
Verification of Concurrent Programs

Decidability, Complexity, Reductions.

Ahmed Bouajjani

U Paris Diderot – Paris 7

Locali Workshop, Beijing, November 2013

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 1 / 16

Concurrency at different levels

Application level:
I Needs abstraction:

Abstract data structures, transactions, ...
I Assumes:

Atomicity, isolation, ... (+ sequential specification...)

Implementation of concurrent data structures, and system services
I Performances ⇒ overlaps between parallel actions, sharing, etc.
I Ensures:

(Illusion of) atomicity, isolation ...
I Assumes:

Memory model (sequential consistency, causal delivery, etc.

Infrastructures
I Performances ⇒ Store buffers, cashes, replicas, etc.

Relaxed memory models, weak consistency criteria.
(action reordering, lossyness, duplication, etc.)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 2 / 16

Concurrency at different levels

Application level:
I Needs abstraction:

Abstract data structures, transactions, ...
I Assumes:

Atomicity, isolation, ... (+ sequential specification...)

Implementation of concurrent data structures, and system services
I Performances ⇒ overlaps between parallel actions, sharing, etc.
I Ensures:

(Illusion of) atomicity, isolation ...
I Assumes:

Memory model (sequential consistency, causal delivery, etc.

Infrastructures
I Performances ⇒ Store buffers, cashes, replicas, etc.

Relaxed memory models, weak consistency criteria.
(action reordering, lossyness, duplication, etc.)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 2 / 16

Concurrency at different levels

Application level:
I Needs abstraction:

Abstract data structures, transactions, ...
I Assumes:

Atomicity, isolation, ... (+ sequential specification...)

Implementation of concurrent data structures, and system services
I Performances ⇒ overlaps between parallel actions, sharing, etc.
I Ensures:

(Illusion of) atomicity, isolation ...
I Assumes:

Memory model (sequential consistency, causal delivery, etc.

Infrastructures
I Performances ⇒ Store buffers, cashes, replicas, etc.

Relaxed memory models, weak consistency criteria.
(action reordering, lossyness, duplication, etc.)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 2 / 16

Issues at different levels

Applications
I Correctness: Program (model) satisfies Specification (of some service)

I Complexity (state-space explosion),

Undecidability (recursion + synchronization, dynamic thread creation)

Libraries of concurrent objects

I Ensuring atomicity (+ specification):

∙ Linearizability (shared concurrent data structures),

equivalent to Observational Refinement:

∀Client.∀n.Clientn[Impl] ⊆ Clientn[Spec]

∙ Serializability (transactions),

∙ Eventual consistency (distributed data structures), etc.

I Satisfaction of a specification over a relaxed memory model.

I Robustness against a memory model:

Given a program P and two memory models M1 ≤ M2, [[P]]M1 = [[P]]M2?

I Complexity (huge number of action orders),

Undecidability (some commutations allow to encode TM! – queues).

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 3 / 16

Issues at different levels

Applications
I Correctness: Program (model) satisfies Specification (of some service)
I Complexity (state-space explosion),

Undecidability (recursion + synchronization, dynamic thread creation)

Libraries of concurrent objects

I Ensuring atomicity (+ specification):

∙ Linearizability (shared concurrent data structures),

equivalent to Observational Refinement:

∀Client.∀n.Clientn[Impl] ⊆ Clientn[Spec]

∙ Serializability (transactions),

∙ Eventual consistency (distributed data structures), etc.

I Satisfaction of a specification over a relaxed memory model.

I Robustness against a memory model:

Given a program P and two memory models M1 ≤ M2, [[P]]M1 = [[P]]M2?

I Complexity (huge number of action orders),

Undecidability (some commutations allow to encode TM! – queues).

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 3 / 16

Issues at different levels

Applications
I Correctness: Program (model) satisfies Specification (of some service)
I Complexity (state-space explosion),

Undecidability (recursion + synchronization, dynamic thread creation)

Libraries of concurrent objects
I Ensuring atomicity (+ specification):

∙ Linearizability (shared concurrent data structures),

equivalent to Observational Refinement:

∀Client. ∀n.Clientn[Impl] ⊆ Clientn[Spec]

∙ Serializability (transactions),

∙ Eventual consistency (distributed data structures), etc.

I Satisfaction of a specification over a relaxed memory model.

I Robustness against a memory model:

Given a program P and two memory models M1 ≤ M2, [[P]]M1 = [[P]]M2?

I Complexity (huge number of action orders),

Undecidability (some commutations allow to encode TM! – queues).

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 3 / 16

Issues at different levels

Applications
I Correctness: Program (model) satisfies Specification (of some service)
I Complexity (state-space explosion),

Undecidability (recursion + synchronization, dynamic thread creation)

Libraries of concurrent objects
I Ensuring atomicity (+ specification):

∙ Linearizability (shared concurrent data structures),

equivalent to Observational Refinement:

∀Client. ∀n.Clientn[Impl] ⊆ Clientn[Spec]

∙ Serializability (transactions),

∙ Eventual consistency (distributed data structures), etc.

I Satisfaction of a specification over a relaxed memory model.

I Robustness against a memory model:

Given a program P and two memory models M1 ≤ M2, [[P]]M1 = [[P]]M2?

I Complexity (huge number of action orders),

Undecidability (some commutations allow to encode TM! – queues).

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 3 / 16

Issues at different levels

Applications
I Correctness: Program (model) satisfies Specification (of some service)
I Complexity (state-space explosion),

Undecidability (recursion + synchronization, dynamic thread creation)

Libraries of concurrent objects
I Ensuring atomicity (+ specification):

∙ Linearizability (shared concurrent data structures),

equivalent to Observational Refinement:

∀Client. ∀n.Clientn[Impl] ⊆ Clientn[Spec]

∙ Serializability (transactions),

∙ Eventual consistency (distributed data structures), etc.

I Satisfaction of a specification over a relaxed memory model.

I Robustness against a memory model:

Given a program P and two memory models M1 ≤ M2, [[P]]M1 = [[P]]M2?

I Complexity (huge number of action orders),

Undecidability (some commutations allow to encode TM! – queues).

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 3 / 16

Questions

Limits of decidability?

Complexity?

Basic (conceptual/technical) tools?

General and efficient algorithmic approaches?

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 4 / 16

Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)

I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)

I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on efficient

algorithms + tools.
I Also useful when recursion (stacks) can be “eliminated” using

summarization/finite-state abstraction of interfaces.

(Lossy) FIFO-channel systems

I Model for message-passing programs,
I State reachability is decidable for the lossy model (using the theory of

WQO). Highly complex (non-primitive recursive), but ...
I Also useful for reasoning about weak memory models: modeling of the

effects of various kind of relaxations.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 5 / 16

Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)
I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.

I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)

I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on efficient

algorithms + tools.
I Also useful when recursion (stacks) can be “eliminated” using

summarization/finite-state abstraction of interfaces.

(Lossy) FIFO-channel systems

I Model for message-passing programs,
I State reachability is decidable for the lossy model (using the theory of

WQO). Highly complex (non-primitive recursive), but ...
I Also useful for reasoning about weak memory models: modeling of the

effects of various kind of relaxations.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 5 / 16

Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)
I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)

I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on efficient

algorithms + tools.
I Also useful when recursion (stacks) can be “eliminated” using

summarization/finite-state abstraction of interfaces.

(Lossy) FIFO-channel systems

I Model for message-passing programs,
I State reachability is decidable for the lossy model (using the theory of

WQO). Highly complex (non-primitive recursive), but ...
I Also useful for reasoning about weak memory models: modeling of the

effects of various kind of relaxations.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 5 / 16

Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)
I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)
I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on efficient

algorithms + tools.

I Also useful when recursion (stacks) can be “eliminated” using

summarization/finite-state abstraction of interfaces.

(Lossy) FIFO-channel systems

I Model for message-passing programs,
I State reachability is decidable for the lossy model (using the theory of

WQO). Highly complex (non-primitive recursive), but ...
I Also useful for reasoning about weak memory models: modeling of the

effects of various kind of relaxations.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 5 / 16

Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)
I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)
I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on efficient

algorithms + tools.
I Also useful when recursion (stacks) can be “eliminated” using

summarization/finite-state abstraction of interfaces.

(Lossy) FIFO-channel systems

I Model for message-passing programs,
I State reachability is decidable for the lossy model (using the theory of

WQO). Highly complex (non-primitive recursive), but ...
I Also useful for reasoning about weak memory models: modeling of the

effects of various kind of relaxations.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 5 / 16

Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)
I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)
I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on efficient

algorithms + tools.
I Also useful when recursion (stacks) can be “eliminated” using

summarization/finite-state abstraction of interfaces.

(Lossy) FIFO-channel systems
I Model for message-passing programs,
I State reachability is decidable for the lossy model (using the theory of

WQO). Highly complex (non-primitive recursive), but ...

I Also useful for reasoning about weak memory models: modeling of the

effects of various kind of relaxations.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 5 / 16

Reductions to Basic Models

Pushdown systems (≡ Recursive state machines)
I Model for sequential programs (with recursive procedures).
I State reachability is polynomial.
I Also useful when concurrent behaviors can be “sequentialized”.

Unbounded Petri nets (≡ Vector Addition Systems)
I Model for dynamic concurrent programs with (an arbitrary number of)

finite-state (anonymous) threads.
I State reachability is decidable (EXPSPACE-complete). Research on efficient

algorithms + tools.
I Also useful when recursion (stacks) can be “eliminated” using

summarization/finite-state abstraction of interfaces.

(Lossy) FIFO-channel systems
I Model for message-passing programs,
I State reachability is decidable for the lossy model (using the theory of

WQO). Highly complex (non-primitive recursive), but ...
I Also useful for reasoning about weak memory models: modeling of the

effects of various kind of relaxations.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 5 / 16

Reductions to Basic Classes of Programs

Code-to-code translations to:
I Sequential programs: getting rid of concurrency

I Concurrent programs over SC: getting rid of relaxed memory
models/weak consistency models

Separation of the issues:
I As general as possible, regardless from the decidability issue

I Independent from the used data types

I Holds for unbounded control parameters: recursion depth, number of
processes/created tasks, size of buffers, etc.

I Precise reduction, under well defined conditions on the control features
in programs/classes of computations

Decidability and complexity are derived for particular cases

Finite data domains, ...

When is this possible? How?

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 6 / 16

Reductions to Basic Classes of Programs

Code-to-code translations to:
I Sequential programs: getting rid of concurrency

I Concurrent programs over SC: getting rid of relaxed memory
models/weak consistency models

Separation of the issues:
I As general as possible, regardless from the decidability issue

I Independent from the used data types

I Holds for unbounded control parameters: recursion depth, number of
processes/created tasks, size of buffers, etc.

I Precise reduction, under well defined conditions on the control features
in programs/classes of computations

Decidability and complexity are derived for particular cases

Finite data domains, ...

When is this possible? How?

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 6 / 16

Multi-threaded Programs: Sequentialization

Concurrent programs with shared memory + recursive procedures:

Reachability is in general undecidable: 2-thread boolean programs.

Context-Bounded Analysis:
Finite number of context-switches [Qadeer, Rehof, 05]

I Few context-switches are needed to catch concurrency bugs,
I Still the program is infinite-state (unbounded call stacks),
I Decidable, NP-complete.

Sequentialization under Context-bounding [Lal, Reps, 08]

I Each thread has a finite number of execution rounds
I Bounded Input/Output interfaces: memory states at the starting/ending

points of each round
I Assume-Guarantee approach: Guess the Input states (nondeterministic

assignments), produce the Output states, Check composability
I Code-to-code translation to a sequential program

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 7 / 16

Multi-threaded Programs: Sequentialization

Concurrent programs with shared memory + recursive procedures:

Reachability is in general undecidable: 2-thread boolean programs.

Context-Bounded Analysis:
Finite number of context-switches [Qadeer, Rehof, 05]

I Few context-switches are needed to catch concurrency bugs,
I Still the program is infinite-state (unbounded call stacks),
I Decidable, NP-complete.

Sequentialization under Context-bounding [Lal, Reps, 08]

I Each thread has a finite number of execution rounds
I Bounded Input/Output interfaces: memory states at the starting/ending

points of each round
I Assume-Guarantee approach: Guess the Input states (nondeterministic

assignments), produce the Output states, Check composability
I Code-to-code translation to a sequential program

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 7 / 16

Multi-threaded Programs: Sequentialization

Concurrent programs with shared memory + recursive procedures:

Reachability is in general undecidable: 2-thread boolean programs.

Context-Bounded Analysis:
Finite number of context-switches [Qadeer, Rehof, 05]

I Few context-switches are needed to catch concurrency bugs,
I Still the program is infinite-state (unbounded call stacks),
I Decidable, NP-complete.

Sequentialization under Context-bounding [Lal, Reps, 08]

I Each thread has a finite number of execution rounds
I Bounded Input/Output interfaces: memory states at the starting/ending

points of each round
I Assume-Guarantee approach: Guess the Input states (nondeterministic

assignments), produce the Output states, Check composability
I Code-to-code translation to a sequential program

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 7 / 16

Multi-threaded Programs with Dynamic Thread Creation

Each thread has a bounded number of execution rounds.

The number of context switches is not bounded globally

Still CBA is decidable [Atig, B., Qadeer, 09]

I Reduction to state reachability (coverability) in Petri nets
I Based on a finite-state abstraction of the interface of each thread

F A thread generates a context-free set S of sequences of thread creation
events, but not all created threads must contribute to a computation.

F ⇒ It is sound to close the set S by the sub-word relation.

I Use counters (places) to count the number of threads that are at
particular states.

Lower bound: At least as hard as state-reachability in Petri nets
⇒ Polynomial sequentialization cannot be done precisely for CBA.

General sequentialization schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 8 / 16

Multi-threaded Programs with Dynamic Thread Creation

Each thread has a bounded number of execution rounds.

The number of context switches is not bounded globally

Still CBA is decidable [Atig, B., Qadeer, 09]

I Reduction to state reachability (coverability) in Petri nets
I Based on a finite-state abstraction of the interface of each thread

F A thread generates a context-free set S of sequences of thread creation
events, but not all created threads must contribute to a computation.

F ⇒ It is sound to close the set S by the sub-word relation.

I Use counters (places) to count the number of threads that are at
particular states.

Lower bound: At least as hard as state-reachability in Petri nets
⇒ Polynomial sequentialization cannot be done precisely for CBA.

General sequentialization schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 8 / 16

Multi-threaded Programs with Dynamic Thread Creation

Each thread has a bounded number of execution rounds.

The number of context switches is not bounded globally

Still CBA is decidable [Atig, B., Qadeer, 09]

I Reduction to state reachability (coverability) in Petri nets
I Based on a finite-state abstraction of the interface of each thread

F A thread generates a context-free set S of sequences of thread creation
events, but not all created threads must contribute to a computation.

F ⇒ It is sound to close the set S by the sub-word relation.

I Use counters (places) to count the number of threads that are at
particular states.

Lower bound: At least as hard as state-reachability in Petri nets
⇒ Polynomial sequentialization cannot be done precisely for CBA.

General sequentialization schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 8 / 16

Multi-threaded Programs with Dynamic Thread Creation

Each thread has a bounded number of execution rounds.

The number of context switches is not bounded globally

Still CBA is decidable [Atig, B., Qadeer, 09]

I Reduction to state reachability (coverability) in Petri nets
I Based on a finite-state abstraction of the interface of each thread

F A thread generates a context-free set S of sequences of thread creation
events, but not all created threads must contribute to a computation.

F ⇒ It is sound to close the set S by the sub-word relation.

I Use counters (places) to count the number of threads that are at
particular states.

Lower bound: At least as hard as state-reachability in Petri nets
⇒ Polynomial sequentialization cannot be done precisely for CBA.

General sequentialization schema: tree traversal + bounded interfaces
[B., Emmi, Parlato, 11] (Bounded tree-width behaviors)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 8 / 16

Many other works

Asynchronous programs

I Synchronous procedure calls + Asynchronous task creation
I Tasks are run until completion

[Sen, Viswanathan, 06], [Jhala, Majumdar, 07], ...

Asynchronous programs + priorities & preemption
[Atig, B., Touili, 08], [Emmi, Qadeer, Lal, 12]

Recursively parallel programs [B., Emmi, 12]

Cilk, X10, ...

...

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 9 / 16

Libraries of Concurrent Objects

Concurrent Stack

Client . . . Client

Push(6) Pop(7)

Specification given by a regular language
Example of a valid sequence: Push(6)Push(7)Pop(7)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 10 / 16

Linearizability [Herlihy, Wing, 90]

A linearizable execution:

call(Push,2) ok

call(Push,4) ok

call(Pop) ret(2)

∈ Specification
Push(4) Push(2) Pop(2)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 11 / 16

Linearizability [Herlihy, Wing, 90]

A linearizable execution:

call(Push,2) ok

call(Push,4) ok

call(Pop) ret(2)

∈ Specification
Push(4) Push(2) Pop(2)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 11 / 16

Checking Linearizability

Fixed number of finite-state threads [Alur, McMillan, Peled, 96]

I Reduction to a problem of the form:

MostGeneralClient[Impl] ⊆ Closure(Spec)

I ⇒ Non-Linearizability a state reachability problem:

MostGeneralClient[Impl] ∩ Closure(Spec) ̸= ∅
I Complexity: PSPACE-hard and in EXPSPACE.

Unbounded number of threads [B., Enea, Emmi, Hamza, 13]

I Linearizability is undecidable in general.

I Static Linearizability:
Linearization points are fixed in the code, except for read-only methods.

F Most of implementations of concurrent objects satisfy this condition.
Linearization point = commit point

F Reduction (of non-Static Linearizability) to control state reachability.

F P/EXPSPACE-complete for fixed/unbounded number of threads.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 12 / 16

Checking Linearizability

Fixed number of finite-state threads [Alur, McMillan, Peled, 96]

I Reduction to a problem of the form:

MostGeneralClient[Impl] ⊆ Closure(Spec)

I ⇒ Non-Linearizability a state reachability problem:

MostGeneralClient[Impl] ∩ Closure(Spec) ̸= ∅
I Complexity: PSPACE-hard and in EXPSPACE.

Unbounded number of threads [B., Enea, Emmi, Hamza, 13]

I Linearizability is undecidable in general.

I Static Linearizability:
Linearization points are fixed in the code, except for read-only methods.

F Most of implementations of concurrent objects satisfy this condition.
Linearization point = commit point

F Reduction (of non-Static Linearizability) to control state reachability.

F P/EXPSPACE-complete for fixed/unbounded number of threads.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 12 / 16

Checking Linearizability

Fixed number of finite-state threads [Alur, McMillan, Peled, 96]

I Reduction to a problem of the form:

MostGeneralClient[Impl] ⊆ Closure(Spec)

I ⇒ Non-Linearizability a state reachability problem:

MostGeneralClient[Impl] ∩ Closure(Spec) ̸= ∅
I Complexity: PSPACE-hard and in EXPSPACE.

Unbounded number of threads [B., Enea, Emmi, Hamza, 13]

I Linearizability is undecidable in general.

I Static Linearizability:
Linearization points are fixed in the code, except for read-only methods.

F Most of implementations of concurrent objects satisfy this condition.
Linearization point = commit point

F Reduction (of non-Static Linearizability) to control state reachability.

F P/EXPSPACE-complete for fixed/unbounded number of threads.

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 12 / 16

Bounded Checking of Linearizability

Criterion for finding errors in concurrent objects implementations?

Lin. ≃ Observational Refinement [Filipovic, O’Hearn, Rinetzky, Yang, 10]

∀Client.∀n.Clientn[Impl] ⊆ Clientn[Spec]

Writes on external shared variables by the clients induce causality constraints
on methods along executions.

⇒ Bounded number of external writes on shared variables by the clients.
[B., Enea, Emmi, Hamza, 13].

Bugs show up within small bounds (0 quite often, or 1)!

Precise reduction to State Reachability:
I OR is equivalent to

MostGeneralClient[Impl] ⊆ MostGeneralClient[Spec]

I Use additional counters to reason about number of methods starting
and ending between pairs of external writes.

Decidability (finite data domain): Reduction to reachability in Petri nets (using

Parikh image computations for Specification closure)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 13 / 16

Bounded Checking of Linearizability

Criterion for finding errors in concurrent objects implementations?

Lin. ≃ Observational Refinement [Filipovic, O’Hearn, Rinetzky, Yang, 10]

∀Client.∀n.Clientn[Impl] ⊆ Clientn[Spec]

Writes on external shared variables by the clients induce causality constraints
on methods along executions.

⇒ Bounded number of external writes on shared variables by the clients.
[B., Enea, Emmi, Hamza, 13].

Bugs show up within small bounds (0 quite often, or 1)!

Precise reduction to State Reachability:
I OR is equivalent to

MostGeneralClient[Impl] ⊆ MostGeneralClient[Spec]

I Use additional counters to reason about number of methods starting
and ending between pairs of external writes.

Decidability (finite data domain): Reduction to reachability in Petri nets (using

Parikh image computations for Specification closure)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 13 / 16

Bounded Checking of Linearizability

Criterion for finding errors in concurrent objects implementations?

Lin. ≃ Observational Refinement [Filipovic, O’Hearn, Rinetzky, Yang, 10]

∀Client.∀n.Clientn[Impl] ⊆ Clientn[Spec]

Writes on external shared variables by the clients induce causality constraints
on methods along executions.

⇒ Bounded number of external writes on shared variables by the clients.
[B., Enea, Emmi, Hamza, 13].

Bugs show up within small bounds (0 quite often, or 1)!

Precise reduction to State Reachability:
I OR is equivalent to

MostGeneralClient[Impl] ⊆ MostGeneralClient[Spec]

I Use additional counters to reason about number of methods starting
and ending between pairs of external writes.

Decidability (finite data domain): Reduction to reachability in Petri nets (using

Parikh image computations for Specification closure)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 13 / 16

Bounded Checking of Linearizability

Criterion for finding errors in concurrent objects implementations?

Lin. ≃ Observational Refinement [Filipovic, O’Hearn, Rinetzky, Yang, 10]

∀Client.∀n.Clientn[Impl] ⊆ Clientn[Spec]

Writes on external shared variables by the clients induce causality constraints
on methods along executions.

⇒ Bounded number of external writes on shared variables by the clients.
[B., Enea, Emmi, Hamza, 13].

Bugs show up within small bounds (0 quite often, or 1)!

Precise reduction to State Reachability:
I OR is equivalent to

MostGeneralClient[Impl] ⊆ MostGeneralClient[Spec]

I Use additional counters to reason about number of methods starting
and ending between pairs of external writes.

Decidability (finite data domain): Reduction to reachability in Petri nets (using

Parikh image computations for Specification closure)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 13 / 16

Bounded Checking of Linearizability

Criterion for finding errors in concurrent objects implementations?

Lin. ≃ Observational Refinement [Filipovic, O’Hearn, Rinetzky, Yang, 10]

∀Client.∀n.Clientn[Impl] ⊆ Clientn[Spec]

Writes on external shared variables by the clients induce causality constraints
on methods along executions.

⇒ Bounded number of external writes on shared variables by the clients.
[B., Enea, Emmi, Hamza, 13].

Bugs show up within small bounds (0 quite often, or 1)!

Precise reduction to State Reachability:
I OR is equivalent to

MostGeneralClient[Impl] ⊆ MostGeneralClient[Spec]

I Use additional counters to reason about number of methods starting
and ending between pairs of external writes.

Decidability (finite data domain): Reduction to reachability in Petri nets (using

Parikh image computations for Specification closure)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 13 / 16

Bounded Checking of Linearizability

Criterion for finding errors in concurrent objects implementations?

Lin. ≃ Observational Refinement [Filipovic, O’Hearn, Rinetzky, Yang, 10]

∀Client.∀n.Clientn[Impl] ⊆ Clientn[Spec]

Writes on external shared variables by the clients induce causality constraints
on methods along executions.

⇒ Bounded number of external writes on shared variables by the clients.
[B., Enea, Emmi, Hamza, 13].

Bugs show up within small bounds (0 quite often, or 1)!

Precise reduction to State Reachability:
I OR is equivalent to

MostGeneralClient[Impl] ⊆ MostGeneralClient[Spec]

I Use additional counters to reason about number of methods starting
and ending between pairs of external writes.

Decidability (finite data domain): Reduction to reachability in Petri nets (using

Parikh image computations for Specification closure)

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 13 / 16

Weak Memory Models: State Space Reachability

TSO = Writes are sent to store buffers (one per processor).

SR decidable for TSO (and ...) [Atig, B., Burckhardt, Musuvathi, 10-12].

Holds for unbounded store buffers (and arbitrary number of threads).

But as hard as State Reachability in Lossy Fifo-Channel Systems
(non-primitive recursive)

⇒ Precise reduction to State Reachability in SC is not possible.

(Code-to-code) translation to State Reachability
is possible under “Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed

after at most K context switches of that thread.

Other Works: abstraction/symbolic analysis/bounded model checking:
I [Kuperstein, Vechev, Yahav, 11]
I [Linden, Wolper, 10-11]
I [Abdulla, Atig, Chen, Leonardson, Rezine, 12]
I [Alglave, Kroening, Nimal, Tautchnig, 13]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 14 / 16

Weak Memory Models: State Space Reachability

TSO = Writes are sent to store buffers (one per processor).

SR decidable for TSO (and ...) [Atig, B., Burckhardt, Musuvathi, 10-12].

Holds for unbounded store buffers (and arbitrary number of threads).

But as hard as State Reachability in Lossy Fifo-Channel Systems
(non-primitive recursive)

⇒ Precise reduction to State Reachability in SC is not possible.

(Code-to-code) translation to State Reachability
is possible under “Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed

after at most K context switches of that thread.

Other Works: abstraction/symbolic analysis/bounded model checking:
I [Kuperstein, Vechev, Yahav, 11]
I [Linden, Wolper, 10-11]
I [Abdulla, Atig, Chen, Leonardson, Rezine, 12]
I [Alglave, Kroening, Nimal, Tautchnig, 13]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 14 / 16

Weak Memory Models: State Space Reachability

TSO = Writes are sent to store buffers (one per processor).

SR decidable for TSO (and ...) [Atig, B., Burckhardt, Musuvathi, 10-12].

Holds for unbounded store buffers (and arbitrary number of threads).

But as hard as State Reachability in Lossy Fifo-Channel Systems
(non-primitive recursive)

⇒ Precise reduction to State Reachability in SC is not possible.

(Code-to-code) translation to State Reachability
is possible under “Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed

after at most K context switches of that thread.

Other Works: abstraction/symbolic analysis/bounded model checking:
I [Kuperstein, Vechev, Yahav, 11]
I [Linden, Wolper, 10-11]
I [Abdulla, Atig, Chen, Leonardson, Rezine, 12]
I [Alglave, Kroening, Nimal, Tautchnig, 13]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 14 / 16

Weak Memory Models: State Space Reachability

TSO = Writes are sent to store buffers (one per processor).

SR decidable for TSO (and ...) [Atig, B., Burckhardt, Musuvathi, 10-12].

Holds for unbounded store buffers (and arbitrary number of threads).

But as hard as State Reachability in Lossy Fifo-Channel Systems
(non-primitive recursive)

⇒ Precise reduction to State Reachability in SC is not possible.

(Code-to-code) translation to State Reachability
is possible under “Age-bounding” [Atig, B., Parlato, 12]

Each write action in a buffer must be executed

after at most K context switches of that thread.

Other Works: abstraction/symbolic analysis/bounded model checking:
I [Kuperstein, Vechev, Yahav, 11]
I [Linden, Wolper, 10-11]
I [Abdulla, Atig, Chen, Leonardson, Rezine, 12]
I [Alglave, Kroening, Nimal, Tautchnig, 13]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 14 / 16

Weak Memory Models: Robustness against TSO

State-robustness as hard as State Reachability in TSO.

Traces [Shasha, Snir, 88]: Capture the control and data flow in SC
computations.

Trace-robustness is reducible to State Reachability in SC!
[B., Derevenetc, Meyer, 13]

Code-to-code translation, precise (no approximations), holds for an
arbitrary number of threads, unbounded buffers, arbitrary data
domain.

Finite data domain: PSPACE/EXPSPACE-complete for a
fixed/arbitrary number of threads.

Optimal fence insertion.

Other Work
I Testing: [Burckhardt, Musuvathi, CAV’08], [Burnim, Stergiou, Sen, 11]
I Upper-approximate analysis: [Alglave, Maranget, 11]
I Stronger criterion: Triangular data races [Owens, 10]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 15 / 16

Weak Memory Models: Robustness against TSO

State-robustness as hard as State Reachability in TSO.

Traces [Shasha, Snir, 88]: Capture the control and data flow in SC
computations.

Trace-robustness is reducible to State Reachability in SC!
[B., Derevenetc, Meyer, 13]

Code-to-code translation, precise (no approximations), holds for an
arbitrary number of threads, unbounded buffers, arbitrary data
domain.

Finite data domain: PSPACE/EXPSPACE-complete for a
fixed/arbitrary number of threads.

Optimal fence insertion.

Other Work
I Testing: [Burckhardt, Musuvathi, CAV’08], [Burnim, Stergiou, Sen, 11]
I Upper-approximate analysis: [Alglave, Maranget, 11]
I Stronger criterion: Triangular data races [Owens, 10]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 15 / 16

Weak Memory Models: Robustness against TSO

State-robustness as hard as State Reachability in TSO.

Traces [Shasha, Snir, 88]: Capture the control and data flow in SC
computations.

Trace-robustness is reducible to State Reachability in SC!
[B., Derevenetc, Meyer, 13]

Code-to-code translation, precise (no approximations), holds for an
arbitrary number of threads, unbounded buffers, arbitrary data
domain.

Finite data domain: PSPACE/EXPSPACE-complete for a
fixed/arbitrary number of threads.

Optimal fence insertion.

Other Work
I Testing: [Burckhardt, Musuvathi, CAV’08], [Burnim, Stergiou, Sen, 11]
I Upper-approximate analysis: [Alglave, Maranget, 11]
I Stronger criterion: Triangular data races [Owens, 10]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 15 / 16

Weak Memory Models: Robustness against TSO

State-robustness as hard as State Reachability in TSO.

Traces [Shasha, Snir, 88]: Capture the control and data flow in SC
computations.

Trace-robustness is reducible to State Reachability in SC!
[B., Derevenetc, Meyer, 13]

Code-to-code translation, precise (no approximations), holds for an
arbitrary number of threads, unbounded buffers, arbitrary data
domain.

Finite data domain: PSPACE/EXPSPACE-complete for a
fixed/arbitrary number of threads.

Optimal fence insertion.

Other Work
I Testing: [Burckhardt, Musuvathi, CAV’08], [Burnim, Stergiou, Sen, 11]
I Upper-approximate analysis: [Alglave, Maranget, 11]
I Stronger criterion: Triangular data races [Owens, 10]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 15 / 16

Weak Memory Models: Robustness against TSO

State-robustness as hard as State Reachability in TSO.

Traces [Shasha, Snir, 88]: Capture the control and data flow in SC
computations.

Trace-robustness is reducible to State Reachability in SC!
[B., Derevenetc, Meyer, 13]

Code-to-code translation, precise (no approximations), holds for an
arbitrary number of threads, unbounded buffers, arbitrary data
domain.

Finite data domain: PSPACE/EXPSPACE-complete for a
fixed/arbitrary number of threads.

Optimal fence insertion.

Other Work
I Testing: [Burckhardt, Musuvathi, CAV’08], [Burnim, Stergiou, Sen, 11]
I Upper-approximate analysis: [Alglave, Maranget, 11]
I Stronger criterion: Triangular data races [Owens, 10]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 15 / 16

Weak Memory Models: Robustness against TSO

State-robustness as hard as State Reachability in TSO.

Traces [Shasha, Snir, 88]: Capture the control and data flow in SC
computations.

Trace-robustness is reducible to State Reachability in SC!
[B., Derevenetc, Meyer, 13]

Code-to-code translation, precise (no approximations), holds for an
arbitrary number of threads, unbounded buffers, arbitrary data
domain.

Finite data domain: PSPACE/EXPSPACE-complete for a
fixed/arbitrary number of threads.

Optimal fence insertion.

Other Work
I Testing: [Burckhardt, Musuvathi, CAV’08], [Burnim, Stergiou, Sen, 11]
I Upper-approximate analysis: [Alglave, Maranget, 11]
I Stronger criterion: Triangular data races [Owens, 10]

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 15 / 16

Conclusion / questions

A lot remains to be understood concerning decidability frontiers,
complexity, and reducibility to problems such as state reachability in
basic models.

In particular: correctness over weak memory models, correctness
criteria in the distributed case (papers in POPL’14), etc.

Generic reductions for general classes of programs and general
families of correctness criteria ?

Sequentialization (What is pushdown representable?) is related to the
notion of “bounded tree-width” [La Torre, Parlato, Madhusudan, 11].

We need a general framework for reasoning about order constraints
and their violations: What is Petri net representable (Petrifiable)?

A. Bouajjani (U Paris Diderot – UP7) Verification of Concurrent Programs Beijing, November 2013 16 / 16

