
Towards direct models

of classical logic

Locali meeting (Beijing, 4-6/11/2013)

Pierre-Louis Curien (CNRS, Paris 7, and INRIA)

(Pictures made using Mimram’s string diagram generator strid
http://strid.sourceforge.net)

1

Gentzen’s sequent calculus

A1, . . . , Am ` B1, . . . , Bn

to be read as “the conjunction of the A’s implies the disjunction of the B’s”.

Inference rules :
Γ1 ` B1,∆1 Γ2 ` B2,∆2

Γ1,Γ2 ` B1 ⊗B2,∆1,∆2

(read ⊗ as conjunction)

etc...

Link with algebra (operad theory, props, etc. . .)

- view a proof as an operation with many inputs and outputs

- view cut elimination as a composition of these operations
2

PLAN

I) Linear setting

(x · y) · z = x · (y · z)

{{x, y}, z} − {x, {y, z}} = {{x, z}, y} − {x, {z, y}}

II) Adding merging and dangling wires

(k · x) · y = x ((s · x) · y) · z = (x · z) · (y · z)

→ a non associative world

Based on works and ideas of Hugo Herbelin, Guillaume Munch, Marcelo
Fiore, Paul Downen, Zena Ariola, and myself

3

Intuitionistic cut elimination, graphically

X

Y \ {y}

f

y

g

g ◦y f

In operad theory this is known as partial composition. This can be seen as
explicit substitution g[f/y].

For the moment, we work at the core level of wiring : no connectives, no
types.

4

The equations of operadic partial composition

sequential and parallel composition, identity

(h ◦z g) ◦u f = h ◦z (g ◦u f) (h ∈ P (Z), g ∈ P (Y), u ∈ Y)
(h ◦z g) ◦u f = (h ◦u f) ◦z g (h ∈ P (Z), g ∈ P (Y), u ∈ Z \ z)

g ◦x idx = g
idx ◦x g = g

Implicit in the first equation : if g ∈ P (Y), the codomain of σ must be disjoint from Y \ y.

Notation : P (X) is the set of operations whose inputs are named by the
elements of X

(there are symmetries involved here – actually P is a species, i.e., a functor from the

category of bijections to the category of sets (details omitted))

5

Free operads

Given a (contravariant) species M , the free operad F(M) is built as fol-
lows.

- One constructs formal terms (y ∈ Y,X ∩ (Y \ y) = ∅ in the third rule) :

f ∈M(X)

f : X → · idx : {x} → ·
u : X → · t : Y → ·
t ◦x u : X ∪ (Y \ y)→ ·

(the notation is meant to reflect the graphical representations as a box with
input wires named by X and a single output wire ·)

One quotients the set of terms by the equations of the previous slide.

We refer to these formal terms as (operadic) combinators (cf. categorical
combinators, calculi of explicit substitutions)

We now give another style of syntax, which is more like the λ-calculus.
6

Key idea : decompose partial composition in two steps

g versus g

term context

7

and then :

f

g

〈term | context〉

8

Another syntax, with a binder

Two kinds of expressions and typing judgements

- the terms v (which produce an output),

v : (X ` ·)

- the contexts e (which expect an input at a designated place)

X | e ` ·

v ::= x || f{vx | x ∈ X} || 〈v | e〉
e ::= µ̃x.v

9

The typing rules

x : ({x} ` ·)
f ∈M(X) . . . vx : (Yx ` ·) . . .

f{vx | x ∈ X} : (
⋃
Yx ` ·)

v : (X ` ·) Y | e ` ·
〈v | e〉 : (X ∪ Y ` ·)

v : (X ` ·)
(X \ x) | µ̃x.v ` ·

(in the first rule, the Yx are indexed by X and pairwise disjoint, as are X and Y in the third

rule, x ∈ X in the fourth rule)

(The µ̃-binder is a syntactic version of the operation ∂ on species : ∂(M)(X) =

M(X + 1).)

10

Pictorially

y z t x u y z t u

g versus g

v µ̃x.c

v : ({y, z, t, x, u} ` ·) {y, z, t, u} | µ̃x.c ` ·

11

Only one equation !

〈v1 | µ̃x.v2〉 = v2[v1/x]

(plus an equations for symmetries : fσ{tx | x ∈ X} = f{tσ−1(y) | y ∈ Y })

12

The two presentations are equivalent

(Again, cf. Lambek’s correspondence CCCs / λ-calculus)

To prove the equivalence of the two presentations, and hence the freeness
of the one based on µ̃, one defines inverse translations (f ∈M(X) in the
first rule) :

f? = f{x | x ∈ X} (idx)? = x (t ◦x u)? = 〈u? | µ̃x.(t?)〉

and (total composition = sequence of partial compositions in the second
rule, translation of contexts indexed by a fresh variable) :

[[x]] = idx [[f{vx | x ∈ X}]] = f ◦~x
−−→
[[vx]] [[〈v | e〉]] = [[e]]y ◦y [[v]]

[[µ̃x.v]]y = [[v[x/y]]]

13

A brief look at the proof of equivalence

Verifying the sequential and parallel composition laws is instructive :

((h ◦z g) ◦u f)? = 〈f? | µ̃u.〈g? | µ̃z.h?〉〉

One should then read the two equations as a case statement : graft f on g
or on h, depending on where u lies.

(cf. Chapoton-Livernet’s construction of the free pre-Lie algebra !).

14

Free operads (or algebras) via rewriting

Another way to convince ourselves that our syntax “does the job” is to view
the second equation as a rewriting rule :

〈v1 | µ̃x.v2〉 → v2[v1/x]

This defines a confluent and terminating rewriting system (modulo the
equality), whose normal forms are the terms produced only by the rules

v ::= x || f{vx | x ∈ X}

i.e. the trees that one can build from the operators (and names at the
leaves)
The point here is that we do not need to show that trees form an operad :
the construction of the quotient does that for us, and we then synthesize
the presentation of elements (or elements of the basis of) the free algebra
as trees.

15

Dioperads

We are now interested in operations with multiple inputs and outputs.

But unlike in more general situations considered by algebraists, like PROPs
(the monoidal analogue of Lawvere’s algebraic theories), or Vallette’s pro-
perads, we insist that composition remains definable partially (one output
wire plugs into one input wire) = dioperad (Gan).

The corresponding drawings, also known as string diagrams, are simply
connected (at most one path between two boxes).

This is because the cut rule has this restricted shape (the one called “allo-
wed” in the next slide).

16

Pictorially

allowed not allowed

17

A µ− µ̃ syntax for dioperads

(µ plays a role dual to µ̃ for output wires). There are now three sorts of
“operations” :
• The operations themselves (commands c)
• the operations one output of which is selected (terms v)
• the operations one input of which is selected (contexts e)

(In the operadic case, we could confuse c and v since there was no choice for the (unique)

output wire.)

18

Pictorially

versus versus

term command context
X ` v |A c : (X ` A) X | e ` A

19

The µ− µ̃ kit

Names for input (resp. output) wires are x, y, . . . (resp. α, β, . . .).

c ::= 〈v | e〉 v ::= x || µα.c e = α || µ̃x.c
(X ∩ Y = ∅ and A ∩B = ∅ in the first rule)

X ` v |A Y | e ` B
〈v | e〉 : (X ∪ Y ` A ∪B) {x} ` x | |α ` {α}

c : (X,x ` A)

X | µ̃x.c ` A
c : (X ` α,A)

X ` µα.c |A

The generating operations come now from M(X;A) and give rise to cor-
responding commands f{. . . , vx, . . . , eα, . . .}. Equations : equivariance +

〈µα.c | e〉 = c[e/α] v = µα.〈v | α〉
〈v | µ̃x.c〉 = c[v/x] e = µ̃x.〈x | e〉

(the equations in the right column say that µ̃ and µ̃ have an inverse)
20

The µ− µ̃ critical pair (angelic side)

We have (thinking in terms of rewriting) :

c1[µ̃x.c2/α]← 〈µα.c1 | µ̃x.c2〉 → c2[µα.c1/x]

Rewriting is not confluent anymore, but the three expressions describe, i.e.
are sequentialisations of, the same underlying string diagram :

c1 c1
c2

c2 c1

← →
c2

21

Coloured (symmetric) operads (or multicategories)

One replaces finite sets X by CX (for C a set of colours, or objects). An
element of CX is written Γ = . . . , x : c, . . . (c is the colour of the input wire
named x – different wires can have the same color).

The unique output wire of an operation also has a colour. Thus P (X) is
replaced by P (Γ; c), and

• If f ∈ P (. . . , x : c, . . . ; d) and g ∈ P (∆; c′), partial composition must
be well-typed, i.e., c = c′.

The colored case of dioperads goes back to Szabo’s polycategories. The
operations are indexed by left contexts Γ = . . . , x : c, . . . and right contexts
∆ = . . . , α : d,

22

Tensor products in multicategories

We say that a (symmetric) multicategory has (non unital) tensor products
if there is an operation (c1, c2) 7→ c1 ⊗ c2 on colours together with the
following other data :
• for each Γ = {y : ay | y ∈ X}, a1, a2, and x1, x2, x 6∈ X (and x1 6= x2),
a mapping

f 7→ f
x1,x2
x : P (Γ, x1 : a1, x2 : a2; c)→ P (Γ, x : a1 ⊗ a2; c)

• an operation χx1,x2 ∈ P (x1 : a1, x2 : a2; a1 ⊗ a2) (for distinct x1, x2)
• satisfying (kind of adjunction !) :

f
x1,x2
x ◦x χx1,x2 = f (g ◦y χx1,x2)x1,x2

y = g

(Equivalently, one requires the mappings f 7→ f
x1,x2
x to form natural bijec-

tions.)
23

Free multicategories with tensor products

We omit the extended operadic combinator syntax/equations (mimicked
from the previous slide) and give here directly an extended µ̃ style presen-
tation using a structured form of binding :

v ::= · · · || (v1, v2) e ::= · · · || µ̃(x1, x2).v

with the following rules (Γ1,Γ2 have disjoint domains in the first rule)

v1 : (Γ1 ` a1) v2 : (Γ2 ` a2)

(v1, v2) : (Γ1,Γ2 ` a1 ⊗ a2)

v : (Γ, x1 : a1, x2 : a2 ` c)
Γ | µ̃(x1, x2).v : a1⊗ a2 ` c

24

Pictorially

v1 v2

a1 a2

a1 ⊗ a2

=

a1 ⊗ a2

a1 a2

c

(v1, v2) µ̃(x1, x2).c

25

Cut elimination

We impose the following equations (as usual, when both sides are defi-
ned) :

〈(v1, v2) | µ̃(x1, x2).v〉 = 〈v1 | µ̃x1.〈v2 | µ̃x2.v〉〉

e = µ̃(x1, x2).〈(x1, x2) | e〉

The first equation performs pattern-matching !

One can similarly define coproducts, and then, in the polycategorical set-
ting, the dual constructions “par” (or cotensor) and “with” (or product). (it
is known that in a linear setting, there exist two conjunctions, and two dis-
junctions)

26

II) General (non linear) case. . .
Now terms are allowed to have repeated variables, or forgotten variables
like in the right hand sides of

(k · x) · y = x
((s · x) · y) · z = (x · z) · (y · z)

27

The µ− µ̃ critical pair (evil side)

Take the µ− µ̃ pair with dummy variables on both sides

c1 ← 〈µ .c1 | µ̃ .c2〉 → c2

All operations (proofs, programs) are equal This is known as Lafont’s
critical pair, or ambiguity .
We have to impose some discipline. One is led to introduce a subclass of
terms V , called values, and a subclass E of contexts, called covalues, and
to restrict the equations as follows :

〈µα.c | E〉 → c[E/x]
〈V | µ̃x.c〉 → c[V/x]
E = µ̃(x1, x2).〈(x1, x2) | E〉 . . .

One requires of course E and V to be designed in such a way that

〈µα1.c1 | µ̃x.c2〉
is not a critical pair anymore. E and V should also be stable by substitu-
tions of (co)variables by (co)values.

28

Polarised approach

One way to do this is through the use of the polarities (+,−) of the formulas
/ colors, these determining in turn what values and covalues are.

These restrictions are called focalising (terminology coming from Andreoli).

The polarities are defined as follows : tensor and coproduct are positive (or
eager) , and cotensor and product are negative (or lazy).

Typically, a value of type A ⊗ B is a pair (V1, V2) of values – not a term
like (5, (λx.x)4)) = eager pairs. In contrast, a lazy pair is just a pair of two
things, each of which might be a very complex non evaluated program.

29

What is core focalizing system L the internal language of ?

We limit ourselves to one color, one input wire and one output wire, no
connectives. Generators are sorted by the polarity of their wires : f ∈
M(δ; ε), where δ, ε ∈ {+,−}.

c ::= 〈v+ | e+〉 || 〈v− | e−〉 || f(vδ, eε)
v+ ::= x+ || µα+.c v− ::= x− || µα−.c
e+ ::= α+ || µ̃x+.c e− ::= α− || µ̃x−.c

V ::= x+ || v− E ::= α− || e+

x ` x |
c : (x ` α)

x ` µα.c | |α ` α
c : (x ` α)

| µ̃x.c ` α

x ` vδ | | eδ ` α
〈v | e〉 : (x ` α)

x ` vδ | | eε ` α f ∈M(δ; ε)

f(vδ, eε) : (x ` α)

30

Preduploids (Munch)

Only sequential composition � is available. We write � = • (resp. � = ◦)
when the connecting color is positive (resp. negative). Is it associative ?
Consider

(c3 �z,β c2)�y,α c1 = 〈µα.c1 | µ̃y.〈µβ.c2 | µ̃z.c3〉〉
c3 �z,β (c2 �y,α c1) = 〈µβ.〈µα.c1 | µ̃y.c2〉 | µ̃z.c3〉

One can check that we have

(c3 • c2)� c1 = c3 • (c2 � c1) and (c3 � c2) ◦ c1 = c3 � (c2 ◦ c1)

but (cf. Blass’ problem in game semantics)

(c3 ◦ c2) • c1 6= c3 ◦ (c2 • c1)

These are known as duplicial algebras (Loday, Loday-Ronco)

31

With multiple inputs and outputs

When multiple input and output wires are allowed, sequential composition
is constrained in the same way as above, and in addition parallel composi-
tion is also constrained (c3 : (. . . , x1, x2 ` . . .), c1 : (. . . ` α1, α2, . . .),
respectively) :

(c3 ◦x1,α1 c1)�x2,α2 c2 = (c3 �x2,α2 c2) ◦x1,α1 c1
c1 •x1,α1 (c2 �x2,α2 c3) = c1 �x2,α2 (c2 •x1,α1 c3)

but
(c3 •x1,α1 c1) •x2,α2 c2 6= (c3 •x2,α2 c2) •x1,α1 c1
c1 ◦x1,α1 (c2 ◦x2,α2 c3) 6= c1 ◦x2,α2 (c2 ◦x1,α1 c3)

The resulting structure is a polarised version of polycagegories.

32

With connectives

They are defined using the same universal constructions as in the polyca-
tegory case. This works because the restrictions on the equations (values
and covalues) are concentrated in the two "control" (non logical) rules

〈µα.c | E〉 → c[E/x]
〈V | µ̃x.c〉 → c[V/x]
E = µ̃(x1, x2).〈(x1, x2) | E〉 . . .

As a matter of fact, the equation

〈(v1, v2) | µ̃(x1, x2).v〉 = 〈v1 | µ̃x1.〈v2 | µ̃x2.v〉〉

for tensors does not refer to values or covalues.

Values and covalues are thus relevant only for the bare unstructured wires,
and “control is orthogonal to logic”.

33

Shifts

Implicit in the polarised connectives are operations ⇑ and ⇓ (the shifts)
such that ⇓A is always positive, and ⇑B is always negative. We have al-
ways

A⊗B = (⇓A)⊗ (⇓B) (idem ⊕)

AOB = (⇑A) O (⇑B) (idem &)

With shifts we can encode CBN implication and CBV implication, as well
as typed languages allowing for mixed CBN and CBV.

M →n N =↑ (¬M)ON P →v Q =↓ ((¬P) O ↑ Q)

This leads to the following definition (next slide).

34

Duploids (Munch)

A (poly)duploid is a pre(poly)duploid D equipped with the following additio-
nal structure :
• two mappings ⇓ and ⇑ from negative and positive colours to positive and
negative colours, respectively
• for every positive colour P , two operations delay ∈ D(P ;⇑P) and
force ∈ D(⇑P ;P)
• for every negative colour N , two operations wrap ∈ D(N ;⇓N) and
unwrap ∈ D(⇓N ;N)
satisfying :

force ◦ (delay •α f) = f
(f ◦x unwrap) • wrap = f
delay • force = id
wrap ◦ unwrap = id

(we should have written delayx,β ∈ D({x : P}; {β : ⇓P}), and •x,α instead of •α, etc. . .).

35

Duploids and adjunctions

In his thesis, Guillaume Munch shows that the category of duploids is equi-
valent to the category of adjunctions (the shifts are adjoint).

Computer science relevance (direct versus indirect style) :

It is well-known that an adjunction gives rise to a monad and a comonad.
The semantics of programming languages with effects is typically descri-
bed with the help of a monad : programs Γ ` M : A are interpreted as
morphisms from Γ to TA, i.e., in the Kleisli category of a monad.

Duploids instead axiomatise directly the relevant properties of these Kleisli
(and coKleisli) categories.

36

Future work

Computer science : Compare with numerous other propositions for giving
meaning to programs (or proofs) with effects.

Category theory : relate polyduploids to more standard categorical notions
based on (polarised) categories rather than multi or polycategories (cf.
work of Hermida relating multicategories and monoidal categories through
an adjunction).

Operads : explore other types of “things like operas” (“combinads”

37

