
A Two-way Path between Formal and Informal Design
of Embedded Systems

Mingshuai Chen1, Anders P. Ravn2, Shuling Wang1, Mengfei Yang3, and Naijun Zhan1

1 State Key Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences
{chenms,wangsl,znj}@ios.ac.cn

2 Department of Computer Science, Aalborg University
apr@cs.aau.dk

3 Chinese Academy of Space Technology

Abstract. It is well known that informal simulation-based design of embedded
systems has a low initial cost and delivers early results; yet it cannot guaran-
tee the correctness and reliability of the system to be developed. In contrast, the
correctness and reliability of the system can be thoroughly investigated with for-
mal design, but it requires a larger effort, which increases the development cost.
Therefore, it is desirable for a designer to move between formal and informal de-
sign. This paper describes how to translate HCSP formal models into Simulink
graphical models, so that HCSP formal models can be simulated and tested using
a MATLAB platform, thus avoiding expensive formal verification if the develop-
ment is at a stage where it is considered unnecessary. Together with our previous
work on encoding Simulink/Stateflow diagrams into HCSP, it provides the de-
sired two-way path in the design of embedded systems, so that the designer can
flexibly shift between formal and informal models, according to the trade-off be-
tween efficiency and cost as opposed to correctness and reliability. The translation
from HCSP into Simulink diagrams is implemented as a fully automatic tool, and
the benefit of the flexibility is demonstrated by a scenario originating from the
design of a spacecraft. In addition, the correctness of the translation is justified
by using Unifying Theories of Programming (UTP).

Keywords: Simulink, HCSP, Validation, Verification, Embedded systems , Hy-
brid Systems

1 Introduction

Correct and efficient design of complex embedded systems is a grand challenge for
computer science and control theory. Model-based design (MBD) is thought to be an
effective approach to meet this challenge. This approach begins with an abstract model
of the system to be developed. Extensive analysis and verification of the abstract model
are then performed so that errors can be identified and corrected at a very early stage.
Then the higher-level abstract model is refined to a lower-level model step by step, until
it can be built with existing components or a few newly developed ones.

Therefore, modelling, analysis and verification play a key role in MBD. Many
MBD approaches targeting embedded systems have been proposed and used in industry
and academia, e.g., Simulink/Stateflow [1, 2], Modelica [3], SysML [4], MARTE [5],

2 M. Chen et al.

Metropolis [6], Ptolemy [7], hybrid automata [8], CHARON [9], HCSP [10, 11], Dif-
ferential Dynamic Logic [12], Hybrid Hoare Logic [13].

These approaches can be classified into two paradigms, a simulation-based infor-
mal one such as [1–5] or a verification based formal one like [6–13]. It is evident that
informal design of embedded systems has a low initial cost and is intuitively appealing,
because simulations give results early on, but it cannot fully guarantee the correctness
and reliability of the system to be developed; in contrast, the correctness and reliability
of the system can be thoroughly investigated with formal design, but the cost is higher
and it requires specialized skills. Therefore, it is desirable to provide a two-way path
between formal and informal approaches for a designer.

The first contribution of this paper is to provide one lane of this path. It takes a
formal model and translates it automatically to a Simulink model. The other lane has
been developed in previous work [14, 15], which is built by automatically translating
Simulink/Stateflow (S/S) diagrams into Hybrid CSP (HCSP) [10, 11], a formal mod-
elling language for hybrid discrete-continuous systems. As formal analysis of HCSP
models is supported by an interactive Hybrid Hoare Logic (HHL) prover based on Is-
abelle/HOL [13, 16–18], which provides a gateway to mechanized verification of S/S
models. The translation from the formal to informal model presented here, is imple-
mented as a fully automatic tool, and the benefit of the flexibility is demonstrated by an
example originating from the design of a spacecraft.

Another contribution of this paper is to provide a justification of the correctness
of the translation. To this end, we define a UTP semantics for Simulink and a UTP
semantics for HCSP, and then establish a correspondence between the UTP semantics
of the HCSP constructs and that of the corresponding Simulink constructs.

1.1 Related work

There has been a range of work on translating Simulink/Stateflow into modelling for-
malisms supported by analysis and verification tools. Mathworks itself released a tool
named Simulink Design Verifier [19] (SDV) for formal analysis of Simulink/Stateflow
models. However, currently, SDV can only be used to detect low-level errors such as in-
teger overflow, dead logic, array access violation, division by zero, and so on, in blocks
of a model, but not system-level properties of the complete model with the physical
and environmental aspects taken into account. Simulation-based verification [20] can
be used to verify system-level properties in a bounded time, but cannot be applied for
unbounded verification.

In order to commit system-level verification and/or code generation of Simulink
models, there have been a range of work on translating Simulink into other modelling
formalisms, for which analysis and verification tools are developed. Tripakis et al. [21]
presented an algorithm of translating discrete-time Simulink models to Lustre, a syn-
chronous language developed with formal semantics and a number of tools for vali-
dation and analysis, and later extended the work by incorporating a subset of State-
flow [22]. Cavalcanti et al. [23] presented a semantics for discrete-time Simulink dia-
grams using Circus [24], a combination of Z and CSP. Meenakshi et al. [25] gave an
algorithm that translates a subset of Simulink into input language of model checker

A Two-way Path between Formal and Informal Design of Embedded Systems 3

NuSMV. Sifakis et al. proposed a translation into BIP in [26]. BIP [27] stands for Be-
haviour, Interaction and Priority, which is a component-based formal model for real-
time concurrent systems. Among all the work mentioned above, continuous time mod-
els of Simulink are not considered. In [28], Yang and Vyatkin considered how to trans-
late Simulink into Function Blocks. Zhou and Kumar investigated how to translate
Simulink into Input/Output Hybrid Automata [29], while the translation of both dis-
crete and continuous time fragments of Simulink into SpacEx Hybrid Automata was
considered in [30]. In [31], Chen et al. considered how to translate Simulink models to
a real-time specification language Timed Interval Calculus (TIC). Based on which con-
tinuous Simulink diagrams can be analyzed by a theorem prover. However, the transla-
tion is limited as it can only handle continuous blocks whose outputs can be represented
explicitly by a mathematical relation on inputs. In contrast, in [14], we gave a transla-
tion from Simulink into HCSP. Our approach can handle all continuous blocks by using
the notion of differential equations and invariants.

In addition, contract-based frameworks for Simulink are described in [32, 33]. In
[32], Simulink diagrams are represented by SDF graphs, and discrete-time blocks are
specified by contracts consisting of a pair of pre/post-conditions. Then sequential code
is generated from the SDF graph, and the code is verified using traditional refinement-
based techniques. In [33], Simulink blocks are annotated with rich types, then the Sim-
Check tool extracts verification conditions from the Simulink model and the annota-
tions, and submits them to an SMT solver for verification. While in our approach, all
Simulink/Stateflow models can be specified and verified using Hybrid Hoare Logic and
the deductive verification techniques based on that.

In [34], a compositional formal semantics built on predicate transformers was pro-
posed for Simulink, based on which, a tool for verification of Simulink blocks was
reported in [35], consisting of two components: a translator from Simulink hierarchi-
cal block diagrams into predicate transformers and an implementation of the theory of
predicate transformers in Isabelle. The UTP semantics of Simulink/Stateflow defined
here is quite similar to the one given in [34].

There have been several formal semantics defined for HCSP. In He’s original work
on HCSP [10], an algebraic semantics of HCSP was given by defining a set of algebraic
laws for the constructs of HCSP. Subsequently, a DC-based semantics for HCSP was
presented in [11] due to Zhou et al. These two original formal semantics of HCSP are
very restrictive and incomplete, for example, it is unclear whether the set of algebraic
rules defined in [10] is complete, and super-denese computation and recursion are not
well handled in [11]. In [13, 17, 36, 37], operational, axiomatic and DC-based denota-
tional semantics for HCSP are proposed, and the relations among them are discussed. In
this paper, we re-investigate the semantics of HCSP by defining its simulation seman-
tics using Simulink and its UTP-based denotational semantics, and the correspondence
between the two semantics, rendering HCSP more practical to engineers.

The rest of this paper is organized as follows. After introducing some preliminaries
on HCSP and Simulink in Section 2, Section 3 presents the translation from HCSP into
Simulink. We further provide a prototypical implementation of the translator in Section
4, followed a case study on a lunar lander in Section 5. Section 6 presents a justification

4 M. Chen et al.

of the translation by proving consistency of the UTP semantics. A conclusion is drawn
in Section 7.

2 Preliminaries

In this section, we briefly review HCSP and Simulink.

2.1 Hybrid CSP (HCSP)

HCSP [10,11,17] is a language for describing hybrid systems. It extends the well-known
language of Communicating Sequential Processes (CSP) with timing constructs, inter-
rupts, and differential equations for modelling continuous evolution. Data exchange
among processes is confined to instantaneous synchronous communication, avoiding
shared variables between different processes in parallel. A comprehensive introduction
to HCSP can be found in [17].

The syntax of HCSP processes is given below:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P tQ | P ∗
| 〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉D 8i∈I(ioi → Qi)

S ::= P | S‖S

Here x and s stand for variables, B and e are conventional Boolean and arithmetic ex-
pressions. P,Q,Qi are sequential processes; and ioi stands for a communication event,
which is either ch?x or ch!e, and ch for a channel name. A system S is either a sequen-
tial process, or a parallel composition of several sequential processes.

The intended meaning of the individual constructs is as follows:

– skip, x := e (assignment), ch?x (input), ch!e (output), P ;Q (sequential composi-
tion), B → P (conditional statement), P tQ (internal choice), P ∗ (repetition) and
S‖S (parallel composition) have their standard meaning.

– 〈F (ṡ, s) = 0&B〉 is the evolution statement, where s represents a vector of real
variables and ṡ the first-order time derivative of s. It forces s to evolve according
to the differential equations defined by the functional F as long as B holds, and it
terminates immediately when B turns false.

– 〈F (ṡ, s) = 0&B〉 D 8i∈I(ioi → Qi) behaves like 〈F (ṡ, s) = 0&B〉, except that
the evolution is preempted as soon as one of the communications ioi occurs. That
is followed by the respective Qi. However, if the evolution statement terminates
before a communication occurs, then the process terminates immediately.

2.2 Simulink

Simulink [1] is an interactive platform for modelling, simulating and analyzing multido-
main dynamic and embedded systems. It provides a graphical block diagramming tool
and a customizable set of block libraries for building executable models of embedded
systems and their environments.

A Two-way Path between Formal and Informal Design of Embedded Systems 5

1

Out_v

2

Out_s

1
s

Integrator_s

1
s

Integrator_v

1

In_a

Fig. 1. The plant of a train control system

1

Out_1

Divide1
3.4

Constant3

2

Constant2

1

Constant1

Add2

Add1

1

In_x

2

In_y

Fig. 2. x− 1 + y ∗ ((−2)/3.4)

A Simulink model contains a set of blocks, subsystems, and wires, where blocks
and subsystems cooperate by setting values on the wires between them. Fig. 1 gives a
Simulink model of train movement, where rounded rectangles In a, Out v and Out s

are in-ports and out-ports for subsystems, and represent the acceleration, velocity, and
trajectory of the train respectively. The two rectangular blocks Integrator v and
Integrator s are integrator blocks of the Simulink library, each of which contains an
internal parameter to represent the initial value of the output. An integrator block out-
puts its initial value at the beginning and the integration of the input signal afterwards.
Hence, the block Integrator v outputs the velocity of the train, which is the integra-
tion of the input acceleration In a; and on the other hand, the block Integrator s

outputs the trajectory of the train, which is the integration of the input velocity.
An elementary block gets input signals and computes the output signals. However,

to make Simulink more useful, almost every block in Simulink contains some user-
defined parameters to alter its functionalities. One typical parameter is sample time
which defines how frequently the computation is done. Two special values, 0 and −1,
may be set for sample time, where the sample time 0 indicates that the block is used for
simulating the physical environment and hence computes continuously, and−1 signifies
that the sample time of the block is not set, it will be determined by the sample times
of the in-going wires to the block. Thus, blocks are classified into two categories, i.e.
continuous and discrete, according to their sample times.

Blocks and subsystems in a Simulink model receive inputs and compute outputs
in parallel, and wires specify the data flow between blocks and subsystems. Computa-
tion in a block takes no time and the computed output is delivered immediately to its
receiver.

As a convention, in the sequel, when describing Simulink diagrams, we use x to
stand for the input signal on in-port In x, x′ for the output signal on out-port Out x,
possibly with a subscript to indicate which subsystem the signal belongs to. For in-
stance, x′P indicates an output signal on Out x inside a subsystem P.

3 From HCSP to Simulink

In this section, we explain the details of the translation from HCSP processes as well
as its subcomponents into graphical Simulink models. The translation starts from the
most basic ingredients, i.e. expressions, to primitive statements and then is followed by
compositional components.

6 M. Chen et al.

Add

2

Out_s

1

Out_v

1

Constant

2

Constant1

1
s

Integrator_s

1
s

Integrator_v

Fig. 3. v̇ = 1, ṡ = v + 2

1

Out_ok

1

In_ok

Fig. 4. skip Statement

3.1 Expressions

Arithmetic expressions in HCSP are defined as

e =̂ x | c | −e | (e) | e+ e | e− e | e ∗ e | e/e

where x is a real variable, c stands for a real constant, and +,−,∗,/ respectively for
addition, subtraction, multiplication, and division of reals.

We construct a normal subsystem in Simulink to interpret an arithmetic expression
e from HCSP, inside which a variable x is encoded into an input block of the subsystem,
a constant c into a constant block with corresponding value, and parentheses determine
priority of the computation. As for the operations over reals, a sequence of + and − (or
∗ and /) is shrunk into a sum (or product) block with multiple input signals in Simulink.
Fig. 2 shows the Simulink subsystem for the expression x− 1 + y ∗ ((−2)/3.4).
Boolean expressions are translated similarly.

3.2 Differential Equations

The syntax of differential equations in HCSP is F =̂ ṡ = e | F, F , where s stands
for a continuous variable, ṡ is the time derivative of s, and F, F indicates a group of
differential equations that evolve simultaneously over time.

In our approach, each single differential equation is encoded into a continuous in-
tegrator block with an input signal of the value of e and an output signal of s, and
equations in the same group are a normal subsystem in Simulink. In the translation of
v̇ = 1, ṡ = v + 2, illustrated in Fig. 3, the integrator block of s takes the value of v + 2
and an internal initial value s0 to calculate the integral and then generate a signal of s,
i.e. s(t) =

∫ t
t0
(v(t) + 2)dt+ s0.

3.3 skip Statement

In the semantics of HCSP, skip terminates immediately with no effect on the process,
and thus there is intuitively no need to draw anything in Simulink diagrams. However,
blocks and subsystems in a Simulink model are running inherently in parallel as indi-
cated in the previous section, but processes in HCSP can be executed sequentially, thus
we need to provide a method to specify sequential execution in a Simulink diagram.
Inspired by UTP [38], we introduce a pair of Boolean signals ok and ok′ into each

A Two-way Path between Formal and Informal Design of Embedded Systems 7

subsystem to indicate initiation and termination. If ok′ is false, the process has not ter-
minated and the final values of the process variables are unobservable. Similarly, if ok
is false, the process has never started and even the initial values are unobservable. These
considerations underlie the validity of the translation of sequential composition. Addi-
tionally, ok and ok′ are local variables to each subsystem corresponding to an HCSP
process, and they never occur in the process statements. In a Simulink subsystem ok
and ok′ are constructed as an in-port signal named In ok and an out-port signal named
Out ok respectively.

Since skip does nothing and terminates instantly, the subsystem for skip in Simulink
is illustrated in Fig. 4, where ok′ = ok indicating that whenever the process skip starts,
it terminates immediately without any effect. Also, there is no variable in the alphabet
of a skip process, thus there are only ports for ok and ok′.

3.4 Assignment

Fig. 5 illustrates the subsystem in Simulink with an example of assignment x := x+y∗
z, where for ease of understanding, we unpack the subsystem of arithmetic expression
e. The output signals are computed by the following equations:

ok′ = ok x′ =

x′new, ok ∧ ¬d(ok)
x, ¬ok ∧ ¬d(ok)
d(x′), d(ok)

u′ = u

Here, u stands for the set of signals that are not processed by the current subsystem, i.e.
y and z in this example. x′new represents the newly computed signal, here produced by
block Add1. Moreover, we use d(x) to denote the value of x in the previous period. It
is kept through a unit delay block that holds its input for one period of the sample time.

3.5 Continuous Evolution

The Simulink diagram translated from an evolution in HCSP is shown in Fig. 6, where
the group of differential equationsF and the Boolean conditionB are encapsulated into
a single subsystem respectively. The enabled subsystem F contains a set of integrator
blocks corresponding to the vector s of continuous variables, and executes continuously
whenever the value of the input signal, abbreviated as en, on the enable-port is positive.
Intuitively, subsystem B guards the evolution of subsystem F by taking the output signals
of F as its inputs, i.e. sB = s′F , and partially controlling the enable signal of F via
its output Boolean signal, denoted by B. As a consequence, an algebraic loop occurs
between subsystem B and F which is not allowed in Simulink, the simple solution is to
introduce a unit delay block with an initial value 1 inserted after subsystem B. Thus the
boundary condition is evaluated after completion of an integrator step. Formally, given
inputs, the output signals are computed by the following equations:

en = ok ∧ d(B) ok′ = ok ∧ ¬d(B) s′ =

{
s′F , ok
s, ¬ok

8 M. Chen et al.

4

Out_z

3

Out_y

2

Out_x

1

Out_ok

1/z

Unit Delay2
1/z

Unit Delay1

 > 0

Switch2

 > 0

Switch1

Divide1

Add1

4

In_z

3

In_y

2

In_x

1

In_ok

Fig. 5. x := x+ y ∗ z

B

2

Out_s

1

Out_ok

z

1

Unit
Delay

 > 0

In_s Out_1

Subsystem B

NOT
AND

AND

In_s Out_s

Enabled Subsystem F

1

In_ok

2

In_s

Fig. 6. Continuous Evolution

3.6 Conditional Statement

Fig. 7 illustrates the translation from a conditional statement of HCSP into a Simulink
diagram. In most cases, subsystem B and P share the same group of input signals x, and
for those distinct input signals, we add corresponding in-ports for B or P, which is not
presented in Fig. 7. Accordingly, the output signals are computed according to

okP = ok ∧B ok′ =
{

ok′P , B
ok, ¬B x′ = x′P .

3.7 Internal Choice

Given an internal choice P t Q, we use outSigs(P) and outSigs(Q) to represent the
set of output signals (including ok′) of subsystem P and Q respectively, and encode the
random choice according to the following two situations.

– For each x′ ∈ outSigs(P) ∩ outSigs(Q), we introduce a switch block in Simulink
diagrams for signal routing, which switches x′ between x′P from P and x′Q from Q

based on the value of the second input.
– For each y′ ∈ outSigs(P) − outSigs(Q), we directly output the signal y′P from P

as the final value of y′, because in case that P is not chosen by the system, y′ stays
unchanged. For each z′ ∈ outSigs(Q)− outSigs(P), analogously.

Fig. 8 illustrates a pattern to implement the above two cases. In order to guarantee
that only one process in the internal choice is switched on, every switch block here
needs to share exactly the same switching condition. As shown in Fig. 8, the two switch
blocks share a common criteria (> 0) for passing first input as well as an identical
second input signal, abbreviated as Ran, generated by an oracle that provides a non-
deterministic signal4. The computation of signal ok and ok′ can be formalized as{

okP = ok ∧ Ran
okQ = ok ∧ ¬Ran ok′ =

{
ok′P , Ran
ok′Q, ¬Ran

4 An oracle that interprets non-determinism is none of the blocks in Simulink library, inasmuch
as the random block provided by Simulink generates pseudo random numbers, which is in
itself deterministic.

A Two-way Path between Formal and Informal Design of Embedded Systems 9

B

1

Out_ok

2

Out_x

 > 0

In_x Out_1

Subsystem B

In_ok

In_x

Out_ok

Out_x

Subsystem P

AND

1

In_ok

2

In_x

Fig. 7. Conditional Statement

4

Out_z

3

Out_x

1

Out_ok

2

Out_y

 > 0

 > 0

In_x

In_z

In_ok

Out_x

Out_z

Out_ok

Subsystem Q

In_ok

In_y

In_x

Out_ok

Out_y

Out_x

Subsystem P -C-

Oracle

AND

NOT

AND

1

In_ok

4

In_z

3

In_x

2

In_y

Fig. 8. Internal Choice

In_ok

In_x

In_z

Out_ok

Out_x

Out_z

Subsystem Q

In_ok

In_x

In_y

Out_ok

Out_x

Out_y

Subsystem P

4

Out_z

3

Out_y

1

Out_ok
2

Out_x

1

In_ok

3

In_y

2

In_x
4

In_z

Fig. 9. Sequential Composition

3.8 Sequential Composition

An essential work in translating sequential composition into Simulink models, is to
construct the initiation and termination of a process, which has already been done by
introducing ok and ok′ signals in connection with the skip process.

Fig. 9 illustrates a straightforward encoding of sequential composition into Simulink
diagrams. For exclusive signals y and z, we draw corresponding ports independently for
subsystem P and Q. The set of common signals x processed by both P and Q is linked
sequentially from P to Q, and the same happens for ok and ok′.

okP = ok okQ = ok′P ok′ = ok′Q xP = x xQ = x′P x′ = x′Q

3.9 Repetition

The basic idea in encoding repetition is to link the outputs of subsystem P back into its
in-ports, and we need to specify a finite random number N to control the number of
times that P executes.

The integrated pattern to encode repetition p∗ into Simulink diagrams is elaborated
in Fig. 10. Here, a unit delay block with an initial value of 0 is introduced to break the
algebraic loop that occurs when we link the outputs of P back. Besides, we introduce an
oracle carrying a non-negative random number N to specify the number of repetitions
of subsystem P. The update of variables is formulated as the following equations:

n = ok× (d(n) + d(ok′P ∧ ¬d(ok′P))) ok′ = ok ∧ ok′P ∧ (n ≥ N)

okP = ok ∧ (n == d(n) ∨ n ≥ N) xP =

{
d(x′P), n > 0
x, n == 0

10 M. Chen et al.

n

1

Out_ok

In_ok

In_x

Out_ok

Out_x

SubSystem_P

 > 0

z

1

z

1

==

z

1

z

1

-C-

Oracle N

>=

AND

OR

AND

2

Out_x

2

In_x

1

In_ok

AND

NOT

Fig. 10. Repetition

3

Out_e

2

Out_re

1

Out_ok

1/z

1/z

1/z

 > 0

NOT

AND

AND

3

In_e

2

In_re

1

In_ok

(a) ch!e

3

Out_x

2

Out_re

1

Out_ok
1/z

1/z

NOT

NOT

AND

AND

4

In_ch

3

In_x

2

In_re

1

In_ok

1/z

(b) ch?x

Fig. 11. Communication Events

3.10 Communication Events

For each communication event, either a sender (ch!e) or a receiver (ch?x), we construct
a subsystem in Simulink to deliver the message along ch for the matching pair of events.
In order to synchronise the interaction, we introduce another pair of Boolean signals re
and re′ (re is short for ready) into each subsystem that corresponds to a communication
event. re indicates whether the matching event is ready for the communication, while
re′ indicates whether the event itself is ready for the communication.

A communication along channel ch takes place as soon as both rech and re′ch are
true, then both the sending and the receiving parties are ready, otherwise one or both
sides must wait. Additionally, re and re′ are local signals, which never occur in the
process statements. Furthermore, re and re′ in a Simulink subsystem are constructed as
an in-port signal named In re and an out-port signal named Out re respectively. Fig.
11 illustrates the Simulink diagrams that interpret communication events, which can be
elaborated in the following two parts.

– For a sender ch!e, the output signals are computed according to

re′ = ok ∧ ¬ok′ ok′ = f(d(re ∧ re′)) e′ =

{
e, ¬d(ok)
d(e′), d(ok) ,

A Two-way Path between Formal and Informal Design of Embedded Systems 11

3

Out_x
2

Out_e

1

Out_ok
In_ok

In_ready_ch

In_ch

In_x

Out_ok

Out_ready_ch_1

Out_ready_ch_2

Out_x

SubSystem Q

In_ok

In_ready_ch

In_e

Out_ok

Out_ready_ch_1

Out_ch_1

Out_ready_ch_2

Out_ch_2

Out_e

SubSystem P

AND

OR OR

3

In_x

2

In_e

1

In_ok

Fig. 12. Parallel e := 0; ch!e;< ė = 1&e < 2 >; ch!e‖x := 3; ch?x; ch?x

where the keep pattern f(s(t)) = ok(t) ∧ (s(t) ∨ f(s(t − 1))) for t > cnow, with
f(s(t)) = 0 for t ∈ [cnow, cnow+1), here cnow is the current time. This is to keep
ok′ true since the communication is finished, i.e., since both re and re′ turn true.

– For a receiver ch?x, the output signals are computed according to

re′ = ok ∧ ¬ok′ ok′ = f(d(re ∧ re′))

x′ =

{
x, if ¬ok′

¬d(ok′)× ch + d(ok′)× d(x′), otherwise

3.11 Parallel

For P‖Q, we consider the following two cases:

Without communications This is a trivial case that we draw a subsystem encapsulating
the two subsystems in terms of P and Q, but without any wires (except those carrying
ok, ok′) between the two subsystems, as shared variables are not allowed in HCSP.
Specifically, we set okP = okQ = ok, and ok′ = ok′P ∧ ok′Q.

With communications As for a parallel process P‖Q with inter-communications along
a set of common channels comChan(P,Q), we draw a subsystem containing the sub-
systems corresponding to P andQ, as well as some additional wires to bind all channels
in comChan(P,Q) and deliver messages along them.

We elaborate the above idea by showing a Simulink diagram corresponding to a
parallel process in Fig. 12, where the signals relevant to communications are attached
with subscripts to specify the name of the common channel and the distinctive events
corresponding to the same channel. Suppose that there are m and n events relevant to
ch in subsystem P and Q respectively, then the computation in Fig. 12 is done by

okP = okQ = ok ok′ = ok′P ∧ ok′Q rech P =
∨n

i=1
re′ch i Q rech Q =

∨m

j=1
re′ch j P

indicating that the two subsystems in parallel are activated simultaneously when the
system starts, and the parallel process terminates when both P and Q terminate. Further-
more, the channel ch on one side claims ready to the other side if either of its involved
events is ready, which means that the communication events on different parties of a
common channel are matched dynamically during the execution. Moreover, the value
that Q receives along channel ch is computed as chQ =

∑m
j=1 re′ch j P × ch′j P .

12 M. Chen et al.

3.12 External Choice by Communications

As a subcomponent of interruption in HCSP, the external choice 8i∈I(ioi → Qi) waits
until one of the communications ioi takes place, and then it is followed by the respec-
tive Qi, where I is a non-empty finite set of indices, and {ioi}i∈I are communication
events, i.e. either ch!e or ch?x. In addition, if more than one among {ioi}i∈I are ready
simultaneously, only one of them executes, this is determined randomly by the system.
Thus, if the matching side of every ioi involved is ready for communication, then the
external choice degenerates to internal choice. Besides, the syntax (ioi → Qi) actually
indicates a sequential composition (ioi → skip ;Qi), to which the translation approach
already has been introduced above.

Taking P 8R as an example, where P =̂io1;Q1 andR=̂io2;Q2, then the ok signal of
P can be computed by okP = f(ok∧reP ∧(¬reR∨(Ran < 0))). This means that when
the external choice starts (ok = 1) and the matching event of io1 is ready (reP = 1), P
is chosen to execute if either the matching event of io2 is not ready (reR = 0), or the
random number Ran, where Ran ∈ [−1, 1), occurs to be negative (Ran < 0) when both
of the matching event are ready. A keep pattern f(s) is used here to keep the signal okP
true, otherwise it may jump back to false after that the communication terminates. The
subsystem R is handled analogously. Thus, the output signals of the subsystem of P 8R

are given by ok′ = ok′P ∨ ok′R, x′ =

x′P , ok′P
x′R, ok′R
x, ¬ok′P ∧ ¬ok′R

.

3.13 Interruption

Obviously, 〈F (ṡ, s) = 0&B〉 D 8i∈I(ioi → Qi) is equivalent to 〈F (ṡ, s) = 0&(B ∧
¬re′R)〉; re′R → 8i∈I(ioi → Qi), where re′R = f

(∨
i∈I re′oii

)
, and the translation

rules can be composed in a semantic-preserving way (see Section 6). Hence, translating
an interruption into a Simulink diagram becomes a composition of translating various
components that have been illustrated in previous subsections.

4 Implementation

The translation from HCSP processes into Simulink diagrams is implemented in C++ as
a prototype, called H2S5, which takes an HCSP model as input and generates a Simulink
graphical model encoded in a file of mdl format. The obtained graphical model can be
simulated with configurations of several customized parameters to validate properties
in the design of embedded systems. Thanks to the inherently compositional structure
of HCSP processes, the translator is implemented with a set of recursive functions.
H2S works in a fully automatic translation mode with linear complexity in both time
and space. Furthermore, the generated Simulink model is compositional as well, which
means the size of the Simulink model is approximately linear in the size of the original
HCSP model.

5 Both the tool and the case study in next section are found at http://lcs.ios.ac.cn/
˜chenms/tools/H2S.tar.bz2.

http://lcs.ios.ac.cn/~chenms/tools/H2S.tar.bz2
http://lcs.ios.ac.cn/~chenms/tools/H2S.tar.bz2

A Two-way Path between Formal and Informal Design of Embedded Systems 13

Fig. 13. Powered descent process Fig. 14. A simplified configuration of GNC

For using the tool H2S, users should have a C++ compiler, Flex and Bison, as well
as a library OGDF installed. Additionally, a group of customized parameters, e.g. length
and stepsizeof the simulation, can be specified in the configuration dialog before switch-
ing on the simulation.

5 Combining Informal and Formal Approaches

In this section, we show how to move between formal and informal design in a case
study of the descent guidance control program of a lunar lander. It is a sampled-data
control system composed of the physical plant and the embedded control program.

5.1 Description of the Design Problem

In the lunar lander mission, launched by China at the end of 2013 to achieve its first
soft-landing and roving exploration on the moon, powered descent (see Fig. 13) is the
most challenging task, because it is fully autonomous without remote control com-
mands from earth, i.e. the lander must rely on its own guidance, navigation and control
(GNC) system to, in real time, assess its current state, and generate control commands
to adjust its attitude and engine thrust, to achieve soft-landing on the lunar surface.
Therefore, the reliability of the GNC system is key to the success of soft-landing.

The slow descent phase is the final phase of the powered descent (see Fig. 13),
which begins at an altitude of approximately 30m over the lunar surface, and terminates
when the engine shut-down signal is received. The task of this phase is to ensure that
the lander descends slowly and smoothly to the lunar surface, by nulling the horizontal
velocity, maintaining a prescribed uniform vertical velocity, and keeping the lander in
an upright position.

The integrated system is composed of the lander’s dynamics and the guidance pro-
gram for the present phase (see Fig. 14), where the guidance program is executed pe-
riodically with a fixed sampling period. At each sampling point, the current state of
the lander is measured by an IMU (inertial measurement unit) or various sensors. Pro-
cessed measurements are then input into the guidance program, which outputs control
commands, e.g. the magnitude and direction of thrust, to be imposed on the lander’s
dynamics in the following sampling cycle. For more details of the dynamics and the
guidance program, please refer to [39].

14 M. Chen et al.

P =̂ PC ‖PD

PC =̂ v := −2; m := 1250; r := 30;
(〈Sys1&f > 3000〉D CommI;
〈Sys2&f ≤ 3000〉D CommI)∗

PD =̂ t := 0; g := 1.622; vslw := −2; f1 = 2027.5;
(chv?v1; chm?m1; f1 := m1 ∗ aIC; chf !f1;
temp := t; 〈ṫ = 1&t < temp + 0.128〉)∗

aIC =̂ g − 0.01 ∗ (f1/m1 − g)− 0.6 ∗ (v1 − vslw)

Sys1 =̂ ṁ = −f/2548, v̇ = f/m− 1.622, ṙ = v

Sys2 =̂ ṁ = −f/2842, v̇ = f/m− 1.622, ṙ = v

CommI =̂ chf?f → skip 8 chv!v → skip 8 chm!m→ skip

In the program PC is the continuous part of the system, i.e. the physical plant, and PD is the
discrete part, i.e. the control program. Apparently the two process execute in parallel and interact
through a group of communications, which happens periodically for every 0.128s. aIC stands
for the commanded acceleration, namely the acceleration that should be provided by the engine
thrust to maintain a smooth descent, and g denotes the gravitational acceleration on the moon. In
addition, the lander’s dynamics comprises two different forms, i.e. Sys1 and Sys2, depending on
the magnitude of the current thrust f .

Fig. 15. HCSP program for the GNC control program

Design Objectives. A correct GNC control program to control the slow descent phase,
with the assumption that the lunar lander enters the slow descent phase at r = 30m with
v = −2m/s, m = 1250kg and f = 2027.5N, where r, v and m denote the altitude,
vertical velocity and mass of the lunar lander, respectively, and f is the thrust imposed
on the lander, satisfies the following requirements6:

(R1) |v − vslw | ≤ ε during the slow descent phase and before touchdown, where ε =
0.05 is the tolerance of fluctuation of v around the target vslw = −2m/s;

(R2) |v| < vMax at the time of touchdown, where vMax = 5m/s is the specified upper
bound of |v| to avoid the lander’s crash when contacting the lunar surface;

(R3) the system will finally exit the slow descent phase7.

5.2 From Simulink to HCSP

In [39], a Simulink model of the guidance control program of the slow descent was first
built and simulated, then the Simulink model was translated into HCSP using the tool
Sim2HCSP. The result is shown in Fig. 15.

Based on the translated formal model, the required properties have been proved
by combining three verification tools, including iSAT-ODE [40], Flow* [41] and HHL
Prover [14], which does improve the reliability of the program.

6 We abstract from disturbances here.
7 Note that if no shut-down signal is received, there exists a possibility that the lander stays in

the slow descent phase after landing, which will damage the lander very much.

A Two-way Path between Formal and Informal Design of Embedded Systems 15

Out_temp

10

Out_ok

9

Out_t

8

Out_f1

7

Out_v1

6

Out_m1

5

Out_f

4

Out_v

3

Out_m

2

Out_r

1

SubSystem_PD

In_ok

In_f1

In_temp

In_t

In_ready_chv

In_v1

In_chv

In_ready_chm

In_m1

In_chm

In_ready_chf

Out_ok

Out_ready_chv_40

Out_ready_chm_38

Out_m1

Out_v1

Out_ready_chf_34

Out_f1

Out_chf_34

Out_t

Out_temp

SubSystem_PC

In_ok

In_f

In_v

In_m

In_r

In_ready_chm

In_ready_chv

In_ready_chf

In_chf

Out_ok

Out_r

Out_ready_chm_13

Out_m

Out_chm_13

Out_ready_chv_16

Out_v

Out_chv_16

Out_ready_chf_19

Out_f

AND

In_ok

10

In_m1

9

In_v1

8

In_t

7

In_temp

6

In_f1

5

In_r

4

In_m

3

In_v

2

In_f

1

Fig. 16. The top-level view of the translated Simulink model

0 5 10 15
−2

−2

−2

−2

−2

−1.9999

−1.9999

−1.9999

−1.9999

−1.9999

−1.9999

t

v

original
H2S

t

v

12.0566 12.0567 12.0567 12.0568 12.0568 12.0569 12.057 12.057 12.0571 12.0571
−5

−4

12.0566 12.0567 12.0567 12.0568 12.0568 12.0569 12.057 12.057 12.0571 12.0571
5.9995

5.9996

5.9997

5.9998

5.9999

6

6.0001

6.0002

6.0003

6.0004

6.0005

Time offset: 0

r

t

Fig. 17. The evolution in physical plant PC

But the problem is how to validate the translated HCSP formal model, as the cor-
rectness of the translation from Simulink/Stateflow was not addressed yet, and the do-
main experts or engineers cannot understand the formal model. To address this issue,
we were suggested to consider translating the formal model back into Simulink, so that
validation can be done by simulation. This is a part of the motivation of this work.

5.3 From HCSP to Simulink

Therefore, we translate the above HCSP model into a Simulink model using the tool
H2S, which consists of 63 nested subsystems. The top-level view of the translated
Simulink model is shown in Fig. 16, where a parallel pattern interprets the physical
plant PC and the control program PD.

To validate the formal model, the translated Simulink model is simulated with a
fixed simulation step of 0.0001s, and the evolution of the lander is shown as the quiv-
ering curve in Fig. 17. For velocity, we also illustrate the corresponding results of the
original Simulink model as the dashed curve, showing that the translation loop keeps
the system behaviours consistent. Moreover, the left part shows that the velocity of the
lander is between−2 and−1.9999m/s, which corresponds to (R1); the right part shows
that if shut-down signal is sent out at 6m and is successfully received by the lander,
then (R3) is satisfied at time 12.0569s; and then with a subsequent free fall, (R2) is
guaranteed.

16 M. Chen et al.

By combining formal and informal approaches in validation and verification of the
lunar lander, the reliability was indeed improved, and the domain experts and engineers
were also convinced.

6 Correctness of the Translation

In this section, we define UTP (Unifying theories of programming, [38]) semantics
respectively for HCSP constructs and the corresponding Simulink diagrams, based on
which proving the consistency of the two semantics essentially provide a justification
of the correctness of the translation from HCSP processes to Simulink diagrams.

6.1 Extending UTP to Higher-order

UTP is, due to Hoare and He [38], a relational calculus based on first-order logic, which
is intended for unifying different programming paradigms. In UTP, a sequential pro-
gram (possibly nondeterministic) is represented by a design D = (α, P), where

– α denotes the set of state variables (called observables). Each state variable comes
in an unprimed and a primed version, denoting respectively the pre- and the post-
state value of the execution of the program. In addition to the program variables
and their primed versions such as x and x′, the set of observables includes two
designated Boolean variables, ok and ok′, denoting termination and stability of the
program, respectively.

– P stands for a predicate, denoted by p(x) ` R(x, x′), and defined as

(ok∧p(x))⇒ (ok′∧R(x, x′)).

It means that if the program is activated in a stable state, ok, where the precondition
p(x) holds, the execution will terminate, ok′, in a state where the postcondition R
holds; thus the post-state x′ and the initial state x are related by relation R. We use
pre.D and post.D to denote the pre- and post-conditions of D, respectively. If p(x)
is true, then P is shortened as ` R(x, x′).

Definition 1. Let D1 = (α, P1) and D2 = (α, P2) be two designs with the same
alphabet.D2 is a refinement ofD1, denoted byD1 v D2, if ∀x, x′, ok, ok′. (P2 ⇒ P1).
Let D1 = (α1, P1) and D2 = (α2, P2) be two designs with possible different alphabets
α1 = {x, x′} and α2 = {y, y′}. D2 is a data refinement of D1 over α1 × α2, denoted
by D1 vd D2, if there is a relation ρ(y, x′) s.t. ρ(y, x′);D1 v D2; ρ(y, x

′).

It is proved in UTP that the domain of designs forms a complete lattice with the refine-
ment partial order, and true is the smallest (worst) element of the lattice. Furthermore,
this lattice is closed under the classical programming constructs, and these constructs
are monotonic operations on the lattice. These fundamental mathematical properties
ensure that the domain of designs is a proper semantic domain for sequential program-
ming languages. There is a nice link from the theory of designs to the theory of predicate
transformers with the definition wp(p ` R, q)=̂p ∧ ¬(R;¬q) that defines the weakest
precondition of a design for a post condition q.

A Two-way Path between Formal and Informal Design of Embedded Systems 17

Semantics of concurrent and reactive programs is defined by the notion of reac-
tive designs with an additional Boolean observable wait that denotes suspension of a
program. A design P is a reactive design if it is a fixed point of H′, i.e. H′(P) = P ,
where

H′(p ` R) =̂ (` ∧x∈α(P) x
′ = x ∧ wait′ = wait)C wait B (p ` R). (1)

P1 C bB P2 is a conditional statement, which means if b holds then P1 else P2, where
b is a Boolean expression and P1 and P2 are designs. Informally, Eq. (1) says that if a
reactive system (a reactive design) waits for a response from the environment (i.e., wait
holds), it will keep waiting and do nothing (i.e., keep program variables unchanged),
otherwise its function (p ` R) will be executed.

Obviously, hybrid systems are concurrent and reactive systems, so the UTP seman-
tics of a hybrid system should satisfy the above healthiness condition. On the other
hand, hybrid systems show some additional features, like real-time and the mixture of
discrete and continuous dynamics. For specifying these additional features, we have to
extend the notion of reactive design in UTP by underlining the following aspects:

– it allows function variables, and quantifications over functions, as in a real-time
setting, program variables and channels are interpreted as functions over time. For
specifying locality, higher-order quantifications are inevitable. So, UTP will be-
come higher-order, rather than first-order, in this sense. In addition, the derivative
of a variable is allowed in a predicate. Therefore, strictly speaking, we extend the
relational calculus of UTP to the combined theory of ordinary differential equations
and timed traces with higher-order quantifications.

– communication synchronization can only block discrete dynamics and keep dis-
crete variable unchanged, yet cannot block the evolution of continuous dynamics,
like time evolution. So, given a hybrid system S, say p ` P , with continuous
variables s and discrete variables x, whose continuous dynamics is modeled as
〈F (ṡ, s) = 0&B〉, written SC 8, then the healthiness condition of reactive designs
should be changed to

H(S) = S, where (2)
H(S) =̂ (` x′ = x ∧ wait′ = wait ∧ SC) C wait B S. (3)

A design that meets the healthiness condition (2) is called a hybrid design, ranged
over H,H1 etc.
For simplicity, we will denote the left side of wait in Eq. (3) by ΠH for a given
hybrid design H in the sequel.

– In order to deal with real-time, a system variable now is introduced, which stands
for the starting time. Correspondingly, now′ stands for the ending time of the sys-
tem.

– For a concrete hybrid system, the predicate wait can be defined explicitly.

For convenience, for each channel ch, we introduce two Boolean functions ch! and
ch? over time. ch!(t) means that ch is ready for sending a value at t, similarly, ch?(t)

8 We always assume time evolution is modeled in SC , i.e., it contains ṫ = 1.

18 M. Chen et al.

means that ch is ready for receiving a value at t. In addition, we use Periodic(ch*, st) to
denote ∀n ∈ N. t = n∗ st⇒ ch*(t), which indicates that the communication event ch*
is ready periodically with period st. In addition, maximal synchronization semantics is
adopted, i.e.,

∀t ≥ 0. (ch?(t) ∧ ch!(t))⇒ (¬ch?′(t) ∧ ¬ch!′(t)), (4)

which means that whenever the two parties of a communication are ready, the commu-
nication takes place immediately.

6.2 UTP Semantics for Simulink

In the following, we define the UTP semantics for Simulink blocks, diagrams, and
subsystems respectively. For each of the Simulink constructs C, the observables of
C include the inputs in, outputs out, the user defined parameters, and some auxiliary
variables that are introduced for defining the semantics. Some output(s) may be also
input(s), i.e. outi = in′j , but we will uniformly use outi instead of in′j as output in the
semantics. Below we define the predicate for each Simulink construct C, denoted by
JCK. Also, we use cnow to denote the current time of system.

Blocks As pointed out in [16], it is natural to interpret each block of a Simulink diagram
as a predicate relating its inputs to the outputs using UTP. The behavior of each block
can be divided into a set of sub-behaviors, each of which is guarded by a condition.
Moreover, these guards are exclusive and complete, i.e., the conjunction of any two of
them is unsatisfiable and the disjunction of all of them is valid. So, each sub-behavior
can be further specified as a predicate over input and output signals. Additionally, for
each discrete block (diagram), it is assumed that its input signals from outside are avail-
able at each sampling point. So, it can be represented by a UTP formula of the form:

JB(ps, in, out)K

=̂ H(Ass ` out(0) = ps.init ∧
m∧
k=1

(Bk(ps, in)⇒ Pk(ps, in, out))), (5)

which means that in case the environment satisfies Ass (the precondition), the behaviour
of a block is specified by the formula at the right side of ` (the postcondition). We use
ps to denote a family of user-set parameters that may change the functionality of the
block. As explained previously,

∨m
k=1Bk(ps, in), and ¬(Bi(ps, in) ∧ Bj(ps, in)) for

any i 6= j, always hold.
Concretely, the UTP semantics of a continuous block can be given by a formula

with the following form:

JCB(ps, in, out)K
=̂ H(in! ` out(0) = ps.init ∧

(

(
B1(in, ps)⇒ F1(˙out, out, in, ps) = 0 ∧ · · · ∧
Bm(in, ps)⇒ Fm(˙out, out, in, ps) = 0

)
∧ out!)),

A Two-way Path between Formal and Informal Design of Embedded Systems 19

where Fi(˙out, out, in, ps) = 0 models the continuous evolution if Bi holds. In this
case, wait =̂¬out? , which means that the continuous evolution will be interrupted by
outputting to the environment. Thus, Eq. (2) holds with the maximal synchronization
assumption in Eq.(4).

Correspondingly, the UTP semantics of a discrete block can be given by a formula
with the following form:

JDB(ps, in, out)K
=̂ H(Periodic(in!, ps.st) ∧ Periodic(out?, ps.st) ` out(0) = ps.init ∧

Periodic(out!, ps.st) ∧ (∃n ∈ N. cnow = n ∗ st)⇒(
B1(in, ps)⇒ JPcomp1(in, out, ps)K ∧ · · · ∧
Bm(in, ps)⇒ JPcompm(in, out, ps)K

)
),

where JPcompi(in, out, ps)K stands for the UTP semantics of the i-th discrete computa-
tion, which can be obtained in a standard way (see [38]). The precondition says that the
environment should periodically input to and output from the block. In this case, wait is
set as ¬∃n ∈ N. cnow = n ∗ st and its continuous is ˙cnow = 1, meaning that the block
keeps waiting (idle) except for the periodic points at which discrete jumps happen.

Example 1. In what follows, as an illustration, we show how to concretize the UTP
semantics for some basic Simulink blocks including Constant, Add, Divide, Not, Or,
And, Relational, Switch, Delay and Integrator. We treat Constant and Delay

as continuous blocks, certainly, they can also be treated as discrete blocks in a similar
way.

– A Constant block generates a scalar constant value:

JConstant(ps.c, out)K =̂H(` out(0) = c ∧ ˙out = 0 ∧ out!).

The design insideH is equivalent to ` out = c∧ out!, should read ` out(cnow) =
c ∧ out!(cnow). Analogous remarks are applied subsequently.

– The Add block performs addition on its inputs, each of which is attached with a
sign sn: ‘+’ or ‘-’:

JAdd(ps, {sni}i∈I , {ini}i∈I , out)K
=̂ H(∧i∈IPeriodic(ini !, ps.st) ∧ Periodic(out?, ps.st) ` Periodic(out!, ps.st) ∧

(∃n ∈ N. cnow = n ∗ ps.st)⇒ out =
∑

i∈I
sni ∗ ini).

– Similarly, the UTP semantics for the Divide block is given as follows:

JDivide(ps.I, ps.{sni}i∈I , {ini}i∈I , out)K
=̂ H(∧i∈IPeriodic(ini !, ps.st) ∧ Periodic(out?, ps.st) ` Periodic(out!, ps.st) ∧

((∃n ∈ N. cnow = n ∗ ps.st)⇒ out =
∏

i∈I
sini) ∧

(sni =′∗′ ⇒ sini = ini) ∧ (sni =′/′ ⇒ sini = 1/ini)).

20 M. Chen et al.

– The logical operator blocks Not, Or, and And respectively perform the specified
logical operations on their inputs, whose UTP semantics are given by

JNot(in, out)K
=̂ H(Periodic(in!, ps.st) ∧ Periodic(out?, ps.st) ` Periodic(out!, ps.st) ∧

∃n ∈ N. cnow = n ∗ ps.st⇒ out = ¬in),

JOr(ps, {ini}i∈I , out)K
=̂ H(∧i∈IPeriodic(ini !, ps.st) ∧ Periodic(out?, ps.st) ` Periodic(out!, ps.st) ∧

∃n ∈ N. cnow = n ∗ ps.st⇒ out =
∨

i∈I
ini),

JAnd(ps.I, {ini}i∈I , out)K
=̂ H(∧i∈IPeriodic(ini !, ps.st) ∧ Periodic(out?, ps.st) ` Periodic(out!, ps.st) ∧

∃n ∈ N. cnow = n ∗ ps.st⇒ out =
∧

i∈I
ini).

– The Relational operator block compares two inputs using the relational operator
parameter ps.op, and outputs either 1 (true) or 0 (false), whose UTP semantics is
given by

JRelational(ps.op, in1, in2, out)K
=̂ H(Periodic(in1!, ps.st) ∧ Periodic(in2!, ps.st) ∧ Periodic(out?, ps.st) `

Periodic(out!, ps.st) ∧ ∃n ∈ N. cnow = n ∗ ps.st⇒ out = ps.op(in1, in2)).

– The Switch block passes through the first input or the third input based on the
value of the second input, thus we can define its UTP semantics as follows:

JSwitch(ps, in1, in2, in3, out)K
=̂ H(∧3i=1Periodic(ini !, ps.st) ∧ Periodic(out?, ps.st) ` Periodic(out!, ps.st) ∧

(∃n ∈ N. cnow = n ∗ ps.st)⇒
(
ps.op(in2, ps.c)⇒ out = in1∧
¬ps.op(in2, ps.c)⇒ out = in3

)
).

– A Delay block holds and delays its input by one sample period, therefore its UTP
semantics can be define as:

JDelay(ps, in, out)K

=̂ H(in! `
(

cnow < ps.st⇒ out(cnow) = ps.init∧
cnow ≥ ps.st⇒ out(cnow) = in(cnow− ps.st)

)
∧ out!).

– The Integrator block outputs the value of the integral of its input signal with
respect to time, so its UTP semantics is given by

JIntegrator(ps, in, out)K =̂ H(in! ` out(0) = ps.init ∧ (˙out = in ∧ out!)).

A Two-way Path between Formal and Informal Design of Embedded Systems 21

Diagrams A diagram is a set of blocks connected through wires. W.l.o.g., consider
a diagram D consisting of m continuous blocks and n discrete blocks, which are con-
nected via a set of wires. According to the above discussion, suppose the UTP semantics
for the m continuous blocks are given by

JCBi(psi, {ini}i∈Ii , outi)K
=̂ H(∧i∈Ii ini! ` outi(0) = psi.init ∧(

Bi1({ini}i∈Ii , psi)⇒ Fi1(˙outi, outi, {ini}i∈Ii , psi) = 0 ∧ · · · ∧
Bim(ini}i∈Ii , psi)⇒ Fim(˙outi, outi, {ini}i∈Ii , psi) = 0

)
∧ outi!),

for i = 1, . . . ,m, and the UTP semantics for the n discrete blocks are given by

JDBj(ps′j , {in′i}j∈Jj , out′j)K
=̂ H(∧j∈Jj Periodic(in′j !, ps′j .st) ∧ Periodic(out′j ?, ps′j .st) ` out′j(0) = ps′j .init ∧

Periodic(out′j !, ps′j .st) ∧ (∃n ∈ N. cnow = n ∗ psj .st)⇒(
Bj1({in′i}j∈Jj , ps′j)⇒ JPcompj1(psj , {in′i}j∈Jj , out′j)K ∧ · · · ∧
Bjm({in′i}j∈Jj , ps′j)⇒ JPcompjm(ps′j , {in′i}j∈Jj , out′j)K

)
),

for j = 1, . . . , n. Then the UTP semantics of D can be represented by

JD(ps∗, {in∗i }i∈I , {out∗i }i∈J)K
=̂ ∃ ∪mi=1 {ini}i∈Ii − {in∗i }i∈IC ,∃ ∪nj=1 {in′j}j∈Jj − {in∗i }i∈ID ,
∃{out1, . . . outm} − {out∗i }i∈JC ,∃{out′1, . . . , out′n} − {out∗i }i∈JD .
H(∧k∈IDPeriodic(in∗k !, ps∗.st) ∧ ∧k∈IC in∗k! ∧ ∧k∈JDPeriodic(out∗k?, ps∗k .st)

` ∧ ∧k∈J out∗k(0) = ps∗k.init ∧ ∧k∈JC out∗k!

∧ ∧mi=1 JCBi(psi, {ini}i∈Ii , outi)K ∧ ∧nj=1(out′j(0) = ps′j .init)[σ, ρ] ∧
(∃n ∈ N. cnow = n ∗GCD(ps′1.st, · · · , ps′n.st))⇒ (∧nj=1ps′j .st | cnow⇒(

Bj1({in′i}j∈Jj , ps′j)[σ, ρ]⇒ JPcompj1(ps′j , {in′i}j∈Jj , out′j)K[σ, ρ] ∧ · · · ∧
Bjm({in′i}j∈Jj , ps′j)[σ, ρ]⇒ JPcompjm(ps′j , {in′i}j∈Jj , out′j)K[σ, ρ]

)
)),

where

{in∗i }i∈IC = ∪mi=1{ini}i∈Ii − ({out1, . . . outm} ∪ {out′1, . . . , out′n}),
{in∗i }i∈ID = ∪nj=1{in′j}j∈Jj − ({out1, . . . outm} ∪ {out′1, . . . , out′n}),
{out∗i }i∈JC = {out1, . . . outm} − (∪mi=1{ini}i∈Ii ∪ ∪nj=1{in′j}j∈Jj),
{out∗i }i∈JD = {out′1, . . . , out′n} − (∪mi=1{ini}i∈Ii ∪ ∪nj=1{in′j}j∈Jj);

IC and ID stand for the dangling inputs for continuous and discrete blocks after the
composition, thus I = IC ∪ ID is the set of inputs of D; JC and JD stand for the
dangling outputs for continuous and discrete blocks after the composition, thus J =
JC∪JD is the set of outputs ofD; and σ and ρ stand for the substitutions that replace the
local input signals and input channels by the corresponding output signals and channels

22 M. Chen et al.

with the common names among these blocks (continuous and discrete) in each block,
respectively. Furthermore, we set in this case

wait=̂ ∧mi=1 ¬outi? ∧ ¬∃n ∈ N. cnow = n ∗GCD(ps′1.st, · · · , ps′n.st).

Add

1

Out

1

In

c

Constant

Fig. 18. A diagram Diag performing out = in + c

Example 2. Consider the diagram Diag performing out = in + c in Fig. 18. According
to the above discussion, its UTP semantics can be given as

JDiag(ps, in, out)K
=̂ ∃out′.H(Periodic(in!, ps.st) ∧ Periodic(out?, ps.st) ` (JConstant(ps, out′]K ∧

JAdd(ps, {+1,+1}, {in1, in2}, out)K[in/in1, out′/in2]).

Subsystems

Normal Subsystems A normal subsystem consists of a set of blocks and wires that
specify the signal connections. Actually, a normal subsystem can be seen as a diagram
by flattening, i.e., connecting the external inputs of the inside blocks with the inputs
of the subsystem and the external outputs of the inside blocks with the outputs of the
subsystem. Suppose a normal subsystem NSub with a set of inputs {ini}i∈I and a set
of outputs {outj}j∈J , and its inside blocks form a diagram Diag with a set of external
inputs {in′i}i∈I′ and {out′j}j∈J′ . Let σ be the mapping to relate {ini}i∈I with {in′i}i∈I′ ,
and {out′j}j∈J′ with {outj}j∈J , then the UTP semantics of NSub can be easily defined
as

JNSub(ps, {ini}i∈I , {outj}j∈JK =̂ JDiag(ps, {in′i}i∈I′ , {out′j}j∈J′K[σ].

Enabled Subsystems By adding an enabled block in a normal subsystem, an enabled
subsystem is created, which executes at each simulation step where the control signal
has a positive value, otherwise holds the states to maintain their most recent values. So,
its UTP semantics can be defined as follows:

JESub(ps, {ini}i∈I , en, {outj}j∈J)K
=̂ en(now) > 0⇒ JNSub(ps, {ini}i∈I , en, {outj}j∈J)K∧

en(now) ≤ 0⇒ out(now) = out(now − ps.st).

A Two-way Path between Formal and Informal Design of Embedded Systems 23

Theorem 1. Given a Simulink diagram C, its UTP semantics JCK satisfies the healthi-
ness condition in Eq. (2), that is

H(JCK) = JCK.

Proof. It is straightforward by the definition of JCK. ut

6.3 UTP Semantics for HCSP

As advocated by Hoare and He in UTP [38], a reactive system can be identified by the
set of all observations which could in any circumstances be made of that system, which
is represented by a description predicate with the same name as the system for conve-
nience. As usual, an alphabet is attached to a system P (and its behaviours predicate as
well), including the following parts:

1. V(P): the set of both continuous and discrete variable names, which is arranged as
a vector v.

2. iΣ(P): the set of input channel names.
3. oΣ(P): the set of output channel names. We defineΣ(P)=̂iΣ(P)∪oΣ(P), which

is arranged as a vector chP .

Given an alphabet of a hybrid system, its timed observation can be specified by a
tuple

〈now,v, fv, rech∗,msgch〉

where

– now is the start point (and now′ the end point) of a time interval over which an
observation is recorded.

– v represent the initial values of variables v, and v′ the final values at termination.
– fv is a vector of real-valued functions over the time interval [now, now′] for record-

ing the values of v, evidently with fv(now) = v, fv(now′) = v′.
– rech∗ is a vector of {0, 1}-valued Boolean functions over [now, now′], indicating

whether communication events ch∗ are ready for communication.
– msgch, standing for messages, are a vector of real-valued functions over [now, now′]

which record the values along channels ch.

We further define

const(f ,b, t1, t2)=̂∀t ∈ [t1, t2]. f(t) = b,

constl(f ,b, t1, t2)=̂∀t ∈ [t1, t2). f(t) = b,

constr(f ,b, t1, t2)=̂∀t ∈ (t1, t2]. f(t) = b.

Thereby using the UTP timed observations, the HCSP constructs can be defined respec-
tively as follows.

24 M. Chen et al.

– The skip statement, which does not alter the program state in any way, is modelled
as the relational identity:

JskipK =̂ H(` now′ = now ∧ v′ = v ∧ const(fv,v, now, now′) ∧
const(rech∗, 0, now, now′) ∧ const(msgch,msgch(now), now, now′)).

As skip terminates immediately, wait is equivalent to false in this case.
Hereafter, let

RE =̂ const(rech∗, 0, now, now′) ∧ const(msgch,msgch(now), now, now′).

– The assignment of value e to a variable x is modelled as setting x to e and keeping
all other variables (denoted by u) constant:

Jx := eK =̂ H(` now′ = now ∧ x′ = e ∧ u′ = u ∧ const(fx, e, now, now′) ∧
const(fu,u, now, now′) ∧ RE).

Likewise, as assignment statement terminates immediately, wait is equivalent to
false in this case.

– A continuous statement says that the system keeps waiting, meanwhile keeps con-
tinuously evolving, until the domain constraint is violated. So, the UTP semantics
for continuous evolution is formulated as the following hybrid design

J〈F (ṡ, s) = 0&B〉K =̂ (` F (ṡ, s = 0) ∧ ṫ = 1)CB B JskipK.

Obviously, in this case wait is equivalent to B.
– The conditional statement behaves according to whether the condition holds or not:

JB → P K =̂ JP K CB B JskipK.

– The internal choice is interpreted as a non-deterministic selection between two
operands :

JP tQK =̂ (JP K ∨ JQK).

– Let H1 and H2 be two hybrid designs with

H1 =̂ (` ∧x∈V(H1) x
′ = x ∧ wait′H1

= waitH1
∧ SH1

)C waitH1
B (pH1

` RH1
),

H2 =̂ (` ∧x∈V(H2) x
′ = x ∧ wait′H2

= waitH2
∧ SH2

)C waitH2
B (pH2

` RH2
),

which satisfy the healthiness condition in Eq. (2). We define the sequential compo-
sition of H1 and H2, denoted by H1 #H2 as

H1 #H2 =̂ ∃waitH1 ,waitH2 . ∃vH1 , nowH1 , okH1 .

∃fvH1
, rechH1

∗,msgchH1
, fvH2

, rechH2
∗,msgchH2

.

(` (waitH1
⇒ ΠH1

) ∧ (waitH2
⇒ ΠH2

) ∧ wait′ = wait)C wait B

(¬waitH1
∧ waitH2

∧ rH1
` RH1

)σH1
∧

(¬waitH1
∧ ¬waitH2

∧ rH2
` RH2

)σH2
∧

∀t ∈ [now, nowH1
). wait(t) = waitH1

(t) ∧
fv(t) = fvH1

(t) ∧ rech∗(t) = rechH1
∗(t) ∧ msgch(t) = msgchH1

(t) ∧

∀t ∈ [nowH1 , now′]. wait(t) = waitH2(t) ∧
fv(t) = fvH2

(t) ∧ rech∗(t) = rechH2
∗(t) ∧ msgch(t) = msgchH2

(t).

A Two-way Path between Formal and Informal Design of Embedded Systems 25

where

σH1 = [vH1/v
′, nowH1/now′, okH1/ok′][fvH1

/fv, rechH1
∗/rech∗,msgchH1

/msgch],

σH2
= [vH1

/v, nowH1
/now, okH1

/ok][fvH2
/fv, rechH2

∗/rech∗,msgchH2
/msgch].

In the above,

∃vH1
, nowH1

, okH1
. ∃fH1

v , rechH1
∗,msgchH1

, fH2
v , rechH2

∗,msgchH2
.

(¬waitH1
∧ waitH2

∧ rH1
` RH1

)σH1
∧ (¬waitH1

∧ ¬waitH2
∧ rH2

` RH2
)σH2

is essentially equivalent to the sequential composition of the two designs (¬waitH1
∧

waitH2 ∧ rH1 ` RH1) and (¬waitH1 ∧ ¬waitH2 ∧ rH2 ` RH2) by the theory of
UTP [38].
It is easy to see that ifH1 andH2 satisfy the healthiness condition of hybrid designs,
so does H1 #H2. Hence, H1 #H2 is still a hybrid design, which implies that hybrid
designs are closed by the sequential composition.
Now, given two HCSP processes P and Q, JP ;QK can be naturally defined as

JP ;QK =̂ JP K # JQK .

– A process variable X is interpreted as a predicate variable. Without confusion in
the context, we use X to represent the predicate variable corresponding to process
variable X , i.e.

JXK =̂ X.

– The semantics for recursion is defined as the least fixed point of the corresponding
recursive predicate by

JrecX.P K =̂ µX.JP K.

Given an HCSP process P , P ∗ can be defined as

P ∗ ⇔ recX.(skip t (P ; X)) (6)

As discussed above, its semantics is given by

JP ∗K ⇔ JrecX.(skip t (P ; X)K ⇔ ∃N.JPN K,

where P 0 =̂ skip.
– A receiving event can be modelled by the following hybrid design

Jch?xK =̂ ` LHS C rech? ∧ ¬rech! B RHS,

where

LHS =̂ ṫ = 1 ∧ x′ = x ∧ u′ = u,

RHS =̂ now′ = now + d ∧ re′ch? = 0 ∧ re′ch! = 0 ∧ u′ = u ∧ x′ = msgch(now′) ∧
constl(rech?, 1, now, now′) ∧ constl(rech!, 0, now, now′).

In this case, wait =̂ rech? ∧ ¬rech!, i.e., the process keeps waiting until its dual
communication event becomes ready.

26 M. Chen et al.

– The sending event Jch!eK can be defined similarly.
– Let H1 and H2 be two hybrid designs with

H1 =̂ (` ∧x∈V(H1) x
′ = x ∧ wait′H1

= waitH1
∧ SH1

)C waitH1
B (pH1

` RH1
),

H2 =̂ (` ∧x∈V(H2) x
′ = x ∧ wait′H2

= waitH2
∧ SH2

)C waitH2
B (pH2

` RH2
),

which satisfy the healthiness condition in Eq. (2). Then, We define the parallel
composition of H1 and H2, denoted by H1 ‖ H2 as

H1‖H2 =̂∃nowH1
, nowH2

, okH1
, okH2

. H1[ok/okH1
] ∧H2[ok/okH2

]∧
now′ = max{now′H1

, now′H2
} ∧ (ok′ = ok′H1

∧ ok′H2
)∧

(∀t ∈ (now′H1
, now′]. fvH1

(t) = fvH1
(now′H1

)∧
rechH1

∗(t) = rechH1
∗(now′H1

) ∧ msgchH2
(t) = msgchH2

(now′H2
))∧

(∀t ∈ (now′H2
, now′]. fvH2

(t) = fvH2
(now′H2

)∧
rechH2

∗(t) = rechH2
∗(now′H2

) ∧ msgchH2
∗(t) = msgchH2

∗(now′H2
)).

It can be further proved that

H1‖H2 ⇔ ∃nowH1
, nowH2

, okH1
, okH2

.

`
(

waitH1
⇒ ΠH1

∧
waitH2

⇒ ΠH2

)
C waitH1 ∨ waitH2 B

(
(pH1

` RH1
)[ok/okH1

]∧
(pH2 ` RH2)[ok/okH2]

)
∧

now′ = max{now′H1
, now′H2

} ∧ (ok′ = ok′H1
∧ ok′H2

)∧
(∀t ∈ (now′H1

, now′]. fvH1
(t) = fvH1

(now′H1
)∧

rechH1
∗(t) = rechH1

∗(now′H1
) ∧ msgchH2

(t) = msgchH2
(now′H2

))∧

(∀t ∈ (now′H2
, now′]. fvH2

(t) = fvH2
(now′H2

)∧
rechH2

∗(t) = rechH2
∗(now′H2

) ∧ msgchH2
∗(t) = msgchH2

∗(now′H2
)).

Therefore, H1 ‖ H2 satisfies the healthiness condition of hybrid designs. Hence,
H1 ‖ H2 is a hybrid design, which implies that hybrid designs are closed by the
parallel composition.
Now, given two HCSP processes P and Q, JP ‖ QK can be naturally defined as

JP ‖ QK =̂ JP K ‖ JQK .

– The communication interruption can be defined as

J〈F (ṡ, s) = 0&B〉D 8i∈I(ioi → Qi)K =̂ J〈F (ṡ, s) = 0&(B ∧ ¬Γ)〉;
Γ → 8i∈I(ioi → Qi)K

where Γ =̂
∨
i∈I re′

ioi
, and ioi stands for the dual communication event with respect

to ioi, for instance ch? = ch!.

To prove whether the UTP semantics of other HCSP constructs satisfies the health-
iness condition is mathematically straightforward and thus omitted here.

It can be further deduced that the domain of the previously defined hybrid designs
forms a complete lattice with a refinement partial order, on which the classical program-
ming operations are closed.

A Two-way Path between Formal and Informal Design of Embedded Systems 27

6.4 Justification of correctness

Having defined a UTP semantics respectively for the HCSP components and the Simulink
diagrams, we are now ready to present a correctness justification of the translation by
checking the semantic equivalence of a Simulink diagram with its corresponding HCSP
construct (given in Theorem. 2). Here are several remarks to be noted during the proofs:

1. We set for the sample times of all the discrete blocks to be −1 in the translation,
that is, all the generated discrete blocks share a globally identical sample time gst,
which will be configured by the user before triggering the simulation.

2. It is assumed that the In ok signal in a subsystem firstly turns true at the first sample
point, i.e. min{t|In ok(t) = 1} = gst. Similarly, we use τ to denote the earliest time
at which the Out ok signal becomes true, i.e. τ =̂min{t|Out ok(t) = 1}.

3. Hereafter we use JWiresK to indicate implicitly the entire group of variable substi-
tutions within a subsystem, and blocks are referred to as their abbreviated names
with potential identifiers, for instance, Swt1 in the assignment structure stands for
the block Switch1 in Fig. 5.

4. Unless otherwise stated, the parameters of a block will be abstracted away in the
semantic function for simplicity. Besides, to distinguish the input/output signals
of blocks, the leading characters of the input/output signals of a subsystem are
capitalized.

5. The UTP semantics defined in Sect. 6.2 implicates that the signals which are not
modified in the computation of a block (or subsystem) keep unchanged.

Theorem 2. Given an HCSP process P , denote the translated Simulink diagram by
H2S(P). Suppose there is a correspondence (denoted by EA) between JP K and JH2S(P)K,
i.e., now = gst, now′ = τ , ok = In ok(gst) = >, ok′ = Out ok(τ), v = In v(gst), v′ =
Out v(τ), fv = Out v|[gst,τ], rech∗ = Out rech∗|[gst,τ], and msgch = Out rech|[gst,τ], then
we have

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst)⇒
(
JP K⇔ JH2S(P)K|[gst,τ]

)
(7)

as gst→ 0.

Proof. By induction on the structure of HCSP components. For simplicity, we use ch∗
to denote the local communication events inside of H2S(P) in what follows.

skip: It is easy to see that under the assumptions,

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst)⇒
(
JskipK⇔ JH2S(skip)K|[gst,τ]

)
.

28 M. Chen et al.

Assignment: Without loss of generality, we use JDiageK to denote the semantics of the
diagram which computes the right-hand side of the assignment.

JH2S(x := e)K
=̂ ∃ch ∗ .JWiresK ∧ JDiageK ∧ JDel1K ∧ JDel2K ∧ JSwt1K ∧ JSwt2K
⇔ Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ` Periodic(out!, ps.gst)∧
∀t ≥ 0. (t < gst⇒ out Del1(t) = 0) ∧ (t ≥ gst⇒ out Del1(t) = In ok(t− gst))∧

(t < gst⇒ out Del2(t) = 0) ∧ (t ≥ gst⇒ out Del2(t) = Out x(t− gst))∧
(∃n ∈ N. cnow = n ∗ ps.gst⇒

(In ok(cnow) > 0⇒ out Swt1(cnow) = out Diage(cnow))∧
(In ok(cnow) ≤ 0⇒ out Swt1(cnow) = In x(cnow))∧
(out Del1(cnow) > 0⇒ out Swt2(cnow) = out Del2(cnow))∧
(out Del1(cnow) ≤ 0⇒ out Swt2(cnow) = out Swt1(cnow))∧
Out x(cnow) = out Swt2(cnow) ∧ Out ok(cnow) = In ok(cnow)

By providing the left-hand side of (7) and restricting the time interval of the be-
haviours, we get

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ JH2S(x := e)K|[gst,τ]

⇔ (∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ])⇒ (Out ok(cnow) = In ok(cnow)∧
Out x(cnow) = out Diage(cnow))

⇔ ok′ ∧ τ = now ∧ x′ = e ∧ const(fx, e, now, τ)∧
u′ = u ∧ const(fu,u, now, τ) ∧ RE (gst→ 0, EA)

It thus follows evidently that

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst)⇒
(
Jx := eK⇔ JH2S(x := e)K|[gst,τ]

)
.

Continuous statement: By the defined UTP semantics, it follows

JH2S(〈F (ṡ, s) = 0&B〉)K=̂ ∃ch ∗ .JWiresK ∧ JNSubBK ∧ JESubFK ∧ JDelK∧
JNotK ∧ JAnd1K ∧ JAnd2K ∧ JSwtK

⇔ Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ` Periodic(out!, ps.gst)∧
∀t ≥ 0. (out And1(t) > 0⇒ out ESubF(t) = S(t))∧

(out And1(t) ≤ 0⇒ out ESubF(t) = out ESubF(t− gst))∧
(t < gst⇒ out Del(t) = 1) ∧ (t ≥ gst⇒ out Del(t) = out NSubB(t− gst))∧

(∃n ∈ N. cnow = n ∗ ps.gst)⇒
out NSubB(cnow) = B(cnow) ∧ out Not(cnow) = ¬out Del(cnow)∧
out And1(t) = (In ok(cnow) ∧ out Del(t)) ∧ out And2(t) = (In ok(cnow)∧
out Not(cnow)) ∧ (In ok(cnow) > 0⇒ out Swt(cnow) = out ESubF(cnow))∧
(In ok(cnow) ≤ 0⇒ out Swt(cnow) = In s(cnow))∧
Out s(cnow) = out Swt(cnow) ∧ Out ok(cnow) = out And2(cnow)

A Two-way Path between Formal and Informal Design of Embedded Systems 29

By providing the left-hand side of (7) and restricting the time interval of the be-
haviours, we have

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ ok ∧ JH2S(〈F (ṡ, s) = 0&B〉)K|[gst,τ−gst]

⇔ Out ok(τ) = > ∧ τ − gst = gst + (τ − 2 ∗ gst) ∧ Out s(τ − gst) = S(τ − 2 ∗ gst)∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ))⇒ out NSubB(cnow− gst)∧

fs(cnow) = S(cnow− gst)) ∧ ¬out NSubB(τ − gst)∧
out ESubF(cnow) = out ESubF(cnow− gst)

⇔ ok′ ∧ u′ = u ∧ const(fu,u, now, τ) ∧ RE∧
(B ∧ τ = now + d ∧ s′ = S(d) ∧ ∀t ∈ [now, τ]. fs(t) = S(t− now)∨

¬B ∧ s′ = s) (gst→ 0, EA)

⇔ (JF (ṡ, s) = 0K CB B JskipK)

Thereby the semantics can be proved consistent on the interval [gst, τ−gst], more-
over as when the user-defined sample time gst→ 0, we have

Periodic(in!, ps.gst)∧ Periodic(out?, ps.gst) ∧ ok⇒(
J〈F (ṡ, s) = 0&B〉K⇔ JH2S(〈F (ṡ, s) = 0&B〉)K|[gst,τ]

)
.

Conditional statement: By the definition of H2S and the UTP semantics of Simulink
given in Section 6.2, we have

JH2S(B → P)K =̂ ∃ch ∗ .JWiresK ∧ JNSubBK ∧ JNSubPK ∧ JAndK ∧ JSwtK
⇔ Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ` Periodic(out!, ps.gst)∧

(∃n ∈ N. cnow = n ∗ ps.gst)⇒
out NSubB(cnow) = B(cnow) ∧ JNSubP(inok = out And(cnow))K∧
out And(cnow) = (In ok(cnow) ∧ out NSubB(cnow))∧
(out NSubB(cnow) > 0⇒ out Swt(cnow) = out NSubP ok(cnow))∧
(out NSubB(cnow) ≤ 0⇒ out Swt(cnow) = In ok(cnow))∧
Out x(cnow) = out NSubP x(cnow) ∧ Out ok(cnow) = out Swt(cnow)

It follows

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ JH2S(B → P)K|[gst,τ]

⇔ (B ∧ JP K) ∨ (¬B ∧ ok′ ∧ τ = now ∧ v′ = v ∧ const(fv, v, now, τ) ∧ RE)∧
u′ = u ∧ const(fu,u, now, τ) ∧ RE (gst→ 0, EA)

⇔ JP K CB B JskipK

Thus we have

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst)⇒
(
JB → P K⇔ JH2S(B → P)K|[gst,τ]

)
.

30 M. Chen et al.

Internal choice: Similar to conditional statement, we can easily prove

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst)⇒
(
JP tQK⇔ JH2S(P tQ)K|[gst,τ]

)
.

Sequential composition: As illustrates in Fig. 9, we use x to denote the set of common
signals processed by both P and Q, while y and z are exclusive signals respectively
for P and Q.

JH2S(P ;Q)K|[gst,τ] =̂ ∃ch ∗ .JWiresK|[gst,τ] ∧ JNSubPK|[gst,τ] ∧ JNSubQK|[gst,τ]

⇔ JNSubP(inok = In ok(cnow), inx = In x(cnow), iny = In y(cnow))K|[gst,τ]∧
JNSubQ(inok = out NSubP ok(t), inx = out NSubP x(t), inz = In z(t))K|[gst,τ]∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ])⇒

Out ok(cnow) = out NSubQ ok(cnow) ∧ Out x(cnow) = out NSubQ x(cnow)∧
Out y(cnow) = out NSubP y(cnow) ∧ Out z(cnow) = out NSubQ z(cnow)

⇔ (∃xm, nowm, okm. (out NSubP ok(nowm)⇔ ok)∧
JNSubPK[xm/x′, okm/ok′] ∧ JNSubQK[xm/x, okm/ok]∧
∀t ≥ 0.y(t) = out NSubP y(t) ∧ x(t) = out NSubQ x(t)∧

z(t) = out NSubQ z(t)) (gst→ 0, EA and Induction Hypothesis)

It is followed immediately that

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst)⇒
(
JP ;QK⇔ JH2S(P ;Q)K|[gst,τ]

)
.

Recursion: We only consider the tail recursion, i.e., repetition. The general recursion
can be proved similarly. As shown in Fig. 10, a random numberN , generated by an
oracle, is introduced in the Simulink diagram to specify the number of iterations of
subsystem P. Recall that JP ∗K is defined by using least fix point. Thus, it is obvious
that the inverse direction holds:

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst)⇒
(
JP ∗K⇐ JH2S(P ∗)K|[gst,τ]

)
.

For the other direction, suppose JP ∗K holds, then according to the semantics, there
must exist N such that JPN K holds. We then apply the oracle, to generate the same
number N , to control the execution of the Simulink diagram H2S(P ∗), to execute
for N times. The fact is thus proved, i.e.

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst)⇒
(
JP ∗K⇒ JH2S(P ∗)K|[gst,τ]

)
.

A Two-way Path between Formal and Informal Design of Embedded Systems 31

Communication events: By the definition of H2S and the UTP semantics of Simulink
given in Section 6.2, it follows

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ JH2S(ch?x)K|[gst,τ]

⇔ (∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ])⇒
Out re(cnow) = (In ok(cnow) ∧ ¬Out ok(cnow))∧
Out ok(cnow) = f(In re(cnow− gst) ∧ Out re(cnow− gst))∧
(¬Out ok(cnow)⇒ Out x(cnow) = In x(cnow))∧
(Out ok(cnow)⇒ Out x(cnow) = (¬Out ok(cnow− gst)) ∗ In ch(cnow))

⇔ Out ok(τ) = >∧
(∃n ∈ N. cnow = n ∗ ps.gst)⇒

cnow ∈ [gst, τ − gst]⇒ Out re(cnow) = 1 ∧ In re(t) = 0 ∧ In re(τ − gst) = 1∧
cnow ∈ (τ − gst, τ]⇒ Out re(cnow) = 0 ∧ In re(cnow) = 0∧
cnow ∈ [gst, τ)⇒ Out x(cnow) = In x(cnow) ∧ Out x(τ) = In ch(τ)

⇔ ok′ ∧ now′ = now + d ∧ const(rech?, 1, now, now′)∧

constl(rech!, 0, now, now′) ∧ rech!(now′) = 1 ∧ re′ch?(now′) = 0 ∧ re′ch!(now′) = 0∧

constl(fx, x, now, now′) ∧ fx(now′) = msgch(now′)∧
const(fu,u, now, now′) ∧ u′ = u ∧ x′ = msgch(now′) (gst→ 0, EA)

⇔ (LHS C rech? ∧ ¬rech! B RHS)

Therefore, we get

Periodic(in!, ps.gst)∧ Periodic(out?, ps.gst)⇒
(
Jch?xK⇔ JH2S(ch?x)K|[gst,τ]

)
.

The equivalence for sending events can be proved similarly.
Interruption: It is trivial to prove that Theorem 2 holds for communication interrup-

tion, inasmuch as it can be interpreted by the sequential composition and condi-
tional statement, for which we have already proved validation of Theorem 2.

Parallel: As shared variables are not allowed in HCSP, we use y and z to denote
the set of exclusive signals (including re and msg) respectively for P and Q. Let
τP=̂min{t|out NSubP ok(t) = 1}, and τQ=̂min{t|out NSubQ ok(t) = 1}. Then,
according to the definitions, we have

JH2S(P‖Q)K|[gst,τ] =̂ ∃ch ∗ .JWiresK|[gst,τ] ∧ JNSubPK|[gst,τ] ∧ JNSubQK|[gst,τ]

⇔ JNSubP(inok = In ok(cnow), iny = In y(cnow))K|[gst,τ]∧
JNSubQ(inok = In ok(cnow), inz = In z(cnow))K|[gst,τ]∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ])⇒

(τP = τ ∨ τQ = τ) ∧ (Out ok(cnow) = out NSubP ok(cnow) ∨ out NSubQ ok(cnow))∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [τP , τ])⇒ Out y(cnow) = out NSubP y(τP)∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [τQ, τ])⇒ Out z(cnow) = out NSubQ z(τQ)∧

⇔ JP‖QK (gst→ 0, EA and Induction Hypothesis)

It thus follows immediately that Theorem 2 holds for the parallel composition. ut

32 M. Chen et al.

7 Conclusion

In this paper, we presented a translator from HCSP formal models into Simulink graph-
ical models. As illustrated by the case study, the translator enables

– HCSP formal models to be simulated and tested using a MATLAB platform, thus
avoiding expensive formal verification, if not necessary;

– together with our previous work on encoding S/S diagrams into HCSP, a designer of
embedded systems to flexibly shift between formal and informal models, according
to a desired trade-off between efficiency and cost, and correctness and reliability.

The translation from HCSP into Simulink diagrams was implemented as a fully au-
tomatic tool, which has been integrated with the translation tool from S/S into HCSP.
In addition, a UTP based semantical foundation was proposed to justify that the trans-
lations from HCSP into Simulink preserve semantics.

Acknowledgements The work is supported partly by “973 Program” under grant No.
2014CB340701, by NSFC under grants 91418204 and 91118007, by CDZ project CAP
(GZ 1023), and by the CAS/SAFEA International Partnership Program for Creative
Research Teams.

References

1. Simulink User’s Guide, 2013, http://www.mathworks.com/help/pdf doc/simulink/sl using.
pdf.

2. Stateflow User’s Guide, 2013, http://www.mathworks.com/help/pdf doc/stateflow/sf using.
pdf.

3. M. Tiller, Introduction to Physical Modeling with Modelica, ser. The Springer International
Series in Engineering and Computer Science. Springer-Verlag, 2001.

4. SysML V 1.4 Beta Specification, 2013, http://www.omg.org/spec/SysML.
5. B. Selic and S. Gerard, Modeling and Analysis or Real-Time and Embedded Systems with

UML and MARTE: Developing Cyber-Physical Systems. The MK/OMG Press, 2013.
6. F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. L. Sangiovanni-

Vincentelli, “Metropolis: An integrated electronic system design environment,” IEEE Com-
puter, vol. 36, no. 4, pp. 45–52, 2003.

7. J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and
Y. Xiong, “Taming heterogeneity - the ptolemy approach,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 127–144, 2003.

8. T. Henzinger, “The theory of hybrid automata,” in LICS’96, Jul. 1996, pp. 278–292.
9. R. Alur and T. Henzinger, “Modularity for timed and hybrid systems,” in CONCUR’97, ser.

LNCS, 1997, vol. 1243, pp. 74–88.
10. J. He, “From CSP to hybrid systems,” in A Classical Mind, Essays in Honour of C.A.R.

Hoare. Prentice Hall International (UK) Ltd., 1994, pp. 171–189.
11. C. Zhou, J. Wang, and A. P. Ravn, “A formal description of hybrid systems,” in Hybrid

systems, LNCS 1066, 1996, pp. 511–530.
12. A. Platzer, “Differential-algebraic dynamic logic for differential-algebraic programs,” J. Log.

and Comput., vol. 20, no. 1, pp. 309–352, Feb. 2010.
13. J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou, “A calculus for hybrid CSP,”

in APLAS’10, ser. LNCS, 2010, vol. 6461, pp. 1–15.

http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_using.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_using.pdf
http://www.omg.org/spec/SysML

A Two-way Path between Formal and Informal Design of Embedded Systems 33

14. L. Zou, N. Zhan, S. Wang, M. Fränzle, and S. Qin, “Verifying Simulink diagrams via a hybrid
hoare logic prover,” in EMSOFT’13, 2013, pp. 1–10.

15. L. Zou, N. Zhan, S. Wang, and M. Fränzle, “Formal verification of Simulink/Stateflow dia-
grams,” in ATVA’15, ser. LNCS, 2015, vol. 9346, pp. 464–481.

16. L. Zou, J. Lv, S. Wang, N. Zhan, T. Tang, L. Yuan, and Y. Liu, “Verifying Chinese train
control system under a combined scenario by theorem proving,” in VSTTE’13, ser. LNCS,
2014, vol. 8164, pp. 262–280.

17. N. Zhan, S. Wang, and H. Zhao, “Formal modelling, analysis and verification of hybrid sys-
tems,” in Unifying Theories of Programming and Formal Engineering Methods, ser. LNCS,
2013, vol. 8050, pp. 207–281.

18. S. Wang, N. Zhan, and L. Zou, “An improved HHL prover: An interactive theorem prover
for hybrid systems,” in ICFEM’15, ser. LNCS, vol. 9407, 2015, pp. 382–399.

19. Simulink Design Verifier User’s Guide, 2010, http://www.manualslib.com/manual/392930/
Matlab-Simulink-Design-Verifier-1.html#manual.

20. Z. Han and P. J. Mosterman, “Towards sensitivity analysis of hybrid systems using simulink,”
in HSCC 2013, 2013, pp. 95–100.

21. S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-time Simulink to Lus-
tre,” ACM Trans. Embedded Comput. Syst., vol. 4, no. 4, pp. 779–818, 2005.

22. N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi, “Defining and translating a
”safe” subset of Simulink/Stateflow into lustre,” in EMSOFT’04. ACM, 2004, pp. 259–268.

23. A. Cavalcanti, P. Clayton, and C. O’Halloran, “Control law diagrams in circus,” in FM’05,
ser. LNCS, vol. 3582, 2005, pp. 253–268.

24. J. Woodcock and A. Cavalcanti, “The semantics of circus,” in ZB 2002: Formal Specification
and Development in Z and B, 2nd International Conference of B and Z Users, ser. Lecture
Notes in Computer Science, vol. 2272. Springer, 2002, pp. 184–203.

25. B. Meenakshi, A. Bhatnagar, and S. Roy, “Tool for translating Simulink models into input
language of a model checker,” in ICFEM’06, ser. LNCS, vol. 4260, 2006, pp. 606–620.

26. V. Sfyrla, G. Tsiligiannis, I. Safaka, M. Bozga, and J. Sifakis, “Compositional translation of
simulink models into synchronous BIP,” in IEEE Fifth International Symposium on Indus-
trial Embedded Systems, SIES 2010. IEEE, 2010, pp. 217–220.

27. S. Bliudze and J. Sifakis, “The algebra of connectors - structuring interaction in BIP,” IEEE
Trans. Computers, vol. 57, no. 10, pp. 1315–1330, 2008.

28. C. han Yang and V. Vyatkin, “Transformation of simulink models to IEC 61499 Function
Blocks for verification of distributed control systems,” Control Eng. Pract., vol. 20, no. 12,
pp. 1259–1269, 2012.

29. C. Zhou and R. Kumar, “Semantic translation of simulink diagrams to input/output extended
finite automata,” Discrete Event Dynamic Systems, vol. 22, no. 2, pp. 223–247, Jun. 2012.

30. S. Minpoli and G. Frehse, “SL2SX translator: from simulink to SpaceEx verification tool,”
in HSCC’16, 2016.

31. C. Chen, J. S. Dong, and J. Sun, “A formal framework for modeling and validating Simulink
diagrams,” Formal Asp. Comput., vol. 21, no. 5, pp. 451–483, 2009.

32. P. Boström, “Contract-based verification of simulink models,” in ICFEM 2011, ser. Lecture
Notes in Computer Science, vol. 6991. Springer, 2011, pp. 291–306.

33. P. Roy and N. Shankar, “Simcheck: a contract type system for simulink,” ISSE, vol. 7, no. 2,
pp. 73–83, 2011.

34. V. Preoteasa and S. Tripakis, “Refinement calculus of reactive systems,” in EMSOFT 2014,
2014, pp. 2:1–2:10.

35. I. Dragomir, V. Preoteasa, and S. Tripakis, “Compositional semantics and analysis of hier-
archical block diagrams,” in SPIN 2016, ser. Lecture Notes in Computer Science, vol. 9641,
2016, pp. 38–56.

http://www.manualslib.com/manual/392930/Matlab-Simulink-Design-Verifier-1.html#manual
http://www.manualslib.com/manual/392930/Matlab-Simulink-Design-Verifier-1.html#manual

34 M. Chen et al.

36. S. Wang, N. Zhan, and D. Guelev, “An assume/guarantee based compositional calculus for
hybrid CSP,” in TAMC’12, ser. LNCS, 2012, vol. 7287, pp. 72–83.

37. D. Guelev, S. Wang, and N. Zhan, “Hoare reasoning about HCSP in the duration calculus,”
Submitted, 2013.

38. C. Hoare and J. He, Unifying Theories of Programming. Prentice Hall Englewood Cliffs,
1998, vol. 14.

39. H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou, and Y. Chen, “Formal verification of a descent
guidance control program of a lunar lander,” in FM’14, ser. LNCS, 2014, vol. 8442, pp.
733–748.

40. E. A, M. Fränzle, and C. Herde, “SAT modulo ODE: A direct SAT approach to hybrid sys-
tems,” in ATVA’08, ser. LNCS, vol. 5311, 2008, pp. 171–185.

41. X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow∗: An analyzer for non-linear hybrid
systems,” in CAV’13, ser. LNCS, vol. 8044, 2013, pp. 258–263.

	A Two-way Path between Formal and Informal Design of Embedded Systems

