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ABSTRACT 
In recognition-based user interface, users’ satisfaction is 
determined not only by recognition accuracy but also by 
effort to correct recognition errors. In this paper, we intro-
duce a crossmodal error correction technique, which allows 
users to correct errors of Chinese handwriting recognition 
by speech. The focus of the paper is a multimodal fusion 
algorithm supporting the crossmodal error correction. By 
fusing handwriting and speech recognition, the algorithm 
can correct errors in both character extraction and recogni-
tion of handwriting. The experimental result indicates that 
the algorithm is effective and efficient. Moreover, the 
evaluation also shows the correction technique can help 
users to correct errors in handwriting recognition more effi-
ciently than the other two error correction techniques.  
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. – Interaction styles; I.5.4 
[Pattern Recognition]: Applications—Text processing, Sig-
nal processing; 
General terms: Human Factors, Algorithms 
Keywords: Error correction, multimodal fusion, handwrit-
ing recognition, speech, phoneme, weighted phoneme 

1. INTRODUCTION 
Pen-based user interfaces that support natural inputs by 
handwriting are becoming prevalent. Usually, handwriting 
recognition is used in these interfaces to understand user 
inputs. However, in these recognition-based interfaces [19], 
users are often frustrated by recognition errors. Study shows 
recognition errors significantly reduce the effectiveness of 
the natural input modalities, such as pen and speech [2][7]. 
Thus, an error correction mechanism is usually a require-
ment for these interfaces. Researches have shown that, in 
recognition-based interfaces, user satisfaction is determined 
not only by recognition accuracy, but also by the complex-
ity of error correction dialogues [17] and by the efficiency 
of error correction [5]. Therefore, an efficient method of 

correcting handwriting recognition errors is important as 
well as necessary.   
In this paper, we introduce a crossmodal error correction 
technique, which enables users to correct recognition errors 
of continuous Chinese handwriting by speech. Figure 1 
gives an example. The handwriting in Fig.1 (a) is recog-
nized as Fig.1 (b) with both character extraction errors and 
character recognition errors. To correct the errors, the user 
repeats the sentence in Fig.1 (a) by speech. By fusing the 
handwriting and the speech, the correct handwriting recog-
nition result is found, as shown in Fig.1 (c).  

 
The key of the error correction is a multimodal fusion algo-
rithm, which uses speech to guide the search of the correct 
handwriting recognition result. We argue that the correction 
is to find a handwriting recognition candidate, whose pro-
nunciation matches the user’s speech best. Our analysis 
shows that, in order to construct such a multimodal fusion 
algorithm, we need to solve three problems. First, we 
should build a handwriting recognition candidates space to 
access each candidate conveniently. Second, in order to 
facilitate the matching, the pronunciations of the candidates 
and users’ speech should be represented by the same format. 
Third, a fast search algorithm is indispensable for efficient 
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Figure 1, an example error correction of handwriting by 
speech. (a) the original handwriting; (b) the incorrect 
handwriting recognition result; (c) the correct recogni-
tion result by fusing the handwriting and speech. 
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fusions. Based on the framework, we have constructed a 
crossmodal error correction algorithm on Chinese hand-
writing recognition by solving the three problems above. 
Evaluation shows the approach is effective and more effi-
cient than the other two error correction techniques. 
In the rest of the paper, we first address the motivation of 
the research in Section 2. Then, we review related work on 
error correction in recognition-based interfaces in Section 3. 
In Section 4, we introduce the framework of the multimodal 
fusion algorithm and its implementation on correct Chinese 
handwriting recognition errors. We show evaluation results 
in Section 5 and conclude the paper in Section 6.  

2. MOTIVATION 
We study the crossmodal error correction for three reasons. 
First, it is natural. Usually, people prefer to read silently 
when proofreading documents, digital or not. Correcting 
errors by speech is similar to the way (The difference is that 
users should read aloud, but not silently). Previous studies 
show that error correction strategies mimicking our daily 
behaviors are the most natural ways that users are pleased 
to accept [14]. Second, it is efficient. Efficiency is usually 
gained by using multiple modalities simultaneously. It 
needs little effort from users to speak a handwriting sen-
tence. More important, it does not add more workload to the 
users’ hands that are already busy. Finally, it is effective. 
Recent researches have shown that a system that fuses two 
or more information sources, which are complementary to 
each other, can be an effective means of reducing recogni-
tion uncertainty, thereby improving robustness [22] [23]. 
The audio-visual speech recognition [20] [13] is a success-
ful application of the idea. Moreover, several researches 
have also showed the multimodal fusion, considering 
crossmodal dependencies, can improve the recognition ac-
curacy of the unimodality [1] [4]. Therefore, we adopt a 
handwriting-speech fusion algorithm, by which the recogni-
tion accuracy of handwriting could be enhanced by the 
crossmodal influence.  

3. RELATED WORK 
Correcting recognition errors in recognition-based inter-
faces has been studied for years. Many researches have 
touched on -this topic, especially on correcting speech rec-
ognition errors. “Respeaking” is one of the error correction 
techniques, which is believed to be intuitive and natural [4]. 
However, the traditional “repeaking” just replaces the old 
wrong output with new speech recognition output, which 
may also be wrong. Research shows “respeaking” by simple 
replacement is not very useful in practice [1]. “Spelling” 
helps correct misrecognized words, but it is not natural and 
efficient in use [3] [21]. “N-best list” is another typical way 
to correct errors, which lets users select the correct recogni-
tion result from a list of hypotheses [18] [15], but fails 
when the correct result is not in the n-best list.  
If multimodality is used, error correction could be improved. 
One way is to offer users opportunities of modality switch-
ing [22]. For example, if speech recognition fails, users can 
try pen input. It works because errors that a modality’s rec-
ognition is prone to make may not be the minefields of oth-
ers’. Another way is “multimodal correction”, also called 
“cross-modal correction”, which uses the complementarities 

and redundancies of different modalities. Rather than re-
placing old output with the new, multimodal correction fuse 
the inputs, or/and the recognition outputs, of different mo-
dalities to get a better recognition result [3] [16] [6] [25] 
[24]. The fusions often happen between modalities such as 
speech / pen [24], speech / mouse [16], and speech / 
eye-movement [25].  
The proposed error correction in this paper is similar to the 
“respeaking” correction. However, it is crossmodal. It dif-
fers from former “respeaking” corrections adopting “re-
placement” strategies. Until now, few researches have been 
carried out on multimodal correction of handwriting recog-
nition errors. The most closely related work is our previous 
research [24]. It uses handwriting recognition candidate as 
the language model for speech recognition to correct char-
acter recognition errors in handwriting sentences. However, 
it cannot correct character extraction errors, which are 
common in continuous handwriting recognition. The 
method in this paper can correct both types of errors. Thus, 
it is of more practical use than the method proposed in [24]. 

4. THE FUSION ALGORITHM 

4.1 The Framework 
The key of the proposed error correction method is a mul-
timodal fusion algorithm, whose basic idea is to optimize 
the search of the handwriting recognition result by speech. 
Let hwX  be the handwriting, spX  be the speech to correct 

hwX ’s recognition errors. Let set { }W be all character 
strings and { }*W W∈ be the fusion result. First, we have 

( )* arg max | ,W hw spW P W X X=    (1) 
By rewriting equation (1) by Bayes rules, we get 

 ( ) ( )arg max | | ,W hw sp hwW P W X P X W X∗ =  (2) 
As hwX and spX are conditionally independent givenW , equa-
tion (2) is simplified as 

( ) ( )arg max | |W hw spW P W X P X W∗ =   (3) 

Let WS be the pronunciation of W . We have ( )| 1WP S W = , 
because WS is obviously determined byW . Thus, we have 

 ( ) ( ) ( )| | , |sp sp W sp WP X W P X W S P X S= =  (4) 
Therefore, equation (3) can be rewritten as 

 ( ) ( )arg max | |W hw sp WW P W X P X S∗ =   (5) 

Until now, the optimization of *W is in the infinite set{ }W . 
In order to make the optimization manageable, we need to 
find a subset of { }W  to replace { }W . Note that, 
if ( )| hwP W X is quite small, the W will very unlikely be the 
output of equation(5). It means that we can search *W  in a 
finite subset of { }W without worrying too much about 
missing the optimal solution. Based on the idea, we trans-
form equation(5) into 

  
{ } ( )* arg max |k

hw
sp WW W

W P X S
∈

=   (6) 

, where 
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  { } ( )arg max |k k
hw W hwW P W X=   (7) 

Equation(7) says { }k
hwW is the subset of { }W with k ele-

ments, which produce the largest k values of ( )| hwP W X . 

Equation(6) says the optimization is in{ }k
hwW . 

Equation (6) and (7) clearly show the goal of the cross-
modal error correction: ( )arg max |k

W hwP W X in equation (7) 
stands for the top k handwriting recognition candidates of 

hwX , which is denoted as { }k
hwW ; equation (6) tells us the 

goal is to search the candidate from { }k
hwW whose pronun-

ciation matches best with spX . 

Equation (6) and (7) also explicitly indicate the approach of 
the crossmodal error correction. The approach can be di-
vided into the solutions of three problems. Solving the three 
problems forms a framework of the crossmodal error cor-
rection. We show these problems as follows and answer 
them within the scope of correcting continuous handwriting 
recognition errors by speech.  
1) How can we construct { }k

hwW ? Usually, handwriting 
character extraction and recognition algorithms return 
candidates. These candidates imply a huge set, which is 
actually the { }k

hwW . We discuss how to construct 
{ }k

hwW  for the error correction of Chinese handwriting 
in Section 4.2. 

2) How does the matching between WS and spX work? Ob-
viously, WS and spX need the same representation for-
mat. For the error correction of Chinese handwriting, 
we use phonemes to represent WS and spX . A phoneme 
is a symbolized representation of the pronunciation of a 
character, which is discussed in Section 4.3. As speech 
recognition may also make mistakes as handwriting 
recognition, we introduce “weighted phoneme” in Sec-
tion 4.6 for a more accurate phonemic representation of 
speech.  

3) How can the search of *W be efficient? Users care 
about the efficiency. If the correction takes a long time, 
it becomes meaningless. We show that an exhaustive 
search, which is presented in Section 4.4, would be ex-
tremely inefficient. However, a divide-conquer strategy, 
which is covered in Section 4.5, would be much better.  

4.2. Handwriting Recognition Errors and Candidates 
Before introducing{ }k

hwW , we first have some discussion on 
handwriting recognition errors and candidates. For con-
tinuous Chinese handwriting recognition, errors are caused 
both by character extraction and by character recognition. A 
character recognition error refers to that a handwriting 
character is recognized as what it should not be. For exam-
ple, the character  is recognized as “ ”, though it 
should be “ ”. Usually, a character recognizer returns not 
only the best guess but also a list of candidates. It is very 
likely that the correct recognition result is in the candidate 
list.  

Character extraction errors refer to a handwriting sentence 
is segmented into characters in a wrong way. For example, 
compared with the correct extraction shown in Fig.1(c), 
there are six characters involved extraction errors in 

Fig.1(b). For example,  is segmented as , 

though it should be . Usually, if character extraction is 
wrong, the following character recognition is meaningless. 
(As characters are extracted by segmenting handwriting 
sentences, we use “extraction” and “segmentation” inter-
changeably in the rest of the paper.) 
We want character extraction have candidates as character 
recognition. An “over-segmentation” algorithm is adopted 
to generate all possible segmentations. Segmentation results 
are actually stroke blocks. Over-segmentation means every 
stroke block generated by the segmentation is a character or 
only a part of a character. These stroke blocks are called 
“fragments”. The result of over-segmentation of the hand-
writing in Fig.1 (a) is shown in Fig.2.  

 

 

 

 

 

Suppose sentence S is over-segmented into a fragment se-
quence 0 1 1... TF f f f −= , where each if  is a fragment. As any 
subsequence 1... ,  0j j kf f f i k T+ ≤ ≤ < of F could possibly 
form a character, an M-character segmentation MS  of  S  
is denoted as 

 ( )( ) ( )1 1 2 10 1 1 1... ... ... ...
M

M
k k k k Tf f f f f f

−+ + −=S    (8) 

We care how long a subsequence could be. Chinese charac-
ters have six graphemic patterns, which are shown in Fig. 3. 
Obviously, the over-segmentation algorithm is only sensi-
tive to horizontal patterns. The “left-middle-right” pattern, 
which is most horizontally complicated, has three parts. 
Thus, a character could be composed of at most three frag-
ments. We set the maximum length of a fragment subse-
quence as 3.  

 
The fragments are organized as a directed graph G. The 
vertexes are the fragments { }0 1 1, ,..., Tf f f −  plus an extra 
node Tf . Each vertex has directed edges linked to its three 
succeeding, if existed, vertexes. Mathematically, 

Figure 2, Over-segmentation of a sentence. The sen-
tence in Fig.1 is segmented to 13 fragments. 

(a) (b) (c) (d) (e) (f)
Figure 3. Six graphemic patterns of Chinese charac-
ters: (a) left-right; (b) left-middle-right; (c) single; (d) 
up-bottom; (e) half-surrounded; (f) fully-surrounded.  
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 { }
( ) ( ){ }

,

| [0, 1] { }

, | 0 3
i T

i j

G V E

V f i T f

E f f j T i j i

⎧ =⎪⎪ = ∈ − ∪⎨
⎪

= ≤ ∧ ≤ < ≤ +⎪⎩

   (9) 

Figure 4 show a graph of seven fragments plus an extra 
vertex 7f  as the ending. With the graph, we can get all pos-
sible segmentations by enumerate paths starting at 0f and 
ending at Tf . For example, path 0 1 4 5 7f f f f f→ → → →  
denotes the segmentation ( )( )( )( )0 1 2 3 4 5 6f f f f f f f  

 
We now show how to build the{ }k

hwW in Equation(7)and(8). 
Suppose the character recognizer returns t candidates for a 
handwriting character. As segmentation MS  of S has M 
characters, it has Mt recognition candidate sequences, each 
of which is a hwW in{ }k

hwW . 

We only considered a single segmentation above. However, 
as Fig.4 demonstrates, there are many segmenting ways for 
a sentence. For a sentence with T  fragments, ( )C T de-
notes the number of its different segmentations. We have 

( ) ( )

( ) ( ) ( )

3

1

1 1;  2 2;  3 4
i

C T C T i

C C C
=

⎧
= −⎪

⎨
⎪ = = =⎩

∑    (10) 

,where ( )C T is actually a Tribonacci Number [11] , which is 
equal to 1Tα β +×c fe hd g , wherea bx is the nearest integer of x , 

0.336α ≈  and 1.839β ≈ . Combing the character recogni-
tion and segmentation, we eventually know the size of 
{ }k

hwW  as  

  { }
1

0

T

ik
hw

i
W t

α β +×

=

= ∑
c fd ge h

S    (11) 

where iS�stands for the number of characters in iS�. Ac-
cording to the definition of { }k

hwW , we have { }k
hwk W= . 

Obviously, k is tremendous. This is why we say in subsec-
tion 4.1 that { }k

hwW would be “a huge set” and why we 
need a fast search algorithm for *W . 
4.3 Phonemes 
To unify the representation format of WS and spX , we use 
phonemes. A phoneme is the symbolized representation of a 
character’s pronunciation. For Chinese, We use Hanyu Pin-
yin to denote phonemes. Hanyu Pinyin (pinyin) is the pho-
nemic notation system for the pronunciation of Chinese 
(Standard Mandarin). Every Chinese character has its pin-
yin, which is a compound of an initial ( in ), a final ( fn ) and 
a tone. For example, the pinyin for character “ ” (escape) 
is “táo”, in which the “t” is the initial as [t] in English, the 
“ao” is the final as [au] in English, and the “ ΄ ” is the tone 
mark. An introduction of pinyin can be found in [9]. A 
phoneme ph is a pair of an initial and a final denoted as 

 [ ],ph in fn=  (12) 

There are 23 initials and 38 finals in Chinese (But not all 
combinations of them are permitted.). To avoid confusion, 
we use iin to denote the ith  initial in the initial table and 

jfn to denote the jth  final in the final table. We use 
kin and kfn to denote the initial and final in 

phoneme kph respectively.  
To compare phonemes, we define phonemic similarity. The 
similarity, ( )1 2,S ph ph of phonemes [ ]1 1 1,ph in fn=  and 

[ ]2 2 2,ph in fn= is defined as 
 ( ) ( ) ( )1 2 1 2 1 2, , ,S ph ph sIn in in sFn fn fn= +  (13) 

, where ( )1 2,sIn in in  and ( )2 2,sFn fn fn are the similarity of 
two initials and finals respectively. The ( ),j ksIn in in  and 

( ),j ksFn fn fn  come from observations. Intuitively, the two 
similarity metrics equals 0 when two compared items are 
same, and equals 1 when they sound completely different. 
The similarity of phoneme sequences is also necessary. As 
phoneme ph is an initial-final pair [ ],in fn , a phoneme se-
quence 1 2 1NPH ph ph ph −= … can be written as a token se-
quence 0 0 1 1 1 1N nPH in fn in fn in fn− −= … , in which each initial or 
final is a token. To compare two token sequences, Leven-
shtein distance ( LD , also called “edit distance”) [8] is an 
appropriate measure, which calculates the minimum num-
ber of operations needed to transform one token sequence 
into the other, where an operation is an insertion, deletion, 
or substitution of a token. Thus, given phoneme se-
quence 1PH and 2PH , the similarity between them is defined 
as their Levenshtein distance ( )1 2,LD PH PH . In our imple-
mentation, the cost of substitution cost_sub is adjusted as  

 ( )
( )
( )

,  

,

sIn a,b if  both a and b are intials

cost_sub a,b = sFn a,b if  both a and b are finals
,  otherwise

⎧
⎪
⎨
⎪∞⎩

 (14) 

Note ( )cost_sub a,b = ∞ when one parameter is initial and the 
other is not. It means that we forbid interchanges between 
initials and finals. 
The phonemes for users’ speech are got by transforming the 
speech recognition result into a phoneme sequence. If the 
speech recognizer supports intermediate phonemic output, 
we just need to translate the output to our phoneme format. 
However, if the speech recognizer can only return text, we 
transform the text to the phoneme sequence by looking up 
the pronunciations of the text from a dictionary. The pho-
nemes for the pronunciation of the handwriting recognition 
candidate { }k

hwW W∈  are got by using a dictionary simi-
larly as handling the speech.  
4.4. Fusion by an Exhaustive Search 
In this subsection, we introduce a straightforward but slow 
search strategy to find *W from{ }k

hwW . It just exhausts all 

{ }k
hwW by comparing the pronunciation WS of W with the 

speech, and choose the most matched on as *W . The 
matching is done by using the function ( ),W SPLD PH PH de-
fined in subsection 4.3. In the ( ),W SPLD PH PH  
here, WPH denotes the pronunciation of W, and SPPH de-

f0 f1 f2 f3 f4 f5 f6 f7

Figure 4. the graph of seven fragments. Note 7f  is the 
extra node, which is not a fragment. 
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notes the speech, both of which are phoneme sequences. We 
call the search ( ), SPExaustiveFusion F PH . The first parameter 
F is the fragment sequence, which actually denotes the 
handwriting sentence. The second SPPH has introduced 
above. ( ), SPExaustiveFusion F PH returns the minimum 
matching cost, which implicitly indicates *W . 

Let us estimate the complexity of ( ), SPExaustiveFusion F PH . 

As the size of { }k
hwW has been shown in Equation(11) and 

the complexity of ( ),W SPLD PH PH  is ( )1 2,O PH PH  [8], 
the complexity of ( ), SPExaustiveFusion F PH is 

( )
1

0

T

i
i SP

i

O t PH
α β +×

=

⎛ ⎞
⎜ ⎟×
⎜ ⎟
⎝ ⎠
∑ S S

c fd ge h

, 

It is obvious that ( ), SPExaustiveFusion F PH is extremely inef-
ficient. 

4.5. Fusion by a Divide-Conquer Search 
In this subsection, a fast search algorithm, which adopts a 
divide-conquer strategy, is introduced to find *W  from 
{ }k

hwW . First, note that for the fragment sequence 

0 1 1 2 1... ...i i i i TF f f f f f f− + + −= , 

1 1 2, ,  and i i i if f f f− + +  cannot all be in the same character, be-
cause a character has at most three fragments. Two adjacent 
fragments are called “separate fragments” if they are not in 
the same character. In F, either 1if − and if , or if and 1if + , or 

1if + and 2if + must be separate. It is called a “separation” 
that F is divided into two subsequences by a separate frag-
ment pair. For example, if if and 1if + are separate, F is di-
vided into two subsequences 

0, 0 1

1, 1 1 2 1

...
...

i i i

i T i i T

F f f f
F f f f

−

+ − + + −

=⎧⎪
⎨ =⎪⎩

. 

Based on the idea, we define function ( ), ,,i j k lDCFusion F PH  
as the minimum matching cost of fragment sequence 

,i jF and phoneme sequence .k lPH , where .k lPH refers to a 
subsequence of SPPH , which starts from the kth phoneme 
and ends at the lth phoneme in SPPH . ( ), ,,i j k lDCFusion F PH , 
which adopts a divide-conquer strategy, is calculated as 
follows. 

( )
( )
( )( )

, ,

, ,

, ,1 1

,

, ,  

min , , ,

i j k l

i j k l

i j k lt p t

DCFusion F PH

ExaustiveFusion F PH if j i threshold

DCCost p F PH else
− ≤ ≤ +

⎧ − <⎪= ⎨
⎪⎩

(15) 

where 
( )

2
i jt +=       (16) 

and 
( )

( )
( )

, ,

, ,

1, , 1,

, ,

   ,
         min

 

i j k l

i p k q

k q l
p j q l

DCCost p F PH

DCFusion F PH

DCFusion F PH≤ ≤
+ +

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

  (17) 

 
 

Equation (15) and (16) say that if ,i jF  is shorter than a 
threshold  it is calculated directly by the exhaustive fusion 
introduced in subsection 4.4, else three separations of it are 
tried. In our implementation, 5threshold = . Equation (17) 
says, for a separation, the two fragment subsequences try to 
match all possible partitions of phoneme sequences. 
Equation (17) could be improved by narrowing the range of 
parameter q without losing much accuracy. A fragment sub-
sequence ,i pF only needs to match those phoneme subse-
quences, which indicate similar character range as indicated 
by ,i pF . We define ( ),Len i p as the geometric width from 

if to pf , and ratio 

( ) ( )
( )

,
,

Len i pPos p Len i j=  

as the normalized position of pf in ,i jF . In fact, ( )Pos p also 
indicates the approximate normalized position of the char-
acter, to which if belongs, in the potential character se-
quence. As each character corresponds to a phoneme 
in ,k lPH , thus 

( ) ( ), 1...k k kPhIdx p PhIdx pPH ph ph ph+=  

where ( ) ( ),k lPhIdx p k PH Pos p= + ×c fd ge h  is the most appropri-
ate phoneme subsequence that could be matched by ,i pF . 
Figure 5 illustrates calculating ( )PhIdx p . Now we can nar-
row the range of parameter q in Equation(17)
as ( ) ( )PhIdx p q PhIdx pλ λ− ≤ ≤ + . In our implementa-
tion, 2λ = . 
Let us estimate the efficiency of DCFusion . Apply-
ing DCFusion to the handwriting in Fig.1, we eventually 
decompose the whole problem to 775 ExaustiveFusion prob-
lems, whose T, M and N are only about a quarter of the 
originals respectively. Approximately, the time complexity 
of DCFusion  is 

( ) ( )( )2log30 F tO E t × , 

where t  is the threshold  in Equation (15) and ( )E t is 
the expectation of execution time of ExaustiveFusion on 
t fragments. Obviously, DCFusion is much more efficient 
than ExaustiveFusion . 

 

Figure 5 computation of which sub-sequence of 
speech phoneme sequence match the fragment 
sequence. In this example, for 0 1 6...f f f , the speech 
sub-sequence is 0 1 2 3ph ph ph ph  

Pos(6) = Len(0,6) ÷ Len(0,12) = 0.48 
PhIdx(6) = ( ) ( )1N Pos i− ×┈ = 3  (N = |PH|=8)

ph0 ph1 ph2 ph3 ph4 ph5 ph6 ph7PH =

Len(0,6)
Len(0,12) 

f6 
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4.6. Weighted Phoneme 
Speech recognition has errors, which make the phonemes 
produced by it inaccurate. However, speech recognition 
also returns recognition candidates as handwriting recogni-
tion does. These candidates provide more information of 
users’ utterances. We use “weighted phoneme” to represent 
them. 
A weighted phoneme wph , denoted by [ , ]win wfn , is the 
mixture of several phonemes, in which win is a weighted 
initial and wfn is a weighted final. We have 

 
[ ] [ ]

[ ] [ ]

22

0 22 0,22
0

37

0 37 0,37
1

,..., ,  , 0, 1

,..., ,     , 0,   1

j jj
j

k kk
k

win w w w w w

wfn v v v v v

∈
=

∈
=

⎧ = ∀ ≥ ≤⎪⎪
⎨
⎪ = ∀ ≥ ≤⎪⎩

∑

∑
 (18) 

,where iw and jv are weights. Thus, a win  is a linear com-
bination of all 23 initials and a wfn  is a linear combination 
of all 38 finals. Without losing meaning, we simplify the 
notations of win  and wfn as  

0
0 1 1

1 22

1
0 1 7

0 1
3

, ,...,    

, ,...,    

M

N

win w w w

wfn

in in in

fn f vnv fv n

−

−

⎧ ⎡ ⎤= ⋅ ⋅ ⋅⎪ ⎣ ⎦
⎨

⎡ ⎤= ⋅ ⋅ ⋅⎪ ⎣ ⎦⎩
 

We can omit items whose weights are zero. Trivially, a pho-
neme is also a weighted phoneme, whose win  and wfn  
have only one item respectively with weight being one. 
Suppose the speech recognition result for character C  has 
candidate 0 1 1, ,..., kph ph ph − . Each [ ],i i iph in fn= is a phoneme 
with confidence it . The weighted phoneme for C  is denote 
as wph . The weights in wph are calculated as 

 
( )

( )
0

0

,

,

k
i

i j j
j

k
i

i j j
j

w t equal in in

v t equal fn fn

=

=

⎧ ⎡ ⎤= ×⎪ ⎣ ⎦⎪
⎨
⎪ ⎡ ⎤= ×⎣ ⎦⎪⎩

∑

∑
 (19) 

in which 

 ( )
1,  if  and  are same

,
0,  else

a b
equal a b

⎧
= ⎨
⎩

 (20) 

For example, if speech recognition candidates for character 
“ ” is [ , ],[ , ],[ , ],[ , ]t ao t iao d ao t ou ,with confidences 

0 1 2 3, ,  and t t t t respectively, the weighted phoneme is 

 
( )

( )
2 0 1 3

0 2 1 3

[ , ]
:

, ,

win t t t t
wph

wfn t t

d t

t iao utao o

⎧ = ⋅ + + ⋅⎪
⎨

= ⎡ + ⋅ ⋅ ⋅ ⎤⎪ ⎣ ⎦⎩

逃

逃

逃

 

Weighted phonemes can also represent different segmenta-
tions in speech recognition. For example, suppose the 
speech recognition result is denoted by candi-
dates ( ) ( ) ( )0 1 2,0 2,1, , ,ph ph ph ph , with confidences 0t , 1t  and 

2t  respectively. The first and second candidates have one 
phoneme, but the third has two. It means the recognizer is 
not sure whether the utterance corresponds to a character or 
two. We represent the utterance by two weighted phonemes 

1wph  and 2wph . First, we add null phonemes 0,1ph and 

1,1ph to candidates 1 and 2 respectively to let the candidates 

become ( ) ( ) ( )0,0 0,1 1,0 1,1 2,0 2,1, , , , ,ph ph ph ph ph ph . Now we cal-

culate 1wph by 0,0 1,0 2,0,  and ph ph ph , and 2wph by 0,1ph , 

1,1ph and 2,1ph , by using Equation(19). As 0,1ph and 1,1ph do 
not exist in fact, the sum of the weights of the 2wph ’s 
weighted initial is less than one. (In fact, it equals to 2t ). It 
is same for 2wph ’s weighted final. The results reflect that 

2wph  may indicate a segmentation error of speech recogni-
tion.  
Usually, the speech recognition result of a sentence is de-
noted by a sequence of phrases. (The phrase segmentation 
is considered correct.) Each phrase corresponds to at least 
one character. A phrase can be denoted by weighted pho-
nemes by the way introduced above. By combining the 
weighted phonemes of these phrases, we get a weighted 
phonemes sequence WPH  for the speech recognition re-
sult for a sentence. 
We can substitute phonemes with weighted phonemes for 
computation. To do this, we need to define the similarity 
between two weighted phonemes. 
The similarity between weighted phonemes is calculated as 
follows. Given weighted phonemes [ ]1 1 1,wph win wfn=  and 

[ ]2 2 2,wph win wfn= . The Similarity ( )1 2,S wph wph  of is cal-
culated as  
 ( ) ( ) ( )1 2 1 2 1 2, , ,S wph wph swIn win win swFn wfn wfn= +  (21) 

in which ( )1 2,swIn win win  is the similarity between two 
weighted initials and ( )1 2,swFn wfn wfn is the similarity be-
tween two weighted finals:   
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5. EVALUATION 
We have conducted a preliminary evaluation on the pro-
posed crossmodal error correction technique. Three aspects 
are concerned: a) Is it effective in correcting errors? b) Is it 
efficient in computation? c) Compared with other correction 
techniques, is it more efficient?  
In our implementation, the recognizers of speech and 
handwriting were the Microsoft SAPI 5.1 [12] and the 
HANGWANG Chinese handwriting character recognizer 
[10] respectively. The computer used is a Tablet PC, which 
is equipped with a 1.6GH CPU and 512MB memory. The 
pen-input supported LCD screen of Tablet PC is used for 
handwriting, and the built-in microphone is used for speech 
input. Twelve subjects participated in the experiment. They 
are graduate students from our lab. They are divided into 
three groups G1, G2 and G3, each of which has four people. 
Sixty handwriting sentences with both segmentation and 
recognition errors were used as experimental data. These 
sentences were divided into three data sets D1, D2 and D3, 
each of which has twenty sentences. We define “error rate” 
of a sentence as 
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correctly recognized characters
error rate = 1 100%

characters
⎛ ⎞
− ×⎜ ⎟⎜ ⎟

⎝ ⎠
 

Error rate of sentences in D1 is around 15%. Error rate of 
sentences in D2 is around 30%. Error rate of sentences in 
D3 is around 50%. Three correction techniques T1, T2 and 
T3 are used for comparison. T1 is the error correction tech-
nique that uses pen gestures and character recognition can-
didate list (See [24] for its details). T2 is our former speech 
correction technique introduced in [24], which can only 
correct character recognition errors but not segmentation 
errors. T3 refers to the correction technique proposed in the 
paper.  

We let subjects in G1 use technique T1 to correct the errors 
in all data sets. We let G2 use T2 and G3 use T3 to perform 
the same task as G1. For each sentence, G2 can only use T2 
once and G3 can only use T3 once. G2 and G3 could use T1 
for help, because both of the two speech correction tech-
niques cannot guarantee 100 percent of error corrections. 
However, when using T3, subjects were asked to use the 
speech correction before using T1.  

Figure 6 shows the experiment result on the comparisons of 
the efficiency of the three techniques T1, T2 and T3. It 
shows that, in D1, three techniques took nearly the same 
time. However, in D2 and D3, T3 considerably outper-
formed T1 and T2. The result is easy to understand. T1 is a 
pen-only correction. The time consumed by it will increase 
much with the increase of the error number. T2 cannot cor-
rect segmentation errors. When errors number increases, the 
segmentation errors, which require manual corrections by 
users using T2, are also becoming more and more. T3 can 
correct both segmentation and recognition errors. Thus, it is 
more efficient than the other two techniques when error rate 
is large. The result also suggests our technique T3 is more 
suitable for error-intensive correction.  
 

 
Figure 7 demonstrates effectiveness of the proposed correc-
tion technique, by comparing error numbers before and af-
ter correction by speech. The result in Fig.7 shows our 

speech correction techniques can recover most of errors. 
(The rest of errors can be corrected by pen gestures.) The 
result also justifies the adoption of weighted phoneme. The 
fusions using weighted phonemes for speech representation 
remarkably outperform those using phonemes. 
The correction might fail in the following situations: a) The 
candidates of character recognition of handwriting does not 
contain the correct output. b) The candidates are similar 
both in appearance and in pronunciation. c) There are fail-
ures in “over-segmentation” introduced in Section 4.1. d) 
Speech recognition severely fails, which means the recog-
nized pronunciations are far from what should be. 
Figure 8 shows execution times of our fusion algorithm. 
The fusion takes about 0.25 seconds for 5-character sen-
tence, which is nearly unnoticeable, and 3.3 seconds for 
18-character sentence, which was considered acceptable by 
the subjects.  

 

 
6. CONCLUSION 
To naturally and efficiently correct handwriting recognition 
errors, we propose a crossmodal error correction technique, 
which allows a user to correct both character extraction and 
recognition errors of a Chinese handwriting. For the correc-
tion, a multimodal fusion algorithm is introduced with its 
framework and implementation details, whose main idea is 
to find the handwriting recognition result whose pronuncia-
tion matches the speech best. Evaluation shows the algo-
rithm works effectively and efficiently. Compared to the 

Figure 6. Comparisons of the performance on efficiency 
of three correction techniques on three data sets. The 
Y-axis stands for the time that subjects took for correc-
tions. The three data sets are in the X-axis.

Figure 8. The time to take to for the execution of the 
fusion algorithm proposed in this paper on sentences of 
different numbers of words.  

Figure 7. Comparisons of error counts before cor-
rection, after a correction by using phoneme and 
after a error correction by using weighted pho-
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other two correction techniques, the proposed technique is 
more efficient. 
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