
Crossmodal Error Correction of Continuous Handwriting
Recognition by Speech

Xiang Ao■ Xugang Wang■ Feng Tian■ Guozhong Dai▲ and Hongan Wang▲

■Intelligence Engineering Lab & Laboratory of Computer
Science, Institute of Software, Chinese Academy of Sciences,

P.O.Box 8718, Beijing, China
+86-10-6254-0434
ax@iel.iscas.ac.cn

xugunw76@hotmail.com
tf@iel.iscas.ac.cn

▲Intelligence Engineering Lab & Laboratory of Computer
Science, Institute of Software, Chinese Academy of Sci-

ences, P.O.Box 8718, Beijing, China
+86-10-6254-0434
dgz@iel.iscas.ac.cn
wha@iel.iscas.ac.cn

ABSTRACT
In recognition-based user interface, users’ satisfaction is
determined not only by recognition accuracy but also by
effort to correct recognition errors. In this paper, we intro-
duce a crossmodal error correction technique, which allows
users to correct errors of Chinese handwriting recognition
by speech. The focus of the paper is a multimodal fusion
algorithm supporting the crossmodal error correction. By
fusing handwriting and speech recognition, the algorithm
can correct errors in both character extraction and recogni-
tion of handwriting. The experimental result indicates that
the algorithm is effective and efficient. Moreover, the
evaluation also shows the correction technique can help
users to correct errors in handwriting recognition more effi-
ciently than the other two error correction techniques.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. – Interaction styles; I.5.4
[Pattern Recognition]: Applications—Text processing, Sig-
nal processing;
General terms: Human Factors, Algorithms
Keywords: Error correction, multimodal fusion, handwrit-
ing recognition, speech, phoneme, weighted phoneme

1. INTRODUCTION
Pen-based user interfaces that support natural inputs by
handwriting are becoming prevalent. Usually, handwriting
recognition is used in these interfaces to understand user
inputs. However, in these recognition-based interfaces [19],
users are often frustrated by recognition errors. Study shows
recognition errors significantly reduce the effectiveness of
the natural input modalities, such as pen and speech [2][7].
Thus, an error correction mechanism is usually a require-
ment for these interfaces. Researches have shown that, in
recognition-based interfaces, user satisfaction is determined
not only by recognition accuracy, but also by the complex-
ity of error correction dialogues [17] and by the efficiency
of error correction [5]. Therefore, an efficient method of

correcting handwriting recognition errors is important as
well as necessary.
In this paper, we introduce a crossmodal error correction
technique, which enables users to correct recognition errors
of continuous Chinese handwriting by speech. Figure 1
gives an example. The handwriting in Fig.1 (a) is recog-
nized as Fig.1 (b) with both character extraction errors and
character recognition errors. To correct the errors, the user
repeats the sentence in Fig.1 (a) by speech. By fusing the
handwriting and the speech, the correct handwriting recog-
nition result is found, as shown in Fig.1 (c).

The key of the error correction is a multimodal fusion algo-
rithm, which uses speech to guide the search of the correct
handwriting recognition result. We argue that the correction
is to find a handwriting recognition candidate, whose pro-
nunciation matches the user’s speech best. Our analysis
shows that, in order to construct such a multimodal fusion
algorithm, we need to solve three problems. First, we
should build a handwriting recognition candidates space to
access each candidate conveniently. Second, in order to
facilitate the matching, the pronunciations of the candidates
and users’ speech should be represented by the same format.
Third, a fast search algorithm is indispensable for efficient

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
IUI’07, January 28–31, 2007, Honolulu, Hawaii, USA.
Copyright 2007 ACM 1-59593-481-2/07/0001...$5.00.

Figure 1, an example error correction of handwriting by
speech. (a) the original handwriting; (b) the incorrect
handwriting recognition result; (c) the correct recogni-
tion result by fusing the handwriting and speech.

Fusion

Falsely recognized as

The speech of
sentence (a)

(a)

(b)

(c)

243

fusions. Based on the framework, we have constructed a
crossmodal error correction algorithm on Chinese hand-
writing recognition by solving the three problems above.
Evaluation shows the approach is effective and more effi-
cient than the other two error correction techniques.
In the rest of the paper, we first address the motivation of
the research in Section 2. Then, we review related work on
error correction in recognition-based interfaces in Section 3.
In Section 4, we introduce the framework of the multimodal
fusion algorithm and its implementation on correct Chinese
handwriting recognition errors. We show evaluation results
in Section 5 and conclude the paper in Section 6.

2. MOTIVATION
We study the crossmodal error correction for three reasons.
First, it is natural. Usually, people prefer to read silently
when proofreading documents, digital or not. Correcting
errors by speech is similar to the way (The difference is that
users should read aloud, but not silently). Previous studies
show that error correction strategies mimicking our daily
behaviors are the most natural ways that users are pleased
to accept [14]. Second, it is efficient. Efficiency is usually
gained by using multiple modalities simultaneously. It
needs little effort from users to speak a handwriting sen-
tence. More important, it does not add more workload to the
users’ hands that are already busy. Finally, it is effective.
Recent researches have shown that a system that fuses two
or more information sources, which are complementary to
each other, can be an effective means of reducing recogni-
tion uncertainty, thereby improving robustness [22] [23].
The audio-visual speech recognition [20] [13] is a success-
ful application of the idea. Moreover, several researches
have also showed the multimodal fusion, considering
crossmodal dependencies, can improve the recognition ac-
curacy of the unimodality [1] [4]. Therefore, we adopt a
handwriting-speech fusion algorithm, by which the recogni-
tion accuracy of handwriting could be enhanced by the
crossmodal influence.

3. RELATED WORK
Correcting recognition errors in recognition-based inter-
faces has been studied for years. Many researches have
touched on -this topic, especially on correcting speech rec-
ognition errors. “Respeaking” is one of the error correction
techniques, which is believed to be intuitive and natural [4].
However, the traditional “repeaking” just replaces the old
wrong output with new speech recognition output, which
may also be wrong. Research shows “respeaking” by simple
replacement is not very useful in practice [1]. “Spelling”
helps correct misrecognized words, but it is not natural and
efficient in use [3] [21]. “N-best list” is another typical way
to correct errors, which lets users select the correct recogni-
tion result from a list of hypotheses [18] [15], but fails
when the correct result is not in the n-best list.
If multimodality is used, error correction could be improved.
One way is to offer users opportunities of modality switch-
ing [22]. For example, if speech recognition fails, users can
try pen input. It works because errors that a modality’s rec-
ognition is prone to make may not be the minefields of oth-
ers’. Another way is “multimodal correction”, also called
“cross-modal correction”, which uses the complementarities

and redundancies of different modalities. Rather than re-
placing old output with the new, multimodal correction fuse
the inputs, or/and the recognition outputs, of different mo-
dalities to get a better recognition result [3] [16] [6] [25]
[24]. The fusions often happen between modalities such as
speech / pen [24], speech / mouse [16], and speech /
eye-movement [25].
The proposed error correction in this paper is similar to the
“respeaking” correction. However, it is crossmodal. It dif-
fers from former “respeaking” corrections adopting “re-
placement” strategies. Until now, few researches have been
carried out on multimodal correction of handwriting recog-
nition errors. The most closely related work is our previous
research [24]. It uses handwriting recognition candidate as
the language model for speech recognition to correct char-
acter recognition errors in handwriting sentences. However,
it cannot correct character extraction errors, which are
common in continuous handwriting recognition. The
method in this paper can correct both types of errors. Thus,
it is of more practical use than the method proposed in [24].

4. THE FUSION ALGORITHM

4.1 The Framework
The key of the proposed error correction method is a mul-
timodal fusion algorithm, whose basic idea is to optimize
the search of the handwriting recognition result by speech.
Let hwX be the handwriting, spX be the speech to correct

hwX ’s recognition errors. Let set { }W be all character
strings and { }*W W∈ be the fusion result. First, we have

()* arg max | ,W hw spW P W X X= (1)
By rewriting equation (1) by Bayes rules, we get

 () ()arg max | | ,W hw sp hwW P W X P X W X∗ = (2)
As hwX and spX are conditionally independent givenW , equa-
tion (2) is simplified as

() ()arg max | |W hw spW P W X P X W∗ = (3)

Let WS be the pronunciation of W . We have ()| 1WP S W = ,
because WS is obviously determined byW . Thus, we have

 () () ()| | , |sp sp W sp WP X W P X W S P X S= = (4)
Therefore, equation (3) can be rewritten as

 () ()arg max | |W hw sp WW P W X P X S∗ = (5)

Until now, the optimization of *W is in the infinite set{ }W .
In order to make the optimization manageable, we need to
find a subset of { }W to replace { }W . Note that,
if ()| hwP W X is quite small, the W will very unlikely be the
output of equation(5). It means that we can search *W in a
finite subset of { }W without worrying too much about
missing the optimal solution. Based on the idea, we trans-
form equation(5) into

{ } ()* arg max |k

hw
sp WW W

W P X S
∈

= (6)

, where

244

 { } ()arg max |k k
hw W hwW P W X= (7)

Equation(7) says { }k
hwW is the subset of { }W with k ele-

ments, which produce the largest k values of ()| hwP W X .

Equation(6) says the optimization is in{ }k
hwW .

Equation (6) and (7) clearly show the goal of the cross-
modal error correction: ()arg max |k

W hwP W X in equation (7)
stands for the top k handwriting recognition candidates of

hwX , which is denoted as { }k
hwW ; equation (6) tells us the

goal is to search the candidate from { }k
hwW whose pronun-

ciation matches best with spX .

Equation (6) and (7) also explicitly indicate the approach of
the crossmodal error correction. The approach can be di-
vided into the solutions of three problems. Solving the three
problems forms a framework of the crossmodal error cor-
rection. We show these problems as follows and answer
them within the scope of correcting continuous handwriting
recognition errors by speech.
1) How can we construct { }k

hwW ? Usually, handwriting
character extraction and recognition algorithms return
candidates. These candidates imply a huge set, which is
actually the { }k

hwW . We discuss how to construct
{ }k

hwW for the error correction of Chinese handwriting
in Section 4.2.

2) How does the matching between WS and spX work? Ob-
viously, WS and spX need the same representation for-
mat. For the error correction of Chinese handwriting,
we use phonemes to represent WS and spX . A phoneme
is a symbolized representation of the pronunciation of a
character, which is discussed in Section 4.3. As speech
recognition may also make mistakes as handwriting
recognition, we introduce “weighted phoneme” in Sec-
tion 4.6 for a more accurate phonemic representation of
speech.

3) How can the search of *W be efficient? Users care
about the efficiency. If the correction takes a long time,
it becomes meaningless. We show that an exhaustive
search, which is presented in Section 4.4, would be ex-
tremely inefficient. However, a divide-conquer strategy,
which is covered in Section 4.5, would be much better.

4.2. Handwriting Recognition Errors and Candidates
Before introducing{ }k

hwW , we first have some discussion on
handwriting recognition errors and candidates. For con-
tinuous Chinese handwriting recognition, errors are caused
both by character extraction and by character recognition. A
character recognition error refers to that a handwriting
character is recognized as what it should not be. For exam-
ple, the character is recognized as “ ”, though it
should be “ ”. Usually, a character recognizer returns not
only the best guess but also a list of candidates. It is very
likely that the correct recognition result is in the candidate
list.

Character extraction errors refer to a handwriting sentence
is segmented into characters in a wrong way. For example,
compared with the correct extraction shown in Fig.1(c),
there are six characters involved extraction errors in

Fig.1(b). For example, is segmented as ,

though it should be . Usually, if character extraction is
wrong, the following character recognition is meaningless.
(As characters are extracted by segmenting handwriting
sentences, we use “extraction” and “segmentation” inter-
changeably in the rest of the paper.)
We want character extraction have candidates as character
recognition. An “over-segmentation” algorithm is adopted
to generate all possible segmentations. Segmentation results
are actually stroke blocks. Over-segmentation means every
stroke block generated by the segmentation is a character or
only a part of a character. These stroke blocks are called
“fragments”. The result of over-segmentation of the hand-
writing in Fig.1 (a) is shown in Fig.2.

Suppose sentence S is over-segmented into a fragment se-
quence 0 1 1... TF f f f −= , where each if is a fragment. As any
subsequence 1... , 0j j kf f f i k T+ ≤ ≤ < of F could possibly
form a character, an M-character segmentation MS of S
is denoted as

 ()() ()1 1 2 10 1 1 1...
M

M
k k k k Tf f f f f f

−+ + −=S (8)

We care how long a subsequence could be. Chinese charac-
ters have six graphemic patterns, which are shown in Fig. 3.
Obviously, the over-segmentation algorithm is only sensi-
tive to horizontal patterns. The “left-middle-right” pattern,
which is most horizontally complicated, has three parts.
Thus, a character could be composed of at most three frag-
ments. We set the maximum length of a fragment subse-
quence as 3.

The fragments are organized as a directed graph G. The
vertexes are the fragments { }0 1 1, ,..., Tf f f − plus an extra
node Tf . Each vertex has directed edges linked to its three
succeeding, if existed, vertexes. Mathematically,

Figure 2, Over-segmentation of a sentence. The sen-
tence in Fig.1 is segmented to 13 fragments.

(a) (b) (c) (d) (e) (f)
Figure 3. Six graphemic patterns of Chinese charac-
ters: (a) left-right; (b) left-middle-right; (c) single; (d)
up-bottom; (e) half-surrounded; (f) fully-surrounded.

245

 { }
() (){ }

,

| [0, 1] { }

, | 0 3
i T

i j

G V E

V f i T f

E f f j T i j i

⎧ =⎪⎪ = ∈ − ∪⎨
⎪

= ≤ ∧ ≤ < ≤ +⎪⎩

 (9)

Figure 4 show a graph of seven fragments plus an extra
vertex 7f as the ending. With the graph, we can get all pos-
sible segmentations by enumerate paths starting at 0f and
ending at Tf . For example, path 0 1 4 5 7f f f f f→ → → →
denotes the segmentation ()()()()0 1 2 3 4 5 6f f f f f f f

We now show how to build the{ }k

hwW in Equation(7)and(8).
Suppose the character recognizer returns t candidates for a
handwriting character. As segmentation MS of S has M
characters, it has Mt recognition candidate sequences, each
of which is a hwW in{ }k

hwW .

We only considered a single segmentation above. However,
as Fig.4 demonstrates, there are many segmenting ways for
a sentence. For a sentence with T fragments, ()C T de-
notes the number of its different segmentations. We have

() ()

() () ()

3

1

1 1; 2 2; 3 4
i

C T C T i

C C C
=

⎧
= −⎪

⎨
⎪ = = =⎩

∑ (10)

,where ()C T is actually a Tribonacci Number [11] , which is
equal to 1Tα β +×c fe hd g , wherea bx is the nearest integer of x ,

0.336α ≈ and 1.839β ≈ . Combing the character recogni-
tion and segmentation, we eventually know the size of
{ }k

hwW as

 { }
1

0

T

ik
hw

i
W t

α β +×

=

= ∑
c fd ge h

S (11)

where iS�stands for the number of characters in iS�. Ac-
cording to the definition of { }k

hwW , we have { }k
hwk W= .

Obviously, k is tremendous. This is why we say in subsec-
tion 4.1 that { }k

hwW would be “a huge set” and why we
need a fast search algorithm for *W .
4.3 Phonemes
To unify the representation format of WS and spX , we use
phonemes. A phoneme is the symbolized representation of a
character’s pronunciation. For Chinese, We use Hanyu Pin-
yin to denote phonemes. Hanyu Pinyin (pinyin) is the pho-
nemic notation system for the pronunciation of Chinese
(Standard Mandarin). Every Chinese character has its pin-
yin, which is a compound of an initial (in), a final (fn) and
a tone. For example, the pinyin for character “ ” (escape)
is “táo”, in which the “t” is the initial as [t] in English, the
“ao” is the final as [au] in English, and the “ ΄ ” is the tone
mark. An introduction of pinyin can be found in [9]. A
phoneme ph is a pair of an initial and a final denoted as

 [],ph in fn= (12)

There are 23 initials and 38 finals in Chinese (But not all
combinations of them are permitted.). To avoid confusion,
we use iin to denote the ith initial in the initial table and

jfn to denote the jth final in the final table. We use
kin and kfn to denote the initial and final in

phoneme kph respectively.
To compare phonemes, we define phonemic similarity. The
similarity, ()1 2,S ph ph of phonemes []1 1 1,ph in fn= and

[]2 2 2,ph in fn= is defined as
 () () ()1 2 1 2 1 2, , ,S ph ph sIn in in sFn fn fn= + (13)

, where ()1 2,sIn in in and ()2 2,sFn fn fn are the similarity of
two initials and finals respectively. The (),j ksIn in in and

(),j ksFn fn fn come from observations. Intuitively, the two
similarity metrics equals 0 when two compared items are
same, and equals 1 when they sound completely different.
The similarity of phoneme sequences is also necessary. As
phoneme ph is an initial-final pair [],in fn , a phoneme se-
quence 1 2 1NPH ph ph ph −= … can be written as a token se-
quence 0 0 1 1 1 1N nPH in fn in fn in fn− −= … , in which each initial or
final is a token. To compare two token sequences, Leven-
shtein distance (LD , also called “edit distance”) [8] is an
appropriate measure, which calculates the minimum num-
ber of operations needed to transform one token sequence
into the other, where an operation is an insertion, deletion,
or substitution of a token. Thus, given phoneme se-
quence 1PH and 2PH , the similarity between them is defined
as their Levenshtein distance ()1 2,LD PH PH . In our imple-
mentation, the cost of substitution cost_sub is adjusted as

 ()
()
()

,

,

sIn a,b if both a and b are intials

cost_sub a,b = sFn a,b if both a and b are finals
, otherwise

⎧
⎪
⎨
⎪∞⎩

 (14)

Note ()cost_sub a,b = ∞ when one parameter is initial and the
other is not. It means that we forbid interchanges between
initials and finals.
The phonemes for users’ speech are got by transforming the
speech recognition result into a phoneme sequence. If the
speech recognizer supports intermediate phonemic output,
we just need to translate the output to our phoneme format.
However, if the speech recognizer can only return text, we
transform the text to the phoneme sequence by looking up
the pronunciations of the text from a dictionary. The pho-
nemes for the pronunciation of the handwriting recognition
candidate { }k

hwW W∈ are got by using a dictionary simi-
larly as handling the speech.
4.4. Fusion by an Exhaustive Search
In this subsection, we introduce a straightforward but slow
search strategy to find *W from{ }k

hwW . It just exhausts all

{ }k
hwW by comparing the pronunciation WS of W with the

speech, and choose the most matched on as *W . The
matching is done by using the function (),W SPLD PH PH de-
fined in subsection 4.3. In the (),W SPLD PH PH
here, WPH denotes the pronunciation of W, and SPPH de-

f0 f1 f2 f3 f4 f5 f6 f7

Figure 4. the graph of seven fragments. Note 7f is the
extra node, which is not a fragment.

246

notes the speech, both of which are phoneme sequences. We
call the search (), SPExaustiveFusion F PH . The first parameter
F is the fragment sequence, which actually denotes the
handwriting sentence. The second SPPH has introduced
above. (), SPExaustiveFusion F PH returns the minimum
matching cost, which implicitly indicates *W .

Let us estimate the complexity of (), SPExaustiveFusion F PH .

As the size of { }k
hwW has been shown in Equation(11) and

the complexity of (),W SPLD PH PH is ()1 2,O PH PH [8],
the complexity of (), SPExaustiveFusion F PH is

()
1

0

T

i
i SP

i

O t PH
α β +×

=

⎛ ⎞
⎜ ⎟×
⎜ ⎟
⎝ ⎠
∑ S S

c fd ge h

,

It is obvious that (), SPExaustiveFusion F PH is extremely inef-
ficient.

4.5. Fusion by a Divide-Conquer Search
In this subsection, a fast search algorithm, which adopts a
divide-conquer strategy, is introduced to find *W from
{ }k

hwW . First, note that for the fragment sequence

0 1 1 2 1... ...i i i i TF f f f f f f− + + −= ,

1 1 2, , and i i i if f f f− + + cannot all be in the same character, be-
cause a character has at most three fragments. Two adjacent
fragments are called “separate fragments” if they are not in
the same character. In F, either 1if − and if , or if and 1if + , or

1if + and 2if + must be separate. It is called a “separation”
that F is divided into two subsequences by a separate frag-
ment pair. For example, if if and 1if + are separate, F is di-
vided into two subsequences

0, 0 1

1, 1 1 2 1

...
...

i i i

i T i i T

F f f f
F f f f

−

+ − + + −

=⎧⎪
⎨ =⎪⎩

.

Based on the idea, we define function (), ,,i j k lDCFusion F PH
as the minimum matching cost of fragment sequence

,i jF and phoneme sequence .k lPH , where .k lPH refers to a
subsequence of SPPH , which starts from the kth phoneme
and ends at the lth phoneme in SPPH . (), ,,i j k lDCFusion F PH ,
which adopts a divide-conquer strategy, is calculated as
follows.

()
()
()()

, ,

, ,

, ,1 1

,

, ,

min , , ,

i j k l

i j k l

i j k lt p t

DCFusion F PH

ExaustiveFusion F PH if j i threshold

DCCost p F PH else
− ≤ ≤ +

⎧ − <⎪= ⎨
⎪⎩

(15)

where
()

2
i jt += (16)

and
()

()
()

, ,

, ,

1, , 1,

, ,

 ,
 min

i j k l

i p k q

k q l
p j q l

DCCost p F PH

DCFusion F PH

DCFusion F PH≤ ≤
+ +

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 (17)

Equation (15) and (16) say that if ,i jF is shorter than a
threshold it is calculated directly by the exhaustive fusion
introduced in subsection 4.4, else three separations of it are
tried. In our implementation, 5threshold = . Equation (17)
says, for a separation, the two fragment subsequences try to
match all possible partitions of phoneme sequences.
Equation (17) could be improved by narrowing the range of
parameter q without losing much accuracy. A fragment sub-
sequence ,i pF only needs to match those phoneme subse-
quences, which indicate similar character range as indicated
by ,i pF . We define (),Len i p as the geometric width from

if to pf , and ratio

() ()
()

,
,

Len i pPos p Len i j=

as the normalized position of pf in ,i jF . In fact, ()Pos p also
indicates the approximate normalized position of the char-
acter, to which if belongs, in the potential character se-
quence. As each character corresponds to a phoneme
in ,k lPH , thus

() (), 1...k k kPhIdx p PhIdx pPH ph ph ph+=

where () (),k lPhIdx p k PH Pos p= + ×c fd ge h is the most appropri-
ate phoneme subsequence that could be matched by ,i pF .
Figure 5 illustrates calculating ()PhIdx p . Now we can nar-
row the range of parameter q in Equation(17)
as () ()PhIdx p q PhIdx pλ λ− ≤ ≤ + . In our implementa-
tion, 2λ = .
Let us estimate the efficiency of DCFusion . Apply-
ing DCFusion to the handwriting in Fig.1, we eventually
decompose the whole problem to 775 ExaustiveFusion prob-
lems, whose T, M and N are only about a quarter of the
originals respectively. Approximately, the time complexity
of DCFusion is

() ()()2log30 F tO E t × ,

where t is the threshold in Equation (15) and ()E t is
the expectation of execution time of ExaustiveFusion on
t fragments. Obviously, DCFusion is much more efficient
than ExaustiveFusion .

Figure 5 computation of which sub-sequence of
speech phoneme sequence match the fragment
sequence. In this example, for 0 1 6...f f f , the speech
sub-sequence is 0 1 2 3ph ph ph ph

Pos(6) = Len(0,6) ÷ Len(0,12) = 0.48
PhIdx(6) = () ()1N Pos i− ×┈ = 3 (N = |PH|=8)

ph0 ph1 ph2 ph3 ph4 ph5 ph6 ph7PH =

Len(0,6)
Len(0,12)

f6

247

4.6. Weighted Phoneme
Speech recognition has errors, which make the phonemes
produced by it inaccurate. However, speech recognition
also returns recognition candidates as handwriting recogni-
tion does. These candidates provide more information of
users’ utterances. We use “weighted phoneme” to represent
them.
A weighted phoneme wph , denoted by [,]win wfn , is the
mixture of several phonemes, in which win is a weighted
initial and wfn is a weighted final. We have

[] []

[] []

22

0 22 0,22
0

37

0 37 0,37
1

,..., , , 0, 1

,..., , , 0, 1

j jj
j

k kk
k

win w w w w w

wfn v v v v v

∈
=

∈
=

⎧ = ∀ ≥ ≤⎪⎪
⎨
⎪ = ∀ ≥ ≤⎪⎩

∑

∑
 (18)

,where iw and jv are weights. Thus, a win is a linear com-
bination of all 23 initials and a wfn is a linear combination
of all 38 finals. Without losing meaning, we simplify the
notations of win and wfn as

0
0 1 1

1 22

1
0 1 7

0 1
3

, ,...,

, ,...,

M

N

win w w w

wfn

in in in

fn f vnv fv n

−

−

⎧ ⎡ ⎤= ⋅ ⋅ ⋅⎪ ⎣ ⎦
⎨

⎡ ⎤= ⋅ ⋅ ⋅⎪ ⎣ ⎦⎩

We can omit items whose weights are zero. Trivially, a pho-
neme is also a weighted phoneme, whose win and wfn
have only one item respectively with weight being one.
Suppose the speech recognition result for character C has
candidate 0 1 1, ,..., kph ph ph − . Each [],i i iph in fn= is a phoneme
with confidence it . The weighted phoneme for C is denote
as wph . The weights in wph are calculated as

()

()
0

0

,

,

k
i

i j j
j

k
i

i j j
j

w t equal in in

v t equal fn fn

=

=

⎧ ⎡ ⎤= ×⎪ ⎣ ⎦⎪
⎨
⎪ ⎡ ⎤= ×⎣ ⎦⎪⎩

∑

∑
 (19)

in which

 ()
1, if and are same

,
0, else

a b
equal a b

⎧
= ⎨
⎩

 (20)

For example, if speech recognition candidates for character
“ ” is [,],[,],[,],[,]t ao t iao d ao t ou ,with confidences

0 1 2 3, , and t t t t respectively, the weighted phoneme is

()

()
2 0 1 3

0 2 1 3

[,]
:

, ,

win t t t t
wph

wfn t t

d t

t iao utao o

⎧ = ⋅ + + ⋅⎪
⎨

= ⎡ + ⋅ ⋅ ⋅ ⎤⎪ ⎣ ⎦⎩

逃

逃

逃

Weighted phonemes can also represent different segmenta-
tions in speech recognition. For example, suppose the
speech recognition result is denoted by candi-
dates () () ()0 1 2,0 2,1, , ,ph ph ph ph , with confidences 0t , 1t and

2t respectively. The first and second candidates have one
phoneme, but the third has two. It means the recognizer is
not sure whether the utterance corresponds to a character or
two. We represent the utterance by two weighted phonemes

1wph and 2wph . First, we add null phonemes 0,1ph and

1,1ph to candidates 1 and 2 respectively to let the candidates

become () () ()0,0 0,1 1,0 1,1 2,0 2,1, , , , ,ph ph ph ph ph ph . Now we cal-

culate 1wph by 0,0 1,0 2,0, and ph ph ph , and 2wph by 0,1ph ,

1,1ph and 2,1ph , by using Equation(19). As 0,1ph and 1,1ph do
not exist in fact, the sum of the weights of the 2wph ’s
weighted initial is less than one. (In fact, it equals to 2t). It
is same for 2wph ’s weighted final. The results reflect that

2wph may indicate a segmentation error of speech recogni-
tion.
Usually, the speech recognition result of a sentence is de-
noted by a sequence of phrases. (The phrase segmentation
is considered correct.) Each phrase corresponds to at least
one character. A phrase can be denoted by weighted pho-
nemes by the way introduced above. By combining the
weighted phonemes of these phrases, we get a weighted
phonemes sequence WPH for the speech recognition re-
sult for a sentence.
We can substitute phonemes with weighted phonemes for
computation. To do this, we need to define the similarity
between two weighted phonemes.
The similarity between weighted phonemes is calculated as
follows. Given weighted phonemes []1 1 1,wph win wfn= and

[]2 2 2,wph win wfn= . The Similarity ()1 2,S wph wph of is cal-
culated as
 () () ()1 2 1 2 1 2, , ,S wph wph swIn win win swFn wfn wfn= + (21)

in which ()1 2,swIn win win is the similarity between two
weighted initials and ()1 2,swFn wfn wfn is the similarity be-
tween two weighted finals:

() ()

() ()

1 1

1 2 1 2
0 0

1 1

1 2 1 2
0 0

, ,

, ,

M M
j k

j k
j k

N N
j k

j k
j k

swIn win win w w sIn in in

swFn wfn wfn v v sFn fn fn

− −

= =

− −

= =

⎧
=⎪

⎪
⎨
⎪ =⎪⎩

∑∑

∑∑
 (22)

5. EVALUATION
We have conducted a preliminary evaluation on the pro-
posed crossmodal error correction technique. Three aspects
are concerned: a) Is it effective in correcting errors? b) Is it
efficient in computation? c) Compared with other correction
techniques, is it more efficient?
In our implementation, the recognizers of speech and
handwriting were the Microsoft SAPI 5.1 [12] and the
HANGWANG Chinese handwriting character recognizer
[10] respectively. The computer used is a Tablet PC, which
is equipped with a 1.6GH CPU and 512MB memory. The
pen-input supported LCD screen of Tablet PC is used for
handwriting, and the built-in microphone is used for speech
input. Twelve subjects participated in the experiment. They
are graduate students from our lab. They are divided into
three groups G1, G2 and G3, each of which has four people.
Sixty handwriting sentences with both segmentation and
recognition errors were used as experimental data. These
sentences were divided into three data sets D1, D2 and D3,
each of which has twenty sentences. We define “error rate”
of a sentence as

248

correctly recognized characters
error rate = 1 100%

characters
⎛ ⎞
− ×⎜ ⎟⎜ ⎟

⎝ ⎠

Error rate of sentences in D1 is around 15%. Error rate of
sentences in D2 is around 30%. Error rate of sentences in
D3 is around 50%. Three correction techniques T1, T2 and
T3 are used for comparison. T1 is the error correction tech-
nique that uses pen gestures and character recognition can-
didate list (See [24] for its details). T2 is our former speech
correction technique introduced in [24], which can only
correct character recognition errors but not segmentation
errors. T3 refers to the correction technique proposed in the
paper.

We let subjects in G1 use technique T1 to correct the errors
in all data sets. We let G2 use T2 and G3 use T3 to perform
the same task as G1. For each sentence, G2 can only use T2
once and G3 can only use T3 once. G2 and G3 could use T1
for help, because both of the two speech correction tech-
niques cannot guarantee 100 percent of error corrections.
However, when using T3, subjects were asked to use the
speech correction before using T1.

Figure 6 shows the experiment result on the comparisons of
the efficiency of the three techniques T1, T2 and T3. It
shows that, in D1, three techniques took nearly the same
time. However, in D2 and D3, T3 considerably outper-
formed T1 and T2. The result is easy to understand. T1 is a
pen-only correction. The time consumed by it will increase
much with the increase of the error number. T2 cannot cor-
rect segmentation errors. When errors number increases, the
segmentation errors, which require manual corrections by
users using T2, are also becoming more and more. T3 can
correct both segmentation and recognition errors. Thus, it is
more efficient than the other two techniques when error rate
is large. The result also suggests our technique T3 is more
suitable for error-intensive correction.

Figure 7 demonstrates effectiveness of the proposed correc-
tion technique, by comparing error numbers before and af-
ter correction by speech. The result in Fig.7 shows our

speech correction techniques can recover most of errors.
(The rest of errors can be corrected by pen gestures.) The
result also justifies the adoption of weighted phoneme. The
fusions using weighted phonemes for speech representation
remarkably outperform those using phonemes.
The correction might fail in the following situations: a) The
candidates of character recognition of handwriting does not
contain the correct output. b) The candidates are similar
both in appearance and in pronunciation. c) There are fail-
ures in “over-segmentation” introduced in Section 4.1. d)
Speech recognition severely fails, which means the recog-
nized pronunciations are far from what should be.
Figure 8 shows execution times of our fusion algorithm.
The fusion takes about 0.25 seconds for 5-character sen-
tence, which is nearly unnoticeable, and 3.3 seconds for
18-character sentence, which was considered acceptable by
the subjects.

6. CONCLUSION
To naturally and efficiently correct handwriting recognition
errors, we propose a crossmodal error correction technique,
which allows a user to correct both character extraction and
recognition errors of a Chinese handwriting. For the correc-
tion, a multimodal fusion algorithm is introduced with its
framework and implementation details, whose main idea is
to find the handwriting recognition result whose pronuncia-
tion matches the speech best. Evaluation shows the algo-
rithm works effectively and efficiently. Compared to the

Figure 6. Comparisons of the performance on efficiency
of three correction techniques on three data sets. The
Y-axis stands for the time that subjects took for correc-
tions. The three data sets are in the X-axis.

Figure 8. The time to take to for the execution of the
fusion algorithm proposed in this paper on sentences of
different numbers of words.

Figure 7. Comparisons of error counts before cor-
rection, after a correction by using phoneme and
after a error correction by using weighted pho-

249

other two correction techniques, the proposed technique is
more efficient.

7. ACKNOWLEDGMENTS
This research is supported by the National Fundamental
Research Project of China (973 Project) (2002CB312103),
the National Natural Science Foundation of China under
Grant No. 60603073, 60503054 and 60605018.

REFERENCES
1. Ainsworth, W. A. And Pratt, S. R. 1992. Feedback strategies for

error correction in speech recognition systems. Int. J.
Man-Mach. Stud. 36, 6 (June), pp. 833–842.

2. B. Suhm, B. Myers and A. Waibel, Model-based and empirical
evaluation of multimodal interactive error correction, Proc.
ACM CHI'99, pp. 584-591, 1999,

3. B. Suhm, B. Myers and A. Waibel, Multimodal error correction
for speech user interfaces, ACM Transactions on Com-
puter-Human Interaction pp.60-98, 2001

4. BABER, C. AND HONE, K. S. 1993. Modeling error recovery
and repair in automatic speech recognition. Int. J. Man-Mach.
Stud. 39, 3 (Sept.), pp. 495–515

5. C. Frankish, D. Jones and K. Hapeshi. Decline in accuracy of
automatic speech recognition as function of time on task: fa-
tigue or voice drift. International Journal of Man-Machine
Studies, 36(6): pp.797–816, 1992.

6. C. Halverson, D.B. Horn, C. Karat and J. Karat. The beauty of
errors: patterns of error correction in desktop speech systems. In
Proceedings of INTERACT ’99, pp.133–140, IOS Press. 1999

7. C-M. Karat, C. Halverson, D.Horn and J. Karat, Patterns of
entry and correction in large vocabulary contentious speech
recognition systems, Proc. ACM CHI'99, 1999, pp. 568-575.

8. http://en.wikipedia.org/wiki/Levenshtein_distance

9. http://en.wikipedia.org/wiki/Pinyin

10. http://www.hwpen.net/

11. http://mathworld.wolfram.com/TribonacciNumber.html

12. http://www.microsoft.com/speech/download/sdk51/

13. J. Luettin, “Visual Speech and Speaker Recognition,” Ph.D.
dissertation, Univ. Sheffield, U.K., 1997.

14. J. Mankoff and G. Abowd. Error correction techniques for
handwriting, speech, and other ambiguous or error prone sys-
tems. GVU Technical Report Number: GIT-GVU-99-18,1999.

15. J. Mankoff, S. Hudson and G.D. Abowd. Providing Integrated
toolkit-level support for ambiguity in recognition-based inter-
faces, Proc. ACM CHI’00, pp. 368-375, 2000.

16. J. Sturm and L. Boves, Effective error recovery strategies for
multimodal form-filling applications, Speech Communication
45, pp.289–303, 2005

17. M. Zajicek and J. Hewitt. An investigation into the use of error
recovery dialogues in a user interface management system for
speech recognition. In Proceedings of 3rd IFIP International
Conference on Human-Computer Interaction, IFIP INTER-
ACT’90, pp. 755–760.

18. Murray, A. C., Frankish, C. R., And Jones, D. M. 1993.
Data-entry by voice: Facilitating correction of misrecognitions.
In Interactive Speech Technology: Human Factors Issues in the
Application of Speech Input/Output to Computers, C. Baber
and J. M. Noyes, Eds. Taylor and Francis, Inc., Bristol, PA,
pp.137–144

19. Rhyne,J.R. and Wolf, C.G. 1993. Recognition-based user inter-
faces. In Advances in Human-Computer Interaction, H. R.
Hartson and D. Hix, Eds. Ablex Publishing Corp., Norwood, NJ,
pp. 191–212

20. S. Dupont and J. Luettin Audio-Visual Speech Modeling for
Continuous Speech Recognition, IEEE Transactions On Multi-
media, Vol. 2, No. 3, September 2000, pp. 141-151

21. S. Oviatt and R. van Gent, Error Resolution During Multimodal
Human–Computer Interaction, Proc of the Fourth International
Conference on Spoken Language Processing, October 1996,
pp. 204-207

22. S. Oviatt. Taming recognition errors with a multimodal inter-
face. Communication of the ACM, 43(9): pp. 45–51, 2000

23. S.Oviatt, Ten Myths of Multimodal Interaction, Communica-
tions of the ACM, November 1999/Vol. 42, No. 11 pp. 74 –
81

24. Xugang Wang, Junfeng Li, Xiang Ao, Gang Wang and
Guozhong Dai, Multimodal Error Correction for Continuous
Handwriting Recognition in Pen-based user Interfaces, Pro-
ceedings of IUI 2006, pp.324-326

25. Yeow Kee Tan, Nasser Sherkat and Tony Allen, Error Recov-
ery in a Blended Style Eye Gaze and Speech Interface, Prceed-
ings of ICMI 2003, pp. 196 – 202

250

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

