⇥ Rn is reachable (reachable within k steps, resp.).

— Pareto-dominant reachability: Given a mode v 2 V and a conjunction of simple
bounds (one per continuous variable) � =

Vn
i=1 xi ⇠i ni, where ⇠i2 {,�} and

ni 2 N[ {±1}, decide whether a state s = (v, ~x) is reachable such that ~x satisfies �.

For full-fledged hybrid automata permitting appropriate guard conditions, invariants,
and state updates, the unbounded versions of the above decision problems can mutu-
ally be reduced to each other, as can the bounded versions. This does not apply neces-
sarily to subclasses of hybrid automata restricting guards, invariants, and/or updates.
There, the latter, relaxed conditions sometimes induce inherently different decision
problems. The subclasses we are going to address in the sequel are the following:
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— Linear Hybrid Automata (LHA): A linear hybrid automaton is a hybrid automaton
where transition guards and mode invariants are given by linear inequation sys-
tems (with rational coefficients) over X, transition updates are given by (rational
coefficient) linear inequation systems over X and X 0, where X 0 denotes values of
the variables in X after the jump, and the inclusion f defining the vector field is
constant for each mode in that for each mode vi we have f(vi, ·, ·) 2 pi for some
mode-dependent polyhedron pi ⇢ Rn with rational vertices.

— Piecewise Constant Derivative Systems (PCDs) are hybrid automata without jumps
(i.e., Jump ⌘ ;) and with just a single mode (i.e., |V | = 1), yet a piecewise
constant (rational-valued) vector field f defined over a finite polyhedral partition
P = {p1, . . . , pm} of the Rn, where the vertices of the polyhedra are rational. That
is,

Sm
i=1 pi = Rn and 8i, j 2 {1, . . . ,m} : pi \ pj = ; holds and there are rational

constants c1 to cm such that f(·, x, ·) ⌘ ci whenever x 2 pi.
— Rectangular Automata (RA) are linear hybrid automata where all guards, updates,

mode invariants, and dynamics are rectangular regions. A rectangular region is
the Cartesian product of a set of possibly unbounded real-valued intervals with
rational endpoints. We call a rectangular automaton initialized iff the updates in
the jumps do only depend on modes, not on the continuous pre-state of the jump,
i.e., iff Jump(v, ~x1) \ ({v0} ⇥ Rn) 6= ; and Jump(v, ~x2) \ ({v0} ⇥ Rn) 6= ; implies
Jump(v, ~x1) \ ({v0}⇥ Rn) = Jump(v, ~x2) \ ({v0}⇥ Rn).

— Timed Automata (TA) are linear hybrid automata where all continuous have slopes
1 throughour, i.e., f(v, ·, ·) ⌘ 1 for each mode v, and all guards and invariants are
conjunctions of simple bounds xi ⇠i ki with ⇠i2 {,�}

1 and ki 2 N [ {1}. All
updates are conjunctions of predicates of the two possible forms x0 = x (retain value
of x) or x0 = 0 (reset x to 0). Continuous variables with slope 1 are generally called
clocks. The usual convention is that clocks are initialized to 0, i.e. Init ✓ V ⇥ {~0}.
A multirate TA is a generalized timed automaton where f(·, xi, ·) = ki 2 N�0, i.e.
different clocks may have different, yet constant slopes.

— Stopwatch Automata (SWA) are akin to timed automata, but allow to switch slope
for each continuous variable individually between 0 and 1 when changing mode, i.e.,
for each mode v and each continuous variable xi either fi(v, ·, ·) ⌘ 1 or fi(v, ·, ·) ⌘ 0
applies. The restrictions to guards, invariants, and updates are as in TA. The two
slopes permit starting and stopping clocks depending on the current mode; hence
the name stopwatch for the resulting continuous devices.

— Multi-priced Timed Automata (MPTA) are linear hybrid automata where the vector
of continuous variables is partitioned into clocks and price observers. For clocks, the
same rules as in timed automata apply: they have slope 1 throughout, can appear in
conjunctions of simple bounds defining guards and invariants, and may only be re-
set to 0 or maintain their value upon transitions. Price observers may take arbitrary
constant rates in each mode, as the continuous variables in linear hybrid automata
do, but can neither be queried in invariants or guards nor reset; instead they main-
tain their values across transitions: c0 = c holds for any observer on any transition.2
As in timed automata, all continuous variables start at 0, regardless of whether they
are clocks or price observers. If the slopes being charged for price observers are 0 or
1 throughout then we call the MPTA a stopwatch-MPTA.

1Strict bounds can be admitted, but are not relevant to this article.
2Additive updates of price observers on transitions can be admitted, but do not change expressiveness as
they can be simulated by prices charged during additional continuous evolutions of finite duration.
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3. UNDECIDABILITY ISSUES
Undecidability may be considered an obstacle to full automation of verification, as it
confines the sound key-press procedures to either semi-decision procedures or even
approximation schemes. In that respect, the many different causes for undecidability
of reachability problems in hybrid automata are daunting.

Given the components available in a full-fledged hybrid automaton, it should come
as no surprise that its reachability problem is undecidable. This is easy to see when
the continuous variables have unbounded range (in the sense of invariants not gener-
ally confining them), as there are obviously numerous ways to implement increment
and decrement operations on continuous variables with the help of deterministic dif-
ferential dynamics. One way is to let time pass for one time unit —which can easily
be controlled by the use of a clock variable— while imposing constants slopes of 1 or
�1, resp., for the variable to increment or decrement, and while fixing the values of
other variables by imposing a slope of 0. Add to this guards testing for 0 and you get
a straightforward encoding of two-counter machines [Wilke 1994]. These and related
encodings of two-counter machines, e.g. by stopwatch automata encoding integers by
differences between pairs of continuous variables and resorting to an additional equal-
ity test between stop-watches for implementing the 0 test, have however been criticized
due to their need for unbounded range of continuous variables. Unbounded variables
are either thought to lack physical interpretation at all or at least to be atypical and
thus of limited practical interest in engineering, given for example the fixed geometric
extent, and thus bounded reachable space, of a robot.

This criticism has been addressed in a sequence of refined undecidability results that
encode integers with continuous variables of bounded range. Such encodings can be
implemented using surprisingly simple subclasses of hybrid automata: using K. Cer-
ans’ wrapping construction [Henzinger et al. 1998] that permits to exactly copy clock
(or stopwatch) values between bounded clocks (or bounded clocks and stopwatches)
in timed or stopwatch automata, SWA gadgets doubling or halving a clock value can
be implemented, such that two-counter machines can be encoded using the mapping
(c1, c2) 7! (2�c1 , 2�c2) of counter-value pairs to clock values [Henzinger et al. 1998].
Variants of this scheme have been developed for various other fragments of hybrid
automata featuring just clock- or stopwatch-like continuous dynamics. Recently it has
been shown in [Fränzle et al. 2018] that even Pareto-dominant reachability in bounded
stopwatch-MPTA suffices for encoding Diophantine equations by making use of vectors
of reciprocals

�
n1

�1, . . . , nm
�1

�
encoding the values of a vector of positive integer vari-

ables (n1, . . . , nm). These results show that even the reachable state sets of confined
hybrid automata just featuring stop-watch dynamics can be amazingly complex.

The physical interpretation of undecidability results exploiting encodings of un-
bounded integers by bounded continuous variables, however, is as questionable as that
of the encodings employing unbounded continuous range. As encodings of integers in a
compact subset of the Rn need to feature at least one accumulation point, such encod-
ings would not be robust against even the smallest amount of noise. This has sparked
a search for robust, noise-resistant variants of the hybrid automaton model, which we
will discuss in Section 5. The hope that such automata models may yield decidable
reachability problems has, however, remained mostly elusive.

Given that the automata classes in the aforementioned undecidability results in-
variably used very simple continuous behavior of stopwatch shape, their undecidabil-
ity obviously hinges on the interplay between their (simple) continuous dynamics and
the state updates within transitions. Numerous investigations have consequently been
pursued concerning the impact of restricted state updates within transitions on decid-
ability. Again it turns out that even very restricted classes still feature an undecidable
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reachability problem, among them piecewise constant derivative systems in three or
more dimensions [Asarin et al. 1995]. This shows that already with simple piecewise
constant dynamics, neither state updates nor mode-dependent behavior are crucial for
undecidability; finitely many discontinuities in the vector field suffice. It should finally
be noted that when permitting non-linear continuous dynamics, undecidability even
arises with purely continuous dynamics, as is known from the undecidability of reach-
ability in the three-body problem [Smith 2006].

4. DECIDABLE CASES
Despite hybrid automata dynamics being prone to undecidability, interesting sub-
classes have been identified which facilitate decision procedures for reachability prob-
lems. We provide a brief survey of some of those subclasses and the restrictions they
impose on the type of dynamics.

4.1. Decidable unbounded reachability problems
Timed automata. The most widely known subclass, with mature verification tools

being available [Behrmann et al. 2011], is the class of timed automata [Alur and Dill
1990]. Location reachability (and with it, by an obvious encoding via transition guards,
reachability of any rectangular or diagonally bounded state set) has originally been
shown decidable by establishing a finite time-abstract bisimulation quotient known as
the region graph [Alur and Dill 1990]. Scalability has later been enhanced by encod-
ing sets of reachable clock states in difference logic and applying widening to enforce
termination [Larsen et al. 1995]. Note that due to the widening applied when clocks
exceed the maximum constants mentioned in guards of the timed automaton, these
algorithms do not compute the exact reachable state-set of the TA, but an overapprox-
imation that is neutral on location reachability. Algorithms computing the exact reach
set (or rather the exact binary reachability relation) by effectively constructing a for-
mula of first-order linear arithmetic over the reals and integers have been contributed
by [Comon and Jurski 1999] based on a syntactic transformation of the TA flattening
out nested loops and by [Quaas et al. 2017] providing a direct symbolic procedure.

Results for timed automata carry over to multirate automata, as these can be trans-
lated into a TA by normalizing the clock rates and correspondingly scaling the con-
stants appearing in guards and invariants, thereafter eliminating fractional constants
by multiplication with a common denominator. These transformations are neutral on
location reachability and have the obvious scaling effect on the continuous reach set.

Multi-priced timed automata. Multi-priced timed automata lie at the frontier be-
tween timed automata, featuring a decidable reachability problem (see above) and lin-
ear hybrid automata, for which reachability is undecidable (Section 3). While reacha-
bility is known to be undecidable even for stopwatch-MPTA [Fränzle et al. 2018], some
positive decidability results exist nevertheless for monotonically price-charging MPTA.
These positive results are based on appropriately constraining the shapes of the reach-
ability target set or the dimensionality of the MPTA. If one restricts interest to Pareto-
dominant reachability and furthermore confines the Pareto targets � =

Vn
i=1 xi ⇠i ni to

either contain only upper bounds (⇠i= for all i) or only lower bounds (⇠i=� for all i)
then Pareto-dominant reachability becomes decidable for stopwatch-MPTA [Fränzle
et al. 2018] and for monotonic (i.e., all slopes of cost observers are non-negative)
MPTA under appropriate price-divergence and run-confluence conditions [Larsen and
Rasmussen 2008]. Under Pareto targets comprising both types of bounds, only low-
dimensional MPTA are known to be decidable: [Fränzle et al. 2018] show that for
stopwatch-MPTA with up to three price observers (yet an arbitrary number of clocks),
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Pareto-dominant reachability is decidable. For higher dimensions, only strong approx-
imation procedures do currently exist (see Section 5).

Planar piecewise constant derivative systems. Another subclass of hybrid automata
for which the reachability problem is decidable are planar piecewise constant deriva-
tive systems, i.e. PCDs of at most dimension 2 [Asarin et al. 1995]. The bound here is
sharp as reachability is undecidable from dimension 3.

More recently, decidability results were achieved for a more general class, namely
simple monotonic planar linear hybrid systems [Prabhakar et al. 2015], which relax the
restrictions of planar PCDs by allowing discrete modes and polyhedral guards and in-
variants as mode switching conditions. Under certain conditions, namely a restriction
to monotonic vector fields, reachability is decidable in the 2-dimensional case while
undecidability is known from dimension 4 only.

Initialized rectangular automata. The reachability problem is decidable for initial-
ized rectangular automaton, i.e. rectangular automata where across a transition, the
slope of a continuous variable may only change if the transition simultaneously resets
that variable [Henzinger et al. 1998]. The key point here is that an initialized RA can
be translated into a multirate timed automaton where each variable xi is represented
by two variables xi,` and xi,u s.t. xi,` and xi,u track the lower (upper, resp.) bound of
the possible valuations of xi.

Decidable families of vector fields. Investigations concerning decidable reachability
problems in continuous dynamics obviously started from the case of linear differential
equations. [Lafferriere et al. 2001] investigated vector fields of the form d~x

dt = A~x+B~u,
where ~x(t) 2 Rn is the state of the system at time t, A 2 Rn⇥n is the system matrix, and
the input ~u : R�0 ! Rm is a piecewise continuous function. By reduction into Tarski’s
algebra [Tarski 1951] they obtained the decidability of the reachability problems of
the following three families of vector fields: (1) A is nilpotent, i.e., An = 0, and each
component of ~u is a polynomial; (2) A is diagonalizable with rational eigenvalues, and
each component of ~u is of the form

Pm
i=1 cie

�it, where �is are rationals and the ci are
subject to semi-algebraic constraints; (3) A is diagonalizable with purely imaginary
eigenvalues, whose imaginary parts are rationals, and each component of ~u of the formPm

i=1 ci sin(�it)+di cos(�it), where �is are rationals and cis and dis are subject to semi-
algebraic constraints.

[Anai and Weispfenning 2001] and [Gan et al. 2015; Gan et al. 2016] have subse-
quently relaxed some of the above conditions by exploiting reductions to the transcen-
dental implicitization problem [Becker et al. 1993; Manocha and Canny 1992] or to
the extension of Tarski’s algebra with polynomial-exponential functions as well as ex-
ploiting density results in number theory [Hardy et al. 1979] within the reduction.
These extensions eliminate the restriction to rational eigenvalues and coefficients in
the above results, yielding decidability of the cases (2’) A is diagonalizable with real
eigenvalues, and each component of ~u is of the form

Pm
i=1 cie

�it, where �is are reals and
cis are subject to semi-algebraic constraints and (3’) A is diagonalizable with purely
imaginary eigenvalues, whose imaginary parts are reals, and each component of ~u is
of the form

Pm
i=1 ci sin(�it) + di cos(�it), where �is are reals and cis and dis are subject

to semi-algebraic constraints.
Positive decidability results concerning reachability over non-linear vector fields are

naturally more scarce. Most of them hinge on the notion of solvability first proposed
in [Rodrı́guez-Carbonell and Kapur 2007] for a class of polynomial programs, and ex-
tended to dynamical and hybrid systems in [Xu et al. 2013]. Formally, a dynamical
system d~x

dt = f(~x, ~u(t)) is called solvable if the state vector ~x = (x1, . . . , xn) can be
classified into k  n groups �1 = (x11,, . . . , x1,n1), . . . ,�k = (xk,1, . . . , xk,nk) and the
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dynamical system can be represented in the form

d~x

dt
=

2

6664

d�1

dt
d�2

dt
...

d�k

dt

3

7775
=

2

664

A1�1 + u1(t)
A2�2 + u2(t,�1)

...
Ak�k + uk(t,�1, . . . ,�k�1)

3

775 , (5)

where 0 < n1 < . . . < nk = n are integers, k 2 N, A1, . . . , Ak are real matrices with cor-
responding dimensions, and u1, . . . , uk are polynomial-exponential-trigonometric func-
tions. Intuitively, an n-dimensional dynamical system is solvable if its state variables
can be partitioned into k groups such that the derivatives of the variables in the ith
group are linear in themselves, yet potentially non-linear in the variables from the
preceding groups.

[Gan et al. 2018] identified three families of solvable vector fields and proved the
decidability of reachability problems thereof: (1”) A1, . . . , Ak in Eq. (5) are nilpoten-
tand each component of ui is a polynomial. (2”) Each Ai is diagonalizable with real
eigenvalues, and each component of ui is of the form

Pmi

j=1 cije
�ijt, where �ijs are re-

als and cijs are subject to semi-algebraic constraints, with i = 1, . . . , k. (3”) Each Ai is
diagonalizable with purely imaginary eigenvalues, whose imaginary parts are reals,
and each component of ui is of the form

Pmi

j=1 cij sin(�ijt) + dij cos(�ijt), where �ijs are
reals and cijs and dijs are subject to semi-algebraic constraints. The known decidable
classes of solvable non-linear systems are thus subject to equivalent constraints as
the known decidable classes of linear systems, despite the added expensiveness due to
hierarchical polynomial-exponential-trigonometric interdependencies.

o-minimal hybrid systems. Similar results as the above have been obtained on hy-
brid systems rather than just vector fields. Restricting the permitted differential dy-
namics to (mode-wise) linear vector fields f(m, ~x) = Am~x, where A is an n ⇥ n-matrix
of rationals and requiring transitions to always re-initialize continuous state while
permitting polynomial guard conditions, [Lafferriere et al. 1999] have shown that the
reachability problem is decidable if the matrices Am are of one of the forms (1⇤) A is
nilpotent, or (2⇤) A is diagonalizable with rational eigenvalues, or (3⇤) A has diagonal
real Jordan form and purely imaginary eigenvalues. These results can, however, not
be carried over to an un-initialized setting where continuous variables maintain their
values across transitions.

4.2. Decidable bounded reachability
Given the almost universal undecidability of the unbounded reachability problem, the
problem of bounded reachability, though less informative due to its step- or time-
bounded horizon, becomes an attractive alternative verification target. By saving a
fixed-point computation, bounded problems are generally more amenable to reduction
into finite constraint formulae in decidable logic fragments.

Bounded model checking using decidable logic.. Following the success of SAT-based
bounded model checking (BMC) for finite-state systems [Groote et al. 1995; Biere et al.
1999], it has been observed that similar encodings of step-bounded reachability prop-
erties would be possible for linear hybrid automata (LHA) via a reduction to mixed-
integer linear programming [Bemporad and Morari 1999] or LinSAT, i.e. the quantifier
theory of linear arithmetic as solved by SAT-modulo-theory (SMT) solvers [Audemard
et al. 2005]. As LinSAT is decidable and the reduction is exact, this provides a decision
procedure for step-bounded reachability in LHA and consequently, by checking succes-
sively larger step bounds, also a semi-decision procedure for unbounded reachability
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Fig. 2: Decidability of the reachability problem for subclasses of hybrid automata

in LHA. Using finite unions of polytopes for representing finitely reachable state sets
instead of a reduction to arithmetic constraint formulae, a related procedure has ear-
lier been implemented in [Henzinger et al. 1992]. All these procedures do obviously
also apply to any subclass of LHA, like MPTA or PCD.

A generalization to more general hybrid automata than LHA is in principle straight-
forward as long as one sticks to a decidable fragment of arithmetic. The classes (1) to
(3) of linear differential equations exposed above paired with polynomial guards and
updates could therefore in principle be tackled, though corresponding procedures have
not been implemented yet.3

5. APPROXIMATION IN REACHABILITY ANALYSIS
As has become apparent from the discussion in the previous sections, the hope for
exact procedures for deciding reachability remains elusive when reasonably expressive
subclasses of hybrid automata are to be dealt with. Whenever dynamics beyond clocks
or initialization comes paired with non-trivial dimensionality of the problem at hand,
the best we can hope for are approximation procedures. Several such procedures have
been suggested over the years, with the logical properties of the individual procedures
not being straightforward to delineate, as their underlying techniques as well as the
model classes addressed are surprisingly diverse. In Table I we are giving a coarse
overview of major types of approximation algorithms, which we describe in some more
detail subsequently.

5.1. Trace generation based on shooting methods
For finding numerically approximate runs to the target state-set, multiple shooting
methods can be used. Such methods generate numerous short segments of numeri-
cal simulation runs based on randomized variation of initial states of the simulation
and then concatenate segments that are approximately matching in that end-points
of one segment are metrically close to start-points of the successor segment [Zutshi
et al. 2014]. The attraction of such shooting schemes is that they can deal with very
general hybrid dynamics, as their analysis of system dynamics is based on numerical

3The situation is unclear w.r.t. hybrid systems featuring continuous dynamics satisfying constraints (2”) and
(3”) or even (2’) and (3’), as their BMC problems would involve solving quantified formulae over polynomial-
exponential functions with multiple exponential variables. Decidability of the corresponding problem is
open.
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Scheme Algorithm HA
classes

Logical properties Engineering pragmatics

Multiple
shooting

numerical simulation
with randomized initial
states; approximate
matching of simulated
segments

any constitutes a numer-
ically approximate
search procedure for
runs reaching target

constitutes an incom-
plete approximate
falsification procedure
for safety

Invariant
genera-
tion

many: synthesis of Lya-
punov functions, barrier
certificates, Craig inter-
polation in k-induction

in princi-
ple any

constitutes an incom-
plete falsification proce-
dure for reachability

constitutes an in-
complete verification
procedure for safety

Finite-
state or
predicate
abstrac-
tion

compute overapprox-
imating finite-state
model based on an
partitioning of the
state-space; decide
reachability in the ab-
straction; possibly refine
partition on demand

in princi-
ple any

incomplete falsification
procedure for reach-
ability; in some cases
quasi-decision procedure
(s. below)

incomplete verification
procedure for safety
properties; in some
cases quasi-decision
procedure (s. below)

Overap-
proxim. in
horizon-
bounded
reach-set
computat.

select computational
representation of cer-
tain subsets of the Rn;
compute overapproxima-
tions of (mostly bounded
horizon) reach-sets

in princi-
ple any

constitutes an in-
complete falsification
procedure for horizon-
bounded reachability

constitutes an in-
complete verification
procedure for horizon-
bounded safety

"-overap-
proximati-
on

bound approximation er-
ror uniformly or as a
function of step number
or temporal horizon

primarily
differen-
tial (in-)
equations

constitutes an in-
complete falsification
procedure for (bounded)
reachability

incomplete verification
procedure for (bounded)
safety; given a safe set
with an incorporated
safety margin, it is
pragmatically complete

Gap domi-
nation

compute a bilinear
mixed-integer system
representing the exact
reach-set; solve consis-
tency with Pareto target
with controlled error

MPTA
with ar-
bitrary
number of
stopwatch
observers

terminating procedure
guaranteed to yield
exact verdict whenever
either the Pareto target
cannot be dominated
or can be dominated by
more than a " > 0

decides domination of
Pareto target “up to "”

BMC
using �-
decidable
logic

encode bounded reach-
ability properties as
arithmetic constraints,
determine either un-
satisfiability of the
constraint or satisfiabil-
ity of a �-relaxed version
of the constraint

in princi-
ple any

sound but incomplete
falsification procedure
for bounded reachability

satisfying instances of
the relaxation are taken
to be close to actual
paths reaching the tar-
get set; hence pragmat-
ically a complete proce-
dure for bounded noise-
robust safety

Quasi-
deciding
robust
reach-
ability

iterate an "-perturbed
step relation; check
whether bounded
reach-set constitutes
a pre-fixedpoint of the
unperturbed dynamics

HA fea-
turing
decidable
step rela-
tion, e.g.
LHA

decides all robust cases
where validity of the
reachability property
is not changed by in-
finitesimally small
"-perturbation

decides all robust
cases where safety
is not changed by in-
finitesimally small
"-perturbation; frag-
ile cases may remain
inconclusive

Under-
approxi-
mation in
reach-set
computa-
tion

select computational
representation of certain
subsets of the Rn; com-
pute underapproxima-
tions of (mostly bounded
horizon) reach-sets

primarily
differen-
tial (in-)
equations

sound but incomplete
verification procedure
for reachability

sound but incomplete
falsification procedure
for safety properties

Table I: Some approximation schemes for reachability
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simulation being available for industrial scale, non-linear hybrid systems. The draw-
back is that due to numerical approximations in simulation as well as due to the only
approximate match of trajectory segments, runs found by shooting do only numeri-
cally approximate actual runs of the hybrid system under investigation. The effect of
approximate segment matching is alleviated by abstraction refinement reducing per-
mitted gap width between concatenated segments, yet vanishes only in the limit.

5.2. Invariant generation
An obvious way of providing a reliable witness for unreachability is to construct a for-
ward (or backward) invariant set containing the initial states (target, resp.) and to
check that it is disjoint with the target (initial states, resp.). For an overview over the
lively area of invariant generation, which we cannot cover here, we refer the reader
to [Kapur 2017]. The approaches vary, as invariants can be constructed systematically
employing reductions (mostly also involving relaxations) to numerical optimization or
constraint solving, like in [Prajna et al. 2007; Sankaranarayanan et al. 2004; Liu et al.
2011; Oehlerking and Theel 2009], or can be established using guess-and-verify ap-
proaches, where simulations and machine-learning can be used to generate candidates
which are subsequently verified (or falsified, which generates further sample points for
the learning phase) by constraint solving [Ratschan 2017].

5.3. Finite-state abstractions
Another line of attack is to leverage existing techniques for finite-state model-checking
by computing an existential finite-state abstraction of the hybrid dynamics that over-
approximates location reachability. Such approaches rely on partitioning the contin-
uous state-space of the hybrid automaton into finitely many cells, either by regular
gridding or via the Boolean combination of a finite number of predicates. As this fi-
nite partition P together with the discrete modes V spans a finite state-space, the
abstraction is obtained by computing a transition relation based on an (exact or nec-
essary) condition for partition pairs containing points being connected by a step of
the hybrid automaton: (v1, p1) !abstract (v2, p2) in the abstraction, where p1,2, 2 P ,
if 9~x1 2 p1, ~x2 2 p2 : (v1, ~x1) !concrete (v2, ~x2), where !concrete denotes the union of
all jumps and continuous evolutions. Abstraction thus involves a constraint-solving
problem, as the above necessary condition for an abstract transition resides in an ex-
istential fragment of arithmetic. Reachability procedures exploiting such schemes are
numerous, among them HSolver [Ratschan and She 2005], which implements a quasi-
decision procedure for reachability (see Sect. 5.8) by applying counter-example guided
partition refinement. Such refinement sequences need not terminate due to undecid-
ability of the reachability problem, but rarely do so in practice.

5.4. Guaranteed over- and underapproximation in reach-set computation
A straightforward algorithmic decomposition of the reachability problem is to first
compute the set of reachable states and then decide emptiness of its intersection with
the target. The undecidability of reachability for sufficiently expressive hybrid au-
tomata implies that we have to accept that reach-set computation and intersection
test in general cannot both be exact at the same time. A common scheme, known as
safe approximation in reach-set computation, decides for a computational representa-
tion of subsets of the Rn that permits an exact intersection test at the price of having
to approximate the (generally horizon-bounded) reach-set. In order for the approxima-
tion to be indicative for the reachability problem at hand, one computes a guaranteed
overapproximation (or, more rarely, a guaranteed underapproximation) of the reach-
able state set such that a necessary (sufficient, resp.) condition for the reachability
property at hand is provided. This implies that negative reachability verdicts obtained
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on an overapproximation (positive verdicts obtained on an underapproximation, resp.)
are reliable, while the opposite results are inconclusive w.r.t. the original reachability
question. As the error in computing the approximation is in general not controlled, log-
ical inferences possible from such failed analysis attempts, i.e. from positive reachabil-
ity verdicts obtained on an overapproximation (negative reachability verdicts obtained
on an underapproximation, resp.) are limited, unless further analysis is applied to the
witnesses generated in those verification attempts.

Methods for computing overapproximations of differential equations or inclusions
can be based on a variety of principles, among them abstracting the non-linear dy-
namics into piecewise constant, piecewise linear, or piecewise polynomial dynamics
[Asarin et al. 2003; Althoff et al. 2008; Dang et al. 2010; Sankaranarayanan 2011;
Althoff 2013], bisimulation functions [Fainekos et al. 2006] or discrepancy functions
[Duggirala et al. 2013], Taylor series models [Nedialkov et al. 1999; Neher et al. 2007;
Ramdani and Nedialkov 2011; Chen et al. 2012], generation of extremal trajectories
by exploiting monotonicity properties of systems under consideration [Ramdani et al.
2009; Eggers et al. 2015], and appropriate bloating of the trajectories obtained from
numerical simulation samples [Donzé and Maler 2007; Julius et al. 2007; Huang and
Mitra 2012]. Applying these methods to hybrid automata additionally requires to be
able to overapproximate intersections with the guard conditions whenever such in-
tersections cannot exactly be represented within the set representation at hand. This
happens, e.g., already when representing reachable sets by zonotopes while admitting
systems of linear inequations as guards [Girard and Le Guernic 2008].

The issue of underapproximation of reach sets of differential equations has attracted
comparatively less attention, but approaches exist for linear [Kurzhanski and Varaiya
2000; Girard et al. 2006] and non-linear systems of ordinary differential equations
[Xue 2013; Goubault et al. 2014; Chen et al. 2014; Goubault and Putot 2017], as well
as algorithms being able to compute both over- and underapproximations based on
common principles [Goubault et al. 2018; Li et al. 2018].

5.5. "-overapproximation in reach-set computation
Arguing with safety margins is standard practice in engineering whenever exact sat-
isfaction of properties cannot be guaranteed. Adoption of such schemes has naturally
been suggested for hybrid-automata analysis, where they come in the shape of a bound
on the approximation error of a safe overapproximation. Most such schemes apply to
differential equations rather than full hybrid automata and there provide a uniform
bound � > 0 on the error in the derivative of the solution to the differential equation
such that the Hausdorff distance between the set of states reachable in the overap-
proximation and in the precise model is bounded by an exponential function f(h) of
the length h of the time horizon. Stronger forms of "-approximation, where the solution
rather than its derivative fetaures a uniform error bound " over an unbounded tem-
poral horizon, can be obtained from variants of proof schemes for Lyapunov stability
like bisimulation functions [Fainekos et al. 2006] or discrepancy functions [Duggirala
et al. 2013].

"-approximations with horizon-dependent error can be derived from numerical sim-
ulations and their respective error bounds if the initial values are points; generaliza-
tions to bounded initial sets can be obtained from safely bounding the dependency on
initial values plus appropriately dense sampling [Donzé and Maler 2007; Julius et al.
2007; Huang and Mitra 2012]. [Ren and Kumar 2015] have extended the latter ap-
proach to cover hybrid behavior instead of just differential dynamics. Note that for
differential dynamics, �-approximations of the derivative, i.e. the right-hand side of
the differential equation, do even permit finite state abstractions if the state set of the
differential equation is bounded and the differential equation itself is Lipschitz [Puri
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et al. 1996]. Like any abstraction based on state-space gridding, it however is prone
to the curse of dimensionality in that its state set is exponential in the dimensionality
of the differential system to be abstracted. If such a finite-state abstraction exists, it
however permits a very direct overapproximate computation also of the unbounded
reach-set, as the full, step-unbounded reach-set of the finite-state abstraction can eas-
ily be computed. It should however be noted that the resulting overapproximation of
the full reach-set in general has no quantifiable error bound.

The primary engineering use-case of such "-overapproximations with time-
dependent approximation error therefore is bounded analysis of the states reachable
within a time horizon h. In these cases, the error bound f(h) permits a metric classi-
fication of the amount of incompleteness of the overapproximate analysis: not only is
the overapproximation known to always yield a positive reachability verdict whenever
the concrete, precise system reaches the target within the bounded time horizon h;
vice versa it is also guaranteed that the overapproximation will yield a negative ver-
dict whenever the horizon-bounded reach-set of the precise systems keeps a distance
of at least f(h) from the target. In a sense, such a procedure “decides” horizon-bounded
reachability up to an accuracy f(h): it is guaranteed to yield accurate verdicts unless
the actual horizon-bounded reach-set comes f(h)-close to the target without reaching
it. Unbounded verdicts can in some cases be derived when the approximation of the
horizon-bounded dynamics turns out to be contractive.

5.6. Gap domination
A particular variant of the error-bounded approximation scheme applies to Pareto
domination problems, where one may naturally add an indifference region as follows: if
a certain Pareto target � =

Vn
i=1 xi ⇠i ni cannot be reached over unbounded time hori-

zon then this should be reported, likewise when a strengthening of the Pareto target
by a given " into a Pareto target �0 =

Vn
i=1 xi ⇠i mi can be reached, where mi = ni�" if

⇠i= and mi = ni + " else, then this ought also be reported. Any answer is permitted
when � can be reached, but the strengthening �0 cannot. This yields a gap domination
problem where definite answers are only required if the Pareto-optimal solution does
not fall into the above " gap between � and its strengthening �0.

Such gap domination problems take the idea of “deciding” up to a tolerance exposed
in the previous section from the bounded-horizon case to the unbounded. As approxi-
mation errors would normally accumulate over the duration of the run, settings where
a finite approximation error can rigorously be guaranteed in the unbounded are scarce.
A notable case here are multi-priced timed automata with stopwatch price observers
(stopwatch-MPTA): despite their exact Pareto reachability problems being undecid-
able, their gap domination problems can be solved effectively based on approximately
solving a bilinear mixed-integer system exactly representing the unbounded reach-set
[Fränzle et al. 2018]. [Platzer and Clarke 2007] have however shown that such schemes
do in general not extend to hybrid automata with a natural notion of an "-gap to reach
targets, where any answer would be allowed when coming "-close to the reach-set.

5.7. BMC using �-decidable logic
A variant of the aforementioned scheme has been facilitated by the development of
so-called �-decision procedures [Gao et al. 2012] and the implementation of practical
variants thereof by a tight integration of SAT solving, interval constraint propagation,
and safe interval-based enclosure of differential equations [Eggers et al. 2008; Gao
et al. 2013]. In �-decidability, the idea of solving a gap problem has been lifted from
the reachability problem (Sect. 5.6: do we get into the target or can we guarantee to
stay off the target by a distance of at least "?) to its representation as a constraint
formula. Taking a formula � encoding a bounded reachability problem in an undecid-
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able fragment of arithmetic comprising arithmetic expressions as well as differential
equations composed from linear, polynomial, and transcendental functions, the ques-
tion here is, given a user-specified bound � > 0: is � unsatisfiable or is a �-relaxation
�0 satisfiable? The �-relaxation �0 is obtained by first rewriting all equations from � to
conjunctions of inequations, then normalizing all inequations to the form e  0, and
subsequently relaxing them to e  �?

Note that for conjunctive path conditions �, satisfiability of �0 is closely related to the
concept of "-approximate reach-set computation, as a path formula conjoins equations
expressing initialization, consistency with continuous dynamics, and consecution (cf.
Sect. 2), each of which is relaxed by � in �0. This close correspondence unfortunately
breaks down when disjunctions are allowed to express the branching behavior of a
transition system, potentially giving rise to spurious paths.

5.8. Robust reachability
As mentioned in Sect. 3, pronounced criticism has been expressed against undecidabil-
ity results encoding integers within the finite-dimensional continuous state-space of a
hybrid automaton. This criticism is based on the observation that such encodings have
to rely on unbounded range of continuous variables or have to feature at least one accu-
mulation point in the Rn, both of which are not representative of practical applications
combining compact operational ranges with the ubiquity of noise. The corresponding
undecidability results are consequently suspected to be artifacts of an overly idealized
model rather than inherent to the problem domain. In the hope of avoiding undecid-
ability, various relaxations of the hybrid automaton model have been suggested that
set out to robustify reachability verdicts against infinitesimal noise. The two basic
set-ups here are to either eliminate topologically isolated runs of the hybrid system
and likewise add missing runs featuring a neighborhood of runs [Gupta et al. 1997]
or to perturb the step relation (where a step is a continuous flow or a transition and
perturbation may apply to just one of the two categories) to an "-neighborhood and
to consider all those states as reachable which are reachable within all such " > 0-
perturbations [Puri 1998; Fränzle 1999]. An observation made in [Fränzle 1999] was
that a pre-fixedpoint check whether the unperturbed step relation is contracting on a
step-bounded reach-set of the perturbed one is bound to eventually —in the sense of
after finitely many steps of unraveling the transition relation— succeed if (1.) the step
relations (both unperturbed and perturbed) can be expressed in a decidable logic, (2.)
the state invariants or the complement of the target form a bounded subset of the Rn,
and (3.) the perturbed dynamics does not reach the target. The consequence is that a
procedure can be built that is guaranteed to terminate with one of the two following
verdicts: the perturbed dynamics is shown to reach the target or the unperturbed one
is proven to avoid the target. If one iterates this procedure for successively smaller
" ! 0 until a witness for unreachability of the target in the unperturbed is obtained
and runs the resulting procedure in parallel with the straightforward semi-decision
procedure for reachability of the target that is based on bounded model-checking of a
decidable step relation, then this procedure terminates on all but the non-robust cases
as follows: If the unperturbed dynamics reaches the target set then BMC will confirm
this. If the unperturbed dynamics avoids the target and if there exists an (arbitrarily
small) positive disturbance " > 0 such that the perturbed dynamics also avoids the
target then the pre-fixedpoint test will confirm unreachability in the unperturbed. The
procedure may fail to terminate only if the unperturbed dynamics itself cannot reach
the target, yet any infinitesimally small disturbance does so.

Ratschan [Damm et al. 2005; Ratschan 2014] has coined the term quasi-decidability
for this property that all reachability properties that are robust against infinitesimal
perturbation can be decided and that only the fragile cases may remain undecided.
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Thereby a system is called robust for a property iff the truth value of the property
agrees between the unperturbed system and a certain (maybe small) range of pertur-
bations; conversely it is called fragile if the truth value disagrees between the unper-
turbed system and any small perturbatio thereof.

[Asarin and Bouajjani 2001] have investigated such perturbations widening the step
relation on several models of computation and concluded that robust avoidance of the
target is semi-decidable for LHA (and a number of other models), in contrast to the un-
perturbed case where reachability of the target is semi-decidable. Quasi-decidability
exploits the combination of these two properties in that it conceptually runs both semi-
decision procedures in parallel and thus is able to ensure termination in all robust
cases. An immediate consequence of the general undecidability of reachability in lin-
ear hybrid automata then is that it is i.g. undecidable whether an LHA (or a related
computational structure) is robust w.r.t. a reachability property. From an engineering
standpoint, this seems to constitute a minor impediment only, as fragile satisfaction of
a design requirement may be considered bad engineering practice.

6. CONCLUSIONS
A good quarter of a century after their inception as a formal model seamlessly in-
tegrating continuous dynamics described by ordinary differential equations and dis-
crete switching behavior, hybrid automata [Maler et al. 1992; Alur et al. 1993] and
their reachability analysis still are a lively area of research. Major breakthroughs con-
cerning scalability of automatic analysis techniques have been achieved both with ap-
proaches building on reach-set computation, like [Henzinger et al. 1997; Althaus et al.
2017; Frehse et al. 2011; Althoff et al. 2018; Chen et al. 2015], and with such ex-
ploiting reductions to arithmetic constraint solving, like [Bemporad and Morari 1999;
Audemard et al. 2005; Eggers et al. 2008; Gao et al. 2013]. It is interesting to see that
many of the more recent variants adopt approximations not only because they are nec-
essary due to undecidability results pertaining to exact reachability, but argue that the
use of safe approximations is inherent to the engineering pragmatics in the domain,
and thus warranted. In a sense, these approaches do thus consider the model of hy-
brid automata as a mathematically elegant, yet overidealized abstraction. Despite the
plethora of deep and elegant results as well as of useful algorithms obtained on the
existing model, the quest for alternative models remains pronounced. We anticipate
that it will spark further interdisciplinary research between the areas of computer sci-
ence, control theory, and metrology, perhaps more deeply embedding the perspectives
of state estimation and control under uncertainty into the computational model.
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