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e.g. 2 =4ef 5(s(0))

Isomorphism

fog=ldy

A=B iff Hf’gs't'{gof—ldg

e.g. AANB=BAA

Isomorphism is stronger that “definitionally equivalent”

e.g. AANB=BAA but (r,s) Fdef (s,r)
Soif r:(AAB)=C and s:BAA
rs will fail

Our goal is to identify isomorphic types
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Associative and commutative conjunction
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Associative and commutative conjunction

Fr:A I'ks:B
M= (r,s) :ANB

(A1)

AANB=BAA
AN(BAC)=(AAB)AC

So (r,s) = (s,r)
(r, (s,t) ) S ((r;s) .t)

What about the elimination?

M= (r,;s) :ANB

FFm(rs) :A  ButAAB=BAAl TFm(rs) :B

Moreover (r,s) = (s,r)

M= (r,s) :BAA

(Ae)

som (r,s) =m (s,ry Il

Workaround: Church-style. Project w.r.t. a type

If THr:A then

wa (r,s) —r

This induces non-determinism

NlEr: A
If Fes: A then

We are interested in the proof
theory and both r and s are valid
proofs of A

A (r,s) —r
7wa (r,s) —s

“the subject reduction property is
more important than the unique-

ness of results”

[Dowek, Jiang’11]



Associative and commutative conjunction
ANB=BAA
AN(BAC)=(AAB)AC
r+s S (s+r)

l-r:A Iks: B
' r+s :AAB

(A1)

So

r+(s+t) =

What about the elimination?
' r+s :BAA

' r+s :AAB

(o)
FFm(r+s): A But AAB=BAAI TFEm(r+s):B

Moreover r+s = s+r

(r+s)+t

(Ae)

so m(r+s)=m(s+r) !l

Workaround: Church-style. Project w.r.t. a type

If THr:A then

ma(r+s) —r

This induces non-determinism

NlEr: A
If Fhs: A then

We are interested in the proof
theory and both r and s are valid
proofs of A

wa(r+s) —r
ma(r+s) —s

“the subject reduction property is
more important than the unique-

ness of results”

[Dowek, Jiang’11]



Distributivity of implication over conjunction
A= (BAC) = (A=B)A(A= ()

induces

MA(r+s) S MxAr+ A x%s  and  mass(Axr) S AxAp(r)
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Distributivity of implication over conjunction

A= (BAC) = (A=B)A(A= ()
induces
MA(r+s) S MxAr+ A x%s  and  mass(Axr) S AxAp(r)

Example

FAXAE x: (AANB) = (AN B)
FAXAB x: ((AAB) = A)A((AA B) = B)
F manB)=a(AMXEX) (AN B) = A

(Ae)

W(AAB):A(/\XA/\B.X) = MAE A (x)
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Three technical rules
Rules
» If A= B, r Sr[A/B]

> fr=,r, rsr

Example

A:>(C1/\C2)

—_—~
let A=B M r+)yBs
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Three technical rules
Rules
» If A= B, r Sr[A/B]

> fr=,r, rsr

Example

A=(GAG)
Let A=B M r+\yPs S*ax?r 4+ Ax?s[x/y][A/B]
= MA(r +s[x/y][A/B])
Rule If r: AABAC, wa(r) S wa(mans(r))

Example

(A=B)A(A=A)NC

T (A (Y2 4+ x) + 1) S Tass(T(amapnamg) (A (y2 + X) +71))
= mas (M (y? + x))

S AATe(yE +x) = Ay
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The full calculus

Types
AB,C:=X|A=B|AAB ) rEr A AEB(E)
Equivalences Nx:AFx: A l=r:B

ANB=BAA

(ANB)AC =AA(BAC)

A= (BAC)= (A= B)A(A= C . :
( ) = ( ) A ( ) Mx:Abr:B  TrrA=B TFs:A

M-xAr:A=B M-rs: B
Terms
rs,to=x" | AxAr|rs | r+s| ma(r)
ReductionArules Fr-r:A Fl—s;B(A,) r’Er:AAB Ae)
(Axr)s = rls/x] TFr+s:AAB M 7a(r): A

ma(r+s)—=r (ifFEr:A)
r+sSs+r

(r+s)+tSr+(s+t) 5 :

M+ 8) S Axhr 4 Axhs Theorem (Subject reduction)

Ta=s(MAr) S AxAmp(r) If THr:A and r—s then Ths:A

Plus the technical rules where — is — or <
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Normalisation

’r is in normal form, if it can only continue reducing by relation ‘:‘

Normal form

Red(r) ={s | rS" ¥ — ¢ S*s}
=0

r in normal form if Red(r)
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Normalisation

’r is in normal form, if it can only continue reducing by relation ‘:‘

Normal form

Red(r) =

{s|rs'r s S s}
r in normal form if Red(r) = 0

Theorem (Strong normalisation)

If THr:A then r strongly normalising

Proof. Reducibility candidates




Neutral terms

Don't wanting to remain neutral

‘ Premise: All terms are neutral, except the abstractions

XA dxfr | rs | r4s | wa(r)
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Neutral terms

Don't wanting to remain neutral

‘ Premise: All terms are neutral, except the abstractions

XA dxfr | rs | r4s | wa(r)

WAiB()\XA.r) = )\XA.’]TB(I‘)
~——— ——
eN ZN

MAr+As 5 A (r+s)

’ Premise’: All terms are neutral, except those equivalent to abstractions

Inductively:
> Ifrs*rp+rpand r &% A, thenre N/
> Ifr1 EN, ri+rp eN

10/

30



Finding an interpretation

The standard interpretation does not work

| [AAB] = {r | ma(r) € [A] and 75(r) € [B]} |
Counter-example: r = xA + y& + Q € [AA B]
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Finding an interpretation

The standard interpretation does not work

| [AAB] = {r | ma(r) € [A] and 75(r) € [B]} |
Counter-example: r = xA + y& + Q € [AA B]

| [AAB]={r: AAB | ma(r) € [A] and 7g(r) € [B]} |
How to prove that r € [A] and s € [B] implies r +s € [AA B]?

7TA(I'—|-S)—>I‘ but. .. 7TA/\B(I'1—|—I'2+51—|-SQ)—>I‘1+51
—— N —
AAB BAC

We need something more subtle
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Finding an interpretation

Interpreting canonical types

Singleton type S:=X|A=S

Lemma

VA, AE/\S,‘

Proof (idea) A= (BAC)=(A=B)A(A= ()
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Finding an interpretation
Interpreting canonical types

Singleton type S:=X|A=S

Lemma

VA, AE/\S,‘

Proof (idea) A= (BAC)=(A=B)A(A= ()

Canonical form

A°€: canonical form of A (given by the lemma)

[X] =8NV
[A= S] ={r| Vs e [A],rs € [S]}
ﬂASlH :{r:A|Vi,7T5i(r)€ [[5,]]} with n > 1
i=1

Normalisation v/



Ongoing work

1. Add the missing isomorphism: currification

(ANB)= C=A=B=C

New rule:
MANEBr s AZBrlna(2)/X][78(2)/y]
Modified beta rule:

If s: A, then (Ax™.r)s — r[s/x]
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Future work
2. Move to System F

’ Not trivial: our interpretation is not stable under substitution
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’ Not trivial: our interpretation is not stable under substitution‘

Counter-example:

S = closure by (CR3) of 0 R = closure by (CR3) of SU {A\y*.y}
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Future work
2. Move to System F

’ Not trivial: our interpretation is not stable under substitution‘

Counter-example:

S = closure by (CR3) of 0 R = closure by (CR3) of SU {A\y*.y}
p=X—S5Y—R

MyAy € [Yl, xAZA ¢ X1,

Tasa(y Ay +x474) ¢ [X], so MAYy +xAZAZXAY],

Room for improvement:
To find an interpretation of A stable under substitution

14/30



Part 2: Relation with probabilistic calculi



Non-deterministic vs. Probabilistic \-calculus

Non-determinism

Probabilities

r+s
non-deterministic superposition
(run r or s, non-deterministically)

pr+agq.s
probabilistic superposition
(run r with probability p
or s with probability q)
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Non-deterministic vs. Probabilistic \-calculus
Non-determinism Probabilities

pr+agq.s
probabilistic superposition
(run r with probability p
or s with probability q)

r+s
non-deterministic superposition
(run r or s, non-deterministically)

MA(pr+q.s) = pAxAr+ g \xts

m(r+s) p.q.r = pq.r
r/ \s p.(r+s)— pr+ps
pr+qr— (p+q).r
> Non-deterministic projector » Vectorial characterisation
» Logical characterisation » Quantum encoding
» Quantitative characterisation in LL (relaxing the scalars)
» Etc. > Logical side: much harder

Goal: To move from ND to Prob. without loosing the connections with
logic

16/30
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Goal: To move from Non-determinism to Probilities

» General technique

» Application to our particular case
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Intuition

From non-determinism to probabilities

w(r+m(s+t) +t)

|

(s +t)

TN

r S t
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Intuition

From non-determinism to probabilities

+7Ts+t)+t n(r+m

Wik

s+t)

N

An easier way. . .
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Generalising the problem to abstract rewrite systems

Idea: to define a variant of a Lebesgue measure for sets of real
numbers, on the space of traces
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1 2
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3
eg. If a—=>c
1
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Intuition

Generalising the problem to abstract rewrite systems

Idea: to define a variant of a Lebesgue measure for sets of real
numbers, on the space of traces

1%t Define an intuitive measure on single rewrites

: d

1 2

s bZX—=e

then p(a —¢) =3 +
p(a—bb—d)=

3
eg. If a—=>c

1

3

C

2"d Generalise it to arbitrary sets of rewrites taking the minimal cover with
sets of single rewrites

19/30



Formalisation

Strategies
A: set of objects —:AxAN—=N a — b notation for — (a,b) # 0.
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Formalisation

Strategies
A: set of objects —:AxAN—=N a — b notation for — (a,b) # 0.

o

o(a) Z S (a.b) €g. a <b p(a) =3

b C
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Formalisation
Strategies
A: set of objects —:AxAN—=N a — b notation for — (a,b) # 0.

o

eg. aZ——>b pla)=3

p(@)=7) — (a,b) N
b
f(a) = b impliesa — b Q = set of all the strategies

e.g. Rewrite system
Q={f,g, h,i}, with

/a\ f(a)=Db g(@a)=hb
f(c)=d glc)=e
b c

/N AR K



Formalisation

Boxes

Box
B C Q of the form

B:{f|f(a1):b1,

e.g. Rewrite system:

,f(an) =bn}

{hifo} ={f | f(a) = b}

AN

/N

Box

b

/

a




Formalisation

Measure on boxes

Measure on boxes

If B={f|f(a1) =by,...,f(an) = by} then

— (ai, b;)
"o (a b ) ways to arrive to b; from a;
— s L2 p(a;i)
p(B) = H o(a;) nb. of rewrites from a;

i=1



Formalisation

Measure on boxes

Measure on boxes

If B={f|f(a1) =by,...,f(an) = by} then

— (ai, b;)
no_, (a. b') ways to arrivze t;) b; from a;
— 0y =4 pla;
p(B) = ].__.[ p(a;) nb. of rewrites from a;
©& Box
/a /a a
B=¢{ A= b /c h= b c\ = b
d e {f | f(a)=b}
— (a,b)
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Generalising the problem to abstract rewrite systems
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Intuition

Generalising the problem to abstract rewrite systems

Idea: to define a variant of a Lebesgue measure for sets of real
numbers, on the space of traces

15t Define an intuitive measure on boxes

eg If a—=>c

boxes

2"d Generalise it to arbitrary sets of rewrites taking the minimal cover with




Formalisation
Probability function

Probability function

Let S€ P(Q), S#0
P(0) =0

P(S) = inf {Z p(B) | C is a countable family of boxes s.t. S C U B}
BeC Bec



Formalisation
Probability function

Probability function

Let S € P(Q), S # 0

P(0)=0
P(S) = inf {Z p(B) | C is a countable family of boxes s.t. S C U B}
BeC Bec
e.g. a a
sS=¢{ f=b c :h= c = {h}U{R}
/ \ —~ —~~
Bl Bz
d e
1 1 1 1 1
P(S)=p(B1) +p(B2) =5 x5+ 5 x5 =3




Formalisation

Lebesgue measure and probability space

Lebesgue measurable

Ais Lebesgue measurable if VS € P(Q)
P(S)=P(SNA)+P(SNA"Y)

A={AC Q| Ais Lebesgue measurable}
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Formalisation

Lebesgue measure and probability space

Lebesgue measurable

A is Lebesgue measurable if VS € P(Q)
P(S)=P(SNA)+P(SNA"Y)

A={AC Q| Ais Lebesgue measurable}

Theorem

(22, A,P) is a probability space

» Q is the set of all possible strategies
» A is the set of events

» P is the probability function

Proof.

We show that it satisfies the Kolmogorov axioms. O



Outline

Goal: To move from Non-determinism to Probilities

» General technique

» | Application to our particular case
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From non-determinism to probabilities

The calculus A (Polymorphic version)

AB,Ci= X|A=B|AAB|VX.A
rs,t o= x| A rs | rts | wa(r) | AXor | r{A}

Non-determinism:

fr:A s:A mwa(r+s)

27/30



From non-determinism to probabilities

The calculus A7

ARS X%

» Closed normal terms of A are objects of Ai
> If ry,...,r, are objects, then wa(ry + -+ +r,) is an object

The rewrite rules have multiplicities: e.g.wa(r + r) — r with multiplicity 2
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From non-determinism to probabilities

The calculus N

ARS X!

» Closed normal terms of A are objects of Ai
> If ry,...,r, are objects, then wa(ry + -+ +r,) is an object

The rewrite rules have multiplicities: e.g.wa(r + r) — r with multiplicity 2

Theorem

(Q2,.A,P): probability space over )\i
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From non-determinism to probabilities

The calculus N

ARS X!

» Closed normal terms of A are objects of Ai
> If ry,...,r, are objects, then wa(ry + -+ +r,) is an object

The rewrite rules have multiplicities: e.g.wa(r + r) — r with multiplicity 2

Theorem

(Q2,.A,P): probability space over )\i
By, = {f | f(ra(Xoj1 mj.rj)) = ri}: a box

P(B.) = fim

Probabilistic calculus A}

Replace rule “If r : A, then wa(r +s) — r’ by
ma(Xr miri+s) = with probability Zmilm
i=1"Y



From non-determinism to probabilities
A« Alg
Algebraic calculi (Probabilistic version)

n n> O,
rs,t o= x| AxAr|rs| AXr|r{A}| Zp;.r; with < p; € Q(0,1]
i=1 Sipi=1
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From non-determinism to probabilities
AP <+ Alg
Algebraic calculi (Probabilistic version)

n n>0,
rs,t o= x| AxAr|rs| AXr|r{A}| Z pi.ri with < p; € Q(0,1]
i=1 i pi=1

From Alg to A}

ri: A
" n; n n;, d; € N*
[ —.ri] =7a(> m;[r]]) where n fori=1,...,n
; di ; m; = n,'(’ljl dk)

ki

Theorem (Alg to \?)

Ifr—* 5" pi.siin Alg and [s;] =* t;,
then [[r] —* t; with probability p; in \F..




From non-determinism to probabilities
AP — Alg
Algebraic calculi (Probabilistic version)

n n>0,
rs,t o= x| AxAr|rs| AXr|r{A}| Z pi.ri with < p; € Q(0,1]
i=1 i pi=1

From A\ to Alg

If Ta(r) — s; with probability p;, for i=1,...,n, (ma(r)) = Zp,-.(]s,-[)
i=1

Remark: if wa(r) normal, there is no translation

Theorem (A to Alg)

> If r— s, with probability 1, then (r) — (s)
> If r— s; with probability p;, for i =1,...,n, then

(A =>"1pi(si). 0




Sumarising

Part 1: Isomorphisms

» We introduced a new calculus where isomorphic
propositions have the same proofs

» We provided a proof of strong normalisation for simply
types
Part 2: From non-determinism to probabilities

» We provide a general technique to transform a
non-deterministic calculus into a probabilistic one

» We have a way to transform A into A}

» We get a simpler calculus, encoding an algebraic calculus,
without losing the connections with logic
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