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Abstract This paper presents an efficient method to trace secondary rays in depth-of-field (DOF) rendering,
which significantly enhances realism. Till now, the effects by secondary rays have been little addressed in real-
time/interactive DOF rendering, because secondary rays have less coherence than primary rays, making them very
difficult to handle. We propose novel measures to cluster secondary rays, and take a virtual viewpoint to construct
a layered image-based representation for the objects that would be intersected by a cluster of secondary rays
respectively. Therefore, we can exploit coherence of secondary rays in the clusters to speed up tracing secondary
rays in DOF rendering. Results show that we can interactively achieve DOF rendering effects with reflections or
refractions on a commodity graphics card.
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1 Introduction

Depth-of-field (DOF) dramatically improves

photorealism and plays an important role in creat-

ing photographic effects. In rendering the DOF

effects seen through reflectors or refractors, the

rays from the camera are reflected or refracted be-

fore arriving at diffuse surfaces, and so their light

paths are very complicated, and the visual sharp-

ness of the diffuse objects is determined not only

by the focal length of the camera but also by the

distance and the curvatures of reflectors or refrac-

tors. Therefore, to obtain high quality DOF ef-

fects, many more samples per pixel are required.

The cost of tracing rays is even more expensive

when secondary rays are taken into account.

Tracing a large quantity of rays with com-

plicated light paths is a very difficult task. For

this, much effort has been made, and existing DOF

methods can efficiently handle primary rays and

achieve impressive effects. However, it is diffi-

cult to extend their methods straightforwardly to

handle secondary rays, since the directions of sec-

ondary rays are always distributed irregularly. Im-

age space methods [1–5] using the depth map to de-

termine the blur of each pixel should work well for

primary rays, but they cannot use the depth map

to represent depth variation of secondary rays and

so are unable to generate the DOF effects through

reflectors or refractors. As for methods to trace

rays in the object space [6, 7], they are always ex-

pensive and in general used for offline rendering.

Recently, Lee et al. [8, 9] proposed to decompose

the scene into multiple depth layers to trace rays

for computing the DOF effects. Thus, they can

make use of ray coherence and the high computa-

tion power of the graphics processing unit (GPU)

to achieve real-time rendering of DOF effects. As

the depth layers of the scene are constructed by the

original viewpoint, the representation may ignore
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many objects that would be intersected by sec-

ondary rays but not visible to the camera and lack

occlusion information by reflection or refraction

between objects. Thus, it is not suitable to trac-

ing secondary rays. Though distant environmental

lighting ignoring visibility can take effect in ren-

dering the DOF effects by a simple reflection [8],

the complex illumination computation by reflec-

tion or refraction between objects in the scene has

not been addressed in real-time/interactive DOF

rendering.

In this paper, we present a novel method to

efficiently handle the one-bounce reflection rays or

refraction rays in DOF rendering. For the rays

shot from the camera, their related secondary rays

generally have their directions distributed irregu-

larly, and so are always very expensive to trace.

However, secondary rays may have relatively high

coherence in local areas of reflectors or refractors.

Thus, we classify reflectors or refractors to make

secondary rays from a cluster of reflectors or re-

fractors share much coherence in finding their in-

tersections with the scene. For each cluster, we set

a virtual viewpoint to construct a representation

of depth layers for the objects that would be inter-

sected by secondary rays from the cluster of reflec-

tors or refractors. To efficiently utilize GPUs, the

representation is optimized to be compact, which

reduces the storage requirement and computation

on the intersection test. Results show that our

method can interactively render the DOF effects

with secondary rays on a commodity graphics card,

though a large quantity of rays are traced, e.g. 100

sample rays for each pixel from the camera.

In the remainder of the paper, we first review

previous work about DOF rendering in Section 2,

then present our new method with secondary rays

handled in DOF rendering in Section 3. After-

wards, we present and discuss experimental results

in Section 4, and give conclusions in Section 5.

2 Related Work

Simulating the DOF effects with full light

paths is too computationally expensive. With re-

gard to this, Cook et al. [6] proposed a distributed

ray tracing method by densely sampling on the

lens. Then, the method was improved by the ac-

cumulation buffer technique [7] to use graphics

hardware, where a collection of pinhole-based im-

ages are rendered, and averaged to generate the

final result. Furthermore, such a solution is taken

to simulate very complicated camera effects such

as a combination of DOF, motion blur and re-

flections [10]. Hou et al. [11] constructed spatial

hierarchies on GPUs to accelerate tracing rays,

which can achieve high quality results as the same

as CPU-based methods. However, these methods

usually cost much time and in general are used for

offline rendering.

To reduce the time cost for DOF rendering,

the physical process is simplified and it is always

assumed that primary rays do not reflect or re-

fract at all. Based on these, the circle of con-

fusion (COC) is regarded as a standard disk on

the image whose radius is totally determined by

its distance to the lens. So rendering an image

with DOF becomes a problem of accumulating the

disks of all pixels of the image. The COC can

be efficiently accumulated with scatter or gather

methods. Scatter methods [12] distribute source

pixels in a pinhole image onto COC sprites. Then,

the sprites are blended from far to near. However,

this method requires heavy processing for depth

sorting, even on modern GPUs. The technique is

usually used in offline applications. Gather meth-

ods [1–5] simulating blurring of pixels by spatially

filtering the image can utilize the texture lookup

capability of recent GPUs to achieve high perfor-

mance, where the amount of blur is determined by

the COC size. But these spatial blur methods of-

ten cause intensity leakage and depth discontinuity

because it is difficult to determine the occlusion of

a COC. As for the methods to execute rasteriza-

tion on GPUs [13] or employing light field render-

ing techniques [14], they also suffer from occlusion

problems.

To cope with intensity leakage and the lack

of partial occlusion information, multilayer ap-

proaches decompose a pinhole image into layers

according to the depth of pixels, and then have

the layers blurred separately and composited with

alpha blending, where a layer is blurred with var-

ious techniques such as a Fourier Transform [15],
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pyramidal image processing [16], anisotropic dif-

fusion [17, 18], splatting [19], or rectangle spread-

ing [20]. However, such approaches are approxi-

mate and cannot recover true scene information,

which may lead to overly-blurred and incorrect re-

sults, and the discretization artifacts can degrade

image quality when objects span more than one

layer. To address such a problem, a few methods

have been proposed such as special image process-

ing [21], information duplication [16], and depth

variation [19]. But they are only suitable for pri-

marily diffuse surfaces, and cannot handle per-

fectly specular materials, owing to the lack of a

ray tracing framework. Recently, Lee at al. [8]

proposed to decompose the scene into depth lay-

ers and use image-space ray tracing techniques to

rapidly compute DOF, and later improved this

method [9] by a more compact image-based lay-

ered representation and a more efficient ray trac-

ing algorithm. They are able to achieve impres-

sive results and generate specular reflections of dis-

tant environmental lighting. However, they cannot

handle reflections or refractions between objects of

the scene, because their representation by layers is

only constructed according to the original view-

point of the camera.

Recently, some methods proposed to get high

quality results with a low sampling rate, which is

an important approach to save computation. How-

ever, they cannot efficiently handle secondary rays

in DOF rendering. Chen et al. [22] used the adap-

tive sample density, which is determined by the

amount of blur and pixel variance, and a multi-

scale reconstruction filter to reduce the noise in

the defocused areas. However, the multiscale filter

relies on the depth map, which may fail to han-

dle specular materials. Lehtinen et al. [23] pro-

posed to improve the image quality by exploiting

the anisotropy in the temporal light field and per-

mitting efficient reuse of samples between pixels.

Though it can generate glossy effects under distant

environment lighting by utilizing additional band-

width information, it assumes the radiance does

not vary along a sample’s trajectory, which cannot

hold for specular materials. Laine et al. [24] tried

to avoid processing the samples that fall outside

the computed bounds, to increase the efficiency

of stochastic rasterization of defocus blur with the

low sampling densities. However, this method can-

not be extended straightforwardly to treat sec-

ondary rays, owing to the rasterization framework.

Ragan-Kelley et al. [25] introduced decoupled sam-

pling to reduce the expensive shading cost, which

decouples the shading rate from visibility sampling

for defocus blur in graphics pipelines. It is based

on the assumption that a scene point’s color is

roughly constant from all views on the lens. How-

ever, for reflection or refraction, different views on

the lens may have different directions, so that this

method is not suitable for secondary rays.

Some methods have been proposed to speed

up tracing secondary rays. Roger et al. [26] used

a cone-sphere to build the hierarchical structure

of secondary rays to accelerate tracing. However,

owing to computational complexities, it is gener-

ally very difficult for the method to handle a large

quantity of irregular secondary rays. Rosen et

al. [27] approximated scene geometry with more

efficient representations using non-pinhole cameras

to accelerate computing reflections and refractions.

However, it does not take self-reflection of reflec-

tors into account. Our method is to exploit the co-

herence of secondary rays by a clustering scheme to

achieve high performance. Popescu et al. [28] con-

structed sample-based cameras from the reflected

rays to accelerate tracing multi-bounce reflection

rays. It can only handle convex reflectors and be

not easy to deal with concave reflectors with high

complexity.

3 Our DOF Rendering with Secondary

Rays

We develop our method partly motivated by

the work of [9]. It represents the scene by layered

images which are constructed from the viewpoint.

Then, it introduces an efficient image-space ray

tracing method to sample many rays on the lens

for each pixel to perform DOF rendering. How-

ever, its representation is corresponding to the

original viewpoint of the camera, and so may ig-

nore many objects that would be intersected by

secondary rays but are not visible to the camera

and lack occlusion information by reflections or re-
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fractions between objects. And also this represen-

tation is not efficient for tracing secondary rays,

because these rays generally have their directions

distributed irregularly. Thus, it is not suitable for

tracing secondary rays by reflecting or refracting

primary rays from the camera.

As we know, image based ray tracing is very

efficient when the rays are almost perpendicular

to the layered images. But this is not true for

irregular secondary rays. However, for secondary

rays with similar normal directions and close po-

sitions, they have much coherence to share. Thus,

we classify reflectors or refractors of the scene for

speeding up tracing secondary rays, where we con-

struct a compact layered image representation for

each cluster of reflectors or refractors with a virtual

viewpoint. Therefore, in DOF rendering, for each

cluster, we first get the cluster of reflectors and

refractors for primary rays, and then take its cor-

responding layer representation to trace secondary

rays in the corresponding virtual viewport respec-

tively. The construction of a layered image rep-

resentation of the specular rays is quite different

from the representation of primary rays, because

many pixels may not be intersected by the specular

rays of the given cluster. Our method is different

from the method of [9], as we can further cull these

pixels to greatly improve the efficiency of storage

and intersection. An overview of our method is

illustrated in Fig. 1 by reflectors.

Fig. 1. Overview of our method.

As the measures for constructing the layer

representation and tracing rays via the represen-

tation are the same for reflectors and refractors,

in the following description we will introduce the

measures only by reflectors for simplicity.

3.1 Review of Multiview Synthesis

Our ray tracer is similar to the framework of

Lee et al. [9]. This method consists of two parts,

constructing a representation of the scene with lay-

ered images and tracing rays by the representa-

tion. In constructing the representation, to get

a compact one, it uses an extended-umbra peel-

ing method to early cull some pixels, which no

ray can intersect with through the lens. In find-

ing the scene intersections of a ray, it steps itera-

tively over the footprint, which contains all pixels

in the layer’s image plane underneath the 2D pro-

jection of the ray, until the intersection point is ob-

tained. To reduce the search region, they compute

the minimum and maximum depths of the layer

using mipmapping techniques and N-buffers [29].

Meanwhile, they handle all lens rays in parallel to

reduce the cost of computing the search region. As

a whole, it works in the following steps. At first,

they intersect all rays for a given depth interval

to generate an approximate footprint. Given this

footprint, they compute the min/max depth val-

ues as a narrow depth interval by using N-buffers.

Then, all rays are clamped in the new depth inter-

val and a new footprint is generated. In general,

a footprint of moderate size can be obtained after

three iterations. After that, they pack four depth

values into a single RGBA texture directly to pro-

cess four layers in parallel.

Because lens rays are almost perpendicular to

the image plane, they have very high coherence.

Thus it can efficiently utilize the GPU to perform

DOF rendering in real time.

3.2 Efficient Classification

Our method is for speeding up tracing sec-

ondary rays in DOF rendering. At first, we gener-

ate the image-based layered representation of re-

flectors from the original viewpoint by extended-

umbra peeling [9]. Then, the pixels of reflectors in

the original layered images are classified into clus-

ters by the positions and reflection directions of

these pixels.

Generally, the k-means algorithm can be used

for classification. However, if it is used to treat all

reflectors at a time, it needs much time. The main
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bottleneck is finding the nearest cluster center for

each pixel. Meanwhile, the resulting clusters can-

not guarantee that the specular rays from a cluster

have very similar directions. Considering this, we

take the following steps to efficiently classify reflec-

tors and bound the directions of the specular rays,

which make the directions of the specular rays of

a cluster not deviate much from the viewing direc-

tion of the virtual viewpoint for the cluster.

1) The pixels of the reflectors can be quickly

sorted into each facet of the unit regular

polyhedron by the directions of their related

specular rays, such as the 12 facets of the

unit regular dodecahedron. With this, it is

helpful to limit the range of the directions for

the specular rays in a cluster.

2) The standard k-means algorithm is used to

treat the pixels of the facets of the unit reg-

ular polyhedron respectively. Here, for the

pixels of the same facet, they are classified

by the Euclidean distances of the positions

between the pixels. In our experiments, we

separate the pixels of each facet into 1 to 3

clusters to make the final clusters have as

similar numbers of pixels as possible.

Fig. 2. Comparison between the standard k-means al-
gorithm to the reflector sphere and our modified clus-
tering method to generate 24 clusters. (a) The result by
using the k-means algorithm to handle the reflector by
the positions and the directions of the reflections. (b)
12 clusters of reflection directions on a unit regular do-
decahedron. (c) The clustering result by our modified
method. The images are of 512 × 512 pixels. Using the
standard k-means to the reflector takes 0.618 seconds,
while our method takes 0.013 seconds.

In our implementation, for simplicity, we first

compute an approximate direction range of each

facet of the unit regular polyhedron to include all

directions of each facet, then determine the corre-

sponding facet which each pixel belongs to. If the

direction of a specular ray of a pixel is in the di-

rection range of the facet, the pixel is assigned to

the facet. If not, we detect the direction with next

facet iteratively. Though each facet is detected re-

spectively, these specular rays can be quickly han-

dled in parallel. As illustrated in Fig. 2, our mod-

ified clustering method can run faster and get a

better clustering result. It limits the angle range

of the viewing direction of the virtual viewport and

the directions of the specular rays for each cluster,

especially in the boundary of the sphere in Fig. 2,

which makes image based ray tracing very efficient

for handling this kind of specular rays. However,

the resulting clusters using the k-means algorithm

make the specular rays deviate a lot from the view-

ing direction of the virtual viewpoint, lowering the

efficiency on ray tracing.

3.3 Constructing Compact Representation

To efficiently trace the specular rays from a

cluster of reflectors, we should have the virtual

viewpoint set well and compactly construct the

layered image representation for the objects that

would be intersected by the specular rays. Because

many pixels can be determined that they cannot

be intersected by the specular rays of the given

cluster, we can further cull these pixels to greatly

improve the efficiency of storage and intersection.

In setting the virtual viewpoint for a cluster

of reflectors, we first average the specular ray di-

rections of the pixels of the reflectors in this cluster

and take it as the viewing direction of the virtual

viewpoint. Then, from the point with the aver-

aged position of the pixels in this cluster, we move

it along opposite viewing direction of the virtual

viewpoint until it can have all the pixels in the

cluster in its viewing frustum. Thus, we get the

position of the virtual viewpoint for this cluster.

After the virtual viewpoint is determined, we

can construct the image layered representation for

this cluster. We use adaptive bucket depth peel-

ing [30] instead of Lee’s method [9] for two reasons.

First, it reduces the peeling from multiple passes

to only two passes. Second, because the virtual

viewpoints are much closer to the objects than the
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original viewpoint, it is not very efficient to cull

pixels in the layered images representation with

Lee’s method [9]. As pointed out by Lee et al. [9],

it is more crucial to reduce the number of layers

and pixels for accelerating the ray tracing step.

Therefore, we try to cull the layer pixels that can-

not be reached by any specular rays of a cluster to

have a compact representation. For this, we adopt

the following three measures.

Firstly, we set the near clipping plane at the

closest position of the cluster to the virtual view-

point. This is to exclude the objects between the

virtual viewpoint and the corresponding reflectors.

This kind of object will never be intersected with

the specular rays from this cluster because these

specular rays are shot from reflectors, not virtual

viewpoints. It would require much more computa-

tion for the intersection test if we include them in

our layered representation.

Fig. 3. Using three measures to cull the pixels in a
virtual viewport.

Secondly, we can further cull the objects be-

tween the cluster and the virtual viewpoint for

each pixel. This is finished by postprocessing the

layered representation. After the adaptive bucket

depth peeling is used to produce the initial layered

representation, we abandon all pixels closer to the

virtual viewpoint than the pixel of the cluster in

the same position of image space.

Thirdly, we cull the pixels whose normal direc-

tions are in the range of the directions of the specu-

lar rays of the cluster. As we mentioned in Section

3.2, each cluster holds a limited range of directions

of the specular rays, so the specular rays cannot be

intersected with the objects whose normal direc-

tions are in the range of directions of these specular

rays. This is similar to the usual back face culling

but the difference is that the culling is determined

by a range of the directions instead of a single di-

rection. Although it is not an exact measure, the

range of the directions is small, which does not

cause artifacts in our experiments and can reduce

more pixels to accelerate tracing.

The three measures are shown in Fig. 3. The

storage requirements for the representations of the

clusters can be reduced about 30%∼60%, when the

above measures are used in our tests. In practice,

we can use 8 depth layers to get very good results

for most scenes.

3.4 Rendering

We render primary rays by the method in [9],

by which we trace 100 rays from each pixel of the

result image to get high quality results for the DOF

effects. For such a large number of rays, it is very

difficult to trace the specular rays after all primary

rays are finished tracing on the GPU, because the

limited GPU memory is not enough to store the

intersection information of primary rays for trac-

ing all the specular rays. To use the computation

power of the GPU and avoid its limitation on stor-

age, we take the following steps to quickly trace

the specular rays.

// Input the viewport information. Get reflection result.

void TracingSpecularRays (in viewInfo, out refResult)

Construct layered representation from the viewpoint;

Classify the reflectors into clusters;

foreach cluster

Construct layered image by current virtual viewpoint;

Generate the specular rays by tracing primary rays

from the pixels lying in the cluster;

Use mipmapping and N-buffers to reduce the size

of the footprint of these specular rays;

Again the generate specular rays from primary rays;

Trace these specular rays for the cluster;

end foreach

Fig. 4. Pseudocode for tracing the specular rays.

We should determine which cluster each spec-

ular ray of each pixel belongs to respectively before

tracing the specular rays in Step 1. As the orig-

inal layered image representation is generated by
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(a) Lee et al. Method (b) Our method (c) GPU-based ray tracing

Fig. 5. Comparison with Lee et al. Method and GPU-based ray tracing.

the primary rays through the center of the lens, the

other primary rays in the same pixel of the result

image with different sampling positions on the lens

may intersect different pixels in the original layered

images, which may be in another cluster. We take

another pass only for all primary rays traced at the

beginning, based on which we can assign the pix-

els of the result image to corresponding clusters.

Most of the pixels with reflection belong to only

one cluster, but the pixels close to the boundary

of the clusters always belong to multiple clusters.

We record this kind of information in a texture.

Clearly, in the above steps, primary rays

would be traced multiple times, leading to a lit-

tle more time consumption. However, owing to

the limitation of GPU memory and texture band-

width, the rendering efficiency will be reduced

more if we store the intersection information of

primary rays instead of tracing primary rays re-

peatedly.

In tracing the specular rays from a cluster of

reflectors, we also use the tracing techniques in [9].

When a specular ray intersects with diffuse sur-

face, it shades from the color of the surface. If it

does not intersect with any object, it shades from

the environment lighting. When it intersects with

a reflector, the reflection direction of the specular

ray is computed according to the normal direction

of the intersection point, and then is shaded from

the environment lighting.

When the lens radius is large, the specular

rays of each pixel may diverge greatly, leading to

a large depth interval. For this, we divide the lens

disk to 4 or 16 parts, and compute their depth

intervals respectively. This can efficiently reduce

depth intervals and improve performance.

4 Experiments and Results

The clustering algorithm is implemented in

NVIDIA CUDA, while the image-based ray trac-

ing is based on OpenGL and the CG 3.0 shad-

ing language. All of our results are generated on

a commodity PC with Intel Duo Xeon 2.9G Hz

and 4GB memory, and an NVIDIA GeForce GTX

285. In this paper, the resolution of the images

is 800 × 600. For each pixel, we shoot 100 rays

using jittered sampling patterns on the lens. In

clustering, we first distribute the directions over

the facets of the unit regular polyhedron, and then

classify the pixels whose directions are in a same

facet into 1 to 3 clusters, until the final clusters

have similar numbers of pixels. So there are usu-

ally 20 to 30 clusters in our experiments. Follow-

ing Lee’s method [9], we use 4 layered images with

the same resolution as the rendered image for pri-

mary ray tracing. Since the virtual viewpoints are

much closer to the objects than the original cam-

era, we need more layers to represent the scenes

for secondary ray tracing to avoid intensity leak-

age. By tests, we find 8 layers with a resolution

of 512 × 512 are enough for most scenes. There-

fore, we produce an image with 8 depth layers as

the representation for a cluster by a virtual view-

point. Consequently, the memory consumption in

our experiments is about 80 MBytes.

We compared our method with Lee et al. [9]

method and GPU-based ray tracing [11]. Although

Lee et al. [9] has real-time DOF rendering, it only

generates reflection effects through distant envi-
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ronmental lighting ignoring visibility. Our method

can interactively achieve reflection effects between

objects, for example the interreflection between

teapot and ground shown in Fig. 5. GPU-based

ray tracing [11] can produce high quality results by

tracing rays individually. As shown in Fig. 5, our

rendering quality is comparable, even around the

boundary of occlusions. As for the performance,

our method does not depend much on the com-

plexity of geometry, so that it can outperform the

GPU-based ray tracer, especially in dealing with

large scenes. As listed in Table 2, for the scene in

Fig. 5, the performance of our method is 1.8 fps,

while [11] is only 0.11 fps. Our method is much

faster and is interactive.

The performance of our method is dependent

on the image resolutions and sampling rate. The

field-of-view (FOV) of the virtual viewport is an

important factor for our performance and qual-

ity. When the FOV is larger, the intersection

tests will be faster but with a lower quality, due

to a lower sampling rate. On the contrary, when

the FOV is smaller, the quality would be better

but intersection tests will be slower. Generally,

setting the FOV between 80 and 100 degrees is

a good trade-off for performance and quality by

our tests. For the large FOV, we can increase the

sampling rate by using a higher resolution image

representation to improve image quality. But it

will increase memory consumption and decrease

the performance. Comparison data is displayed

in Fig. 6. The chessboard in Fig. 6 is assigned a

perfect mirror-like specular reflection and a diffuse

texture. We can see that the checkerboard texture

and the reflected objects usually show different de-

grees of blurring. With the FOV gradually increas-

ing, the quality gradually declines, especially in

the boundary of the reflected objects on the chess-

board in Fig. 6 (e). By using a higher resolution

such as 1024× 1024, the quality increases but the

performance decreases. As a result, we prefer to

select the FOV as 80 degrees and the resolution of

512 × 512 pixels in a virtual viewport as a good

trade-off between performance and quality. Unless

specifically stated, other scenes are also rendered

with the same parameters.

(a) fov50,res512,fps3.2 (b) fov80,res512,fps3.7

(c) fov110,res512,fps4.5 (d) fov110,res1024,fps3.6

(e) fov140,res512,fps5.1 (f) fov140,res1024,fps4.4

Fig. 6. Performance and quality with different FOVs
and different resolutions. The FOV (fov) is the field-of-
view of a virtual viewport, res is the resolution of the
rendered image in a virtual viewport, and fps (frames
per second) is the rendering performance.

Table 1. Performance comparison with different
regular polyhedron and cluster numbers. Polyhe-
dron/clusters represent the number of the facets of reg-
ular polyhedron/the number of clusters. The first num-
ber 6 represents a unit regular hexahedron, while 12
represents a unit regular dodecahedron. fps (frames
per second) is the rendering performance.

Polyhedron/clusters 6/6 6/12 6/20 12/12 12/20 12/31

Performance(fps) 2.9 3.1 2.8 3.4 3.3 2.9

The number of clusters and the generation of

clusters affect both of performance and quality.

The final number of clusters is a trade-off between

performance and quality of tracing secondary rays.

When the clusters are fewer, the cost for peeling

and bounding the footprint would decrease, but

the directions of secondary rays of the pixels on

the boundary of a cluster deviate much from the

viewing direction of the virtual viewpoint for the

cluster, which will increase the cost on intersection
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tests and so lower the whole performance. On the

contrary, with more clusters, the cost on intersec-

tion tests would decrease, but the cost for peeling

and bounding the footprint will increase. Some

results for comparisons are shown in Fig. 7, where

there are two reflective teapots, and the butter-

flies around them are reflected on both of them. It

has some artifacts in the lid of the left teapot in

Fig. 7 (b) from using fewer clusters to generate the

DOF effects, but it can achieve a better result by

using more clusters in Fig. 7 (c), which is compa-

rable with the result of [11] in Fig. 7 (d). However,

Fig. 7 (c) increases the cost of peeling and bound-

ing the footprint and lowers the whole performance

compared with Fig. 7 (b). A comparison of their

performance is shown in Table 1. Besides the final

number of clusters, the number of the facets of the

regular polyhedron is also related to our perfor-

mance and quality. Fig. 7 (a) uses a unit regular

hexahedron and k-means to classify teapots into

clusters, which has some artifacts in the lid of the

left teapot even with 20 clusters. Our method can

achieve a better result by using a unit regular do-

decahedron and k-means to classify into clusters in

Fig. 7 (c). Meanwhile, the regular dodecahedron

has a smaller range of directions than the regular

hexahedron and has better performance. A per-

formance comparison is also shown in Table 1 be-

tween Fig. 7 (a) and Fig. 7 (c). A performance

comparison of the final number of clusters and the

generation of clusters is listed in Table 1. The

performance of the regular dodecahedron is better

than the regular hexahedron. The optimal setting

is using a unit regular dodecahedron and k-means

to classify into 1 to 3 clusters in each facet in our

method, such as Fig. 7 (c). However, we find the

setting is not very sensitive to the scenes, so we

use these parameters in all scenes in this paper.

Our method can generate the DOF effects

through complex detailed models. Fig. 8 shows

a reflective detailed dragon. It has not only the

DOF effect of the dragon, but also the DOF effect

of reflected color on the dragon. Self-reflections

of the dragon are also taken into account in our

method. The mouth of the dragon is reflected on

the body under the mouth. As shown in Fig. 8,

our rendering quality in Fig. 8 (a) is comparable

with the result of [11] in Fig. 8 (b).

(a) Hexahedron/20clusters (b) Dodecahedron/12clusters

(c) Dodecahedron/20clusters (d) GPU-based ray tracing

Fig. 7. Performance comparison with different regular
polyhedron and cluster numbers. (a) The result by us-
ing a unit regular hexahedron and k-means to classify
into 20 clusters. (b) The result by only using a unit
regular dodecahedron to classify into 12 clusters. (c)
The result by using a unit regular dodecahedron and
k-means to classify into 20 clusters. (d) The result of
GPU-based ray tracing.

(a) Our method (b) GPU-based ray tracing

Fig. 8. Comparison with GPU-based ray tracing for a
reflective detailed dragon.

(a) Near focal plane (b) Far focal plane

Fig. 9. The DOF effects with refractive water in differ-
ent focal planes. (a) The focal plane is on the birds in
the sky; (b) The focal plane is on the far fishes in the
water.
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Our method can also generate DOF effects

through refractions. Fig. 9 shows the DOF

through refractions in different focal planes. The

fishes in the water are seen through the refraction

on the surface of the water. The effect of the DOF

shows us the depth of the fishes and the shape of

the water intuitively.

Table 2. Performance of our method with 100 pri-
mary rays per pixel, 100 secondary rays of reflec-
tors/refractors, and an image of 800 × 600 pixels. In
this table title, Tri. is the number of triangles, Prim.
the time of computing primary rays for direct lighting,
Clust. the time of clustering, Repres. the time of com-
pact representation of virtual points, Sec. the time of
computing secondary rays for reflection, Perf. the per-
formance of algorithm. The time is milliseconds/frame.

Scene Tri. Prim. Clust. Repres. Sec. Perf.(fps)

5 (a)

2.1M

N/A 15.2

5 (b) 22.2 77.8 133.3 322.2 1.8

5 (c) N/A 0.11

6 (b) 132.8K 13.5 37.8 64.9 154.1 3.7

7 (c) 527.3K 11.8 41.2 70.6 170.6 3.4

8 (a) 124.7K 12.5 43.8 75 181.3 3.2

9 (a) 122.3K 9.8 27.5 47.1 111.7 5.1

From the statistics in Table 2, it is

known that our method can efficiently support

DOF rendering with secondary rays. These

images are rendered interactively, though a

very large number of rays are traced. The

cost of primary rays/clustering/image presenta-

tion/secondary rays is about 4%/14%/24%/58%

respectively. The bottleneck of our method is trac-

ing secondary rays. It takes considerable computa-

tion time to trace primary rays multiple times due

to the limitation of GPU memory. This should be

further studied in the future to achieve real-time

performance.

5 Conclusions and Future Work

We have presented a GPU-based interactive

depth-of-field rendering algorithm with one bounce

of reflections or refractions. Secondary rays are di-

vided into multiple clusters based on the positions

and directions of reflections or refractions, and so

coherence among secondary rays of a cluster can

be exploited for fast tracing using GPUs. Here, a

layered image representation is constructed for a

cluster by a virtual viewpoint and image-space ray

tracing techniques [9] can be used efficiently. Ex-

perimental results show that we can produce high

quality DOF effects with secondary rays, compara-

ble with the GPU-based ray tracer [11], and per-

form better to render realistic results of moder-

ate complexity scenes interactively. Our method

can be used for high quality movie production and

quick preview for animation.

Our method has some limitations to be solved

in the future. First, the rays can be reflected or

refracted only once, and we would like to extend

this work to multiple bounces. Second, we hope

that we can find a more efficient representation of

scene geometry such as [27] to save memory and

accelerate tracing. Finally, some effects from tradi-

tional ray tracing techniques such as soft shadows,

color bleeding and motion blur are hard to com-

bine with image-space ray tracing. It will be very

interesting to have a hybrid framework to exploit

the benefits of both ray tracers in the image space

and the object space.
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