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Example : Home Heating

x3(t) = Temperature in the attic,
x2(t) = Temperature in the living area,
x1(t) = Temperature in the basement,
t = Time in hours.

ẋ1 =
1

2
(45 − x1) +

1

2
(x2 − x1),

ẋ2 =
1

2
(x1 − x2) +

1

4
(35 − x2) +

1

4
(x3 − x2) + 20,

ẋ3 =
1

4
(x2 − x3) +

3

4
(35 − x3),

with the initial set X = {(x1, x2, x3)T | 1− (x1 − 45)2 − (x2 − 35)2 − (x3 − 35)2 > 0}.

Is it possible for the temperature x2 getting over than 70◦F (unsafe) ? UNBOUNDED.
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Background and Preliminaries

Hybrid Systems

Hybrid systems exhibit combinations of discrete jumps and continuous evolution,
many of which are Safety-critical.
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Background and Preliminaries

Safety Verification Using Reachable Set 

System is safe, if no trajectory enters the unsafe set.

1. The figure is taken from [M. Althoff, 2010].
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Reachability of LDSs

LDSs with Inputs

Linear dymamical systems (LDSs) with inputs :

ξ̇ = Aξ + u, (1)

where ξ(t) ∈ Rn, A ∈ Rn×n, and u : R→ Rn.

Reachability problem (Unbounded) :

F(X,Y) := ∃x∃y∃t : x ∈ X ∧ y ∈ Y ∧ t ≥ 0 ∧ Φ(x, t) = y.

with initial set :

X = {x ∈ Rn | p1(x) ≥ 0, · · · , pJ1 (x) ≥ 0},

and unsafe set :

Y = {y ∈ Rn | pJ1+1(y) ≥ 0, · · · , pJ(y) ≥ 0}.
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Reachability of LDSs

Decidability Results of the Reachability of LDSs

In [LPY 2001], Lafferriere et al. proved the decidability of the reachability problems
of the following three families of LDSs :

1 A is nilpotent, i.e. An = 0, and each component of u is a polynomial ;

2 A is diagonalizablewith rational eigenvalues, and each component of u is of the
form

∑m
i=1 cieλit, where λis are rationals and cis are subject to semi-algebraic

constraints ;

3 A is diagonalizablewith purely imaginary eigenvalues, and each component of u
of the form

∑m
i=1 ci sin(λit) + di cos(λit), where λis are rationals and cis and dis

are subject to semi-algebraic constraints.

Mingshuai Chen Institute of Software, CAS Decidability of the Reachability for LDSs Aalborg, June 2016 8 / 28



. . . . .
Background and Contributions

. . . . . .
LDSs with Purely Imaginary Eigenvalues

. . . . . . . . .
Abstraction

.
Conclusions

Reachability of LDSs

Main Contributions

Generalization of case 2 and case 3 :

2 A has real eigenvalues, and each component of u is of the form
∑m

i=1 cieλi t, where λis
are reals and cis are subject to semi-algebraic constraints ; [Gan et al. 15]

3 A has purely imaginary eigenvalues, and each component of u of the form∑m
i=1 ci sin(λit) + di cos(λit), where λis are reals and cis and dis are subject to

semi-algebraic constraints.

Abstraction of general dynamical systems where Amay have complex
eigenvalues, by reducing the problem to the reachability in the case 2.
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Preliminaries

Tarski Algebra and Quantifier Elimination

Tarski Algebra (T(R))= real numbers with arithmetic and ordering.

Example

φ := ∀x∃y : x2 + xy+ b > 0 ∧ x+ ay2 + b ≤ 0

Quantifier Elimination :
T(R) |= φ←→ φ′

Example

T(R) |= ∀x∃y(x2 + xy+ b > 0 ∧ x+ ay2 + b ≤ 0)︸ ︷︷ ︸
φ

←→ a < 0 ∧ b > 0︸ ︷︷ ︸
φ′
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LDSs with Trigonometric Function Inputs (LDSTMF)

Definition (TMF)

A term is called a trigonometric function (TMF) w.r.t. t if it can be written as

r∑
l=1

clcos(µlt) + dlsin(µlt),

where r ∈ N, cl, dl, µl ∈ R.

Definition (LDSTMF)

An LDS is a linear dynamical system with trigonometric function input (LDSTMF) if
every component of u is a TMF.
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Decidability of the Reachability

Computing Reachable Set

Given an LDSTMF whose systemmatrix A has purely imaginary eigenvalues, the
reachability can be reformulated as :

The Reachability Problem

F(X,Y) := ∃x∃y∃t : x ∈ X ∧ y ∈ Y ∧ t ≥ 0∧
n∧

i=1

yi =
Ki∑

k=1

zcik(x) cos(γikt) + zsik(x) sin(γikt). (2)

where zcik(x), z
s
ik(x) ∈ R[x] and γik ∈ R.
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Decidability by Reduction to Tarski's Algebra

Theorem (Reduction to Tarski's Algebra)

F(X,Y) := ∃x∃y∃t : x ∈ X ∧ y ∈ Y ∧ t ≥ 0∧
n∧

i=1

yi =
Ki∑

k=1

zcik(x) cos(γikt) + zsik(x) sin(γikt)

⇕

∃x∃y∃u∃v : x ∈ X ∧ y ∈ Y ∧
N∧

j=1

u2j + v2j = 1∧

n∧
i=1

yi =
Ki∑

k=1

(
zcik(x)f

c
ik(u1, v1, . . . , uN, vN)

+zsik(x)f
s
ik(u1, v1, . . . , uN, vN)

)
,

where fcik and fsik are polynomials, and X, Y are open sets.

Proof.

Built on the density results given by Kronecker's Theorem in number theory.
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An Illustrating Example

An Example of the Reduction

Example

Given an LDSTMF as (
ξ̇1

ξ̇2

)
=

(
2 2

−3 −2

)(
ξ1

ξ2

)
+

(
cos(t)

sin(t)

)
,

with an initial point ξ(0) = (x1, x2). The solution is

Φ((x1, x2), t) =

(
(x1 + 2)α1 +

√
2(x1 + x2)β1 − 2α2 − β2

(x2 − 2)α1 −
√
2( 3

2
x1 + x2 + 1)β1 + 2α2 + 2β2

)
,

where α1 = cos(
√
2t), β1 = sin(

√
2t), α2 = cos(t), β2 = sin(t).
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An Example of the Reduction

For X = {(x1, x2) | x21 + x22 < 1}, Y = {(y1, y2) | y1 + y2 > 4}, the reachability is
equivalently reduced to

F := x21 + x22 < 1 ∧ α2
1 + β2

1 = 1 ∧ α2
2 + β2

2 = 1

∧ (x1 + x2)α1 −
√
2(

1

2
x1 + 1)β1 + β2 > 4.

∄ x1, x2, α1, α2, β1, β2 ∈ R s.t. F holds. Thus, the system is safe.

While if Y is replaced by Y′ = {(y1, y2) | y1 + y2 > 3}, then

F ′ := x21 + x22 < 1 ∧ α2
1 + β2

1 = 1 ∧ α2
2 + β2

2 = 1

∧ (x1 + x2)α1 −
√
2(

1

2
x1 + 1)β1 + β2 > 3.

Let x1 = 0.99, x2 = 0, α1 =
√

5
5
, β1 = − 2

√
5

5
, α2 = 0, β2 = 1, then

(x1 + x2)α1 −
√
2( 1

2
x1 + 1)β1 + β2 ≈ 3.334 > 3, indicating that the system

becomes unsafe.
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Preliminaries

Decidability of an Extension of Tarski Algebra

LDSPEF is decidable due to [Gan et al. 15]

F(X,Y) := ∃x∃y∃t : x ∈ X ∧ y ∈ Y ∧ t ≥ 0 ∧
n∧

i=1

yi =
si∑

j=1

ϕij(x, t)eνijt

where ϕij are polynomials.
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Abstraction of the Reachable Sets

LDSs with Polynomial-exponential-trigonometric Function Inputs
(LDSPETF)

Definition (PETF)

A term is called a polynomial-exponential-trigonometric function (PETF) w.r.t. t if it
can be written as

r∑
k=0

pk(t)eαkt cos(βkt+ γk),

where r ∈ N, αk, βk, γk ∈ R, and pk(t) ∈ R[t].

Definition (LDSPETF)

An LDS is a linear dynamical system with polynomial-exponential-trigonometric
function input (LDSPETF) if every component of u is a PETF.
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Abstraction of the Reachable Sets

Computing Reachable Set

Given an LDSPETF with the systemmatrix with complex eigenvalues, the
reachability can be reformulated, due to Jordan decomposition, as :

The Reachability Problem

F(X,Y) := ∃x∃y∃t : x ∈ X ∧ y ∈ Y ∧ t ≥ 0∧
n∧

k=1

yk =
∑
γ∈Γ

gγ,k(x, t) cos(γt) + hγ,k(x, t) sin(γt). (3)

where gγ,k and hγ,k are linear on x, and are polynomial-exponential functions w.r.t. t.
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Abstraction of the Reachable Sets

Abstraction by Eliminating trigonometric functions

Theorem (Overapproximation of the Reachable Set)

F(X,Y) := ∃x∃y∃t : x ∈ X ∧ y ∈ Y ∧ t ≥ 0∧
n∧

k=1

yk =
∑
γ∈Γ

gγ,k(x, t) cos(γt) + hγ,k(x, t) sin(γt)

⇓

∃x∃y∃uγ∃vγ : x ∈ X ∧ y ∈ Y ∧ t ≥ 0 ∧
∧
γ

u2γ + v2γ = 1∧

n∧
k=1

yk =
∑
γ

gγ,k(x, t)uγ + hγ,k(x, t)vγ .
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Examples

Illustrating Examples

Example (Pond Pollution)

x1(t) = Amount of pollutant in pond 1,
x2(t) = Amount of pollutant in pond 2,
x3(t) = Amount of pollutant in pond 3,
t = Time in minutes.

ẋ1(t) = 0.001x3(t) − 0.001x1(t) + 0.01,

ẋ2(t) = 0.001x1(t) − 0.001x2(t),

ẋ3(t) = 0.001x2(t) − 0.001x3(t),

with the initial set X = {(x1, x2, x3)T | (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 < 1} and the
unsafe set Y = {(y1, y2, y3)T | y2 − y3 + 6 < 0}.
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Examples

Illustrating Examples

1 X ∩Y = ∅.

2 Note that the systemmatrix is diagonalizable with complex eigenvalues 0,
(−3− i

√
3)/2000, and (−3 + i

√
3)/2000. By using the solution of this system,

the reachability thus becomes

F :=∃x1∃x2∃x3∃t : t > 0 ∧ (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 − 1 < 0

∧ a+ b cos

( √
3t

2000

)
+ c sin

( √
3t

2000

)
< 0,

with a = 28e3t/2000, b = 3x2 − 3x3 − 10, and c =
√
3 (2x1 − x2 − x3 − 10).
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3 Reduction to Tarski's algebra by abstracting the second constraint as

a+ bu+ cv < 0 ∧ u2 + v2 = 1.

4 The reduced reachability problem is then verified as safe in LinR.

Figure : Overapproximation (the tube) of one single trajectory (the curve) starting from (1, 1, 1)T initially
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Example (PI Controller)

Consider a proportional-integral (PI) controller which is used to control a plant.

Mẍ+ bẋ+ kx︸ ︷︷ ︸
plant

= Kd( ˙r− x) + Kp(r− x) + Ki

∫
(r− x)︸ ︷︷ ︸

controller

Safety property :
G(t > 0.5⇒ x ≥ 0.9 ∧ x ≤ 1.1).

Proving of this case was failed in [Tiwari et al. 13].
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Let x = [
∫
x, x, ẋ, t]T, then ẋ = Ax + u, where

A =


0 1 0 0

0 0 1 0

−300 −370 −10 300

0 0 0 0


and u = [0, 0, 350, 1]T. The initial value is x(0) = [0, 0, 0, 0] and unsafe set is
Y = {x | t > 0.5 ∧ (x < 0.9 ∨ x > 1.1)}.

1.1

0.9

Figure : Overapproximation (the "broom") of the trajectory of x (the curve) starting from 0
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Concluding Remarks

The decidability of the reachability problem of LDSTMF by reduction to the
decidability of Tarski's Algebra.

A more precise abstraction that overapproximates the reachable sets of general
linear dynamical systems (LDSPETF).

On-going work : extension of the results to solvable dynamical systems.

Question : is the abstraction complete (δ-decidable) for unbounded verification ?
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