
A Language for Distributed Strategies

Glynn Winskel

Generalise domain theory. To tackle anomalies like non-deterministic dataflow,
and repair the divide between denotational and operational semantics.

Concurrent games, with behaviour based on event structures, rather than trees.
The extra generality reveals new structure and a mathematical robustness to the
concept of strategy—showing strategies are (special) profunctors.

Concurrent strategies support operations yielding an expressive higher-order
concurrent process language. Its operational semantics requires we take
internal (neutral) moves seriously.

LOCALI 2013, Beijing, 5 November 2013

Event structures
An event structure comprises (E,≤,Con), consisting of a set of events E

- partially ordered by ≤, the causal dependency relation, and

- a nonempty family Con of finite subsets of E, the consistency relation,

which satisfy
{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

Say e, e′ are concurrent if {e, e′} ∈ Con & e 6≤ e′ & e′ 6≤ e.
In games the relation of immediate dependency e _ e′, meaning e and e′ are
distinct with e ≤ e′ and no event in between, will play an important role.

1

Configurations of an event structure

The configurations, C∞(E), of an event structure E consist of those subsets
x ⊆ E which are

Consistent: ∀X ⊆fin x. X ∈ Con and

Down-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x.

x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.

Often concentrate on the finite configurations C(E).

2

Maps of event structures

A map of event structures f : E → E′ is a partial function f : E ⇀ E′ such that
for all x ∈ C(E)

fx ∈ C(E′) and e1, e2 ∈ x & f(e1) = f(e2)⇒ e1 = e2 .

Note that when f is total it restricts to a bijection x ∼= fx, for any x ∈ C∞(E).

Maps preserve concurrency, and locally reflect causal dependency:

e1, e2 ∈ x & f(e1) ≤ f(e2) (both defined) ⇒ e1 ≤ e2 .

3

Defined part of a map

A partial map
f : E → E′

of event structures has partial-total factorization as a composition

E
p−→E ↓V t−→E′

where V =def {e ∈ E | f(e) is defined} is the domain of definition of f ;

E↓V =def (V,≤V ,ConV), where

v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V ;

the partial map p : E → E ↓V acts as identity on V and is undefined otherwise;

and the total map t : E ↓V → E′, called the defined part of f , acts as f .

4

Pullbacks of total maps event structures
Total maps f : A → C and g : B → C have pullbacks in the category of event
structures:

P
π1

}}

π2

!!

A

f
!!

B

g}}

C .

Finite configurations of P correspond to the composite bijections

θ : x ∼= fx = gy ∼= y

between configurations x ∈ C(A) and y ∈ C(B) s.t. fx = gy for which the
transitive relation generated on θ by (a, b) ≤ (a′, b′) if a ≤A a′ or b ≤B b′ is a
partial order.

5

Concurrent games and strategies
A game is represented by an event structure A in which an event a ∈ A carries
a polarity pol(a), + (Player) and − (Opponent).

A (nondeterministic concurrent) strategy in a game A is represented by a total
map of event structures σ : S → A which preserves polarities and is

Receptive: σx ⊆− y implies there is a unique x′ ∈ C(S) such that

x ⊆ x′ & σx′ = y : x ⊆
_

��

x′
_

��

σx ⊆− y

A strategy should be receptive to all possible moves of opponent.

Innocent: if s _S s
′ & (pol(s) = + or pol(s ′) = −) then σ(s) _A σ(s′).

A strategy should only adjoin immediate causal dependencies 	_ ⊕.
[The relation _ stands for immediate causal dependence]

6

Strategies between games

Following Conway & Joyal, a strategy from a game A to a game B, written
σ : A + // B, is a strategy σ in the game A⊥‖B, based on:

(Simple) Parallel composition A‖B , by juxtaposition. Its unit is the empty
game ∅.

Dual A⊥, of an event structure with polarity A: a copy of the event structure A
with a reversal of polarities.

The conditions on strategies exactly ensure that copy-cat is identity
w.r.t. composition.

7

Example of a strategy: copy-cat strategy from A to A

γA : CCA → A⊥‖A

CCA

A⊥ A

a2 	 � ,,2 ⊕ a2

a1 ⊕

_LLR

	

_LLR

�llr a1

8

Composition of strategies σ : S → A⊥‖B, τ : T → B⊥‖C
Via pullback. Ignoring polarities, the composite partial map

P

yy %%

S‖C

σ‖C %%

A‖T

A‖τyy

A‖B‖C

��

A‖C

has defined part, which yields τ�σ : T�S → A⊥‖C once reinstate polarities.

9

An alternative characterization of strategies

Defining a partial order — the Scott order — on configurations of A

y vA x iff y ⊇− · ⊆+ · ⊇− · · · ⊇− · ⊆+ x

we obtain a factorization system ((C(A),vA),⊇−,⊆+), i.e.

x

∃!z. y

v

⊇− z .

⊆
+

Proposition z ∈ C(CCA) iff z2 vA z1.

Theorem Strategies σ : S → A correspond to discrete fibrations

σ“ : (C(S),vS)→ (C(A),vA) , i .e. ∃!x′. x′
_

σ“
��

vS x
_

σ“��

y vA σ“(x) ,which preserve ⊇−, ⊆+ and ∅.

; A lax functor from strategies to profunctors ...

10

A bicategory of games
A bicategory, Games, whose

objects are event structures with polarity—the games,

arrows are strategies σ : A + // B

2-cells are (the obvious) maps of (pre-)strategies.

The vertical composition of 2-cells is the usual composition of maps of spans.
Horizontal composition is given by the composition of strategies � (which extends
to a functor on 2-cells via the universality of pullback).

The bicategory is rich in structure, in particular, it is compact-closed (so has a
trace, a feedback operation)—though compact-closure is disturbed by extensions
such as winning conditions.
Duality: σ : A + // B corresponds to σ⊥ : B⊥ + // A⊥.

11

Special cases

Ingenuous strategies Deterministic concurrent strategies coincide with the
receptive ingenuous strategies of and Melliès and Mimram.

Stable spans and stable functions The sub-bicategory of Games where the
events of games are purely +ve is equivalent to the bicategory of ‘stable spans’
used in nondeterministic dataflow; feedback is given by trace.
When deterministic we obtain a sub-bicategory equivalent to Berry’s dI-domains
and stable functions.

Closure operators A deterministic strategy in A determines a closure operator
on C∞(A)> of Abramsky and Melliès.

Simple games “Simple games” of game semantics arise when we restrict Games
to objects and deterministic strategies which are ‘tree-like’—alternating polarities,
with conflicting branches, beginning with opponent moves.

12

Constructions on strategies

Types: Games A, B, C, . . . with operations A⊥, A‖B, sums
∑
i∈I Ai,

recursively-defined types, . . .

A term
x1 : A1, · · · , xm : Am ` t a y1 : B1, · · · , yn : Bn ,

denotes a strategy A1‖ · · · ‖Am + // B1‖ · · · ‖Bn .
-

--

-A1

Am

B1

Bn

......

Duality of input and output:

Γ, x : A ` t a ∆

Γ ` t a x : A⊥,∆

because t denotes a strategy in (Γ⊥‖A⊥)‖∆ ∼= Γ⊥‖(A⊥‖∆).

13

Composition

Composition of strategies:

Γ ` t a ∆ ∆ ` u a H

Γ ` ∃∆. [t ‖ u] a H

When ∆ is empty, this yields simple parallel composition t‖u.

Via
H⊥ ` u a ∆⊥ ∆⊥ ` t a Γ⊥

H⊥ ` ∃∆⊥. [u ‖ t] a Γ⊥

Γ ` ∃∆⊥. [u ‖ t] a H ,

obtain the equivalent ∃∆⊥. [u ‖ t] ∼= ∃∆. [t ‖ u].

14

Hom-set terms: special cases

Copy-cat on A, x : A ` y vA x a y : A or ` y vA x a x : A⊥,y : A .

⊕ ^ 	
	 _ ⊕

Copy-cat on A⊥, x : A⊥,y : A ` x vA y a .
⊕ _ 	
	 ^ ⊕

For

Γ, x : A ` t a y : A,∆ ,

-

--

-Γ

A

∆

A

Γ ` ∃x : A⊥, y : A. [t ‖ x vA y] a ∆
-�
�

�
- -Γ ∆

denotes the trace adjoining causal links to achieve feedback.
Cf. non-deterministic dataflow.

15

Pullback of strategies

Γ ` t1 a ∆ Γ ` t2 a ∆

Γ ` t1 ∧ t2 a ∆

In the case where t1 and t2 denote the respective strategies σ1 : S1 → Γ⊥‖∆ and
σ1 : S1 → Γ⊥‖∆ the strategy t1 ∧ t2 denotes the pullback

S1 ∧ S2

zz $$

σ1∧σ2

��

S1

σ1
##

S2

σ2
{{

Γ⊥‖∆ .

16

Nondeterministic sum of strategies

In the sum of strategies, in the same game, the strategies are glued together
on their initial Opponent moves (to maintain receptivity) and only commit to a
component with the occurrence of a Player move.

Γ ` ti a ∆ i ∈ I
Γ ` []i∈I ti a ∆

We use ⊥ for the empty nondeterministic sum, when the rule above specialises
to

Γ ` ⊥ a ∆ ,

which denotes the minimum strategy in the game Γ⊥‖∆—it comprises the initial
segment of the game Γ⊥‖∆ consisting of all the initial Opponent events of A.

17

Sum types, injections and projections

The sum-type Σi∈IAi denotes the sum of the event structures Ai, i ∈ I,
the juxtaposition of the Ai but where moves from different components are
inconsistent.

Special cases of hom-set terms, viz.

x : Aj ` y vΣi∈IAi jx a y : Σi∈IAi ,

with j ∈ I, denote the injection strategy Aj + // Σi∈IAi, and

x : Σi∈IAi ` jy vΣi∈IAi x a y : Aj

the projection strategy Σi∈IAi + // Aj.

18

Hom-set terms: general case

Γ ` p′ : C ∆ ` p : C

Γ ` p vC p′ a ∆
p[∅∆] vC p′[∅Γ] (†)

introduces a term standing for the hom-set (C(C),vC)(p, p′). It relies on
configuration expressions p, p′ and their typings, e.g.

x : A ` x : A , Γ ` ∅ : A , Γ ` {a} : A , a is an initial event of A,

Γ, x′ : A/a ` {a} ∪ x′ : A , where a is an initial event of in A,

x : A, y : B ` (x, y) : A‖B .

Configuration expressions denote affine maps of event structures.

(†)The hom-set rule’s side condition says that the expressions are in the Scott
order when all variables are assigned the empty configuration.

19

Further examples of uses of hom-set terms
• ` y vA ∅ a y : A denotes ⊥A, the minimum strategy in the game A.

• Assume ` t a y : B. When x : A ` p : B denotes a map f : A→ B ,

` ∃y : B. [t ‖ p vB y] a x : A

denotes the pullback f∗t of the strategy t across the map f : A→ B.
There’s a similar definition of f!t.

• “Lambda abstraction λx : A. t of type A⊥‖B ”:

Γ, x : A ` t a y : B
Γ ` t a x : A⊥, y : B

x : A⊥, y : B ` (x, y) : A⊥‖B z : A⊥‖B ` z : A⊥‖B
x : A⊥, y : B ` z vA⊥‖B (x, y) a z : A⊥‖B

Γ ` ∃x : A⊥, y : B. [t ‖ z vA⊥‖B (x, y))] a z : A⊥‖B

20

The duplication comonoid

To turn trace into a recursion operator we duplicate arguments through

δA : A + // A‖A

which with ⊥ : A + // ∅ forms a comonoid. The general defn is involved, but e.g.,

if A = ⊕, δA is ⊕

	

< 99C

� ��%

⊕ ,

if A = 	, δA is ⊕ 	�llr

⊕ 	 .�llr

; duplication terms such as x : A ` δ(x, y1, y2) a y1 : A, y2 : A.

21

Recursion from duplication and trace

Given
-

--

Γ

A A

composing with δA and forming the trace

-

A
-�
�

�
-Γ

yields a recursion operator, provided the body σ respects δ:

δA�σ ∼= (σ‖σ)�δΓ‖A .

22

Issues

The operations form the basis of a higher-order process language.

But,

• what is its operational semantics?

• what are suitable equivalences? (E.g. w.r.t. “may” and “must” testing)

• its expressivity?

These all require we examine the effects of synchronization and the internal,
neutral events it produces, more carefully.

23

Partial strategies—not quite right definition
A partial strategy in a game A (in which all events have +ve or −ve polarity)
comprises a (partial) map σ : S → A of event structures with polarity (in which
S may also have neutral events) which
(i) is receptive;
(ii) has domain of definition the non-neutral events of S;
(ii) partial-total factorization in which the defined part σ0 is a strategy:

S

σ
��

// S0

σ0
~~

A

The operations on strategies extend to partial strategies—though only if the
use of pb is replaced by a stricter variant of pb when working with partial
maps.

24

A partial strategy in a game A (in which all events have +ve or −ve polarity)
comprises a total map

σ : S → N‖A
of event structures with polarity (in which S may also have neutral events),
preserving polarity, where
(i) N is an event structure consisting solely of neutral events;
(ii) σ is receptive,

(ii) in the partial-total factorization of the composition of S
σ−→N‖A with the

projection N‖A→ A

S

σ
��

// S0

σ0
��

N‖A // A

the defined part σ0 is a strategy.
Strategies are those partial strategies in which N is empty. The operations on
strategies extend to partial strategies; the defined part of an operation equals
the operation on the defined parts. In composition we don’t hide the result of
synchronisations, but keep them as neutral events.

25

Transition semantics

Transitions are associated with three kinds of actions: an action o associated with
a hidden neutral action; an initial event located in the left environment; and an
initial event of the right environment.

Γ ` t

o
��

a ∆

Γ ` t′ a ∆ ;

Γ, x : A ` t

x: a :x′��

a ∆

Γ, x′ : A/a ` t′ a ∆

Γ ` t

y: b :y′
��

a y : B,∆

Γ ` t′ a y′ : B/b,∆ .

26

Rules for composition

Γ ` t

y: b :y′
��

a y : B,∆

Γ ` t′ a y′ : B/b,∆

∆⊥, y : B⊥ ` u

y: b :y′
��

a H

Γ, y′ : B⊥/b ` u′ a H

Γ ` ∃y : B,∆. [t ‖ u]

o
��

a H

Γ ` ∃y′ : B/b,∆. [t′ ‖ u′] a H

27

Rules for composition (cont)

Below α stands for o or an action on the left of the form x : a : x′, and β for o
or an action on the right of the form y : b : y′.

Γ ` t

α
��

a ∆

Γ′ ` t′ a ∆

Γ ` ∃∆. [t ‖ u]

α
��

a H

Γ′ ` ∃∆. [t′ ‖ u] a H

∆ ` u

β
��

a H

∆ ` u′ a H′

Γ ` ∃∆. [t ‖ u]

β
��

a H

Γ ` ∃∆. [t ‖ u′] a H′

28

Rules for hom-sets

Provided a is an initial event of A for which p[{a}/x][∅] vC p′[{a}/x][∅],

Γ, x : A ` p vC p′

x: a :x′��

a ∆

Γ, x′ : A/a ` p[{a} ∪ x′/x] vC p′[{a} ∪ x′/x] a ∆ .

The variable x will only appear in one of p and p′, though because of duality
in forming terms we cannot be sure which.

29

Rules for hom-sets (cont)

Provided b is an initial event of B for which p[{b}/y][∅] vC p′[{b}/y][∅],

Γ ` p vC p′

y: b :y′
��

a y : B,∆

Γ ` p[{b} ∪ y′/y] vC p′[{b} ∪ y′/y] a y′ : B/b,∆ .

30

Example of hom-set rule in action
Let

A = ⊕‖A′

where a = ⊕. Then A/a = A′.

	 � ,,2 ⊕

x : A ` y vA x
x: a :x′��

a y : A

x′ : A′ ` y vA {a} ∪ x′

y: a :y′
��

a y : A as ∅ vA {a}

x′ : A′ ` {a} ∪ y′ vA {a} ∪ x′ a y′ : A′ as {a} vA {a}

31

Pullback:

Γ ` t1

z: c :z′��

a ∆

Γ′ ` t′1 a ∆′

Γ ` t2

z: c :z′��

a ∆

Γ′ ` t′2 a ∆′

Γ ` t1 ∧ t2
z: c :z′��

a ∆

Γ′ ` t′1 ∧ t2 a ∆′

Γ ` t1

o
��

a ∆

Γ ` t′1 a ∆

Γ ` t1 ∧ t2
o
��

a ∆

Γ ` t′1 ∧ t2 a ∆

Γ ` t2

o
��

a ∆

Γ ` t′2 a ∆

Γ ` t1 ∧ t2
o
��

a ∆

Γ ` t1 ∧ t′2 a ∆

32

Sums

Γ ` ti

ε
��

a ∆

Γ′ ` t′i a ∆′ , i ∈ I

Γ ` []i∈I ti

ε
��

a ∆

Γ′ ` []i∈I t
′
i a ∆′

ε is −ve

Γ ` tj

o
��

a ∆

Γ′ ` t′j a ∆′

Γ ` []i∈I ti

o
��

a ∆

Γ′ ` ([]i∈I ti)[t
′
j/j] a ∆′

j ∈ I

An action ε is +/−ve if on the right and its event is +/−ve, or on the left with
event −/+ve.

33

Sums (cont)

Γ ` tj

ε
��

a ∆

Γ′ ` t′j a ∆′

Γ ` []i∈I ti

ε
��

a ∆

Γ′ ` t′j a ∆′

j ∈ I & ε is +ve

34

Rules for δ
Provided b is an initial −ve event of B,

Γ ` δC(p, q1, q2)

y: b :y′
��

a y : B,∆

Γ ` δC(p, q1, q2)[{b} ∪ y′/y] a y′ : B/b,∆ .

Dually, provided a is an initial +ve event of A,

Γ, x : A ` δC(p, q1, q2)

x: a :x′
��

a ∆

Γ, x′ : A/a ` δC(p, q1, q2)[{a} ∪ x′/x] a ∆ .

35

Rules for δ (cont)

In typed judgements of δC(p, q1, q2) a variable can appear free in at most one
of p, q1, q2. Write, for example, y ∈ fv(p) for y is a free variable of p, and
q1(y : b) ∈ p[∅] to mean the image of b under the map q1 denotes is in the
configuration denoted by p[∅].

Provided b is an initial +ve event of B, y ∈ fv(q1) and q1(y : b) ∈ p[∅],

Γ ` δC(p, q1, q2)

y: b :y′
��

a y : B,∆

Γ ` δC(p, q1, q2)[{b} ∪ y′/y] a y′ : B/b,∆ .

Similarly for q2. And dually.

36

Rules for δ (cont)

Provided b is an initial +ve event of B, y ∈ fv(p) and p(y : b) ∈ q1[∅],

Γ ` δC(p, q1, q2)

y: b :y′
��

a y : B,∆

Γ ` δC(p, q1, q2)[{b} ∪ y′/y] a y′ : B/b,∆ .

Similarly for q2. And dually.

37

Derivations and events

The rules preserve the following property:

Derivations in the operational semantics

...

Γ ` t

ε
��

a ∆

Γ′ ` t′ a ∆′ ,

up to α-equivalence, in which t denotes the partial strategy σ : S → Γ⊥‖∆, are
in 1-1 correspondence with initial events s in S such that σ(s) = ev(ε) when
ev(ε) 6= o or s is neutral when ev(ε) = o.

38

Beyond linear strategies

But concurrent strategies are linear, so disallow backtracking. One reason to
introduce symmetry in games and strategies. Then can support (co)monads up to
symmetry for copying, to break linearity, and achieve cartesian-closed bicategories
of strategies, e.g. generalising the categories of AJM and HO games. There are
relations with homotopy.

In games with symmetry the Scott partial order v becomes the Scott category,
with non-trivial hom-sets. All the operations mentioned generalise to games with
symmetry. There remains the issue of how to adjoin (co)monads systematically
to the metalanguage.

Other issues: May and Must testing and equivalences. Concurrent strategies
extend to winning conditions, pay-off, imperfect-information, probabilistic and
quantum games. Extensions to the metalanguage. Encoding of the differential
lambda calculus?

39

Stopping configurations

For ‘may’ and ‘must’ equivalence it is not necessary to use partial strategies; it’s
sufficient to carry with a strategy the extra structure of ‘stopping’ configurations
(= images of +/0-maximal configurations in a partial strategy). Composition on
strategies extends to composition on strategies with stopping configurations.

Let σ : S → N‖A be a partial strategy. Its defined part is a strategy σ0. Define
the (possibly) stopping configurations in C∞(S0) to be

Stop(σ) =def {p x | x ∈ C∞(S) is +/0-maximal} .

The operation σ 7→ (σ0,Stop(σ)) preserves composition.

40

Deadlocks in composition

Composition of strategies can introduce deadlock which is presently undetected:

Example 1 Deadlock may arise in a composition τ�σ through σ : A + // B and
τ : B + // C imposing incompatible causal dependencies between events in B.

Example 2 For games B = ⊕‖⊕ and C = ⊕,

strategy σ1 : ∅ + // B nondeterministically chooses the right or left move in B,

strategy σ2 : ∅ + // B chooses just the right move in B,

strategy τ : B + // C yields output in C if gets the right event of B as input.

The two strategy compositions τ�σ1 and τ�σ2 are indistinguishable.

41

Nondeterministic dataflow—the Brock-Ackerman anomaly

%
$

-�
�

-

-

ForkAiC[Ai] =

Both nondeterministic processes

A1 = O +OIO and A2 = O + IOO

have the same I/O relation, comprising

(ε,O), (I,O), (I,OO) .

But
C[A1] = O +OO and C[A2] = O .

42

